

## **Report on the Proposed 2016 Cancer Claim Cost Valuation Tables**

## Joint American Academy of Actuaries and Society of Actuaries Cancer Claims Cost Tables Work Group

## Presented to the National Association of Insurance Commissioners' Health Actuarial Task Force

August 25, 2016

The American Academy of Actuaries is an 18,500+ member professional association whose mission is to serve the public and the U.S. actuarial profession. For more than 50 years, the Academy has assisted public policymakers on all levels by providing leadership, objective expertise, and actuarial advice on risk and financial security issues. The Academy also sets qualification, practice, and professionalism standards for actuaries in the United States.

The Society of Actuaries (SOA) is an educational, research and professional organization dedicated to serving the public, its members and its candidates. The SOA's mission is to advance actuarial knowledge and to enhance the ability of actuaries to provide expert advice and relevant solutions for financial, business and societal problems. The SOA's vision is for actuaries to be the leading professionals in the measurement and management of risk.

## **Cancer Claims Cost Tables Work Group**

Brad Spenney, MAAA, FSA—Chairperson

## Members

| Ashlee Borcan, MAAA, FSA  | Thomas Persichetti, MAAA, ASA, FCA    |  |  |
|---------------------------|---------------------------------------|--|--|
| Alex Faynberg, MAAA, FSA  | Scott Randles, MAAA, FSA              |  |  |
| Matthew Fleischman, MAAA, | Anita Recchio, MAAA, FSA              |  |  |
| CERA, ASA                 | Frank Reynolds, MAAA, FSA, FCIA       |  |  |
| Monique Hacker, MAAA, FSA | Timothy Robinson, MAAA, FSA, FCA      |  |  |
| Li Hwan Hwang, MAAA, ASA, | Richard Schaefer, MAAA, FSA           |  |  |
| FCAS                      | Tomasz Serbinowski, MAAA, FSA         |  |  |
| Darrell Knapp, MAAA, FSA  | D. Joeff Williams, MAAA, FSA          |  |  |
| Peter Miller, MAAA, ASA   | Teresa Winer, MAAA, FSA               |  |  |
| Jeffrey Morris, MAAA, FSA | , , , , , , , , , , , , , , , , , , , |  |  |
| Steve Niu, MAAA, FSA, EA  | Ali Zaker-Shahrak, MAAA, FSA          |  |  |

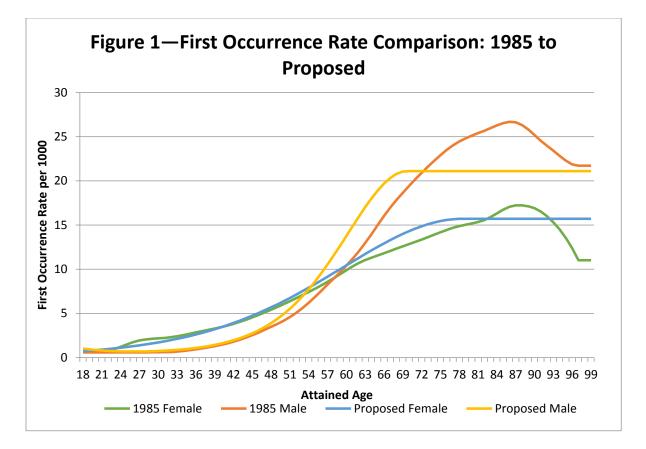
Special thanks to Aolin Zhang, MAAA, ASA for assistance with data graduation

# **Table of Contents**

| I.    | SUMMARY OF RESULTS4                                          |
|-------|--------------------------------------------------------------|
| II.   | INTRODUCTION7                                                |
| III.  | WORK GROUP FORMATION7                                        |
| IV.   | INDUSTRY                                                     |
| V.    | DATA CALL, PROCESSING, AND CALCULATIONS9                     |
| А     | . Overview9                                                  |
| В     | . Data Scrubbing9                                            |
| С     | . Incidence and Exposure11                                   |
| D     | . Data Scaling                                               |
| Ε     | . Scaled and Processed Data13                                |
| VI.   | SIGNIFICANT FINDINGS IN THE RAW DATA15                       |
| А     | . Older and younger ages                                     |
| В     | . Length of Stay                                             |
| C     | . Selection                                                  |
| VII.  | CREATION OF THE BASIC TABLES                                 |
| А     | . First Occurrence                                           |
| В     | . Each Payment Hospitalization                               |
| С     | . All Payment Hospitalization                                |
| VIII. | CREATION OF THE LOADED VALUATION TABLES                      |
| IX.   | CLAIM COST AND RESERVE COMPARISONS TO THE 1985 CANCER TABLES |
| А     | . Claim Costs Comparison                                     |
| В     | . Reserve Comparisons                                        |

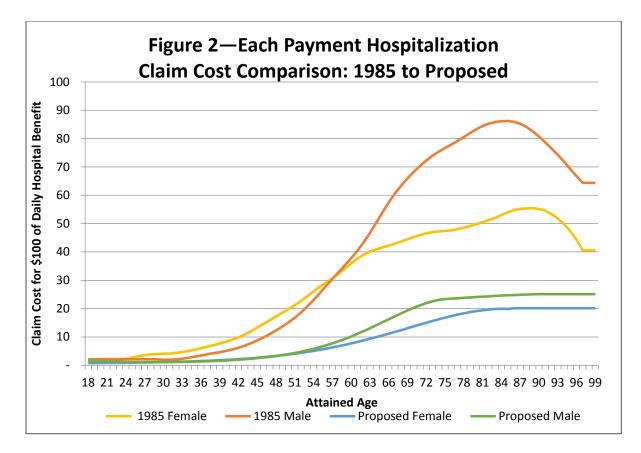
# I. Summary of Results

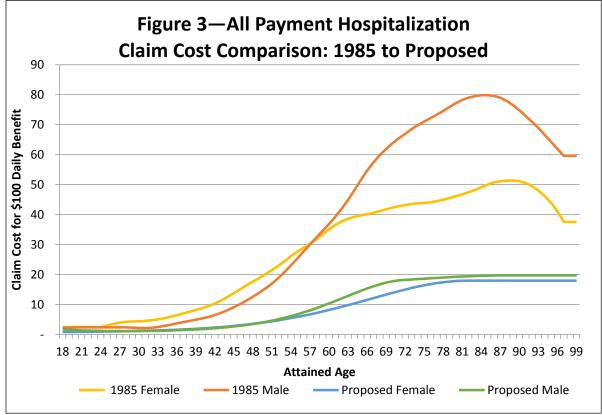
This section will summarize the most significant results of this study. The purpose of this project was twofold:


- To develop a new set of valuation tables for use with cancer insurance policies
- To aid actuaries pricing and reviewing product filings by providing information about the initial data provided by the industry in response to the data call.

The current tables used to value reserves for cancer policies were developed in 1985 based on experience data from the late 1970s. Since that time there have been changes in the medical treatment of cancer and therefore the product design of cancer policies. These trends and changes have limited the relevance of the 1985 tables, which can be seen in the results of this study.

The study was limited to two benefits included in typical cancer policies: first occurrence benefit and cancer hospitalization. The first occurrence benefit is generally a lump sum amount paid on the first occurrence of cancer. Hospitalization benefits are generally indemnity amounts paid on a per day basis when the covered person is confined to a hospital for the treatment of a covered cancer.


Key results of our work are provided below:


• The incidence of cancer in the proposed valuation table shows a slightly different pattern by attained age than that in the 1985 table. The proposed table for first occurrence rates shows higher incidence rates in the middle-age years than the 1985 tables. We believe that this is due to better medical tests for presence of cancer. The situation reverses in older ages, with the 1985 table first occurrence rates being higher than the proposed table. Figure 1 below demonstrates this difference.



This results in reserves for this benefit that rise faster but peak lower and fall faster than those computed off the 1985 tables.

• The hospitalization claims costs by attained age are significantly lower than those in the 1985 tables. While we cannot separate the 1985 tables into incidence and length of stay, we believe that both are drivers of the difference. Overall medical trends have shown that outpatient surgery has trended higher since the 1985 tables, with a corresponding decrease in inpatient surgery stays. The overall length of hospital stays also have trended shorter. Figures 2 and 3 below demonstrate the difference in claims costs by age on each payment and all payment bases, respectively.





The result of the difference in claim costs is a significantly lower reserve buildup using the proposed table as compared to the 1985 table.

- The initial raw data showed declining first occurrence rates, hospital incidence rates, and lengths of stay at older attained ages (approximately age 80 depending on the gender and whether all payment or each payment incurral dating is being considered). The 1985 first occurrence rates also exhibited a decline, but only at ages over 90. The Cancer Claims Cost Tables Work Group (work group) agreed that the declining pattern of incidence rates for both genders should be removed due to the risk of negative reserve calculations. A discussion of how the work group graduated the data can be found in section VII.
- The work group elected not to produce a select and ultimate table for the final work product. In conducting the analysis, the group found a pattern of anti-selection in the first several durations. A presentation of those findings can be found in section VI and the proposed tables can be found in the appendicies.

## **II. Introduction**

This report describes the work performed by the work group. The purpose of this report is to propose new cancer valuation tables for cancer policies as well as to document the processes followed by the work group in preparing the proposed tables. In addition to the proposed valuation tables and documentation provided, the work group has also included experience information from the cancer claim cost study conducted in order to make this information available to practitioners in the industry.

## **III.** Work Group Formation

On May 12, 2004, Julia Philips, chair of the Accident and Health Working Group (AHWG) of the Life and Annuity Task Force of the National Association of Insurance Commissioners (NAIC) requested the SOA Board Advisory Group on Research to review the 1985 cancer tables. This charge was subsequently taken over by the NAIC's Health Actuarial Task Force (HATF) following its formation. The request is provided below:

The Accident and Health Working Group of the Life and Health Actuarial Task Force accepted a proposal at the NAIC 2004 Spring National Meeting to pursue a review of the 1985 NAIC Cancer Claim Cost Tables used as the minimum valuation standard for contract reserves for individual policies currently being issued.

It was noted that these tables have become dated and could produce inadequate reserves when used. Specifically, cancer detection methods and treatment procedures, such as chemotherapy and prescription drugs, have materially changed in the years since the 1985 tables were adopted. This could cause a change in the claim cost patterns for the product types being offered today from those offered when the 1985 tables data was collected and reviewed. In addition, regulators have seen significant rate increases for policies that used the 1985 tables to price cancer products.

The Accident and Health Working Group requests the assistance of the Society of Actuaries in pursuing said review. Please consider undertaking a study of recent cancer claim costs as compared to those in the 1985 tables along with subsequent suggestions for appropriate tables for use as the future valuation standard for individual cancer policies.

Please advise us of your ability to undertake such a study and any resulting timeframe for expected completion. The Accident and Health Working Group stands ready to answer any questions you may have regarding this request.

In April 2010, the AHWG requested the Academy provide guidance on how to adjust the cancer tables to account for the current level of benefits, and the SOA and the Academy then formed the work group.

The original intent of the work group was to generate new cancer valuation tables with the same breadth of benefits as the 1985 tables. To achieve this objective, a broad data call was sent to carriers in the industry requesting historical experience on the wide variety of benefits typically included in cancer policies. The response to this data call was poor, resulting in a reassessment of the task by the work group. Given the difficulties, the work group elected to revise the data call to request a smaller subset of key cancer benefits rather than the large number previously requested.

First occurrence and hospitalization were identified as particularly important. Radiation and chemotherapy benefits were also considered, but given the wide range of benefit configurations in the industry, it was not feasible to collect and aggregate radiation and chemotherapy claim data from a broad range of carriers in a meaningful way. As a result, the data collected and processed in support of this report is for the first occurance and hospitalization benefits only.

## **IV. Industry**

Fifteen insurers responded to a request by the SOA to supply claim data on first occurrence and hospitalization benefits from cancer policies (excluding critical illness policies) covering years 2001 through 2010. These 15 companies included the major writers of cancer policies and, in total, represented about 69 percent of the industry in terms of 2008 annual earned premium.

The companies that submitted data were:

- American Family Life Assurance Company of Columbus
- American Family Life Assurance Company of New York
- American Fidelity Assurance Company
- American Heritage Life Insurance Company

- Central United Life Insurance Company (submission representing both direct business and business assumed/acquired)
- CNO Financial Group (submission representing both direct business and business assumed/acquired)
- Colonial Life & Accident Insurance Company
- Combined Insurance Company of America
- Combined Life Insurance Company of New York
- Continental American Insurance Company
- Family Heritage Life Insurance Company of America
- Humana Insurance Company (submission representing both direct business and acquired business from Kanawha Insurance Company)
- Life Insurance Company of Alabama
- The MEGA Life and Health Insurance Company
- Mid-West National Life Insurance Company of Tennessee

## V. Data Call, Processing, and Calculations

#### A. **Overview**

The objective of the study was to receive and summarize detailed policyholder experience data from 2001 through 2011 from insurers that have provided cancer insurance. The data was collected and analyzed for use by the work group. The data call provided to all potential study participants is included in Appendix 1. Milliman Inc. was engaged by the SOA to complete the data compilation of the cancer experience. This section describes the data scubbing, scaling, and deidentification processes performed by Milliman and the SOA.

#### B. Data Scrubbing

The data was gathered from the companies and subjected to a rigorous data scrubbing process. The scrubbing process better assured that the data presented to the work group was appropriate for use.

Across all submissions, data was excluded for a variety of reasons. If Milliman could not reliably identify key information for the insured, key information for the claim, and a reliable link between the two, the data was not included in the study. After considerable correspondence with each of the submitters, this missing data was populated if available, and any residual insureds with missing data were excluded. In some instances, entire datasets were excluded. General information with respect to the data submissions is included below. Routine data maintenance items, such as exclusions due to missing birthdates or gender indicators as well as non-covered benefit types, are not included in the list below.

- Data was submitted for primary insureds for all submitters. Some submitters were also able to provide spousal information. No submitter included reliable child data.
- With respect to spousal data, in some instances only a spouse's gender was provided and not the spouse's date of birth. In these instances an age difference study at the submitter company level was utilized to populate the birthdate of the spouse based on the birthdate and gender of the primary insured.
- There were instances of overlapping exposure in the study. These instances were collapsed down to continuous single exposure records to avoid duplicative contributions.
- Often the data submissions included gaps in coverage. Specific feedback was received from the submitting companies in order to properly account for these gaps.
- Where possible, skin cancer and in situ claims were specifically excluded from the study; however, there were instances where these claims may have been present and Milliman was unable to identify them.

#### Successive Hospital Stays

Consistent with industry practice, successive hospital stays have been considered as a single confinement if they are separated by 30 days or less. Successive stays that meet this requirement have been combined to a single confinement incidence with a length of stay calculated as total confinement days for the applicable stays.

#### Truncating Based on Age

For all companies, all records associated with an issue age of less than 18 years old or greater than 90 years old were removed from the raw data submitted to the work group. Results were also excluded for attained ages greater than 90 due to limited exposure and a perceived lack of reliability associated with the results for these ages.

#### Outlier Data

Within the study there were cells that contained obvious outlier data. Commonly these outliers were visible where exposure is sparse at the high and low ages. The raw data provided to the work group was not processed or smoothed to remove outliers, as they are expected in any large data set.

#### Spouse Data

Where covered spouse data was submitted, it has been included under the spouse's characteristics, not the characteristics of the primary insured. As an example, for a 50-year-old male covered with his 48-year-old female spouse, the spouse would be included in the appropriate contribution cell for a 48-year-old female, not aggregated with the primary insured's data as a 50-year-old male.

#### C. Incidence and Exposure

Once the data provided by the submitters was processed, incidence, exposure, and length of stay information was calculated. Any user of this report and the proposed valuation tables needs to be cognizant of the methodology used to develop the exposure and incidence presented to assure that the approach is appropriate for and consistent with the user's intended application, particularly in determining premium rates and reserves.

The scrubbed data for the first occurrence portion of the study has been processed into incidence rate results. The scrubbed data for the hospitalization portion of the study has been processed into incidence rate and length of stay results. Where possible, the hospitalization data has been presented using two calculation methodologies: "Each Payment" and "All Payment." While the exposure calculated between the methodologies is equal for a given policyholder, incidence and length of stay is derived differently under each methodology. These two methodologies are provided because they are both used by insurance companies active in the market.

#### *Exposure and Incidence—First Occurrence*

All calculations are on an age last birthday (ALB) basis and are associated with the attained age of the insured person on the most recent policy anniversary.

- If the policy is in force for the entire policy year and no claim has been recorded, incidence is equal to 0 and exposure is equal to 1.
- If the policy is in force for the entire policy year and a first occurrence claim is recorded, incidence is equal to 1 and exposure is equal to 1.
- If the policy terminated before the end of the policy year and no claim has been recorded in the partial policy year, incidence is equal to 0 and exposure is equal to the proportion of the policy year during which the coverage was in force. For example, if the policy was in force for half a year, the exposure would be 0.5.
- If the policy terminated before the end of the policy year and a claim has been recorded, incidence is set to 1 and exposure is set to 1.

It should be noted that when a policy incurred a first occurrence claim, no subsequent exposure for this policy was included in the study. This is consistent with an administration philosophy that terminates policyholders following a first occurrence benefit for an individual as no subsequent first occurrence benefit is available.

#### Exposure and Incidence—Hospitalization—Each Payment

All calculations are on an ALB basis and are associated with the attained age of the insured person on the most recent policy anniversary.

- If the policy is in force for the entire policy year and no claim has been recorded, incidence is equal to 0 and exposure is equal to 1.
- If the policy is in force for the entire policy year and one or more claims have been recorded, incidence is equal to the number of distinct hospitalizations and exposure is equal to 1.
- If the policy terminated before the end of the policy year and no claims have been recorded in the partial policy year, incidence is equal to 0 and exposure is equal to the proportion of the policy year during which the coverage was in force. For example, if the policy was in force for half a year, the exposure would be 0.5.
- If the policy terminated before the end of the policy year and one or more claims have been recorded in the partial policy year, incidence is equal to the number of distinct hospitalizations and exposure is equal to the proportion of the policy year during which the coverage was in force.

#### Exposure and Incidence—Hospitalization—All Payment

All exposure calculations are on an ALB basis and are associated with the age of the individual on the most recent policy anniversary. Incidence for claims are calculated consistently with the "Hospitalization—Each Payment" approach, but the claims are associated with the policy year (duration) during which the first hospitalization occurred. It is important to note that these claims are dated based upon the first hospitalization, not the first occurrence of cancer or first instance of any type of non-wellness cancer claim.

- If the policy is in force for the entire policy year and no claim has been recorded, incidence is equal to 0 and exposure is equal to 1.
- If the policy is in force for the entire policy year and one or more claims have been recorded, exposure is equal to 1. Incidence is equal to the number of distinct hospitalizations and is recognized with the incidence for the policy year when the first hospitalization for the covered insured occurred.
- If the policy terminated before the end of the policy year and no claims have been recorded in the partial policy year, incidence is equal to 0 and exposure is equal to the proportion of the policy year during which the coverage was in force. For example, if the policy was in force for half a year, the exposure would be 0.5.
- If the policy terminated before the end of the policy year and one or more claims have been recorded in the partial policy year, exposure is equal to the proportion of the policy year during which the coverage was in force. Incidence is equal to the number of distinct hospitalizations and is

recognized with the policy year during which the first hospitalization occurred.

Hospitalization—Length of Stay

Length of stay for the study was calculated by summing the total days of stay and dividing by the total number of claims for a given data cell.

## D. Data Scaling

The scrubbed data was scaled to meet the confidentiality guidelines set forth by the SOA. The guidelines require that for each gender and age combination there have to be at least five distinct companies that contribute exposure (five companies requirement). Additionally, no company can contribute more than 25 percent of the exposure for a given gender and age combination (25 percent limit). This helps avoid one company's experience from unduly influencing the overall results of the study.

For the All Payment Hospitalization study as well as First Occurrence study, each age and gender combination met the five companies requirement. However, some age and gender combination failed the 25 percent limit requirement and the data for these age and gender combinations had to be scaled. As a result, incidence and days of stay are often presented as fractional values.

For the Each Payment study, the five companies requirement was not met for males at certain younger and older ages as well as age 43. Therefore, male results were aggregated at certain points into age bands such that each age band met the requirement (18-37 band, 43-44 band, and 76-90 band). There was no need to aggregate any of the female data, so the female results are presented on an age-distinct basis. Again, both male and female data had to be scaled for many ages due to failing the 25 percent limit requirement.

Where the male data was aggregated, the aggregated data is presented for an age band and represents the sum of the data for all ages within the band. The aggregated data for the age band has not been divided in order to provide an implied exposure per age.

#### E. Scaled and Processed Data

After scaling and processing, the data was in a form to provide to the work group. It was deidentified as to participant. In total, approximately 27 million life years of exposure are included in the first occurrence portion of the study. The data tables containing the raw data have been included in this report as Appendix 2. It should be noted that while this data has been processed and scaled as described above, it is unsmoothed or otherwise refined for use. Below is a summary of final scaled total exposure amounts by age band and gender.

| TABLE 1   FIRST OCCURRENCE EXPOSURE BY AGE BAND AND GENDER |            |            |          |       |
|------------------------------------------------------------|------------|------------|----------|-------|
|                                                            | Life Years |            | Distribu | tion  |
| Age Band                                                   | Female     | Male       | Female   | Male  |
| 18-39                                                      | 3,375,534  | 2,152,416  | 12.6%    | 8.0%  |
| 40-49                                                      | 4,849,821  | 2,965,059  | 18.1%    | 11.1% |
| 50-59                                                      | 5,298,167  | 3,056,370  | 19.8%    | 11.4% |
| 60-69                                                      | 2,466,416  | 1,484,292  | 9.2%     | 5.5%  |
| 70+                                                        | 722,902    | 417,417    | 2.7%     | 1.6%  |
| Total                                                      | 16,712,840 | 10,075,554 | 62.4%    | 37.6% |

Approximately 25 million life years of exposure are included in each of the hospital confinement portions of the study. Below is a summary of the final scaled total exposure amounts by age band and gender for both the Each Payment and the All Payment study results. It should be noted that some submissions were specific to a particular hospital confinement calculation methodology. This accounts for the difference in the overall exposure between the two methodologies.

| TABLE 2     HOSPITALIZATION—EACH-PAYMENT EXPOSURE BY AGE BAND AND GENDER |            |           |          |       |
|--------------------------------------------------------------------------|------------|-----------|----------|-------|
|                                                                          | Life Years |           | Distribu | ution |
| Age Band                                                                 | Female     | Male      | Female   | Male  |
| 18-39                                                                    | 3,327,847  | 1,962,415 | 13.3%    | 7.8%  |
| 40-49                                                                    | 4,794,804  | 2,594,810 | 19.1%    | 10.4% |
| 50-59                                                                    | 5,344,557  | 2,750,622 | 21.3%    | 11.0% |
| 60-69                                                                    | 2,262,747  | 1,315,465 | 9.0%     | 5.2%  |
| 70+                                                                      | 425,772    | 291,743   | 1.7%     | 1.2%  |
| Total                                                                    | 16,155,727 | 8,915,055 | 64.4%    | 35.6% |

| TABLE 3   HOSPITALIZATION—ALL-PAYMENT EXPOSURE BY AGE BAND AND GENDER |            |           |          |       |
|-----------------------------------------------------------------------|------------|-----------|----------|-------|
|                                                                       | Life Years |           | Distribu | tion  |
| Age Band                                                              | Female     | Male      | Female   | Male  |
| 18-39                                                                 | 3,331,863  | 2,028,091 | 13.0%    | 7.9%  |
| 40-49                                                                 | 4,848,404  | 2,712,846 | 18.9%    | 10.5% |
| 50-59                                                                 | 5,362,188  | 2,834,298 | 20.9%    | 11.0% |
| 60-69                                                                 | 2,308,912  | 1,377,106 | 9.0%     | 5.3%  |
| 70+                                                                   | 546,500    | 357,905   | 2.1%     | 1.4%  |
| Total                                                                 | 16,397,867 | 9,310,246 | 63.9%    | 36.1% |

## VI. Significant Findings in the Raw Data

Once the data processing was complete and the data was provided to the work group, the characteristics of the data were analysed and evaluated. Additionally, the data was reviewed for overall reasonableness by the group as a whole. In order to facilitate the review of the data, the work group formed subcommittes to consider specific topics. The subgroups and key summaries of their analysis are presented below.

#### A. Older and younger ages

The subgroup working on older and younger ages observed a decline in incidence rates at the older ages that was inconsistent with the 1985 cancer tables. Given the limited amount of data at older ages, it was difficult to determine whether the drop in incidence rates was due to a lack of credible data or indicative of a true decline. The subgroup reviewed cancer incidence data available from the National Cancer Institute Surveillance, Epidemiology, and End Result Program (SEER). The incidence rates presented in SEER also supported a decline in incidence rates at advanced ages. The subgroup presented these findings to the work group as a whole for discussion. Based on the information available to the work group as well as the group's collective experience, it was determined that there was sufficient evidence to be comfortable with a materially flatter older age claim cost curve relative to the 1985 tables. It was decided that the data should be graduated and smoothed, but that it was not necessary to artificially induce an older age curve consistent with the slope of the 1985 tables.

The subgroup observed increased volatility at the very old and very young ages due to limited exposure. This was expected, and the work group anticipated that this volatility would be smoothed prior to the finalization of the tables. The subgroup made a number of observations with respect to gender differences at the older ages and overall patterns. Based on discussion within the subgroup and subsequent discussion with the work group, none of the patterns observed created any material concerns.

## **B.** Length of Stay

There have been significant changes in the health care delivery system since the original study on cancer incidence and length of stay in 1985. Advances in screening and detection technology as well as treatment and advances in surgical techniques have had significant impacts on the results. Notably, overall lengths of stay for inpatient hospital admissions have dropped significantly over the past 25 years. The subgroup working on length of stay observed decreased lengths of stay in the new study data compared to the 1985 tables, consistent with observed treatment trends. Other notable observations from the length of stay data:

- The data indicated that adults with incidence of cancer at younger ages (<30 years) have a higher average length of stay, with a distinct difference between males and females.
  - Further research, including discussions with physicians, indicated that the types of cancer diagnosed in adults less than 30 is materially different than those in older ages, typically more leukemia and lymphoma requiring longer treatment as compared to site tumors, which more often require a surgical stay for extraction.
  - It is more likely that incidence of cancer at older ages is detected sooner, thereby requiring less acute resources.
- The data implied that length of stay begins to increase in older ages, but at a relatively slow rate, likely reflecting the overall trend of all admissions as individuals age.

Overall this subgroup had no material concerns with respect to the data and supported the development of separate incidence and length of stay tables to be created for the proposed valuation tables.

#### C. Selection

The subgroup working on selection conducted analysis on the durational data gathered for the study in order to determine whether selection was present and should be reflected in the proposed tables. No discernible positive selection was observed. On the contrary, the group observed some anti-selection in early durations of the first occurrence data and to a lesser extent for the hospitalization data, where ultimate rates were lower than select period rates, but patterns were not uniform.

Based on its analysis, the subgroup recommended that the proposed valuation tables be presented in ultimate rather than select and ultimate form. The subgroup

recommended that the anti-selection observed in the First Occurrence data be included in the final work group cancer table report.

Aggregate, age-adjusted durational selection patterns observed in the raw first occurrence data have been included with this report as Appendix 3. In order to calculate the age-adjusted selection factors, the durational data received from Milliman was analyzed. Data by unique duration was provided by Milliman for durations 1-4 only; durations 5 and higher were aggregated. First, data by duration was aggregated to calculate the relative incidence rate between each duration and the ultimate 5+ duration. These incidence rate relationships were then adjusted to remove the calculated impact of aging across the durations. This was done by analyzing the average age for each duration (i.e., 1, 2, 3, 4, and 5+) and determining the average impact of aging utilizing the incidence trends from the raw first occurrence data. The impact of aging between each duration and the ultimate 5+ duration was then removed from the unadjusted selection factors in order to produce the age-adjusted selection factors included in Appendix 3.

The basic and loaded tables included with this report represent the aggregate experience across all durations without an adjustment for the anti-selection observed in the earlier durations. The exposure-weighted average duration for the raw first occurrence data used in the study, where all durations past 4 are assigned duration 5, is 3.5.

Throughout the review of the data, all subgroups and the work group as a whole considered the differences between the 1985 cancer tables and the proposed cancer tables. Where material differences were present, the work group found them to be explicable based upon known trends in medical treatment as well as other incidence rate and historical experience information available to us from public sources as well as our own experience.

## VII. Creation of the Basic Tables

The scaled initial data exhibited volatility typical in industry data collection. The data needed to be graduated prior to finalizing basic and valuation tables. The work group tested a large number of graduation methods to achieve several goals:

- Smooth the inherent volatility in the data collected
- Provide a good fit to the initial data
- Demonstrate flexibility to control the risk of negative reserve calculations due to declining data patterns for younger and older ages
- Demonstrate flexibility to develop reasonable patterns where data over a number of attained ages had to be aggregated in order to meet SOA confidentiality guidelines

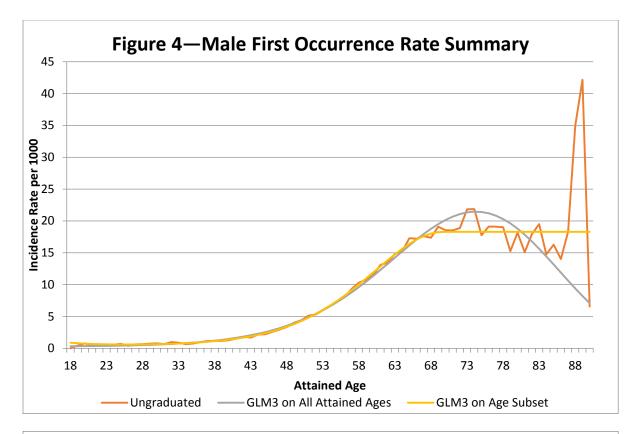
The work group chose a graduation method termed GLM-3, a form of generalized linear model, as the best choice for graduating the cancer study data. A generalized linear model

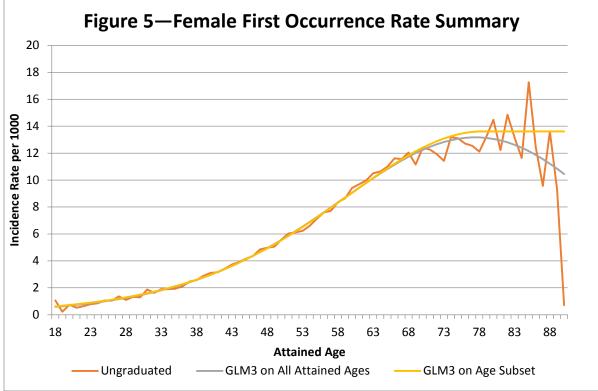
is a statistical process that uses a least squares regression approach to approximate the relationship between one or more predictor variables and a single response variable. Here, we have used the abbreviation GLM-3 to represent a generalized linear model with binomial distribution (logistic regression) that uses an underlying cubic polynomial of the following form,

$$ln\left(\frac{(P)}{1-P}\right) = b_o + b_1 X + b_2 X^2 + b_3 X^3$$

where

P is the quantity being predicted,  $b_i$  are parameters, and X represents the predictor variable age, as the basis of its approximation.

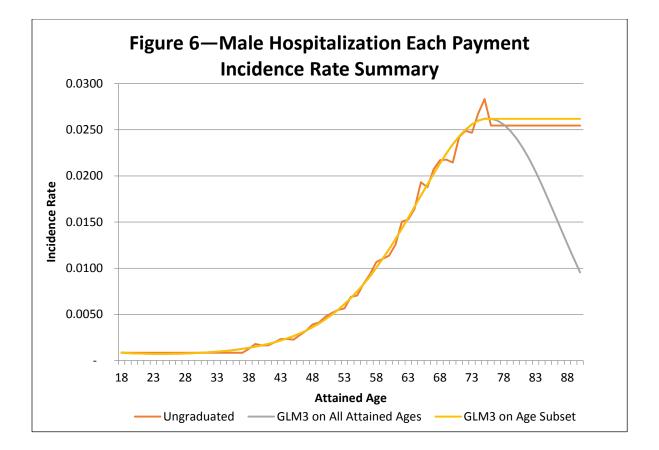

The GLM-3 model provides a good fit for the underlying data and allows for an inflection point, because the data suggested one was needed. A goodness of fit test using sum squared variance was used when choosing the graduation method. Additional information regarding the graduation process followed is included below by benefit type.


#### A. **First Occurrence**

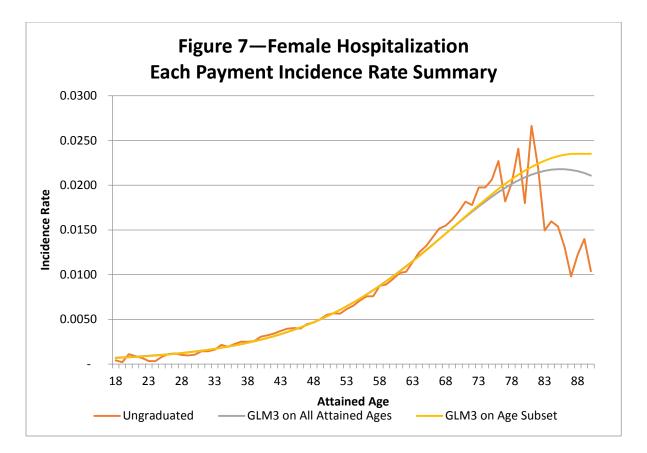
The scaled initial data for both males and females showed an upward pattern to attained ages in the early 60s. At that point the data becomes more volatile and shows a pattern leveling off and eventual declining. This can be observed in the orange ungraduated data line in Figures 4 and 5 below. The initial attemps at graduation utilized all attained ages in order to produce a result. When the GLM-3 graduation method was used on all the attained age data, the result stayed close to the initial data for attained ages into the 60s for both genders. The graduated results for ages beyond 70 varied by gender, but ultimately resulted in a decline in incidence rates for older ages. This can be observed in the grey lines shown in Figures 4 and 5 below.

The work group agreed that the declining pattern of incidence rates for both genders should be removed due to the risk of negative reserve calculations. The work group agreed that the GLM-3 method should be applied to the largest subset of attained ages that would yield a monotonically increasing curve. For both genders, the oldest age was eliminated from the graduation process one age at a time until the resulting graduated curve showed a monotonically increasing pattern. For ages above the subset age, the highest subset age rate was used for attained ages up to 90. The effect of this is to level the curve after the highest subset age. The graphs below show the result of this age subset graduation in yellow.

The final basic table data produced by the work group is represented by the GLM-3 on age subset.

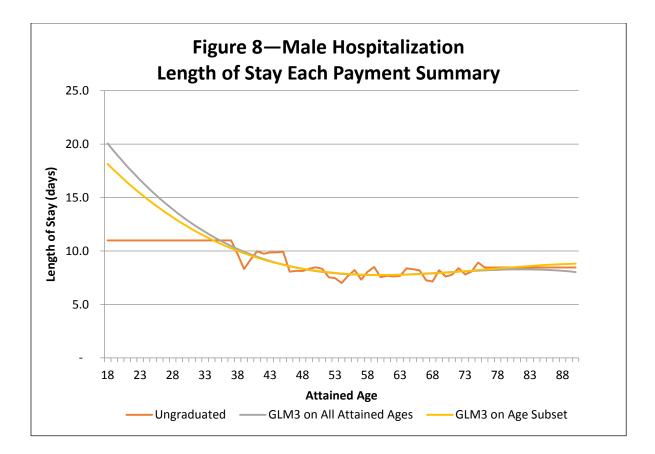


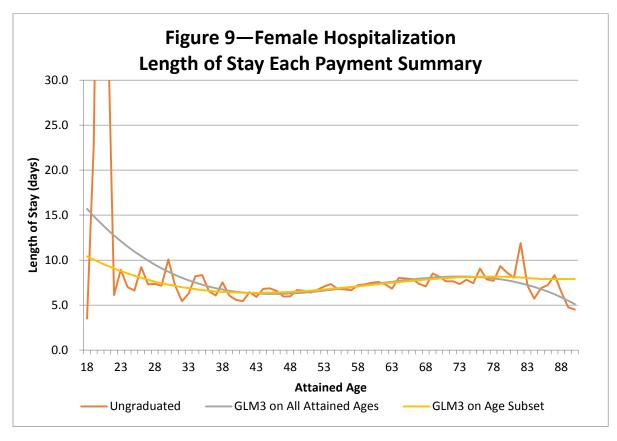


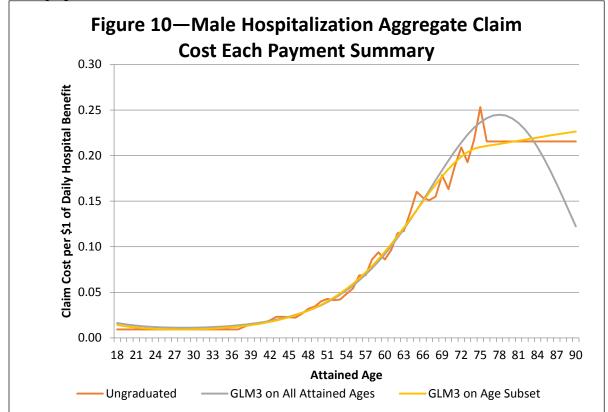


#### B. Each Payment Hospitalization

Beyond the distinction between all payment and each payment hospitalization claims, the hospital claim cost data is presented separately by incidence and length of stay. The work group graduated incidence and length of stay data separately in order to preserve the disctinction in the proposed valuation tables. The older age male rates were combined due to SOA confidentiality guidelines as described in the data scaling section presented earlier in this report. As such, it was necessary to make an adjustment to the graduation process utilized in order to account for the banding. Where banding was present, the exposure-weighted average age from the appropriate ages in the female each payment hospitalization data was utilized to define the modeled age for each of the age bands in the male data. As an example, the female each payment exposure-weighted average age for ages 76-90 was 80.1; therefore, 80 was the assumed modeled age for the combined male ages 76-90 band for graduation purposes. The total exposure for the age band was then assigned to the assumed modeled age in order to perform the graduation. The work group considered and tested multiple methodologies in order to appropriately consider the male age bands, with little variability in results.

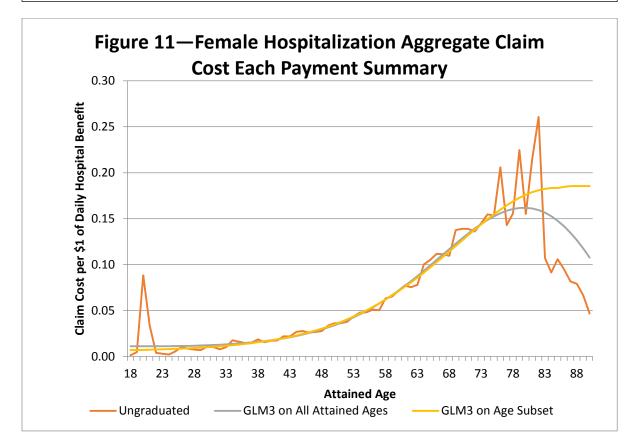
Due to the presence of banding in the male each payment data, a trend in older ages incidence rates is not readily apparent in the orange ungraduated data line in Figure 6 below. Use of all attained ages in the graduation process again resulted in a decrease in incidence rates at higher ages, as shown in the gray line in Figure 6 below. As a result, a consistent subset age methodology was utilized in order to flatten the incidence rates at older ages. The final age subset graduation result can be observed as the yellow line in Figure 6 below.





The rates for females show a declining pattern at older ages, consistent with ungraduated first occurrence data presented in Figures 4 and 5 above. The application of GLM-3 with all ages, as previously discussed, results in an increasing pattern by attained age. Therefore, consistent with the other benefit type presented previously, an age subset was utilized to develop the graduated female hospitalization each payment data.



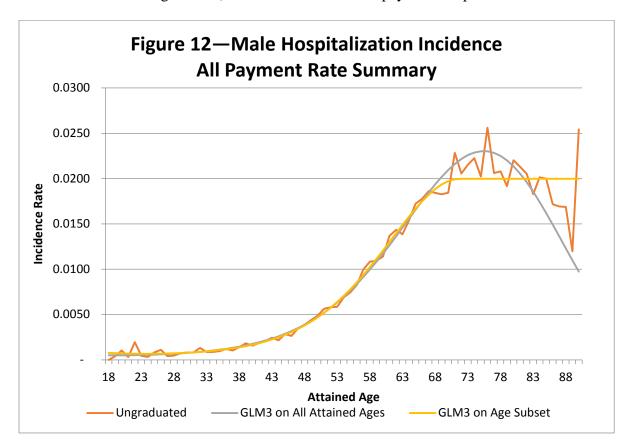

As described in the hospitalization each payment discussion above, due to data aggregation, male length of stay was banded at certain ages. The banding can be observed in Figure 8 below, which contains the presentation of the male each payment length of stay graduation results. The methodology for graduating with the age bands for the length of stay data is consistent with the approach utilized for the hospitalization each payment incidence rate data.

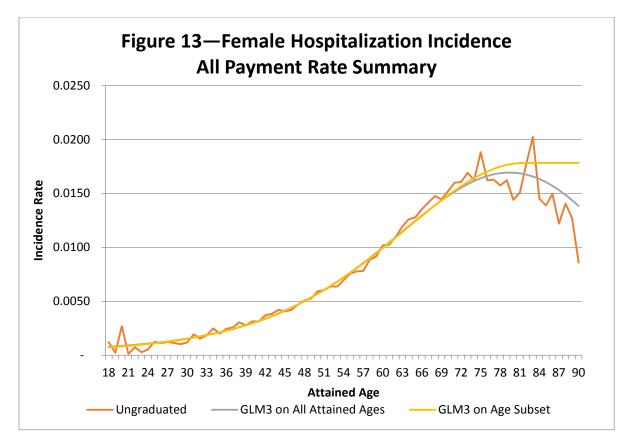

Female each payment length of stay rates were very high at young ages before stabilizing, which can be observed in Figure 9. The scale of the female graph below is not able to show the outlier young age length of stay. As an example, the age 20 female length of stay was 79.6 days. The exact length of stay for each age can be found in Appendix 2 of this report. The method used for graduation for both males and females was similar to that described for first occurrence. The figures below show the result of this graduation method (initial data, GLM-3 graduation on all attained ages, and GLM-3 on age subset) for male and female each payment lengths of stay.





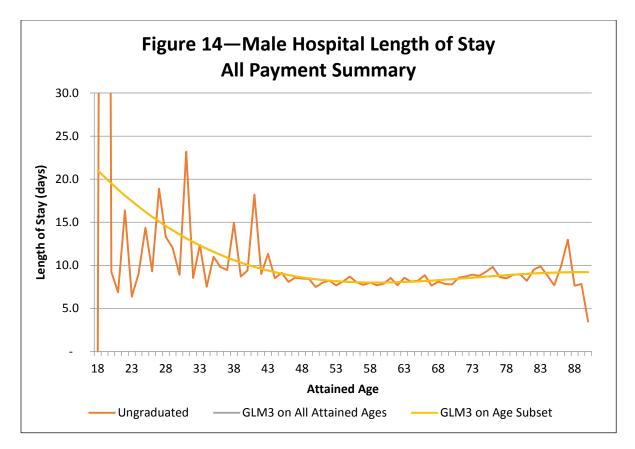


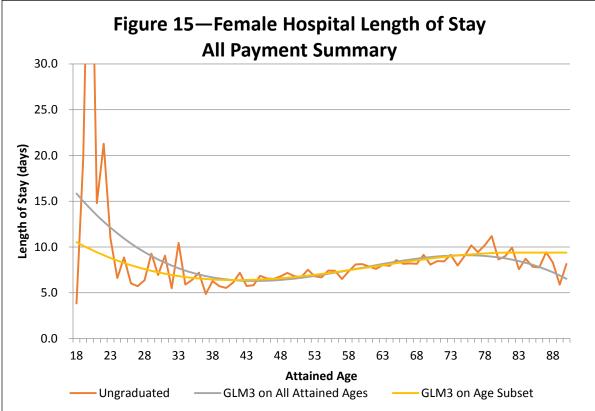

The claim cost graphs are the product of the incidence and length of stay rates. These graphs are detailed below.

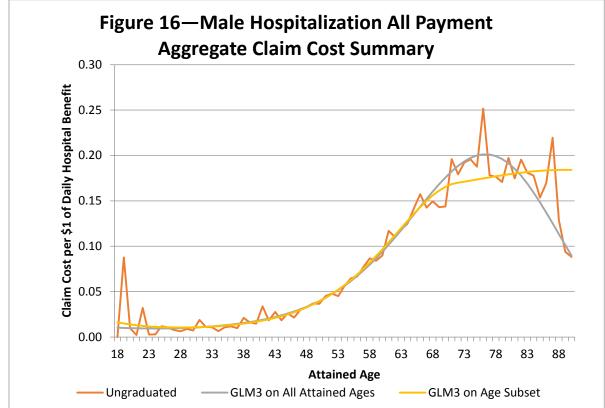



When reviewing the each payment hospitalization results, it should be noted that shock hospitalization claims (i.e., those with a length of stay longer than 30 days) were not excluded from the analysis.

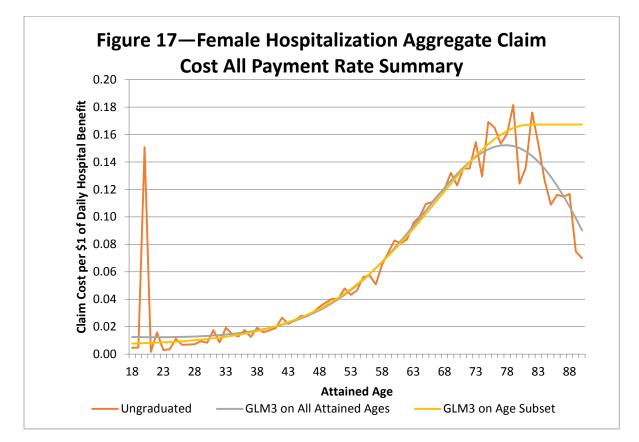
## C. All Payment Hospitalization


As observed in the data discussed earlier in this report, hospital incidence on all payment basis for both males and females declined at older attained ages. There was no issue with the five companies requirement for the all payment data; therefore, no age aggregation occurred. The graphs below show the development of the graduated curves for all payment hospital incidence. The method of graduation was similar to that described for first occurrence and hospitalization each payment rates above. The graphs below show the result of this graduation method (initial data, GLM-3 graduation on all attained ages, and GLM-3 on age subset) for male and female all payment hospital incidence.




The all payment hospital length of stay exhibited similar characteristics as the female each payment length of stay. For the all payment length of stay data for both genders, the young attained ages stays were quite long. The work group discussed the general length of stay for the young attained ages with physicians who attributed it to treatment for blood cancers in young people. These treatment regimens cause long hospital stays. The stay for males age 19 was 220.9 days and the stay for females age 20 was 56.3 days in the initial data. The results for each age can be found in Appendix 2.


The method of graduation used for all payment length of stay was similar to that described for first occurrence rates. For male all payment length of stay, the GLM-3 with adjusted tail is the same as GLM-3 with unadjusted tail because the tail already exhibits a monotonically increasing nature. The graphs below show the result of this graduation method (initial data, GLM-3 graduation on all attained ages, and GLM-3 on age subset) for male and female all payment lengths of stay.







The claim cost graphs are the product of the incidence and length of stay rates. These graphs are detailed below.



When reviewing the all payment hospitalization results, it should be noted that shock hospitalization claims (i.e. those with a length of stay longer than 30 days) were not excluded from the analysis.

#### Attained Ages Above 90

The data provided by Milliman stopped at age 90. The work group decided to extend the data to present a proposed valuation table with data through age 99. This is consistent with the 1985 cancer table construction. In order to extend the table, the rates for age 90 for each data element (first occurrence, hospitalization incidence all payment and each payment, and hospital length of stay all payment and each payment) were used as the values for attained ages 91-99. Actuarial judgment should be utilized where data is needed beyond age 99.

#### **Final Basic Tables**

The proposed basic tables approved by the work group have been included as Appendix 4.

## VIII. Creation of the Loaded Valuation Tables

For statuatory conservatism, the work group developed separate loads to apply to each of the basic tables for cancer incidence, each payment hospitalization aggregate claim cost and all payment hospitalization aggregate claim cost. These loads were meant to cover the variation in individual company experience around the mean of the total aggregate experience. At the Fall, 2015 NAIC meeting, the work group proposed to HATF that the loads should be large enough to cover at least 80 percent of the contributing companies, and HATF accepted the work group's proposal.

Before loading, the experience underlying the basic tables varied significantly across the contributing companies. The actual-to-expected ratios by company ranged from 70 to 137 percent for cancer incidence, from 86 to 113 percent for each payment hospitalization aggregate claim cost, and from 82 to 119 percent for all payments hospitalization aggregate claim cost. Due to the large variances across companies, the loads developed by the work group needed to be large enough to cover some companies with actual-to-expected results well over 100 percent.

To attain the goal of covering at least 80 percent of the companies, a 15.35 percent load needed to be added to the basic incidence rate table for the first occurrence incidence rates. For the hospitalization aggregate claim cost experience, the committee looked at the expected number of days on claim separately for the each payment and all payment experience. The number of days on claim was determined from the hospitalization claim incidence and the hospitalization claim length of stay results. The analysis for each payment hospitalization aggregate claim cost resulted in an 8.68 percent load to the basic aggregate claim cost resulted in a 7.35 percent

load to the basic aggregate claim cost table and covered 80 percent of the contributing companies.

After the loads for the aggregate claims costs for the all payment and each payment benefit types were determined, the loads for the incidence and length of stay rates were developed. The relationship between the aggregate cost load, the incidence load and the length of stay load is:

 $aggregate \ claim \ cost \ load \\ = [\ (1 + incidence \ load) * (1 + length \ of \ stay \ load)] - 1$ 

Using the given aggregate claim cost load and an assumed load for incidence of 5 percent (same load for incidence in the 1985 cancer table), the load for length of stay rates can be determined using the following formula:

$$length of stay load = \frac{(aggregate claim cost load + 1)}{(1 + 0.05)} - 1$$

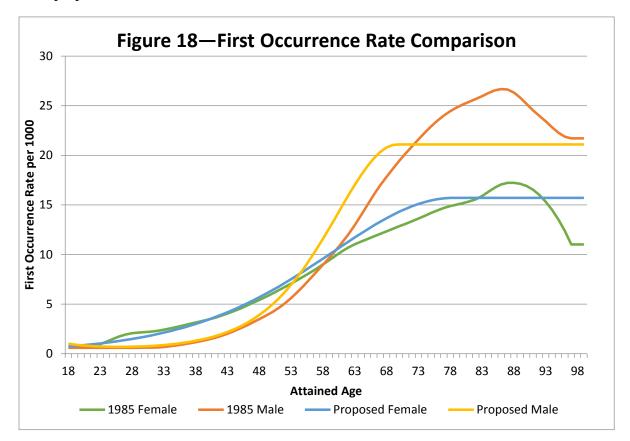
The resulting length of stay loads were:

|              | Aggregate | Incidence | Length of Stay |
|--------------|-----------|-----------|----------------|
| All Payment  | 7.35%     | 5.00%     | 2.238%         |
| Each Payment | 8.68%     | 5.00%     | 3.505%         |

The final, loaded 2016 cancer tables are shown in Appendix 5 and are produced by multiplying 1 plus the appropriate load from the above table and the applicable graduated incidence and length of stay rates from Appendix 4.

For example, for a male, age 35, the loaded rates are:

- Cancer incidence: 0.000871 x 1.1535 = 0.001005
- All Payment hospitalization aggregate claim cost: 0.012475 x 1.0735 = 0.013392
- Each Payment hospitalization aggregate claim cost: 0.011775 x 1.0868 = 0.012797


An additional analysis looked at the experience by age and by company to determine whether a load that varied by age would produce a more efficient coverage if the mix of business by age were to change in the future. The results of this analysis did not show a large variance of actual-to-expected loss ratios by age and confirmed the work group's decision to propose a level load across all ages.

## IX. Claim Cost and Reserve Comparisons to the 1985 Cancer Tables

The work group analyzed the impact the proposed tables would have to claim costs and reserves. Below is a summary of the analysis that was conducted.

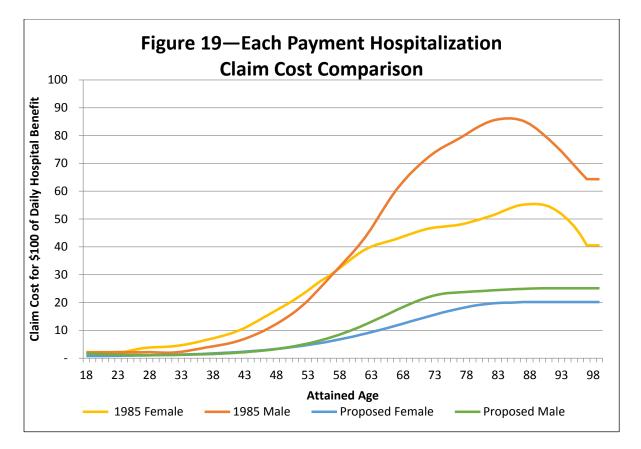

#### A. Claim Costs Comparison

Figure 18 below shows the comparison of first occurrence rates for the 1985 and the proposed valuation tables.



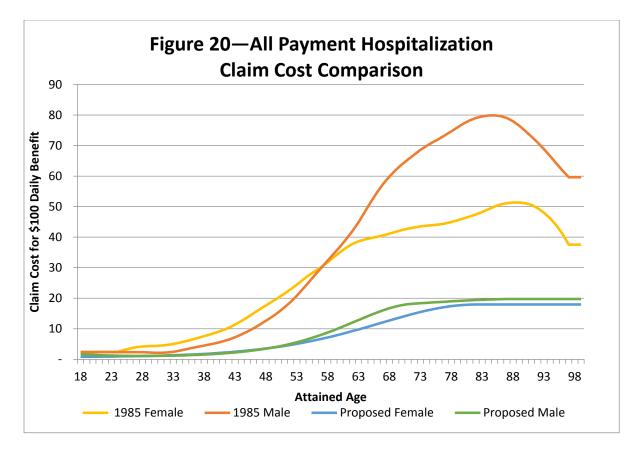
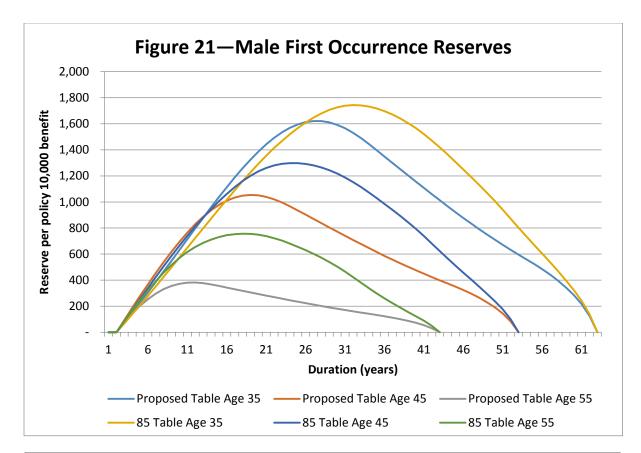
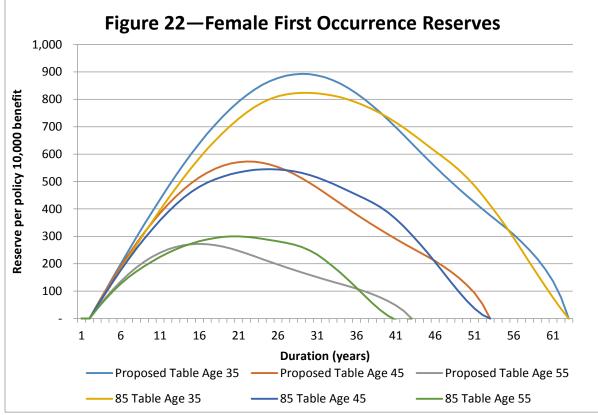

For the young attained ages, the two tables are very close. As the attained ages increase into the middle-age years, the proposed table first occurrence rates are higher. This higher pattern continues until attained ages in the 60s and 70s depending on gender. For older attained ages, the 1985 table shows higher rates. The 1985 table rates decrease in the attained ages 90-99. This area was held level in the current study through the work group's choice of graduation method.

Figure 19 below shows the each Payment hospitalization claim cost comparison for the 1985 and prposed tables.



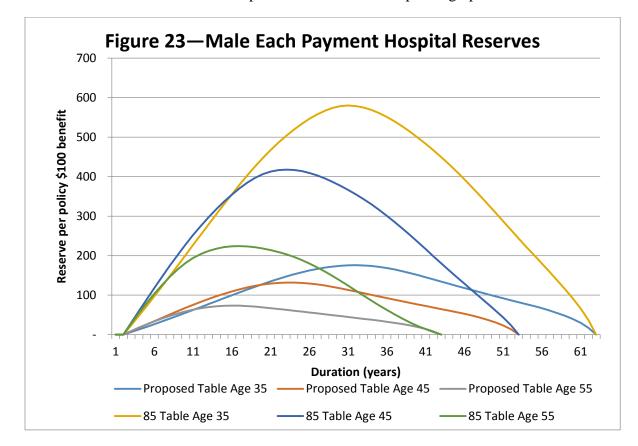
The 1985 claim costs are fairly close for the youngest ages but diverge for attained ages in the 20s and are significantly higher for all ages above 35. The work group believes that trends in all hospitalization stays are the most significant reason for the difference compounded by changes in cancer treatments that rely more heavily on outpatient treatment.

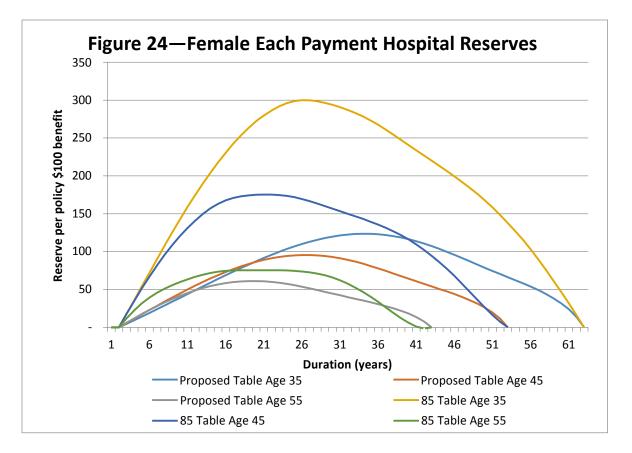

Figure 20 below shows the each payment hospitalization claim cost comparison for the 1985 and proposed tables.




The all payment hospitalization claim costs largely follow the same pattern as each payment hospitalization. The 1985 table claim costs are significantly higher than those for the proposed table.

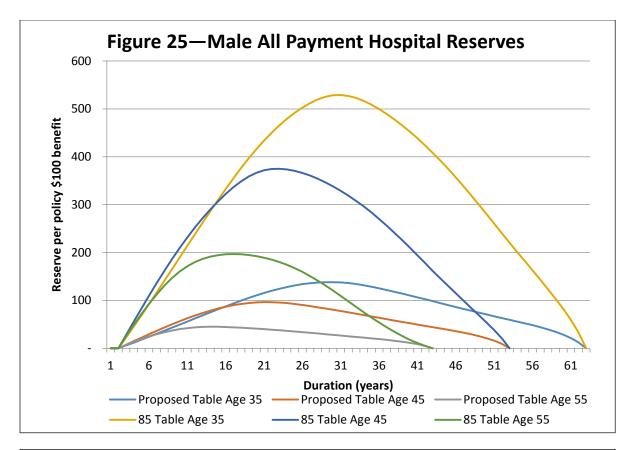
#### B. Reserve Comparisons

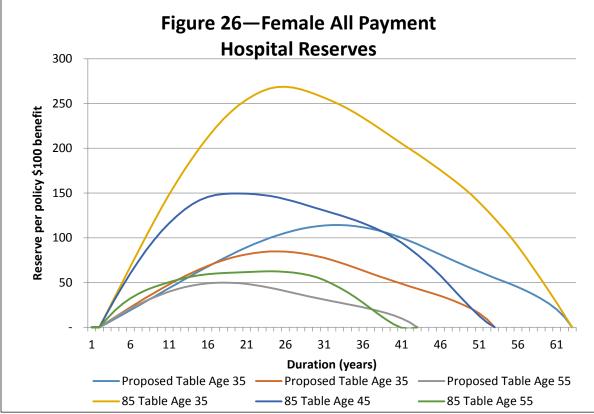

The following graphs show comparisons of reserves for the first occurrence rates for the 1985 and proposed tables. The reserves are based on a \$10,000 lump sum benefit upon occurrence of cancer. The lapse rates and interest are the same between calculations. Results are shown for ages 35, 45, and 55. Male and female reserve comparisons are shown in separate graphs.






Male reserve calculations are similar for early durations but tend to peak lower and earlier than the reserves the 1985 table produced. This is a result of the higher and older age peak occurrence rates in the 1985 table and the flattening of older attained age occurrence rates in the proposed table. The female reserve calculations are more comparable between the 1985 and proposed tables. The proposed table reserves peak at levels slightly lower than 1985 table. The proposed table reserves tend to decrease from their peak at a faster rate than the 1985 table as well.


Figures showing reserve comparisons for the each payment hospitalization tables are below. The reserves are based on a \$100 per day hospitalization benefit. The lapse rates and interest are the same between calculations. Results are shown for ages 35, 45, and 55. Male and female reserve comparisons are shown in separate graphs.






The reserves produced by the proposed table are significantly lower than those produced by the 1985 tables. The claim cost table comparisons shown above show a significant decrease between the two studies, resulting in the much lower reserve build-up using the proposed valuation table.

A comparison of all payment hospitalization reserve calculations are shown below. The reserves are based on a \$100 per day hospitalization benefit. The lapse rates and interest are the same between calculations. Results are shown for ages 35, 45, and 55. Male and female reserve comparisons are shown in separate graphs.





The all payment reserve patterns follow the each payment hospitalization closely but the peak reserves are lower for all payment versus each payment. This is consistent with the expectation that an each payment method will have higher future policy benefit reserves and an all payment method will have a higher claim reserve.

### Society of Actuaries Cancer Experience Study Data Requirements

#### **General Information**

The study includes experience for: (dates subject to change)

- Cancer insurance policies in the United States,
- Exposure from Jan. 1, 1994 to December 31, 2003,
- Claims incurred from Jan. 1, 1994 to December 31, 2003, and
- Claims paid through December 31, 2004 and incurred in claims incurral study period.
- The exposure and claims experience is to come from the same insurance experience.

Please submit exposure and claim information, gross of any reinsurance, on insureds and groups with coverage during any portion of these years. The committee will use the effective date and termination date to determine the exposure and claim rate calculations. To avoid double reporting of experience for reinsured/sold business, please include data for periods where the business was administered by your company. For example, if a block of business was sold by Company A to Company B on December 31, 1998 and administration was switched over on July 1, 1999, Company A would submit experience for the period from the beginning of the study period and paid through June 30, 1999. Company B would submit experience for the period.

Below is a request with a suggested format for 3 different files:

Exposure Records Claim Records Policy Form Details

If you are unable to submit data in this format, please contact Jack Luff at the SOA office. The SOA and an outside data vendor will work with participants to be as accommodating as possible.

#### **Definitions for Fields**

See the explanation of data fields at the end of this document.

#### **Control Totals / Additional Information Requested**

Along with your contribution to be sent to the Compiler, please include control totals, consisting of the following:

- The number of Exposure records
- The number of Claim records
- Total \$ amount of claims

Also, please send to Jack Luff at the Society of Actuaries:

- A copy of the policy forms used, with benefit schedule, including for each policy form a reference to what policy form code is used to report its experience. If the Contributor has a significant number of policy forms, those that should be submitted are those with the most significant exposures or are most representative of the contributor's exposures. Also include with the policies a copy of the surgical schedule if applicable.
- A copy of the Contributor's claim incurral dating rules. Some examples are:
  - whether a company uses a diagnosis date or service date as the incurred date
  - rules to determine if a hospitalization is a continuation of a prior hospital stay or a new stay
  - rules for coding radiation/chemotherapy claims
- A description of anything believed to be unusual about the coverage provided to determine how best to record the experience for that product or group. Examples include:
  - Changes in claims-paying practices due to litigation
  - Group issued without underwriting

### **Method of Submission**

The Committee would prefer contributions to be made via cartridges, diskette (size permitting) or CD ROM. If any of these are not practical, the contributor should contact Jack Luff at the SOA, or Sue Rynearson, Committee Chairperson, to determine an acceptable alternative arrangement. Contact the Compiler if any technical questions arise regarding the form of the contribution.

### **Privacy Protection**

The SOA wants to inform all participating companies that the individual information submitted for every insured and claimant to this study will be protected from disclosure in compliance with all current laws and regulations. Additionally, company aggregate data will be kept confidential as to overall experience. Companies with a large proportion of the total experience will be scaled back to prevent this experience from dominating the study.

### File #1 - Data Requirements for Insured Exposure

### **Primary Insured's Exposure Fields Description – Suggested Format**

| Field                                                  | Size   | Start   | End |
|--------------------------------------------------------|--------|---------|-----|
| Submitting Company Characteristics                     |        |         |     |
| Submitting Company Code (assigned by SOA)              | 3      | 1       | 3   |
| Original Writing Company Code (assigned by SOA)        | 3      | 4       | 6   |
| Primary Insured Characteristics                        |        |         |     |
| Policy Form Identification Code                        | 7      | 7       | 13  |
| Policyholder Identifier                                | 12     | 14      | 25  |
| Subgroup Code Identifier of subgroup or class          | 3      | 26      | 28  |
| Issue Date YYYYMMDD                                    | 8      | 29      | 36  |
| Effective Date YYYYMMDD                                | 8      | 37      | 44  |
| (= beg. date of study if inforce at beg. of study)     |        |         |     |
| Termination Date YYYYMMDD                              | 8      | 45      | 52  |
| (= end date of study if inforce at end of study)       |        |         |     |
| Primary Date of Birth YYYY MMDD                        | 8      | 53      | 60  |
| Primary Gender M=Male F=Female U=Unknown               | 1      | 61      | 61  |
| Issue Channel W=Worksite O=Other U = Unknown           | 1      | 62      | 62  |
| Issue State 2-character                                | 2      | 63      | 64  |
| Family Code I = Individual P=Primary & Spouse          | 1      | 65      | 65  |
| S=One-parent Family F=Two-parent Family                |        |         |     |
| N=Family where only other choice is Individual O=Ot    | her U= | Unknown |     |
| Insured covered under a return of premium benefit? Y/N |        | 66      | 66  |
| Insured covered under a paid-up policy? Y/N            | 1      | 67      | 67  |
| Policy Conversion? Y/N                                 |        |         |     |

### Suggested Submission for changes to a policyholder's coverage:

Submit multiple records with different effective and termination dates.

**Example:** An individual converts coverage from policy form A1 to policy form A2 on July 1, 2000.

|                                | Record 1 | Record 2 |
|--------------------------------|----------|----------|
| Submitting company code        | 123      | 123      |
| Original Writing Company Co    | ode 123  | 123      |
| Policy form identification cod | le Al    | A2       |
| Policyholder identifier        | CA123456 | CA123456 |
| Subgroup code identifier       | 2        | 2        |
| Issue date                     | 19990701 | 19990701 |
| Effective date                 | 19990701 | 20000701 |
| Termination date               | 20000630 | 20010630 |
| Primary Date of Birth          | 19620621 | 19620621 |
| Primary Gender                 | F        | F        |
| Issue Channel                  | W        | W        |
| Issue State                    | NC       | NC       |
| Family Code                    | Ι        | Ι        |
| Insured covered ROP            | Ν        | Ν        |
| Insured covered Paid-Up Police | cy N     | Ν        |
| Policy conversion              | N        | Y        |

If the original issue date is not available, please put in conversion effective date.

### File #2 - Data Requirements for Claims

#### **Claim Fields Description – Suggested Format**

| Field                                                                           | Size | Start | End |
|---------------------------------------------------------------------------------|------|-------|-----|
| Submitting Company Characteristics<br>Submitting Company Code (assigned by SOA) | 3    | 1     | 3   |
| Original Writing Company Code (assigned by SOA)                                 | 3    | 4     | 6   |
| Primary Insured Characteristics                                                 |      |       |     |
| Policyholder Identifier                                                         | 12   | 7     | 18  |
| Claim Data                                                                      |      |       |     |
| Amount Paid (rounded to nearest whole \$)                                       | 8    | 19    | 26  |
| Diagnostic codes/Procedure codes                                                | 10   | 27    | 36  |
| Benefit code/Benefit description See List Below                                 | 3    | 37    | 39  |
| Date of initial diagnosis of cancer                                             |      |       |     |
| (first incurral date) YYYYMMDD                                                  | 8    | 40    | 47  |
| Incurred date YYYYMMDD                                                          | 8    | 48    | 55  |
| Date of payment YYYYMMDD                                                        | 8    | 56    | 63  |
| Days of hospitalization or number of treatments                                 | 4    | 64    | 67  |
| Claimant age at time of claim                                                   | 3    | 68    | 70  |
| Claimant gender M=Male F=Female U=Unknown                                       | 1    | 71    | 71  |
| Relationship code P=Primary S=Spouse C=Child<br>U=Unknown                       | 1    | 72    | 72  |

#### We only want claim information for the following benefits: Suggested benefit codes

| i Denent coues                           |
|------------------------------------------|
| FOC                                      |
| HOS                                      |
| RAD                                      |
| CHM                                      |
| BLD                                      |
| SUR                                      |
| DRG                                      |
| NAU                                      |
| IMM                                      |
| ed in your database, please use code RCM |
|                                          |

#### File #3 – Policy Form Details

Policy Form Identification Code Number of family tiers Does the form offer a ROP feature? Y/N If yes, is it optional? Y/N Does the form offer a paid-up feature? Y/N If yes, is it optional? Y/N Has the form ever been rerated? Y/N Ratio of average current rate to original rate

#### **Benefit Provisions**

Benefits Y/N Lump Sum/First Diagnosis Benefit Hospital Benefit Surgical Schedule Blood/Platelets/Plasma Prescription drugs Radiation and Chemotherapy Immunotherapy Benefit Type – ACT=Actual Charge RAC=Reasonable and Customary CAP = Actual Charge to Cap IND = Fixed Indemnity Hospital Benefit Surgery Benefit Blood Benefit Drug Benefit Radiation and Chemotherapy Immunotherapy Daily Maximum per covered insured Hospital Benefit Surgery Benefit Blood Benefit Drug Benefit Radiation and Chemotherapy Immunotherapy Monthly Maximum per covered insured Hospital Benefit Surgery Benefit **Blood Benefit** Drug Benefit Radiation and Chemotherapy Immunotherapy Annual Maximum per covered insured Hospital Benefit Surgery Benefit Blood Benefit Drug Benefit

Radiation and Chemotherapy Immunotherapy Lifetime Maximum per covered insured Hospital Benefit Surgery Benefit Blood Benefit Drug Benefit Radiation and Chemotherapy Immunotherapy

#### **Description of Data Fields**

#### File #1 - Exposure

- Submitting Company Code (assigned by the SOA) This field is to be used to identify the company submitting the data. We would like to avoid double reporting of experience. If the business was sold or is being administered by another company, only the company administering the data records needs to submit the experience.
- Original Writing Company Code (assigned by the SOA) If available, this field will be used to identify the company that originally issued the policy.
- Policy Form Identification Code Code used to identify a separate cancer insurance form with differences in benefits, underwriting, or other features that might significantly affect experience. This code does not necessarily have to be the same as the policy form number used in product filings. It will be used to connect the exposure and claims experience with the policy so we can identify how policy features affect experience.
- Policyholder Identifier Code used to distinguish policyholders from each other. Does not necessarily need to be the same as the actual policyholder number used at your company.
- Subgroup Code Identifier of subgroup or class Use this code to distinguish blocks of business that have distinct underwriting, marketing, or other features that might affect claims experience.

Issue Date – The original issue date of this policy.

Effective Date – The beginning of the period of exposure for this record. If this is the first record for this policy, the effective date will be the later of issue date or the beginning of the study period. For subsequent records, the effective date will be the date that the change in coverage starts.

Termination Date – The end of the period of exposure for this record. The termination date will be the earlier of the last date of policy coverage and the end of the study period.

- Primary Date of Birth DOB of the primary insured, if available. Age at issue if DOB not available.
- Primary gender If this information is available, the gender of the primary insured.
- Issue Channel If this policy was issued to an individual, and the marketing method was to offer sales to multiple employees at their worksite, and the employer offers some type of assistance in collecting and remitting premiums for this policy, enter W for worksite.
- Issue State Use the standard 2 character abbreviations for the 50 states in the U.S., and please include a list of abbreviations used for other geographical entities.

Family Code – Distinguishes who is covered

| Suggested Codes: | I = Individual | P = Primary & Spouse |
|------------------|----------------|----------------------|
|------------------|----------------|----------------------|

- S = One-parent Family F = Two-parent Family O = Other
- Insured covered under a return of premium benefit? Y/N Include Y if the policyholder had a Return of Premium type benefit
- Insured covered under a paid-up policy? Y/N Include Y if the policy was in a paid-up status.
- Policy Conversion? Y/N Include Y if the policy was converted from another Cancer policy, with or without new underwriting

#### File #2 - Claims

Please include separate data records for distinct benefits, even if the benefits were paid in a single payment.

Some of these fields are the same as in the Exposure file and are used to match claims to exposure. The Policyholder Identifier will be used to get policy and policyholder information from the exposure records.

Amount Paid – Rounded to nearest \$

- Diagnostic codes/Procedure codes An example would be the ICD-9 codes which can be used to specify the type of cancer.
- Benefit code/Benefit description Please include only claims for the benefits listed in the Claims File field description. Include other claims if unsure about classification and please include separate codes with descriptions sent with data.
- Date of initial diagnosis of cancer Include the date the claimant was first diagnosed with cancer even if this benefit payment was for a later treatment.
- Incurred date Include the incurred date as defined by your company. Please also include a description of your company's incurral-dating methods.

Date of payment – Date claim was paid.

- Days of hospitalization or number of treatments If the benefit was for hospitalization, include the number of days for which this payment was made. If the benefit was for radiation, chemotherapy, or other recurring or separate treatments, include the number of treatments for which this payment was made. For First Diagnosis of Cancer or other single occurrence benefits, you may leave blank.
- Claimant age at time of claim Please include the age of the person who received treatment, if available.
- Claimant gender M=Male F=Female U=Unknown Please include the gender of the person who received treatment, if available.
- Relationship code P=Primary S=Spouse C=Child Please include the relationship to the primary insured of the person who received treatment.

#### File #3 – Policy Forms

The purpose of this file is to contain policy form details. The Policy Form Identification Code is to be made up by each submitter for each policy form included in the data submitted. This simplifies the data records in the exposure and claims files because the policy form detail will not have to be included in each claim or exposure record. This file is expected to have far fewer records than the other files but the format is left open in order to provide the submitter with more flexibility in providing important benefit and other policy provision details.

Policy Form Identification Code – Assigned by submitting company. Used to match exposure and claim records to specific policy form details.

Number of family tiers – 2=Individual and 2-Parent Family options only

3=Individual, 2-Parent Family, and 1-Parent Family options

4=Individual, 2-Parent Family, 1-Parent Family, and 2-Adult options

Does the form offer a ROP feature? – Return of Premium or similar benefit Does the form offer a paid-up feature? – Include yes if it possible to be in a paid-up status Has the form ever been rerated? – Include yes if premium rates have been changed. Ratio of average current rate to original rate – Cumulative effect of all rerates for this policy

We would like to receive the following information on each of the major benefits included in this study:

Benefits – The \$ amount paid or paid-up-to for each of the following benefits. (If the amount payable is unlimited, leave blank and indicate in the next section, Benefit Type):

Lump Sum/First Diagnosis Benefit Hospital Benefit Surgical Schedule Blood/Platelets/Plasma Prescription drugs Radiation and Chemotherapy Immunotherapy

Benefit Type – Identify the policy provision for determining the amount to be paid for each single incident of the major benefits included.

- ACT=Actual Charge This is for benefits which pay unlimited benefits equal to the actual charge. Daily, Monthly, and other caps are to be entered in later sections.
- CAP = Actual Charge to Cap Include this code if the benefit is actual charge but is capped per incident of this benefit. Daily, Monthly, and other caps are to be entered in later sections.
- IND = Fixed Indemnity Include this code if the benefit is a fixed amount.

Please list the following caps for each of the major benefits. Some benefits will have multiple caps. For caps which do not apply, leave blank or enter 0(zero).

- Daily Maximum per covered insured
- Monthly Maximum per covered insured
- Annual Maximum per covered insured
- Lifetime Maximum per covered insured

Please also list any other policy provisions which might affect claim incidence or severity. The SOA and this Committee will make every reasonable effort to work with the Submitting Companies in order to include their experience in our study.

# Appendix 2 First Occurence Study Data - Initial Incidence Rates per 1,000 Females and Males

|          | Female                 |                      |           | Male                   |                      |           |  |
|----------|------------------------|----------------------|-----------|------------------------|----------------------|-----------|--|
| Age      | Total Exposure         | Total Incurral       | Incidence | Total Exposure         | Total Incurral       | Incidence |  |
| 18       | 3,470.55               | 3.6864               | 1.062190  | 3,260.58               | -                    | -         |  |
| 19       | 9,670.73               | 2.1175               | 0.218958  | 8,883.40               | 3.7552               | 0.422722  |  |
| 20       | 17,461.11              | 13.0347              | 0.746500  | 15,185.10              | 12.0303              | 0.792243  |  |
| 21       | 26,768.42              | 13.8691              | 0.518115  | 21,856.81              | 9.5039               | 0.434824  |  |
| 22       | 40,424.04              | 25.5430              | 0.631877  | 29,734.49              | 16.1580              | 0.543408  |  |
| 23       | 56,786.29              | 44.1794              | 0.777995  | 39,031.49              | 18.8133              | 0.48200   |  |
| 24       | 73,625.32              | 62.3588              | 0.846975  | 48,334.72              | 28.4794              | 0.589212  |  |
| 25       | 90,660.83              | 96.7150              | 1.066778  | 58,050.88              | 40.9184              | 0.70487   |  |
| 26       | 106,299.08             | 110.7595             | 1.041961  | 67,032.14              | 27.6460              | 0.41243   |  |
| 27       | 121,304.64             | 165.8198             | 1.366970  | 76,116.69              | 47.4044              | 0.62278   |  |
| 28       | 135,702.60             | 149.3380             | 1.100480  | 85,597.27              | 55.2837              | 0.64585   |  |
| 29       | 151,968.25             | 200.5865             | 1.319924  | 95,713.75              | 68.8618              | 0.71945   |  |
| 30       | 168,655.82             | 217.0711             | 1.287065  | 106,679.07             | 83.8789              | 0.78627   |  |
| 31       | 185,421.05             | 346.2583             | 1.867416  | 117,693.37             | 76.1010              | 0.64660   |  |
| 32       | 202,217.95             | 327.8709             | 1.621374  | 128,541.02             | 125.1812             | 0.97386   |  |
| 33       | 218,944.97             | 417.6444             | 1.907531  | 139,948.50             | 122.4639             | 0.87506   |  |
| 34       | 238,378.54             | 450.9472             | 1.891727  | 151,513.98             | 99.7527              | 0.65837   |  |
| 35       | 260,901.35             | 505.1162             | 1.936043  | 164,573.60             | 126.1747             | 0.76667   |  |
| 36       | 281,365.83             | 592.2428             | 2.104885  | 176,517.39             | 169.6547             | 0.96112   |  |
| 30<br>37 | 303,774.60             | 747.3882             | 2.460338  |                        | 220.1418             | 1.15172   |  |
|          | -                      |                      |           | 191,141.28             |                      |           |  |
| 38       | 328,014.44             | 845.1349             | 2.576517  | 205,549.43             | 235.8164             | 1.14724   |  |
| 39<br>40 | 353,717.60             | 1,023.1961           | 2.892692  | 221,461.16             | 257.9003             | 1.16454   |  |
| 40       | 379,638.69             | 1,181.0812           | 3.111066  | 236,669.11             | 301.6300             | 1.27448   |  |
| 41       | 404,179.48             | 1,277.2253           | 3.160045  | 251,628.21             | 383.8485             | 1.52545   |  |
| 42       | 430,098.46             | 1,472.4610           | 3.423544  | 267,501.90             | 492.0007             | 1.83924   |  |
| 43       | 458,035.76             | 1,706.7997           | 3.726346  | 284,057.03             | 475.6244             | 1.67439   |  |
| 44       | 486,292.84             | 1,902.9260           | 3.913128  | 301,679.48             | 652.0099             | 2.16126   |  |
| 45       | 508,690.62             | 2,110.4826           | 4.148853  | 312,410.85             | 689.5422             | 2.20716   |  |
| 46       | 524,081.80             | 2,289.4007           | 4.368403  | 319,123.91             | 826.8532             | 2.59101   |  |
| 47       | 538,884.22             | 2,613.3325           | 4.849525  | 325,452.63             | 957.9209             | 2.94335   |  |
| 48       | 552,931.02             | 2,751.3327           | 4.975906  | 330,697.71             | 1,109.4058           | 3.35474   |  |
| 49       | 566,988.43             | 2,864.1502           | 5.051514  | 335,837.68             | 1,352.9612           | 4.02861   |  |
| 50       | 572,435.24             | 3,194.5889           | 5.580699  | 335,623.20             | 1,479.4313           | 4.40801   |  |
| 51       | 574,159.96             | 3,464.5271           | 6.034080  | 333,508.12             | 1,713.7606           | 5.13858   |  |
| 52       | 572,429.93             | 3,499.1669           | 6.112830  | 330,564.10             | 1,754.8252           | 5.30857   |  |
| 53       | 569,531.14             | 3,549.9308           | 6.233076  | 327,708.57             | 1,963.1802           | 5.99062   |  |
| 54       | 559,914.41             | 3,694.2772           | 6.597932  | 321,181.60             | 2,140.6476           | 6.66491   |  |
| 55       | 539,675.74             | 3,842.1234           | 7.119318  | 308,789.12             | 2,296.7678           | 7.43798   |  |
| 56       | 514,902.48             | 3,906.7180           | 7.587297  | 294,512.86             | 2,363.6086           | 8.02548   |  |
| 57       | 491,321.29             | 3,792.0940           | 7.718155  | 281,972.74             | 2,635.1308           | 9.34533   |  |
| 58       | 466,203.57             | 3,889.9302           | 8.343845  | 268,468.69             | 2,769.3413           | 10.31532  |  |
| 59       | 437,593.23             | 3,785.0085           | 8.649605  | 254,041.47             | 2,725.1264           | 10.72709  |  |
| 60       | 405,141.77             | 3,814.6617           | 9.415622  | 237,127.48             | 2,740.0859           | 11.55532  |  |
| 61       | 367,437.40             | 3,558.7924           | 9.685439  | 216,952.65             | 2,848.0366           | 13.12745  |  |
| 62       | 327,465.99             | 3,266.5724           | 9.975303  | 193,688.32             | 2,602.9685           | 13.43895  |  |
| 63       | 289,443.52             | 3,041.6444           | 10.508594 | 172,584.22             | 2,561.7652           | 14.84356  |  |
| 64       | 253,719.71             | 2,696.0155           | 10.625960 | 154,200.00             | 2,346.0128           | 15.21409  |  |
| 65       | 215,393.78             | 2,369.6304           | 11.001388 | 132,459.42             | 2,289.7860           | 17.28669  |  |
| 66       | 186,043.01             | 2,159.9506           | 11.609953 | 115,080.00             | 1,980.5104           | 17.20985  |  |
| 67       | 160,366.40             | 1,852.5737           | 11.552131 | 99,738.86              | 1,757.1341           | 17.61734  |  |
| 68       | 139,138.52             | 1,675.7891           | 12.044034 | 86,573.84              | 1,503.6123           | 17.36797  |  |
| 69       | 122,265.59             | 1,363.1138           | 11.148793 | 75,887.67              | 1,448.9156           | 19.09289  |  |
| 70       | 104,493.22             | 1,294.1357           | 12.384877 | 64,365.41              | 1,193.4163           | 18.54126  |  |
| 71       | 88,687.65              | 1,087.8374           | 12.265940 | 54,189.22              | 1,003.2273           | 18.51341  |  |
| 72       | 76,145.24              | 906.7382             | 11.908009 | 46,179.98              | 872.5856             | 18.89532  |  |
| 73       | 66,230.91              | 756.4155             | 11.420884 | 39,918.66              | 871.1443             | 21.82298  |  |
| 73<br>74 | 58,017.34              | 765.9495             | 13.202080 | 34,728.95              | 758.8463             | 21.85053  |  |
| 75       | 49,944.04              | 654.2734             | 13.100130 | 29,429.35              | 522.6269             | 17.75869  |  |
| 76       | 43,146.01              | 548.1712             | 12.705026 | 25,068.94              | 479.1189             | 19.11205  |  |
| 77       | 37,830.85              | 474.7157             | 12.548375 | 25,008.94 21,541.99    | 411.4324             | 19.09909  |  |
|          | 37,030.05<br>33,297.26 | 474.7157<br>403.3344 | 12.546375 | 21,541.99<br>18,640.96 | 411.4324<br>354.7157 | 19.09909  |  |
| 78<br>70 |                        |                      |           |                        |                      |           |  |
| 79<br>80 | 29,372.32              | 388.3769             | 13.222549 | 16,235.97<br>13 771 47 | 247.7527             | 15.25949  |  |
| 80<br>01 | 25,403.10              | 367.9650             | 14.485044 | 13,771.47              | 250.1665             | 18.16556  |  |
| 81<br>82 | 21,963.40              | 268.4292             | 12.221658 | 11,551.00              | 174.3068             | 15.09018  |  |
| 82       | 18,925.45              | 281.2274             | 14.859746 | 9,775.70               | 175.4038             | 17.94283  |  |
| 83       | 15,977.61              | 209.9672             | 13.141339 | 8,044.39               | 156.8008             | 19.49194  |  |
| 84       | 13,397.67              | 155.8784             | 11.634739 | 6,504.14               | 95.9621              | 14.75400  |  |
| 85       | 11,078.22              | 191.1552             | 17.255050 | 5,198.74               | 84.6406              | 16.28097  |  |
| 86       | 8,923.84               | 110.9189             | 12.429509 | 4,009.56               | 56.2287              | 14.02365  |  |
| 87       | 7,155.32               | 68.4771              | 9.570098  | 3,089.29               | 56.5121              | 18.29291  |  |
| 88       | 5,578.23               | 75.9439              | 13.614335 | 2,313.84               | 80.9604              | 34.98964  |  |
| 00       |                        |                      |           | 4 000 07               | 70.0004              | 42.16237  |  |
| 89       | 4,219.88               | 39.2636              | 9.304444  | 1,666.97               | 70.2834              | 42.10237  |  |

| Appendix 2                                 |
|--------------------------------------------|
| All Payment Hospitalization Data - Initial |
| Study Data - Females and Males             |

|          | Female                   |                          |                            | Male                 |                  |                          |                          |                            |                      |                   |
|----------|--------------------------|--------------------------|----------------------------|----------------------|------------------|--------------------------|--------------------------|----------------------------|----------------------|-------------------|
| Age      | Total Exposure           | Total Incurral           | Total Days                 | Incidence            | Length of Stay   | Total Exposure           | Total Incurral           | Total Days                 | Incidence            | Length of Stay    |
| 18       | 3,427.90                 | 4.1541                   | 15.9080                    | 0.001212             | 3.8294           | 3,173.87                 | -                        | -                          | -                    | -                 |
| 19       | 9,577.67                 | 2.3430                   | 46.1908                    | 0.000245             | 19.7143          | 8,650.12                 | 3.4348                   | 758.6998                   | 0.000397             | 220.8880          |
| 20       | 17,158.52                | 45.9504                  | 2,585.4570                 | 0.002678             | 56.2662          | 14,793.87                | 15.2998                  | 141.3594                   | 0.001034             | 9.2393            |
| 21       | 26,157.36                | 2.9397                   | 43.4416                    | 0.000112             | 14.7778          | 21,154.08                | 6.6235                   | 45.4763                    | 0.000313             | 6.8659            |
| 22       | 39,491.86                | 29.3963                  | 625.5306                   | 0.000744             | 21.2792          | 28,667.21                | 56.1872                  | 920.0308                   | 0.001960             | 16.3744           |
| 23       | 55,308.81                | 15.4905                  | 169.6571                   | 0.000280             | 10.9523          | 37,557.88                | 16.1090                  | 102.7266                   | 0.000429             | 6.3770            |
| 24       | 71,710.26                | 38.5055<br>110.7938      | 254.3095                   | 0.000537             | 6.6045           | 46,319.91                | 15.1674                  | 136.8717                   | 0.000327             | 9.0241<br>14.3716 |
| 25<br>26 | 88,279.92<br>103,692.57  | 110.7938                 | 982.2768<br>698.6840       | 0.001255<br>0.001118 | 8.8658<br>6.0262 | 55,728.30<br>64,368.28   | 46.0311<br>71.1749       | 661.5416<br>661.9042       | 0.000826<br>0.001106 | 9.2997            |
| 20       | 118,581.12               | 146.2044                 | 834.5864                   | 0.001118             | 5.7084           | 72,964.58                | 29.7631                  | 562.4771                   | 0.0001108            | 18.8985           |
| 28       | 132,769.01               | 151.2942                 | 962.7431                   | 0.001233             | 6.3634           | 81,820.70                | 38.3923                  | 511.2339                   | 0.000469             | 13.3160           |
| 20       | 149,158.56               | 152.1214                 | 1,411.6006                 | 0.001020             | 9.2794           | 91,294.94                | 67.3429                  | 810.5713                   | 0.000738             | 12.0365           |
| 30       | 165,840.81               | 196.9611                 | 1,366.9243                 | 0.001188             | 6.9401           | 101,315.79               | 81.6611                  | 725.8625                   | 0.000806             | 8.8887            |
| 31       | 182,866.30               | 353.3169                 | 3,200.5659                 | 0.001932             | 9.0586           | 111,644.70               | 90.8094                  | 2,105.3816                 | 0.000813             | 23.1846           |
| 32       | 200,089.38               | 309.8664                 | 1,701.9327                 | 0.001549             | 5.4925           | 121,605.96               | 160.5249                 | 1,370.6483                 | 0.001320             | 8.5385            |
| 33       | 216,987.17               | 399.8123                 | 4,178.0770                 | 0.001843             | 10.4501          | 132,085.42               | 113.5071                 | 1,406.6841                 | 0.000859             | 12.3929           |
| 34       | 236,648.86               | 589.6611                 | 3,467.6032                 | 0.002492             | 5.8807           | 142,827.83               | 124.2397                 | 933.9163                   | 0.000870             | 7.5171            |
| 35       | 258,871.11               | 518.8992                 | 3,325.9945                 | 0.002004             | 6.4097           | 154,807.85               | 149.7078                 | 1,646.1394                 | 0.000967             | 10.9957           |
| 36       | 278,762.22               | 683.3927                 | 4,921.3441                 | 0.002452             | 7.2013           | 164,872.20               | 195.6027                 | 1,921.3210                 | 0.001186             | 9.8226            |
| 37       | 301,207.88               | 772.1981                 | 3,745.5372                 | 0.002564             | 4.8505           | 177,707.11               | 185.1026                 | 1,749.0787                 | 0.001042             | 9.4492            |
| 38       | 324,986.98               | 992.9618                 | 6,232.4496                 | 0.003055             | 6.2766           | 190,455.92               | 268.5593                 | 4,008.6590                 | 0.001410             | 14.9265           |
| 39       | 350,289.01               | 971.3783                 | 5,543.9862                 | 0.002773             | 5.7073           | 204,274.37               | 372.5496                 | 3,248.1049                 | 0.001824             | 8.7186            |
| 40       | 376,006.10               | 1,184.5170               | 6,539.9615                 | 0.003150             | 5.5212           | 217,797.36               | 341.7082                 | 3,209.8191                 | 0.001569             | 9.3935            |
| 41       | 400,327.98               | 1,255.5678               | 7,645.8503                 | 0.003136             | 6.0896           | 231,168.10               | 428.5426                 | 7,805.3508                 | 0.001854             | 18.2137           |
| 42       | 427,030.00               | 1,582.6747               | 11,363.0958                | 0.003706             | 7.1797           | 245,371.48               | 503.1826                 | 4,532.0810                 | 0.002051             | 9.0068            |
| 43       | 455,933.12               | 1,750.3324               | 10,024.8989                | 0.003839             | 5.7274           | 260,101.46               | 635.8579                 | 7,198.5415                 | 0.002445             | 11.3210           |
| 44       | 485,686.78               | 2,047.4643               | 11,899.0830                | 0.004216             | 5.8116           | 276,438.20               | 598.9620                 | 5,098.1767                 | 0.002167             | 8.5117            |
| 45       | 509,380.46               | 2,070.9821               | 14,175.7937                | 0.004066             | 6.8450           | 285,994.32               | 812.7532                 | 7,426.9195                 | 0.002842             | 9.1380            |
| 46       | 525,396.08               | 2,206.1097               | 14,458.7342                | 0.004199             | 6.5540           | 291,325.20               | 770.7790                 | 6,234.6028                 | 0.002646             | 8.0887            |
| 47       | 541,034.82               | 2,543.4162               | 16,561.4909                | 0.004701             | 6.5115           | 296,621.24               | 1,031.7628               | 8,847.9672                 | 0.003478             | 8.5756            |
| 48<br>49 | 556,467.48               | 2,835.1115<br>2,997.8335 | 19,267.5893                | 0.005095<br>0.005249 | 6.7961<br>7.1715 | 301,447.69               | 1,170.2643<br>1,345.0006 | 9,916.1927                 | 0.003882<br>0.004387 | 8.4735<br>8.4286  |
| 49<br>50 | 571,141.17<br>578,136.82 | 3,423.6765               | 21,499.0557<br>23,326.2590 | 0.005249             | 6.8132           | 306,580.95<br>307,286.80 | 1,502.0069               | 11,336.4941<br>11,241.2438 | 0.004387             | 7.4841            |
| 50       | 580,599.40               | 3,501.8515               | 23,371.7027                | 0.006031             | 6.6741           | 305,496.87               | 1,721.6612               | 13,763.1165                | 0.005636             | 7.9941            |
| 52       | 579,460.09               | 3,694.1037               | 27,760.2247                | 0.006375             | 7.5147           | 303,323.75               | 1,760.2963               | 14,513.5712                | 0.005803             | 8.2450            |
| 53       | 576,525.26               | 3,665.8485               | 24,938.1984                | 0.006359             | 6.8028           | 301,344.40               | 1,766.3763               | 13,554.1588                | 0.005862             | 7.6734            |
| 54       | 568,162.45               | 3,960.8290               | 26,438.6472                | 0.006971             | 6.6750           | 297,136.03               | 2,049.1803               | 16,670.1273                | 0.006896             | 8.1350            |
| 55       | 549,058.69               | 4,152.4756               | 30,847.0527                | 0.007563             | 7.4286           | 287,846.51               | 2,139.9910               | 18,620.7305                | 0.007434             | 8.7013            |
| 56       | 523,411.38               | 4,066.4864               | 30,047.0036                | 0.007769             | 7.3889           | 275,440.27               | 2,276.6188               | 18,314.3002                | 0.008265             | 8.0445            |
| 57       | 497,575.13               | 3,893.1273               | 25,302.2052                | 0.007824             | 6.4992           | 264,317.64               | 2,633.3725               | 20,340.3734                | 0.009963             | 7.7241            |
| 58       | 470,163.61               | 4,169.2557               | 30,602.3413                | 0.008868             | 7.3400           | 252,426.53               | 2,732.2555               | 21,873.9592                | 0.010824             | 8.0058            |
| 59       | 439,094.78               | 4,020.1558               | 32,500.9062                | 0.009156             | 8.0845           | 239,679.14               | 2,619.8901               | 20,138.4432                | 0.010931             | 7.6868            |
| 60       | 403,564.19               | 4,114.4859               | 33,453.8023                | 0.010195             | 8.1307           | 224,037.29               | 2,554.4537               | 20,116.3876                | 0.011402             | 7.8750            |
| 61       | 361,961.44               | 3,710.0607               | 29,205.7883                | 0.010250             | 7.8721           | 205,067.35               | 2,806.9434               | 23,969.7630                | 0.013688             | 8.5395            |
| 62       | 318,344.39               | 3,501.7978               | 26,607.3475                | 0.011000             | 7.5982           | 183,144.96               | 2,625.8423               | 20,188.3883                | 0.014338             | 7.6883            |
| 63       | 276,734.71               | 3,306.7632               | 26,497.1634                | 0.011949             | 8.0130           | 162,624.23               | 2,253.2436               | 19,313.9179                | 0.013856             | 8.5716            |
| 64       | 237,431.19               | 2,993.6535               | 23,748.8100                | 0.012609             | 7.9331           | 144,054.48               | 2,219.3033               | 17,999.6637                | 0.015406             | 8.1105            |
| 65       | 196,631.15               | 2,515.6630               | 21,526.7423                | 0.012794             | 8.5571           | 122,228.97               | 2,107.3150               | 17,334.5617                | 0.017241             | 8.2259            |
| 66       | 165,112.38               | 2,237.8519               | 18,278.9928                | 0.013554             | 8.1681           | 104,925.16               | 1,865.4274               | 16,512.1286                | 0.017779             | 8.8517            |
| 67       | 137,908.03               | 1,956.3661               | 16,018.0897                | 0.014186             | 8.1877           | 89,533.49                | 1,667.0895               | 12,768.2101                | 0.018620             | 7.6590            |
| 68       | 114,819.47               | 1,695.2981               | 13,824.0604                | 0.014765             | 8.1544           | 76,178.88                | 1,403.8956               | 11,389.3081                | 0.018429             | 8.1126            |
| 69<br>70 | 96,404.85                | 1,392.6508               | 12,733.2474                | 0.014446             | 9.1432           | 65,311.39                | 1,192.7390               | 9,342.6622                 | 0.018262             | 7.8329            |
| 70       | 80,098.20                | 1,218.9831               | 9,849.1599                 | 0.015219             | 8.0798           | 55,264.46                | 1,019.4729               | 7,940.2624                 | 0.018447             | 7.7886            |
| 71<br>72 | 65,636.41<br>53,033,57   | 1,050.0245               | 8,874.1018                 | 0.015998             | 8.4513<br>8.4176 | 45,889.89<br>38.079.64   | 1,048.3296               | 8,994.5989<br>6 821 9896   | 0.022844             | 8.5799<br>8.7146  |
| 72       | 53,933.57<br>45,099.25   | 866.0683<br>762.4510     | 7,290.1934<br>6,966.2414   | 0.016058<br>0.016906 | 8.4176<br>9.1366 | 38,079.64<br>31,910.92   | 782.8229<br>686.5063     | 6,821.9896<br>6,134.9742   | 0.020558<br>0.021513 | 8.7146<br>8.9365  |
| 73       | 45,099.25<br>38,342.33   | 622.9188                 | 6,966.2414<br>4,964.7284   | 0.016906             | 9.1366<br>7.9701 | 27,256.36                | 606.8524                 | 6,134.9742<br>5,335.2227   | 0.021513             | 8.9365            |
| 74       | 33,073.62                | 622.6973                 | 4,904.7204<br>5,594.8367   | 0.018248             | 8.9848           | 23,201.20                | 469.3118                 | 4,351.8543                 | 0.022205             | 9.2728            |
| 76       | 29,206.92                | 473.9530                 | 4,821.5823                 | 0.016227             | 10.1731          | 20,103.07                | 514.7533                 | 4,331.8343<br>5,057.4025   | 0.020228             | 9.8249            |
| 70       | 26,375.74                | 429.1406                 | 4,047.6819                 | 0.016270             | 9.4321           | 17,737.71                | 365.5348                 | 3,158.9771                 | 0.020608             | 8.6421            |
| 78       | 24,279.83                | 382.0129                 | 3,890.6005                 | 0.015734             | 10.1845          | 15,686.25                | 326.1083                 | 2,768.0301                 | 0.020789             | 8.4881            |
| 79       | 22,434.21                | 364.0565                 | 4,073.0161                 | 0.016228             | 11.1879          | 13,947.60                | 267.2238                 | 2,381.5632                 | 0.019159             | 8.9122            |
| 80       | 20,519.98                | 295.6571                 | 2,550.9842                 | 0.014408             | 8.6282           | 12,419.27                | 273.4953                 | 2,450.6162                 | 0.022022             | 8.9604            |
| 81       | 18,653.82                | 281.4858                 | 2,531.4096                 | 0.015090             | 8.9930           | 10,939.31                | 233.0525                 | 1,912.1610                 | 0.021304             | 8.2048            |
| 82       | 16,935.85                | 300.7552                 | 2,983.7101                 | 0.017758             | 9.9207           | 9,630.75                 | 197.7859                 | 1,881.0526                 | 0.020537             | 9.5106            |
| 83       | 15,158.41                | 306.7273                 | 2,318.1836                 | 0.020235             | 7.5578           | 8,243.85                 | 150.7142                 | 1,491.5916                 | 0.018282             | 9.8968            |
| 84       | 13,295.33                | 192.8222                 | 1,682.9106                 | 0.014503             | 8.7278           | 6,911.99                 | 139.1507                 | 1,228.7679                 | 0.020132             | 8.8305            |
| 85       | 11,495.05                | 159.5419                 | 1,251.8081                 | 0.013879             | 7.8463           | 5,774.60                 | 115.4352                 | 887.4630                   | 0.019990             | 7.6880            |
| 86       | 9,744.16                 | 145.8733                 | 1,131.1294                 | 0.014970             | 7.7542           | 4,743.91                 | 81.4590                  | 803.7370                   | 0.017171             | 9.8668            |
| 87       | 7,920.57                 | 96.5996                  | 909.5316                   | 0.012196             | 9.4155           | 3,783.33                 | 64.0016                  | 830.6488                   | 0.016917             | 12.9786           |
| 88       | 6,205.90                 | 87.2254                  | 724.1403                   | 0.014055             | 8.3019           | 2,860.72                 | 48.2509                  | 368.3179                   | 0.016867             | 7.6334            |
| 89       | 4,704.90                 | 59.8008                  | 352.3420                   | 0.012710             | 5.8919           | 2,061.74                 | 24.6951                  | 193.6964                   | 0.011978             | 7.8435            |
| 90       | 3,385.79                 | 29.0919                  | 236.6932                   | 0.008592             | 8.1361           | 1,458.54                 | 37.0948                  | 128.7979                   | 0.025433             | 3.4721            |

| Appendix 2                                         |
|----------------------------------------------------|
| <b>Each Payment Hospitalization Data - Initial</b> |
| Study Data - Females                               |

| ⊩ |          |                          |                          | Female                     |                      |                  |
|---|----------|--------------------------|--------------------------|----------------------------|----------------------|------------------|
|   | Age      | Total Exposure           | Total Incurral           | Total Days                 | Incidence            | Length of Stay   |
|   | 18       | 2,935.20                 | 1.2135                   | 4.2471                     | 0.000413             | 3.5000           |
|   | 19       | 8,892.71                 | 1.8647                   | 42.5766                    | 0.000210             | 22.8333          |
|   | 20       | 16,395.85                | 18.1982                  | 1,448.6849                 | 0.001110             | 79.6058          |
|   | 21       | 25,392.04                | 22.1897                  | 863.9507                   | 0.000874             | 38.9348          |
|   | 22       | 38,956.15                | 26.2911                  | 160.8479                   | 0.000675             | 6.1180           |
|   | 23       | 55,181.32                | 18.8641                  | 168.5141                   | 0.000342             | 8.9330           |
|   | 24       | 71,917.14                | 22.8302                  | 159.6892                   | 0.000317             | 6.9947           |
|   | 25       | 88,831.52                | 73.9271                  | 490.9589                   | 0.000832             | 6.6411           |
|   | 26       | 104,508.96               | 117.2432                 | 1,081.3627                 | 0.001122             | 9.2232           |
|   | 27       | 119,493.84               | 140.7700                 | 1,029.9710                 | 0.001178             | 7.3167           |
|   | 28       | 133,729.51               | 136.1482                 | 1,001.7816                 | 0.001018             | 7.3580           |
|   | 29       | 149,993.35               | 146.2372                 | 1,047.1479                 | 0.000975             | 7.1606           |
|   | 30       | 166,507.32               | 176.5134                 | 1,779.2302                 | 0.001060             | 10.0799          |
|   | 31       | 183,281.08               | 263.9227                 | 1,899.8382                 | 0.001440             | 7.1985           |
|   | 32       | 200,376.01               | 288.8972                 | 1,569.5418                 | 0.001442             | 5.4329           |
|   | 33       | 217,113.29               | 350.9281                 | 2,200.0933                 | 0.001616             | 6.2694           |
|   | 34       | 236,550.41               | 508.0613                 | 4,172.3190                 | 0.002148             | 8.2122           |
|   | 35       | 258,573.98               | 501.0119                 | 4,179.2606                 | 0.001938             | 8.3416           |
|   | 36       | 278,065.13               | 623.5283                 | 4,084.1619                 | 0.002242             | 6.5501           |
|   | 37       | 300,175.96               | 752.2314                 | 4,566.0469                 | 0.002506             | 6.0700           |
|   | 38       | 323,306.72               | 802.6013                 | 6,055.5477                 | 0.002482             | 7.5449           |
|   | 39       | 347,669.52               | 894.8475                 | 5,428.7831                 | 0.002574             | 6.0667           |
|   | 40       | 372,241.33               | 1,139.3529               | 6,355.2882                 | 0.003061             | 5.5780           |
|   | 41       | 395,714.47               | 1,272.6686               | 6,923.2315                 | 0.003216             | 5.4399           |
|   | 42       | 421,487.40               | 1,444.4654               | 9,307.3627                 | 0.003427             | 6.4435           |
|   | 43       | 448,946.81               | 1,665.9398               | 9,820.1857                 | 0.003711             | 5.8947           |
|   | 44       | 476,320.17               | 1,885.9279               | 12,831.7825                | 0.003959             | 6.8040           |
|   | 45       | 501,988.51               | 2,022.7876               | 13,897.0030                | 0.004030             | 6.8702           |
|   | 46       | 519,639.47               | 2,068.4497               | 13,590.8501                | 0.003981             | 6.5705           |
|   | 47       | 536,697.44               | 2,405.3579               | 14,314.2511                | 0.004482             | 5.9510           |
|   | 48       | 553,014.78               | 2,570.1361               | 15,363.2661                | 0.004647             | 5.9776           |
|   | 49       | 568,753.91               | 2,862.4217               | 19,129.4255                | 0.005033             | 6.6830           |
|   | 50       | 576,496.06               | 3,174.6948               | 20,916.5339                | 0.005507             | 6.5885           |
|   | 51       | 579,514.16               | 3,291.3308               | 21,014.0971                | 0.005679             | 6.3847           |
|   | 52       | 578,687.93               | 3,265.1337               | 21,875.8778                | 0.005642             | 6.6998           |
|   | 53       | 574,996.74               | 3,544.2641               | 25,068.2554                | 0.006164             | 7.0729           |
|   | 53<br>54 | 565,325.53               | 3,694.4920               | 27,130.9081                | 0.006535             | 7.3436           |
|   | 54<br>55 | 546,946.50               | 3,885.8215               | 26,369.3582                | 0.007105             | 6.7860           |
|   | 56       | 521,562.35               | 3,944.0847               | 26,644.2612                | 0.007562             | 6.7555           |
|   | 50<br>57 | 495,826.83               | 3,762.8393               | 25,019.1537                | 0.007589             | 6.6490           |
|   | 58       | 493,820.83               | 4,100.8927               | 29,617.6313                | 0.007389             | 7.2222           |
|   | 59       | 436,907.18               | 3,897.6849               | 28,485.2594                | 0.008921             | 7.3083           |
|   | 60       | 400,955.05               | 3,811.0551               | 28,556.2135                | 0.009505             | 7.4930           |
|   | 61       | 358,854.90               | 3,654.3593               | 27,679.1526                | 0.010183             | 7.5743           |
|   | 62       | 314,067.18               | 3,244.9549               | 23,710.8990                | 0.010332             | 7.3743           |
|   |          |                          | -                        |                            |                      |                  |
|   | 63<br>64 | 270,943.40<br>230,525.07 | 3,093.2137<br>2,882.5319 | 21,145.2037<br>23,140.2154 | 0.011416<br>0.012504 | 6.8360<br>8.0277 |
|   | 64<br>65 | 230,525.07<br>190,755.94 | 2,882.5319 2,516.3514    |                            | 0.012504             | 8.0277<br>7.9605 |
|   | 65<br>66 |                          |                          | 20,031.3298                | 0.013191             | 7.9605           |
|   | 66<br>67 | 159,766.63<br>133,320.56 | 2,260.2304<br>2,018.9574 | 17,835.2981<br>14,847.0648 | 0.014147<br>0.015144 | 7.8909           |
|   | 67<br>68 | 133,320.56               | 2,018.9574 1,713.9062    | 14,847.0648                | 0.015144             | 7.3538           |
|   | 68<br>69 | 92,795.91                | 1,713.9062               | 12,134.0925                | 0.015474             | 8.5086           |
|   | 69<br>70 | 76,713.80                | 1,310.0450               | 12,767.2593                | 0.016170             | 8.1379           |
|   | 70<br>71 | 62,230.58                | 1,310.0450               | 8,641.3522                 | 0.017077             | 7.6455           |
|   | 71       | 50,318.70                | 895.1353                 | 6,848.4405                 | 0.018182             | 7.6400           |
|   |          | 50,318.70<br>40,966.40   | 895.1353<br>809.3330     |                            |                      |                  |
|   | 73<br>74 | , i                      |                          | 5,944.4061<br>5 164 7754   | 0.019756             | 7.3448           |
|   | 74<br>75 | 33,390.79                | 659.4215<br>562.0505     | 5,164.7754                 | 0.019749             | 7.8323           |
|   | 75<br>76 | 27,231.54                | 562.0505                 | 4,176.3080                 | 0.020640             | 7.4305           |
|   | 76<br>77 | 22,466.40                | 510.3566                 | 4,624.6885                 | 0.022716             | 9.0617           |
|   | 77       | 18,818.11                | 342.3706                 | 2,691.7110                 | 0.018194             | 7.8620           |
|   | 78       | 15,979.48                | 323.3936                 | 2,487.6418                 | 0.020238             | 7.6923           |
|   | 79       | 13,734.74                | 330.8522                 | 3,085.7193                 | 0.024089             | 9.3266           |
|   | 80       | 11,726.19                | 211.2023                 | 1,819.4405                 | 0.018011             | 8.6147           |
|   | 81       | 9,975.62                 | 265.7918                 | 2,141.6222                 | 0.026644             | 8.0575           |
|   | 82       | 8,573.65                 | 188.0509                 | 2,235.3598                 | 0.021934             | 11.8870          |
|   | 83       | 7,364.10                 | 110.0574                 | 788.8450                   | 0.014945             | 7.1676           |
|   | 84       | 6,257.14                 | 99.8295                  | 572.3304                   | 0.015954             | 5.7331           |
|   | 85       | 5,260.16                 | 80.9262                  | 556.8512                   | 0.015385             | 6.8810           |
|   | 86       | 4,409.59                 | 57.8635                  | 418.8772                   | 0.013122             | 7.2391           |
|   | 87       | 3,619.37                 | 35.4927                  | 296.0970                   | 0.009806             | 8.3425           |
|   | 88       | 2,882.51                 | 35.2086                  | 227.8645                   | 0.012215             | 6.4718           |
|   | 89       | 2,208.10                 | 30.8915                  | 147.1334                   | 0.013990             | 4.7629           |
| 1 | 90       | 1,644.61                 | 17.0647                  | 76.8417                    | 0.010376             | 4.5030           |

## Appendix 2 Each Payment Hospitalization Data - Initial Study Data - Males

|       | Male           |                |             |           |                |  |
|-------|----------------|----------------|-------------|-----------|----------------|--|
| Age   | Total Exposure | Total Incurral | Total Days  | Incidence | Length of Stay |  |
| 18-37 | 1,582,065.85   | 1,324.0236     | 14,562.0220 | 0.000837  | 10.9983        |  |
| 38    | 183,713.77     | 235.1665       | 2,282.9619  | 0.001280  | 9.707852       |  |
| 39    | 196,634.91     | 353.4476       | 2,937.6472  | 0.001797  | 8.311408       |  |
| 40    | 209,158.34     | 342.3990       | 3,154.5558  | 0.001637  | 9.213097       |  |
| 41    | 221,479.56     | 364.6942       | 3,643.0654  | 0.001647  | 9.989369       |  |
| 42    | 234,531.57     | 461.3125       | 4,499.8006  | 0.001967  | 9.754343       |  |
| 43-44 | 507,539.61     | 1,186.8982     | 11,716.7487 | 0.002339  | 9.871739       |  |
| 45    | 271,642.70     | 616.9404       | 6,140.3346  | 0.002271  | 9.952882       |  |
| 46    | 278,546.51     | 769.5906       | 6,208.1434  | 0.002763  | 8.066813       |  |
| 47    | 284,850.38     | 925.4074       | 7,542.5357  | 0.003249  | 8.150503       |  |
| 48    | 290,557.37     | 1,138.0167     | 9,249.7540  | 0.003917  | 8.127960       |  |
| 49    | 296,504.33     | 1,219.1596     | 10,172.3689 | 0.004112  | 8.343755       |  |
| 50    | 297,911.17     | 1,411.1107     | 11,962.5158 | 0.004737  | 8.477376       |  |
| 51    | 296,976.28     | 1,525.2513     | 12,720.7792 | 0.005136  | 8.340120       |  |
| 52    | 295,187.32     | 1,619.1876     | 12,228.4229 | 0.005485  | 7.552196       |  |
| 53    | 292,799.40     | 1,650.3776     | 12,307.0214 | 0.005637  | 7.457094       |  |
| 54    | 287,580.96     | 1,983.8010     | 13,920.9197 | 0.006898  | 7.017296       |  |
| 55    | 279,186.91     | 1,968.5402     | 15,141.0917 | 0.007051  | 7.691533       |  |
| 56    | 267,240.60     | 2,226.8059     | 18,306.8001 | 0.008333  | 8.221103       |  |
| 57    | 256,501.17     | 2,401.2027     | 17,589.4154 | 0.009361  | 7.325252       |  |
| 58    | 244,876.98     | 2,611.7648     | 21,039.6982 | 0.010666  | 8.055740       |  |
| 59    | 232,361.27     | 2,561.5802     | 21,796.2827 | 0.011024  | 8.508921       |  |
| 60    | 216,966.02     | 2,466.7765     | 18,649.9900 | 0.011369  | 7.560470       |  |
| 61    | 198,111.61     | 2,487.1014     | 19,097.1407 | 0.012554  | 7.678473       |  |
| 62    | 176,034.21     | 2,647.2673     | 20,172.6603 | 0.015038  | 7.620183       |  |
| 63    | 155,042.63     | 2,369.1742     | 18,179.7460 | 0.015281  | 7.673453       |  |
| 64    | 135,956.80     | 2,232.2419     | 18,737.4698 | 0.016419  | 8.394014       |  |
| 65    | 115,594.70     | 2,232.5177     | 18,517.8943 | 0.019313  | 8.294624       |  |
| 66    | 99,261.76      | 1,862.7483     | 15,255.5357 | 0.018766  | 8.189800       |  |
| 67    | 84,707.99      | 1,757.1387     | 12,778.9964 | 0.020743  | 7.272617       |  |
| 68    | 72,036.89      | 1,564.0536     | 11,178.5069 | 0.021712  | 7.147138       |  |
| 69    | 61,752.31      | 1,344.1278     | 11,025.2404 | 0.021766  | 8.202524       |  |
| 70    | 52,111.38      | 1,117.6059     | 8,501.9847  | 0.021446  | 7.607319       |  |
| 71    | 43,003.44      | 1,041.8993     | 8,113.8375  | 0.024228  | 7.787545       |  |
| 72    | 35,319.25      | 879.1192       | 7,383.7749  | 0.024891  | 8.399060       |  |
| 73    | 29,012.99      | 715.8737       | 5,588.3125  | 0.024674  | 7.806282       |  |
| 74    | 24,005.77      | 642.2198       | 5,199.1476  | 0.026753  | 8.095589       |  |
| 75    | 19,597.49      | 555.1672       | 4,959.8845  | 0.028328  | 8.934037       |  |
| 76-90 | 88,692.77      | 2,258.2070     | 19,118.7146 | 0.025461  | 8.466325       |  |

# Appendix 3 First Occurence Study Data - Raw Observed Age Adjusted Selection Patterns

| Duration | Selection |
|----------|-----------|
| 1        | 1.564662  |
| 2        | 1.427362  |
| 3        | 1.315744  |
| 4        | 1.276115  |
| 5+       | 1.000000  |

# Appendix 4 First Occurence Study Data - Basic Incidence Rates per 1,000 Females and Males

| Age                                                                                                | Female<br>Incidence                                                                                                                                                                | Male<br>Incidence                                                                                                                                                                               |
|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Age<br>18                                                                                          | 0.627924                                                                                                                                                                           | 0.881829                                                                                                                                                                                        |
| 19                                                                                                 | 0.674180                                                                                                                                                                           | 0.801936                                                                                                                                                                                        |
| 20                                                                                                 | 0.724071                                                                                                                                                                           | 0.739746                                                                                                                                                                                        |
| 21                                                                                                 | 0.777858                                                                                                                                                                           | 0.691831                                                                                                                                                                                        |
| 22                                                                                                 | 0.835817                                                                                                                                                                           | 0.655659                                                                                                                                                                                        |
| 23                                                                                                 | 0.898239                                                                                                                                                                           | 0.629367                                                                                                                                                                                        |
| 24                                                                                                 | 0.965428                                                                                                                                                                           | 0.611592                                                                                                                                                                                        |
| 25                                                                                                 | 1.037702                                                                                                                                                                           | 0.601366                                                                                                                                                                                        |
| 26                                                                                                 | 1.115394                                                                                                                                                                           | 0.598026                                                                                                                                                                                        |
| 27                                                                                                 | 1.198850                                                                                                                                                                           | 0.601162                                                                                                                                                                                        |
| 28                                                                                                 | 1.288427                                                                                                                                                                           | 0.610573                                                                                                                                                                                        |
| 29                                                                                                 | 1.384493                                                                                                                                                                           | 0.626246                                                                                                                                                                                        |
| 30                                                                                                 | 1.487428                                                                                                                                                                           | 0.648333                                                                                                                                                                                        |
| 31                                                                                                 | 1.597617                                                                                                                                                                           | 0.677146                                                                                                                                                                                        |
| 32                                                                                                 | 1.715454                                                                                                                                                                           | 0.713153                                                                                                                                                                                        |
| 33                                                                                                 | 1.841334                                                                                                                                                                           | 0.756981                                                                                                                                                                                        |
| 34                                                                                                 | 1.975655                                                                                                                                                                           | 0.809418                                                                                                                                                                                        |
| 35                                                                                                 | 2.118813                                                                                                                                                                           | 0.871430                                                                                                                                                                                        |
| 36                                                                                                 | 2.271195                                                                                                                                                                           | 0.944166                                                                                                                                                                                        |
| 37                                                                                                 | 2.433181                                                                                                                                                                           | 1.028975                                                                                                                                                                                        |
| 38                                                                                                 | 2.605137                                                                                                                                                                           | 1.127423                                                                                                                                                                                        |
| 39                                                                                                 | 2.787408                                                                                                                                                                           | 1.241306                                                                                                                                                                                        |
| 40                                                                                                 | 2.980315                                                                                                                                                                           | 1.372669                                                                                                                                                                                        |
| 41                                                                                                 | 3.184147                                                                                                                                                                           | 1.523812                                                                                                                                                                                        |
| 42                                                                                                 | 3.399157                                                                                                                                                                           | 1.697306                                                                                                                                                                                        |
| 43                                                                                                 | 3.625555                                                                                                                                                                           | 1.895990                                                                                                                                                                                        |
| 44                                                                                                 | 3.863497                                                                                                                                                                           | 2.122967                                                                                                                                                                                        |
| 45                                                                                                 | 4.113083                                                                                                                                                                           | 2.381581                                                                                                                                                                                        |
| 46                                                                                                 | 4.374345                                                                                                                                                                           | 2.675387                                                                                                                                                                                        |
| 47                                                                                                 | 4.647242                                                                                                                                                                           | 3.008086                                                                                                                                                                                        |
| 48                                                                                                 | 4.931649                                                                                                                                                                           | 3.383454                                                                                                                                                                                        |
| 49                                                                                                 | 5.227351                                                                                                                                                                           | 3.805224                                                                                                                                                                                        |
| 50                                                                                                 | 5.534035                                                                                                                                                                           | 4.276947                                                                                                                                                                                        |
| 51                                                                                                 | 5.851280                                                                                                                                                                           | 4.801813                                                                                                                                                                                        |
| 52                                                                                                 | 6.178553                                                                                                                                                                           | 5.382431                                                                                                                                                                                        |
| 53                                                                                                 | 6.515203                                                                                                                                                                           | 6.020575                                                                                                                                                                                        |
| 54                                                                                                 | 6.860448                                                                                                                                                                           | 6.716900                                                                                                                                                                                        |
| 55                                                                                                 | 7.213380                                                                                                                                                                           | 7.470622                                                                                                                                                                                        |
| 56                                                                                                 | 7.572952                                                                                                                                                                           | 8.279194                                                                                                                                                                                        |
| 57                                                                                                 | 7.937985                                                                                                                                                                           | 9.137977                                                                                                                                                                                        |
| 58                                                                                                 | 8.307156                                                                                                                                                                           | 10.039941                                                                                                                                                                                       |
| 59<br>60                                                                                           | 8.679009<br>9.051950                                                                                                                                                               | 10.975414<br>11.931912                                                                                                                                                                          |
| 61                                                                                                 | 9.051950                                                                                                                                                                           | 12.894089                                                                                                                                                                                       |
| 62                                                                                                 | 9.794084                                                                                                                                                                           | 13.843824                                                                                                                                                                                       |
| 63                                                                                                 | 10.159468                                                                                                                                                                          | 14.760489                                                                                                                                                                                       |
| 64                                                                                                 | 10.518346                                                                                                                                                                          | 15.621404                                                                                                                                                                                       |
| 65                                                                                                 | 10.868563                                                                                                                                                                          | 16.402500                                                                                                                                                                                       |
| 66                                                                                                 | 11.207892                                                                                                                                                                          | 17.079180                                                                                                                                                                                       |
| 67                                                                                                 | 11.534048                                                                                                                                                                          | 17.627351                                                                                                                                                                                       |
| 68                                                                                                 | 11.844714                                                                                                                                                                          | 18.024594                                                                                                                                                                                       |
| 69                                                                                                 | 12.137560                                                                                                                                                                          | 18.251409                                                                                                                                                                                       |
| 70                                                                                                 | 12.410266                                                                                                                                                                          | 18.292454                                                                                                                                                                                       |
| 71                                                                                                 | 12.660551                                                                                                                                                                          | 18.292454                                                                                                                                                                                       |
| 72                                                                                                 | 12.886202                                                                                                                                                                          | 18.292454                                                                                                                                                                                       |
| 73                                                                                                 | 13.085094                                                                                                                                                                          | 18.292454                                                                                                                                                                                       |
| 74                                                                                                 | 13.255229                                                                                                                                                                          | 18.292454                                                                                                                                                                                       |
| 75                                                                                                 | 13.394756                                                                                                                                                                          | 18.292454                                                                                                                                                                                       |
| 76                                                                                                 | 13.502005                                                                                                                                                                          | 18.292454                                                                                                                                                                                       |
| 77                                                                                                 | 13.575509                                                                                                                                                                          | 18.292454                                                                                                                                                                                       |
| 78                                                                                                 | 13.614037                                                                                                                                                                          | 18.292454                                                                                                                                                                                       |
| 79                                                                                                 | 13.616610                                                                                                                                                                          | 18.292454                                                                                                                                                                                       |
|                                                                                                    | 13.616610                                                                                                                                                                          | 18.292454                                                                                                                                                                                       |
| 80                                                                                                 | 10.010010                                                                                                                                                                          |                                                                                                                                                                                                 |
| 80<br>81                                                                                           | 13.616610                                                                                                                                                                          | 18.292454                                                                                                                                                                                       |
|                                                                                                    |                                                                                                                                                                                    | 18.292454<br>18.292454                                                                                                                                                                          |
| 81                                                                                                 | 13.616610                                                                                                                                                                          |                                                                                                                                                                                                 |
| 81<br>82                                                                                           | 13.616610<br>13.616610                                                                                                                                                             | 18.292454                                                                                                                                                                                       |
| 81<br>82<br>83                                                                                     | 13.616610<br>13.616610<br>13.616610                                                                                                                                                | 18.292454<br>18.292454                                                                                                                                                                          |
| 81<br>82<br>83<br>84                                                                               | 13.616610<br>13.616610<br>13.616610<br>13.616610                                                                                                                                   | 18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454                                                                                                                      |
| 81<br>82<br>83<br>84<br>85                                                                         | 13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610                                                                                                                      | 18.292454<br>18.292454<br>18.292454<br>18.292454                                                                                                                                                |
| 81<br>82<br>83<br>84<br>85<br>86                                                                   | 13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610                                                                                                         | 18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454                                                                                                         |
| 81<br>82<br>83<br>84<br>85<br>86<br>87                                                             | 13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610                                                                                            | 18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454                                                                                                         |
| 81<br>82<br>83<br>84<br>85<br>86<br>87<br>88                                                       | 13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610                                                                               | 18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454                                                                                                         |
| 81<br>82<br>83<br>84<br>85<br>86<br>87<br>88<br>88<br>89                                           | 13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610                                                     | 18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454                                                                  |
| 81<br>82<br>83<br>84<br>85<br>86<br>87<br>88<br>89<br>90<br>91<br>92                               | 13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610                                        | 18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454                                                     |
| 81<br>82<br>83<br>84<br>85<br>86<br>87<br>88<br>89<br>90<br>91<br>91<br>92<br>93                   | 13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610                           | 18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454                                        |
| 81<br>82<br>83<br>84<br>85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94                   | 13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610                           | 18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454                           |
| 81<br>82<br>83<br>84<br>85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95             | 13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610              | 18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454              |
| 81<br>82<br>83<br>84<br>85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>96       | 13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610 | 18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454              |
| 81<br>82<br>83<br>84<br>85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97 | 13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610 | 18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454 |
| 81<br>82<br>83<br>84<br>85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>96       | 13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610<br>13.616610 | 18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454<br>18.292454              |

# Appendix 4 All Payment Hospitalization Data - Basic Females and Males

| [ |          |                      | Female                |                      |                      | Male                   |                      |
|---|----------|----------------------|-----------------------|----------------------|----------------------|------------------------|----------------------|
|   | Age      | Incidence            | Length of Stay        | Claim Cost           | Incidence            | Length of Stay         | Claim Cost           |
|   | 18       | 0.000730             | 10.525255             | 0.007678             | 0.000774             | 21.027235              | 0.016283             |
|   | 19<br>20 | 0.000772<br>0.000817 | 10.134528<br>9.766659 | 0.007821<br>0.007983 | 0.000736<br>0.000708 | 20.253152<br>19.509006 | 0.014916<br>0.013809 |
|   | 20       | 0.000867             | 9.421113              | 0.008165             | 0.000687             | 18.794249              | 0.013003             |
|   | 22       | 0.000920             | 9.097358              | 0.008369             | 0.000674             | 18.108335              | 0.012204             |
|   | 23       | 0.000977             | 8.794861              | 0.008597             | 0.000667             | 17.450718              | 0.011641             |
|   | 24       | 0.001039             | 8.513088              | 0.008849             | 0.000666             | 16.820850              | 0.011208             |
|   | 25<br>26 | 0.001106<br>0.001179 | 8.251507<br>8.009584  | 0.009129<br>0.009440 | 0.000671<br>0.000682 | 16.218185<br>15.642176 | 0.010889<br>0.010671 |
|   | 20<br>27 | 0.001179             | 0.009584<br>7.786787  | 0.009440             | 0.000682             | 15.092276              | 0.010671             |
|   | 28       | 0.001340             | 7.582581              | 0.010161             | 0.000721             | 14.567939              | 0.010504             |
|   | 29       | 0.001430             | 7.396435              | 0.010578             | 0.000750             | 14.068618              | 0.010545             |
|   | 30       | 0.001527             | 7.227814              | 0.011038             | 0.000784             | 13.593766              | 0.010664             |
|   | 31<br>32 | 0.001631<br>0.001744 | 7.076186<br>6.941018  | 0.011544<br>0.012102 | 0.000826<br>0.000876 | 13.142837<br>12.715283 | 0.010862<br>0.011139 |
|   | 32<br>33 | 0.001744             | 6.821776              | 0.012102             | 0.000878             | 12.715265              | 0.011139             |
|   | 34       | 0.001993             | 6.717927              | 0.013389             | 0.001001             | 11.928116              | 0.011941             |
|   | 35       | 0.002131             | 6.628939              | 0.014129             | 0.001078             | 11.567409              | 0.012475             |
|   | 36       | 0.002280             | 6.554278              | 0.014942             | 0.001167             | 11.227891              | 0.013105             |
|   | 37       | 0.002439             | 6.493410              | 0.015835             | 0.001269             | 10.909015              | 0.013840             |
|   | 38<br>39 | 0.002608<br>0.002790 | 6.445804<br>6.410925  | 0.016813<br>0.017884 | 0.001384<br>0.001516 | 10.610234<br>10.331002 | 0.014689<br>0.015663 |
|   | 39<br>40 | 0.002790             | 6.388241              | 0.017884             | 0.001516             | 10.331002              | 0.015663             |
|   | 40       | 0.003189             | 6.377219              | 0.020337             | 0.001835             | 9.828997               | 0.018037             |
|   | 42       | 0.003408             | 6.377325              | 0.021736             | 0.002027             | 9.605130               | 0.019466             |
|   | 43       | 0.003641             | 6.388026              | 0.023262             | 0.002243             | 9.398625               | 0.021080             |
|   | 44<br>45 | 0.003889             | 6.408789<br>6.420081  | 0.024922             | 0.002486             | 9.208935               | 0.022896             |
|   | 45<br>46 | 0.004151<br>0.004428 | 6.439081<br>6.478369  | 0.026728<br>0.028687 | 0.002760<br>0.003067 | 9.035514<br>8.877814   | 0.024938<br>0.027225 |
|   | 40<br>47 | 0.004428             | 6.526120              | 0.020007             | 0.003007             | 8.735288               | 0.027223             |
|   | 48       | 0.005029             | 6.581800              | 0.033102             | 0.003791             | 8.607391               | 0.032633             |
|   | 49       | 0.005354             | 6.644877              | 0.035576             | 0.004215             | 8.493575               | 0.035803             |
|   | 50       | 0.005695             | 6.714817              | 0.038239             | 0.004684             | 8.393294               | 0.039316             |
|   | 51<br>52 | 0.006052<br>0.006425 | 6.791087<br>6.873155  | 0.041098<br>0.044160 | 0.005201<br>0.005767 | 8.306001<br>8.231148   | 0.043197<br>0.047468 |
|   | 52<br>53 | 0.006814             | 6.960487              | 0.044100             | 0.006384             | 8.168191               | 0.047408             |
|   | 54       | 0.007219             | 7.052549              | 0.050912             | 0.007054             | 8.116581               | 0.057252             |
|   | 55       | 0.007639             | 7.148809              | 0.054609             | 0.007775             | 8.075772               | 0.062787             |
|   | 56       | 0.008073             | 7.248734              | 0.058521             | 0.008546             | 8.045217               | 0.068756             |
|   | 57<br>50 | 0.008521             | 7.351790              | 0.062646             | 0.009365             | 8.024369               | 0.075148             |
|   | 58<br>59 | 0.008982<br>0.009454 | 7.457445<br>7.565165  | 0.066980<br>0.071518 | 0.010227<br>0.011125 | 8.012683<br>8.009610   | 0.081944<br>0.089110 |
|   | 60       | 0.009935             | 7.674417              | 0.076248             | 0.011052             | 8.014605               | 0.096594             |
|   | 61       | 0.010425             | 7.784668              | 0.081158             | 0.012997             | 8.027121               | 0.104330             |
|   | 62       | 0.010922             | 7.895385              | 0.086232             | 0.013948             | 8.046610               | 0.112232             |
|   | 63       | 0.011422             | 8.006034              | 0.091449             | 0.014889             | 8.072527               | 0.120196             |
|   | 64<br>65 | 0.011925<br>0.012427 | 8.116084<br>8.225000  | 0.096785<br>0.102214 | 0.015806<br>0.016679 | 8.104324<br>8.141455   | 0.128097<br>0.135795 |
|   | 66       | 0.012427             | 8.332249              | 0.102214             | 0.017491             | 8.183372               | 0.143131             |
|   | 67       | 0.013419             | 8.437298              | 0.113219             | 0.018220             | 8.229530               | 0.149939             |
|   | 68       | 0.013902             | 8.539615              | 0.118721             | 0.018847             | 8.279381               | 0.156040             |
|   | 69       | 0.014373             | 8.638665              | 0.124168             | 0.019353             | 8.332380               | 0.161257             |
|   | 70<br>71 | 0.014829             | 8.733917<br>8.824836  | 0.129513             | 0.019721             | 8.387978<br>8.445630   | 0.165415             |
|   | 71<br>72 | 0.015265<br>0.015678 | 8.824836<br>8.910890  | 0.134709<br>0.139705 | 0.019934<br>0.019981 | 8.445630<br>8.504788   | 0.168356<br>0.169938 |
|   | 72       | 0.016065             | 8.991545              | 0.144448             | 0.019981             | 8.564906               | 0.171139             |
|   | 74       | 0.016422             | 9.066269              | 0.148887             | 0.019981             | 8.625437               | 0.172348             |
|   | 75       | 0.016746             | 9.134528              | 0.152966             | 0.019981             | 8.685835               | 0.173555             |
|   | 76<br>77 | 0.017033             | 9.195790              | 0.156634<br>0.159839 | 0.019981             | 8.745552<br>8.804042   | 0.174748             |
|   | 77<br>78 | 0.017281<br>0.017486 | 9.249520<br>9.295186  | 0.159839             | 0.019981<br>0.019981 | 8.804042<br>8.860759   | 0.175917<br>0.177050 |
|   | 70<br>79 | 0.017400             | 9.332255              | 0.164666             | 0.019981             | 8.915155               | 0.178137             |
|   | 80       | 0.017756             | 9.360193              | 0.166201             | 0.019981             | 8.966684               | 0.179167             |
|   | 81       | 0.017818             | 9.378468              | 0.167102             | 0.019981             | 9.014799               | 0.180128             |
|   | 82<br>82 | 0.017827             | 9.386547              | 0.167337             | 0.019981             | 9.058953               | 0.181011             |
|   | 83<br>84 | 0.017827<br>0.017827 | 9.386547<br>9.386547  | 0.167337<br>0.167337 | 0.019981<br>0.019981 | 9.098600<br>9.133192   | 0.181803<br>0.182494 |
|   | 84<br>85 | 0.017827             | 9.386547<br>9.386547  | 0.167337             | 0.019981             | 9.133192<br>9.162184   | 0.182494<br>0.183073 |
|   | 86       | 0.017827             | 9.386547              | 0.167337             | 0.019981             | 9.185028               | 0.183530             |
|   | 87       | 0.017827             | 9.386547              | 0.167337             | 0.019981             | 9.201178               | 0.183852             |
|   | 88       | 0.017827             | 9.386547              | 0.167337             | 0.019981             | 9.210087               | 0.184030             |
|   | 89<br>90 | 0.017827             | 9.386547<br>9.386547  | 0.167337             | 0.019981             | 9.211208               | 0.184053<br>0.184053 |
|   | 90<br>91 | 0.017827<br>0.017827 | 9.386547<br>9.386547  | 0.167337<br>0.167337 | 0.019981<br>0.019981 | 9.211208<br>9.211208   | 0.184053             |
|   | 91       | 0.017827             | 9.386547              | 0.167337             | 0.019981             | 9.211208               | 0.184053             |
|   | 93       | 0.017827             | 9.386547              | 0.167337             | 0.019981             | 9.211208               | 0.184053             |
|   | 94       | 0.017827             | 9.386547              | 0.167337             | 0.019981             | 9.211208               | 0.184053             |
|   | 95<br>00 | 0.017827             | 9.386547              | 0.167337             | 0.019981             | 9.211208               | 0.184053             |
|   | 96<br>97 | 0.017827<br>0.017827 | 9.386547<br>9.386547  | 0.167337<br>0.167337 | 0.019981<br>0.019981 | 9.211208<br>9.211208   | 0.184053<br>0.184053 |
|   | 97<br>98 | 0.017827             | 9.386547<br>9.386547  | 0.167337             | 0.019981             | 9.211208               | 0.184053             |
|   | 99       | 0.017827             | 9.386547              | 0.167337             | 0.019981             | 9.211208               | 0.184053             |

# Appendix 4 Each Payment Hospitalization Data - Basic Females and Males

| - 11 | Female   |                      |                      | Male                 |                      |                        |                      |
|------|----------|----------------------|----------------------|----------------------|----------------------|------------------------|----------------------|
|      | Age      | Incidence            | Length of Stay       | Claim Cost           | Incidence            | Length of Stay         | Claim Cost           |
|      | 18       | 0.000671             | 10.417035            | 0.006990             | 0.000858             | 18.148450              | 0.015564             |
|      | 19       | 0.000710             | 10.048067            | 0.007130             | 0.000814             | 17.555131              | 0.014287             |
|      | 20       | 0.000751             | 9.700279             | 0.007287             | 0.000780             | 16.983762              | 0.013248             |
|      | 21       | 0.000796             | 9.373157             | 0.007463             | 0.000755             | 16.433962              | 0.012406             |
|      | 22       | 0.000845             | 9.066186             | 0.007658             | 0.000737             | 15.905351              | 0.011727             |
|      | 23       | 0.000897             | 8.778853             | 0.007875             | 0.000727             | 15.397546              | 0.011189             |
|      | 24       | 0.000954             | 8.510642             | 0.008116             | 0.000722             | 14.910168              | 0.010770             |
|      | 25       | 0.001015             | 8.261040             | 0.008381             | 0.000724             | 14.442835              | 0.010458             |
|      | 26       | 0.001080             | 8.029532             | 0.008674             | 0.000732             | 13.995167              | 0.010239             |
|      | 27       | 0.001151             | 7.815604             | 0.008996             | 0.000745             | 13.566782              | 0.010107             |
|      | 28       | 0.001227             | 7.618742             | 0.009351             | 0.000764             | 13.157301              | 0.010054             |
|      | 29       | 0.001310             | 7.438431             | 0.009741             | 0.000789             | 12.766341              | 0.010077             |
|      | 30       | 0.001398             | 7.274156             | 0.010170             | 0.000821             | 12.393522              | 0.010173             |
|      | 31       | 0.001493             | 7.125404             | 0.010641             | 0.000859             | 12.038463              | 0.010341             |
|      | 32       | 0.001596             | 6.991660             | 0.011158             | 0.000904             | 11.700784              | 0.010583             |
|      | 33       | 0.001706             | 6.872411             | 0.011726             | 0.000958             | 11.380103              | 0.010900             |
|      | 34<br>25 | 0.001825             | 6.767140<br>6.675335 | 0.012348<br>0.013031 | 0.001020<br>0.001091 | 11.076039<br>10.788212 | 0.011296<br>0.011775 |
|      | 35<br>36 | 0.001952<br>0.002089 | 6.596480             | 0.013031             | 0.001091             | 10.788212              | 0.011775             |
|      | 30<br>37 | 0.002089             | 6.596480<br>6.530062 | 0.013778             | 0.001174             | 10.516240              | 0.012342             |
|      | 38       | 0.002233             | 6.475567             | 0.014397             | 0.001200             | 10.239744              | 0.013003             |
|      | 38<br>39 | 0.002393             | 6.432479             | 0.015493             | 0.001375             | 9.791651               | 0.013773             |
|      | 39<br>40 | 0.002561             | 6.400284             | 0.016474             | 0.001497             | 9.791051               | 0.014655             |
|      | 40<br>41 | 0.002741             | 6.378469             | 0.017343             | 0.001033             | 9.379293               | 0.015003             |
|      | 42       | 0.002004             | 6.366518             | 0.019992             | 0.001792             | 9.196051               | 0.010010             |
|      | 43       | 0.003360             | 6.363918             | 0.021383             | 0.002170             | 9.024404               | 0.019581             |
|      | 44       | 0.003595             | 6.370154             | 0.022898             | 0.002396             | 8.865566               | 0.021240             |
|      | 45       | 0.003844             | 6.384712             | 0.024545             | 0.002650             | 8.719155               | 0.023108             |
|      | 46       | 0.004110             | 6.407078             | 0.026333             | 0.002936             | 8.584791               | 0.025208             |
|      | 47       | 0.004392             | 6.436736             | 0.028272             | 0.003257             | 8.462094               | 0.027562             |
|      | 48       | 0.004692             | 6.473173             | 0.030371             | 0.003616             | 8.350681               | 0.030197             |
|      | 49       | 0.005009             | 6.515875             | 0.032640             | 0.004017             | 8.250172               | 0.033140             |
|      | 50       | 0.005345             | 6.564327             | 0.035086             | 0.004463             | 8.160186               | 0.036420             |
|      | 51       | 0.005700             | 6.618015             | 0.037720             | 0.004958             | 8.080343               | 0.040066             |
|      | 52       | 0.006074             | 6.676424             | 0.040550             | 0.005506             | 8.010261               | 0.044108             |
|      | 53       | 0.006467             | 6.739040             | 0.043584             | 0.006110             | 7.949560               | 0.048574             |
|      | 54       | 0.006881             | 6.805349             | 0.046827             | 0.006773             | 7.897858               | 0.053494             |
|      | 55<br>50 | 0.007315             | 6.874837             | 0.050288             | 0.007497             | 7.854775               | 0.058891             |
|      | 56       | 0.007769             | 6.946988             | 0.053970             | 0.008285             | 7.819930               | 0.064787             |
|      | 57<br>59 | 0.008243             | 7.021290             | 0.057876             | 0.009136             | 7.792942               | 0.071198             |
|      | 58<br>59 | 0.008737<br>0.009250 | 7.097226<br>7.174284 | 0.062008<br>0.066366 | 0.010051<br>0.011028 | 7.773430<br>7.761013   | 0.078132<br>0.085590 |
|      | 59<br>60 | 0.009230             | 7.174204             | 0.070946             | 0.011028             | 7.755311               | 0.083590             |
|      | 61       | 0.010334             | 7.329706             | 0.075743             | 0.012004             | 7.755942               | 0.102012             |
|      | 62       | 0.010902             | 7.407041             | 0.080749             | 0.014288             | 7.762525               | 0.110910             |
|      | 63       | 0.011486             | 7.483440             | 0.085953             | 0.015460             | 7.774680               | 0.120195             |
|      | 64       | 0.012084             | 7.558388             | 0.091339             | 0.016657             | 7.792026               | 0.129790             |
|      | 65       | 0.012696             | 7.631372             | 0.096891             | 0.017865             | 7.814182               | 0.139597             |
|      | 66       | 0.013319             | 7.701876             | 0.102585             | 0.019067             | 7.840767               | 0.149497             |
|      | 67       | 0.013952             | 7.769386             | 0.108396             | 0.020245             | 7.871400               | 0.159353             |
|      | 68       | 0.014591             | 7.833389             | 0.114294             | 0.021378             | 7.905700               | 0.169006             |
|      | 69       | 0.015234             | 7.893369             | 0.120246             | 0.022444             | 7.943286               | 0.178281             |
|      | 70       | 0.015878             | 7.948813             | 0.126214             | 0.023421             | 7.983777               | 0.186990             |
|      | 71       | 0.016521             | 7.999206             | 0.132155             | 0.024285             | 8.026794               | 0.194934             |
|      | 72       | 0.017159             | 8.044034             | 0.138026             | 0.025014             | 8.071953               | 0.201911             |
|      | 73<br>74 | 0.017788             | 8.082782             | 0.143776             | 0.025585             | 8.118876               | 0.207724             |
|      | 74<br>75 | 0.018405<br>0.019006 | 8.114936<br>8.139982 | 0.149355<br>0.154708 | 0.025980<br>0.026182 | 8.167180<br>8.216486   | 0.212184<br>0.215121 |
|      | 75<br>76 | 0.019006             | 8.139982<br>8.157405 | 0.154708             | 0.026182             | 8.216486               | 0.215121             |
|      | 76<br>77 | 0.019587             | 8.166691             | 0.159778             | 0.026182             | 8.316576               | 0.210420             |
|      | 78       | 0.020144             | 8.167326             | 0.168838             | 0.026182             | 8.366599               | 0.217742             |
|      | 79       | 0.020072             | 8.158795             | 0.172712             | 0.026182             | 8.416099               | 0.220347             |
|      | 80       | 0.021629             | 8.140585             | 0.176071             | 0.026182             | 8.464696               | 0.221620             |
|      | 81       | 0.022048             | 8.112180             | 0.178860             | 0.026182             | 8.512008               | 0.222858             |
|      | 82       | 0.022424             | 8.073066             | 0.181027             | 0.026182             | 8.557656               | 0.224054             |
|      | 83       | 0.022751             | 8.022730             | 0.182522             | 0.026182             | 8.601257               | 0.225195             |
|      | 84       | 0.023026             | 7.960656             | 0.183303             | 0.026182             | 8.642431               | 0.226273             |
|      | 85       | 0.023247             | 7.886330             | 0.183332             | 0.026182             | 8.680797               | 0.227278             |
|      | 86       | 0.023410             | 7.886330             | 0.184617             | 0.026182             | 8.715974               | 0.228199             |
|      | 87       | 0.023512             | 7.886330             | 0.185427             | 0.026182             | 8.747581               | 0.229026             |
|      | 88       | 0.023512             | 7.886330             | 0.185427             | 0.026182             | 8.775238               | 0.229750             |
|      | 89       | 0.023512             | 7.886330             | 0.185427             | 0.026182             | 8.798564               | 0.230361             |
|      | 90<br>01 | 0.023512             | 7.886330             | 0.185427             | 0.026182             | 8.817177               | 0.230848             |
|      | 91<br>02 | 0.023512             | 7.886330             | 0.185427             | 0.026182             | 8.817177               | 0.230848             |
|      | 92<br>03 | 0.023512<br>0.023512 | 7.886330<br>7.886330 | 0.185427<br>0.185427 | 0.026182<br>0.026182 | 8.817177<br>8.817177   | 0.230848             |
|      | 93<br>94 | 0.023512             | 7.886330             | 0.185427<br>0.185427 | 0.026182             | 8.817177<br>8.817177   | 0.230848<br>0.230848 |
|      | 94<br>95 | 0.023512             | 7.886330             | 0.185427             | 0.026182             | 8.817177               | 0.230848             |
|      | 95<br>96 | 0.023512             | 7.886330             | 0.185427             | 0.026182             | 8.817177               | 0.230848             |
|      | 97       | 0.023512             | 7.886330             | 0.185427             | 0.026182             | 8.817177               | 0.230848             |
|      | 98       | 0.023512             | 7.886330             | 0.185427             | 0.026182             | 8.817177               | 0.230848             |
|      | 99       | 0.023512             | 7.886330             | 0.185427             | 0.026182             | 8.817177               | 0.230848             |

## Appendix 5 First Occurence Study Data - Valuation Incidence Rates per 1,000 Females and Males

| Age      | Female<br>Incidence    | Male<br>Incidence      |
|----------|------------------------|------------------------|
| 18       | 0.724310               | 1.017189               |
| 19       | 0.777667               | 0.925033               |
| 20       | 0.835216               | 0.853297               |
| 21       | 0.897260               | 0.798027               |
| 22       | 0.964115               | 0.756303               |
| 23       | 1.036119               | 0.725974               |
| 24       | 1.113621               | 0.705471               |
| 25<br>20 | 1.196989               | 0.693676               |
| 26<br>27 | 1.286607<br>1.382873   | 0.689823<br>0.693440   |
| 27       | 1.382873               | 0.093440               |
| 29       | 1.597013               | 0.722375               |
| 30       | 1.715748               | 0.747852               |
| 31       | 1.842852               | 0.781088               |
| 32       | 1.978776               | 0.822622               |
| 33       | 2.123979               | 0.873177               |
| 34       | 2.278919               | 0.933664               |
| 35       | 2.444050               | 1.005195               |
| 36       | 2.619823               | 1.089095               |
| 37       | 2.806675               | 1.186922               |
| 38       | 3.005026               | 1.300482               |
| 39<br>40 | 3.215275<br>3.437793   | 1.431847<br>1.583373   |
| 40<br>41 | 3.437793<br>3.672913   | 1.583373               |
| 41       | 3.920928               | 1.957842               |
| 42       | 4.182077               | 2.187024               |
| 44       | 4.456544               | 2.448842               |
| 45       | 4.744441               | 2.747154               |
| 46       | 5.045807               | 3.086058               |
| 47       | 5.360594               | 3.469827               |
| 48       | 5.688657               | 3.902814               |
| 49       | 6.029749               | 4.389326               |
| 50       | 6.383509               | 4.933459               |
| 51       | 6.749451               | 5.538891               |
| 52<br>52 | 7.126961<br>7.515286   | 6.208634<br>6.944733   |
| 53<br>54 | 7.913527               | 6.944733<br>7.747944   |
| 55       | 8.320633               | 8.617362               |
| 56       | 8.735401               | 9.550050               |
| 57       | 9.156465               | 10.540657              |
| 58       | 9.582304               | 11.581072              |
| 59       | 10.011236              | 12.660140              |
| 60       | 10.441424              | 13.763460              |
| 61       | 10.870881              | 14.873331              |
| 62       | 11.297476              | 15.968851              |
| 63<br>64 | 11.718947<br>12.132912 | 17.026224<br>18.019290 |
| 65       | 12.536888              | 18.920284              |
| 66       | 12.928303              | 19.700834              |
| 67       | 13.304525              | 20.333149              |
| 68       | 13.662878              | 20.791369              |
| 69       | 14.000675              | 21.053001              |
| 70       | 14.315241              | 21.100346              |
| 71       | 14.603946              | 21.100346              |
| 72       | 14.864234              | 21.100346              |
| 73<br>74 | 15.093656              | 21.100346              |
| 74<br>75 | 15.289907<br>15.450851 | 21.100346<br>21.100346 |
| 75<br>76 | 15.450651              | 21.100346              |
| 70       | 15.659350              | 21.100346              |
| 78       | 15.703792              | 21.100346              |
| 79       | 15.706760              | 21.100346              |
| 80       | 15.706760              | 21.100346              |
| 81       | 15.706760              | 21.100346              |
| 82       | 15.706760              | 21.100346              |
| 83       | 15.706760              | 21.100346              |
| 84       | 15.706760              | 21.100346              |
| 85<br>86 | 15.706760<br>15.706760 | 21.100346<br>21.100346 |
| 86<br>87 | 15.706760              | 21.100346              |
| 88       | 15.706760              | 21.100346              |
| 89       | 15.706760              | 21.100346              |
| 90       | 15.706760              | 21.100346              |
| 91       | 15.706760              | 21.100346              |
| 92       | 15.706760              | 21.100346              |
| 93       | 15.706760              | 21.100346              |
| 94       | 15.706760              | 21.100346              |
|          | 15.706760              | 21.100346              |
| 95       | <b>4 -</b>             |                        |
| 96       | 15.706760              | 21.100346              |
| 96<br>97 | 15.706760              | 21.100346              |
| 96       |                        |                        |

# Appendix 5 All Payment Hospitalization Data - Valuation Females and Males

|                      |                                  | Female                                  |                      |                      | Male                        |                      |
|----------------------|----------------------------------|-----------------------------------------|----------------------|----------------------|-----------------------------|----------------------|
|                      | Incidence                        |                                         | Claim Cost           | Incidence            |                             | Claim Cost           |
| Age                  |                                  | Length of Stay                          |                      |                      | Length of Stay<br>21.497845 |                      |
| 18                   | 0.000766                         | 10.760820                               | 0.008243             | 0.000813             |                             | 0.017480             |
| 19                   | 0.000810                         | 10.361348                               | 0.008396             | 0.000773             | 20.706437                   | 0.016012             |
| 20                   | 0.000858                         | 9.985246                                | 0.008570             | 0.000743             | 19.945636                   | 0.014824             |
| 21                   | 0.000910                         | 9.631966                                | 0.008766             | 0.000722             | 19.214882                   | 0.013867             |
| 22                   | 0.000966                         | 9.300966                                | 0.008984             | 0.000708             | 18.513617                   | 0.013100             |
| 23                   | 0.001026                         | 8.991698                                | 0.009228             | 0.000700             | 17.841282                   | 0.012497             |
| 24                   | 0.001091                         | 8.703619                                | 0.009500             | 0.000700             | 17.197317                   | 0.012032             |
| 25                   | 0.001162                         | 8.436184                                | 0.009801             | 0.000705             | 16.581163                   | 0.011689             |
| 26                   | 0.001237                         | 8.188846                                | 0.010133             | 0.000716             | 15.992263                   | 0.011455             |
| 27                   | 0.001319                         | 7.961063                                | 0.010501             | 0.000734             | 15.430056                   | 0.011319             |
| 28                   | 0.001407                         | 7.752286                                | 0.010908             | 0.000757             | 14.893983                   | 0.011276             |
| 20                   | 0.001502                         | 7.561974                                | 0.010300             | 0.000787             | 14.383487                   | 0.011270             |
| 11                   |                                  |                                         |                      |                      |                             |                      |
| 30                   | 0.001604                         | 7.389579                                | 0.011849             | 0.000824             | 13.898007                   | 0.011448             |
| 31                   | 0.001713                         | 7.234558                                | 0.012393             | 0.000868             | 13.436986                   | 0.011660             |
| 32                   | 0.001831                         | 7.096365                                | 0.012991             | 0.000920             | 12.999863                   | 0.011958             |
| 33                   | 0.001957                         | 6.974454                                | 0.013649             | 0.000981             | 12.586080                   | 0.012342             |
| 34                   | 0.002093                         | 6.868281                                | 0.014373             | 0.001051             | 12.195079                   | 0.012819             |
| 35                   | 0.002238                         | 6.777301                                | 0.015168             | 0.001132             | 11.826299                   | 0.013392             |
| 36                   | 0.002394                         | 6.700969                                | 0.016041             | 0.001226             | 11.479182                   | 0.014068             |
| 37                   | 0.002560                         | 6.638739                                | 0.016998             | 0.001332             | 11.153169                   | 0.014858             |
| 38                   | 0.002739                         | 6.590067                                | 0.018048             | 0.001454             | 10.847701                   | 0.015769             |
|                      |                                  |                                         |                      |                      |                             |                      |
| 39<br>40             | 0.002929                         | 6.554408                                | 0.019198             | 0.001592             | 10.562220                   | 0.016815             |
| 40                   | 0.003132                         | 6.531216                                | 0.020457             | 0.001749             | 10.296165                   | 0.018007             |
| 41                   | 0.003349                         | 6.519947                                | 0.021832             | 0.001927             | 10.048979                   | 0.019362             |
| 42                   | 0.003579                         | 6.520056                                | 0.023334             | 0.002128             | 9.820102                    | 0.020897             |
| 43                   | 0.003824                         | 6.530996                                | 0.024971             | 0.002355             | 9.608975                    | 0.022629             |
| 44                   | 0.004083                         | 6.552224                                | 0.026754             | 0.002611             | 9.415040                    | 0.024579             |
| 45                   | 0.004358                         | 6.583194                                | 0.028692             | 0.002898             | 9.237737                    | 0.026770             |
| 46                   | 0.004649                         | 6.623361                                | 0.030795             | 0.003220             | 9.076508                    | 0.029226             |
| 47                   | 0.004957                         | 6.672181                                | 0.033073             | 0.003580             | 8.930792                    | 0.031971             |
| 48                   | 0.005281                         | 6.729107                                | 0.035535             | 0.003981             | 8.800033                    | 0.035031             |
| 49                   | 0.005622                         | 6.793596                                | 0.038191             | 0.004426             | 8.683669                    | 0.038434             |
| 50                   | 0.005980                         | 6.865101                                | 0.030151             | 0.004420             | 8.581144                    | 0.042206             |
| 11                   |                                  |                                         |                      |                      |                             |                      |
| 51                   | 0.006354                         | 6.943078                                | 0.044119             | 0.005461             | 8.491897                    | 0.046372             |
| 52                   | 0.006746                         | 7.026983                                | 0.047406             | 0.006055             | 8.415369                    | 0.050957             |
| 53                   | 0.007155                         | 7.116269                                | 0.050916             | 0.006704             | 8.351003                    | 0.055981             |
| 54                   | 0.007580                         | 7.210392                                | 0.054654             | 0.007406             | 8.298238                    | 0.061460             |
| 55                   | 0.008021                         | 7.308806                                | 0.058622             | 0.008163             | 8.256515                    | 0.067402             |
| 56                   | 0.008477                         | 7.410968                                | 0.062822             | 0.008973             | 8.225277                    | 0.073809             |
| 57                   | 0.008947                         | 7.516330                                | 0.067250             | 0.009833             | 8.203962                    | 0.080672             |
| 58                   | 0.009431                         | 7.624350                                | 0.071904             | 0.010738             | 8.192014                    | 0.087967             |
| 59                   | 0.009926                         | 7.734481                                | 0.076774             | 0.011682             | 8.188873                    | 0.095659             |
| 60                   | 0.010432                         | 7.846178                                | 0.081852             | 0.012655             | 8.193979                    | 0.103693             |
| 61                   | 0.010947                         | 7.958896                                | 0.087123             | 0.012000             | 8.206776                    | 0.111998             |
|                      |                                  |                                         |                      |                      |                             |                      |
| 62                   | 0.011468                         | 8.072091                                | 0.092570             | 0.014645             | 8.226701                    | 0.120481             |
| 63                   | 0.011994                         | 8.185217                                | 0.098170             | 0.015634             | 8.253198                    | 0.129030             |
| 64                   | 0.012521                         | 8.297730                                | 0.103899             | 0.016596             | 8.285706                    | 0.137512             |
| 65                   | 0.013049                         | 8.409083                                | 0.109727             | 0.017513             | 8.323669                    | 0.145775             |
| 66                   | 0.013572                         | 8.518733                                | 0.115620             | 0.018365             | 8.366524                    | 0.153652             |
| 67                   | 0.014090                         | 8.626133                                | 0.121541             | 0.019131             | 8.413715                    | 0.160959             |
| 68                   | 0.014598                         | 8.730740                                | 0.127447             | 0.019789             | 8.464681                    | 0.167509             |
| 69                   | 0.015092                         | 8.832007                                | 0.133294             | 0.020321             | 8.518867                    | 0.173109             |
| 70                   | 0.015570                         | 8.929390                                | 0.139032             | 0.020707             | 8.575709                    | 0.177573             |
| 71                   | 0.016028                         | 9.022344                                | 0.144610             | 0.020931             | 8.634651                    | 0.180730             |
| 71                   | 0.016462                         | 9.022344                                | 0.144010             | 0.020931             | 8.695133                    | 0.182428             |
| 72                   | 0.016462                         | 9.110324<br>9.192784                    | 0.149973             | 0.020980             | 8.756597                    | 0.182428             |
|                      |                                  |                                         |                      |                      |                             |                      |
| 74                   | 0.017243                         | 9.269181                                | 0.159830             | 0.020980             | 8.818482                    | 0.185016             |
| 75                   | 0.017583                         | 9.338967                                | 0.164209             | 0.020980             | 8.880232                    | 0.186311             |
| 76                   | 0.017885                         | 9.401601                                | 0.168147             | 0.020980             | 8.941286                    | 0.187592             |
| 77                   | 0.018145                         | 9.456533                                | 0.171587             | 0.020980             | 9.001085                    | 0.188847             |
| 78                   | 0.018360                         | 9.503221                                | 0.174477             | 0.020980             | 9.059071                    | 0.190064             |
| 79                   | 0.018527                         | 9.541120                                | 0.176769             | 0.020980             | 9.114685                    | 0.191230             |
| 80                   | 0.018644                         | 9.569683                                | 0.178417             | 0.020980             | 9.167367                    | 0.192336             |
| 81                   | 0.018708                         | 9.588367                                | 0.179384             | 0.020980             | 9.216559                    | 0.193368             |
| 82                   | 0.018719                         | 9.596627                                | 0.179636             | 0.020980             | 9.261701                    | 0.194315             |
| 83                   | 0.018719                         | 9.596627                                | 0.179636             | 0.020980             | 9.302235                    | 0.195165             |
| 84                   | 0.018719                         | 9.596627                                | 0.179636             | 0.020980             | 9.337602                    | 0.195907             |
| 85                   | 0.018719                         | 9.596627                                | 0.179636             | 0.020980             | 9.337002                    | 0.195907             |
|                      |                                  |                                         |                      |                      |                             |                      |
| 86                   | 0.018719                         | 9.596627                                | 0.179636             | 0.020980             | 9.390598                    | 0.197019             |
| 87                   | 0.018719                         | 9.596627                                | 0.179636             | 0.020980             | 9.407109                    | 0.197366             |
| 88                   | 0.018719                         | 9.596627                                | 0.179636             | 0.020980             | 9.416218                    | 0.197557             |
| 89                   | 0.018719                         | 9.596627                                | 0.179636             | 0.020980             | 9.417364                    | 0.197581             |
| 90                   | 0.018719                         | 9.596627                                | 0.179636             | 0.020980             | 9.417364                    | 0.197581             |
| 91                   | 0.018719                         | 9.596627                                | 0.179636             | 0.020980             | 9.417364                    | 0.197581             |
| 92                   | 0.018719                         | 9.596627                                | 0.179636             | 0.020980             | 9.417364                    | 0.197581             |
|                      | 0.018719                         | 9.596627                                | 0.179636             | 0.020980             | 9.417364                    | 0.197581             |
| 93                   | 1                                |                                         | 0.179636             | 0.020980             | 9.417364                    | 0.197581             |
|                      | 0 018710                         | 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - | 0.173030             | 0.020300             |                             |                      |
| 94                   | 0.018719                         | 9.596627<br>9.596627                    | 0 170626             | 0 00000              | 0 /1726/                    | 0 107501             |
| 94<br>95             | 0.018719                         | 9.596627                                | 0.179636             | 0.020980             | 9.417364                    | 0.197581             |
| 94<br>95<br>96       | 0.018719<br>0.018719             | 9.596627<br>9.596627                    | 0.179636             | 0.020980             | 9.417364                    | 0.197581             |
| 94<br>95<br>96<br>97 | 0.018719<br>0.018719<br>0.018719 | 9.596627<br>9.596627<br>9.596627        | 0.179636<br>0.179636 | 0.020980<br>0.020980 | 9.417364<br>9.417364        | 0.197581<br>0.197581 |
| 94<br>95<br>96       | 0.018719<br>0.018719             | 9.596627<br>9.596627                    | 0.179636             | 0.020980             | 9.417364                    | 0.197581             |

# Appendix 5 Each Payment Hospitalization Data - Valuation Females and Males

|          |                      | Female                |                      |                      | Male                   |                      |
|----------|----------------------|-----------------------|----------------------|----------------------|------------------------|----------------------|
| Age      | Incidence            | Length of Stay        | Claim Cost           | Incidence            | Length of Stay         | Claim Cost           |
| 18       | 0.000705             | 10.782127             | 0.007596             | 0.000900             | 18.784510              | 0.016915             |
| 19       | 0.000745             | 10.400228             | 0.007748             | 0.000855             | 18.170397              | 0.015528             |
| 20<br>21 | 0.000789<br>0.000836 | 10.040251<br>9.701664 | 0.007919<br>0.008110 | 0.000819<br>0.000793 | 17.579002<br>17.009933 | 0.014398<br>0.013482 |
| 21       | 0.000836             | 9.701664              | 0.008110             | 0.000793             | 16.462796              | 0.013462             |
| 23       | 0.000942             | 9.086531              | 0.008559             | 0.000763             | 15.937193              | 0.012140             |
| 24       | 0.001001             | 8.808920              | 0.008820             | 0.000758             | 15.432734              | 0.011705             |
| 25       | 0.001065             | 8.550570              | 0.009109             | 0.000760             | 14.949022              | 0.011365             |
| 26       | 0.001134             | 8.310948              | 0.009427             | 0.000768             | 14.485664              | 0.011128             |
| 27<br>28 | 0.001209<br>0.001289 | 8.089522<br>7.885761  | 0.009777<br>0.010163 | 0.000782<br>0.000802 | 14.042265<br>13.618433 | 0.010984<br>0.010926 |
| 20<br>29 | 0.001289             | 7.699130              | 0.010103             | 0.000802             | 13.213771              | 0.010920             |
| 30       | 0.001468             | 7.529098              | 0.011053             | 0.000862             | 12.827885              | 0.011056             |
| 31       | 0.001568             | 7.375132              | 0.011565             | 0.000902             | 12.460382              | 0.011239             |
| 32       | 0.001676             | 7.236701              | 0.012127             | 0.000950             | 12.110869              | 0.011502             |
| 33       | 0.001792             | 7.113273              | 0.012744             | 0.001006             | 11.778949              | 0.011847             |
| 34<br>35 | 0.001916<br>0.002050 | 7.004312<br>6.909290  | 0.013420<br>0.014162 | 0.001071<br>0.001146 | 11.464228<br>11.166313 | 0.012277<br>0.012797 |
| 35<br>36 | 0.002050             | 6.827671              | 0.014162             | 0.001146             | 10.884809              | 0.012797             |
| 37       | 0.002347             | 6.758925              | 0.015864             | 0.001202             | 10.619324              | 0.0104134            |
| 38       | 0.002512             | 6.702520              | 0.016838             | 0.001444             | 10.369460              | 0.014969             |
| 39       | 0.002689             | 6.657922              | 0.017904             | 0.001572             | 10.134825              | 0.015927             |
| 40       | 0.002878             | 6.624599              | 0.019068             | 0.001717             | 9.915024               | 0.017023             |
| 41       | 0.003081             | 6.602019              | 0.020340             | 0.001882             | 9.709665               | 0.018269             |
| 42<br>43 | 0.003297<br>0.003528 | 6.589649<br>6.586958  | 0.021727<br>0.023239 | 0.002068<br>0.002278 | 9.518351<br>9.340688   | 0.019682<br>0.021281 |
| 43<br>44 | 0.003528             | 6.593413              | 0.023239             | 0.002278             | 9.340688               | 0.021281             |
| 45       | 0.004037             | 6.608481              | 0.026676             | 0.002783             | 9.024741               | 0.025114             |
| 46       | 0.004316             | 6.631631              | 0.028619             | 0.003083             | 8.885667               | 0.027396             |
| 47       | 0.004612             | 6.662328              | 0.030726             | 0.003420             | 8.758670               | 0.029954             |
| 48       | 0.004926             | 6.700042              | 0.033008             | 0.003797             | 8.643352               | 0.032818             |
| 49<br>50 | 0.005260<br>0.005612 | 6.744241<br>6.794391  | 0.035473<br>0.038132 | 0.004218<br>0.004686 | 8.539321<br>8.446181   | 0.036017<br>0.039582 |
| 50       | 0.005985             | 6.849961              | 0.040994             | 0.005206             | 8.363540               | 0.033502             |
| 52       | 0.006377             | 6.910417              | 0.044070             | 0.005782             | 8.291002               | 0.047936             |
| 53       | 0.006791             | 6.975227              | 0.047367             | 0.006416             | 8.228173               | 0.052791             |
| 54       | 0.007225             | 7.043860              | 0.050892             | 0.007112             | 8.174659               | 0.058137             |
| 55       | 0.007681             | 7.115784              | 0.054653             | 0.007872             | 8.130066               | 0.064002             |
| 56<br>57 | 0.008157<br>0.008655 | 7.190463<br>7.267369  | 0.058654<br>0.062899 | 0.008699<br>0.009593 | 8.094000<br>8.066066   | 0.070410<br>0.077378 |
| 58       | 0.000000             | 7.345967              | 0.067390             | 0.0000000            | 8.045870               | 0.084914             |
| 59       | 0.009713             | 7.425726              | 0.072126             | 0.011580             | 8.033018               | 0.093019             |
| 60       | 0.010272             | 7.506113              | 0.077104             | 0.012667             | 8.027116               | 0.101679             |
| 61       | 0.010850             | 7.586595              | 0.082317             | 0.013810             | 8.027769               | 0.110866             |
| 62<br>62 | 0.011447             | 7.666640              | 0.087758             | 0.015002             | 8.034583               | 0.120537             |
| 63<br>64 | 0.012060<br>0.012689 | 7.745717<br>7.823292  | 0.093413<br>0.099268 | 0.016233<br>0.017490 | 8.047164<br>8.065118   | 0.130628<br>0.141056 |
| 65       | 0.012000             | 7.898833              | 0.105301             | 0.011758             | 8.088050               | 0.151714             |
| 66       | 0.013985             | 7.971808              | 0.111489             | 0.020020             | 8.115567               | 0.162473             |
| 67       | 0.014649             | 8.041684              | 0.117805             | 0.021257             | 8.147274               | 0.173185             |
| 68       | 0.015320             | 8.107931              | 0.124215             | 0.022447             | 8.182776               | 0.183676             |
| 69<br>70 | 0.015996             | 8.170013              | 0.130684             | 0.023566             | 8.221679               | 0.193756             |
| 70<br>71 | 0.016672<br>0.017347 | 8.227400<br>8.279559  | 0.137169<br>0.143626 | 0.024592<br>0.025500 | 8.263589<br>8.308114   | 0.203221<br>0.211854 |
| 72       | 0.017047             | 8.325958              | 0.150006             | 0.026265             | 8.354856               | 0.219437             |
| 73       | 0.018677             | 8.366064              | 0.156256             | 0.026865             | 8.403423               | 0.225755             |
| 74       | 0.019325             | 8.399345              | 0.162319             | 0.027279             | 8.453420               | 0.230601             |
| 75       | 0.019956             | 8.425269              | 0.168136             | 0.027491             | 8.504454               | 0.233794             |
| 76<br>77 | 0.020566<br>0.021151 | 8.443303<br>8.452014  | 0.173646             | 0.027491             | 8.556129<br>8.608052   | 0.235214             |
| 77<br>78 | 0.021151 0.021706    | 8.452914<br>8.453571  | 0.178787<br>0.183494 | 0.027491<br>0.027491 | 8.608052<br>8.659828   | 0.236642<br>0.238065 |
| 79       | 0.022227             | 8.444741              | 0.187704             | 0.027491             | 8.711063               | 0.239473             |
| 80       | 0.022710             | 8.425893              | 0.191354             | 0.027491             | 8.761363               | 0.240856             |
| 81       | 0.023151             | 8.396493              | 0.194385             | 0.027491             | 8.810334               | 0.242203             |
| 82       | 0.023545             | 8.356008              | 0.196740             | 0.027491             | 8.857581               | 0.243501             |
| 83<br>84 | 0.023888             | 8.303908              | 0.198365             | 0.027491             | 8.902711               | 0.244742             |
| 84<br>85 | 0.024177<br>0.024409 | 8.239658<br>8.162727  | 0.199214<br>0.199245 | 0.027491<br>0.027491 | 8.945328<br>8.985038   | 0.245914<br>0.247005 |
| 86       | 0.024409             | 8.162727              | 0.199245             | 0.027491             | 8.965038<br>9.021448   | 0.247005             |
| 87       | 0.024688             | 8.162727              | 0.200042             | 0.027491             | 9.054163               | 0.248906             |
| 88       | 0.024688             | 8.162727              | 0.201522             | 0.027491             | 9.082789               | 0.249693             |
| 89       | 0.024688             | 8.162727              | 0.201522             | 0.027491             | 9.106933               | 0.250356             |
| 90       | 0.024688             | 8.162727              | 0.201522             | 0.027491             | 9.126198               | 0.250886             |
| 91<br>02 | 0.024688             | 8.162727<br>8.162727  | 0.201522             | 0.027491             | 9.126198               | 0.250886             |
| 92<br>93 | 0.024688<br>0.024688 | 8.162727<br>8.162727  | 0.201522<br>0.201522 | 0.027491<br>0.027491 | 9.126198<br>9.126198   | 0.250886<br>0.250886 |
| 93<br>94 | 0.024688             | 8.162727              | 0.201522             | 0.027491             | 9.126198               | 0.250886             |
| 95       | 0.024688             | 8.162727              | 0.201522             | 0.027491             | 9.126198               | 0.250886             |
| 96       | 0.024688             | 8.162727              | 0.201522             | 0.027491             | 9.126198               | 0.250886             |
| 97       | 0.024688             | 8.162727              | 0.201522             | 0.027491             | 9.126198               | 0.250886             |
| 98       | 0.024688             | 8.162727              | 0.201522             | 0.027491             | 9.126198               | 0.250886             |
| 99       | 0.024688             | 8.162727              | 0.201522             | 0.027491             | 9.126198               | 0.250886             |