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Calibrating Interest Rate Models 

Executive Summary 
Investment Actuaries and now Valuation Actuaries need a mastery of stochastic interest rate models.  This 
includes selecting a model appropriate for a given application, the correct use of real world versus risk 
neutral scenario sets, and how to calibrate and validate them properly.   

Models like Vasicek and Cox-Ingersoll-Ross (CIR) are stochastic models that, when the parameters are set, 
determine the yield curve.  They are appropriate when a stochastic model is needed and it is less important 
whether or not the yield curve implied by the model actually matches the "actual" observed yield curve.  This 
setup is mainly used for US Statutory Valuation VM20, VM21 and Economic Capital calculations. 
 
If the requirement is to price interest sensitive cash flows in a market consistent way, something else is 
needed.  Both the CIR and Vasicek can be modified to get market consistent versions and obviously there are 
many other models beyond these.  Examples of market-consistent applications are IFRS 17 valuation, 
measuring the cost of guarantees for universal life minimum interest rates, and measuring the cost of 
guarantees for participating insurance products. The following table summarizes what type of interest rate 
models should be used under different circumstances and to what they should be calibrated. 

Table 1 
TABLE TITLE OR DESCRIPTION 

Purpose of the Interest Rate 
Generator 

Interest Rate Model Items Calibrated to 

US Statutory Valuation 

Required Capital 

Vasicek 

CIR 

Historical rates, current yield 
curve, expert opinion, and/or 
regulatory criteria  

Market Consistent Valuation 

Pricing of Options 

IFRS 17 valuation 

2-factor Hull-White 
Lognormal Forward Model 

Extended CIR 

Current Yield curve 

Current option prices 

SOA QFI Curriculum 

The existing literature presents the theory, but it can be challenging for the practitioner new to this 
specialty to take that theory, write code to implement it, use historical data to calibrate the model, and 
assess whether the resulting set of scenarios is reasonable. 

This paper addresses this need by introducing practitioners to the selection and calibration of stochastic 
interest rate models.  Six continuous time interest rate models and their calibration are presented.  Actual 
code and data examples are added to help the practitioner implement them.  The emphasis is on hands-on 
calibration with RStudio.  The reader is assumed to have a working knowledge of RStudio, including writing 
R scripts. 
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The focus of this paper is narrow: calibrating and validating an interest rate model for default-free bond 
yields in a single economy.  Out of scope are inflation and equity index variables, credit spreads, and factors 
for multiple economies such as foreign exchange. 

With this focus the practitioner may begin their journey in stochastic interest rate modeling. 
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1 Introduction 
In this paper we present calibration of six continuous time interest rate models. We use the notation in [24] 
and cite relevant chapters throughout the report. The emphasis is on hands-on calibration with RStudio. 
We assume the reader has some working knowledge of RStudio, including writing R scripts. 

The focus of this paper is narrow: calibrating and validating an interest rate model for default-free bond 
yields in a single economy. These are outlined at a higher level in [1]. This paper adds actual code and data 
examples to help the practitioner implement these ideas. Out of scope are inflation and equity index 
variables, credit spreads, and factors for multiple economies such as foreign exchange. 

In this paper the acronym ESG refers to economic scenario generators and not to environmental, social, 
and governance aspects of investing. 

1.1 R SETUP 
R is used for examples. The RStudio environment for working with R will be necessary for the reader to 
follow along and experiment with the code presented in this paper. If RStudio has not been downloaded 
and installed, now would be a good time to do so. 

The R functions and examples given in this paper are available as a bundled package on the SOA website at 
https://www.soa.org/resources/research-reports/2023/interest-rate-model-calibration-study/  You may 
install “InterestCalibrationv1_1.2.0.tar.gz” in RStudio using “Tools → Install packages → Install from: → 
Package Archive”. When you extract the package archive, its subfolders “R” and “examples” contain all the 
functions and examples respectively. However, readers are encouraged to key in the code chunks instead 
of copy/pasting them. 

R is both a software environment and a scripting language, and it may interpret certain manipulations in an 
unintended way. When a new session is begun it is good idea to either restart R or clean the workspace 
using: 

 

 

 

 

https://www.soa.org/resources/research-reports/2023/interest-rate-model-calibration-study/
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1.2 INTRODUCTION TO SCENARIOS 
This paper explores the nuances of calibrating continuous-time interest rate models. It is not an 
introduction to economic scenario generators (ESGs). In actual practice there are several steps to the 
process of setting up a model to run multiple, stochastically generated interest rate scenarios: 

• The application for the modeling work should be clear to practitioners 
o Derivative valuation, valuing financial guarantees such as insurance business pricing, financial 

planning, and economic capital or tail risk analysis  
• Specify “stylized facts” 

o Clarify an understanding of how economic variables are expected to evolve over time and in 
what circumstances the relationships between them change, such as during a recession 

• Source and analyze historical data 
• Calibrate the model 
• Run the generator 
• Confirm that the resulting scenarios are fit for purpose. How well do they conform to the pre-

determined stylized facts? Are changes necessary? 
• Run the model of the security or business, iterating through each scenario 
• Validate the model results 
• Document each step so that: 

o choices made can be explained in management presentations and regulatory filings 
o the whole process can be run in an efficient, consistent manner when next required 

This broader context is examined in Economic Scenario Generators: A Practical Guide, (SOA, 2016) (the 
“Practical Guide”)[1]. This paper will only comment briefly on these points and suggest initial choices to 
provide context and a pathway through this process. Experienced practitioners will have reasons to make 
different judgements on these issues. 

1.3 INTEREST RATE MARKETS 
This paper assumes a context of US fixed income markets.  Some other sovereign bond markets have the 
trading liquidity and full term structure seen in the US Treasury bond market.  Practitioners in other 
markets are encouraged to consult with a bond analyst or trader for local market characteristics, such as 
liquidity and yield quoting conventions. 

 A word about U.S. Treasury yields. The U.S. Department of the Treasury issues intermediate and longer 
maturity notes (to 10 years) and bonds (longer than 10 years) every few months. Loosely speaking they are 
all often called “bonds”, which we will do here. Consider a newly issued 10-year bond, which is said to be 
“on-the-run”. A 30-year bond issued 20 years ago also has 10 years until maturity, but it is said to be “off-
the-run”. Trading in it is less liquid and it may trade for a couple of basis points higher yield. 

As time passes that newly issued 10-year bond will no longer have 10 years until maturity, but rather 9 
years 11 months, 10 months, etc. In an upwardly sloping yield curve environment these trade at a slightly 
lower yield than a true 10-year note. The Treasury Department does a curve fitting exercise every trading 
day to calculate that day’s closing yield for a true 10-year bond, and other key maturities as well. These are 
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said to be “constant maturity treasury” (CMT) yields1 and are often used for modeling, even though they 
are not actually tradable securities. CMT yields and discussion can be found by doing an internet search for 
“US Treasury CMT rates”. 

Six months after issue a new 10-year note is issued and becomes the on-the-run 10-year bond. The first 
bond now has just 9.5 years until maturity, and is said to be off-the-run. Trading liquidity will shift to the 
new on-the-run note. 

1.4 MARKET-CONSISTENT MODELS 
Before a model can be calibrated it must be selected. To select an appropriate model the practitioner must 
be clear on the uses to which the model will be applied. 

One class is for realistic simulation of how something – an asset, a financial liability, or a business segment 
with both – evolves over time. By “realistic” we mean plausible given an accepted set of stylized facts about 
how market participants make decisions and how interest rates “should” evolve over time. These are 
discussed in detail in [1], chapter 6. 

A different problem is to determine a value for a security that is not frequently traded.  A model can be 
calibrated to observed market prices of similar securities and then used to calculate (estimate) values for 
illiquid securities. 

Either problem can be solved with a model and an economic scenario generator. If equity index variables 
and economic variables such as inflation need not be modeled then those factors may be set to zero, one, 
or otherwise not used, leaving the interest rate model the only active part of the ESG. The generator is 
then set up with initial conditions such as observed yields and market prices as of the desired model start 
date. The generator has an interest rate model component which evolves yield curves forward one time 
step at a time to produce one interest rate scenario. This step is repeated 1,000, 10,000, or more times to 
generate a set of interest rate scenarios. For each scenario, a value is calculated for each security. 

These values do not automatically reproduce observed market prices at the model start date. The model 
must be “calibrated”, that is, its parameters must be adjusted to match specific criteria. 

If the task at hand is to calculate prices for infrequently traded securities that are reasonably consistent 
with the observed market prices of frequently traded securities, then the calibration adjusts the 
parameters to reproduce those prices. Such a calibration is “market-consistent”. The adjusted, or 
calibrated, scenario set may then be used to calculate estimated market values for similar non-traded 
securities. It should not be used for dissimilar securities. 

Note that so far nothing has been said about risk neutral or real world. 

1.5 THE MARKET PRICE OF RISK 
One stylized fact is that market participants are risk averse. Market prices embed a factor for this called the 
”market price of risk”. 

 

 

1 https://home.treasury.gov/policy-issues/_nancing-the-government/interest-rate-statistics/interest-rates-
frequently-asked-questions 
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If the scenario set is only being used to value securities at the model start date, a useful mathematical tool 
is to assume the market price of risk is zero. The calibration step can still find parameters to match the 
observed securities prices, but it does so by adjusting the probability of each scenario occurring. 

This is useful because the market price of risk can be estimated but not directly observed in the market. 
With the assumption of a zero market price of risk, the calibrated scenario set is said to be “risk-neutral.” It 
is also market-consistent because it reproduces the observed market prices of the selected securities at the 
specified date. The trade-off is that this scenario set can no longer provide reliable information about 
future time steps or period; it is not fit for such a purpose. 

It is also possible to choose a market price of risk from historical data. As with the other parameters this 
would need to fit the stylized facts and interact with other parameters in a reasonable way. The model 
calibration can then either fit the scenarios to observed market prices so as to be market consistent, or left 
in an equilibrium state. The latter approach might be desirable for stress testing or tail risk analysis. The 
former approach is necessary for estimating values of similar securities (“valuation”). 

Why might the former approach of setting a historically based market price of risk and calibrating to 
observed market prices be preferred to assuming a zero market price of risk (the risk-neutral approach)? 
When the item being modeled has complex future interactions, such as modeling a hedging program or 
embedded options in new business in a financial plan model, having scenarios and model outcomes that 
are intuitively understandable and can be explained to stakeholders beyond the modeling team may be 
important for credibility and influencing decisions. Silly-looking scenarios come with risk-neutral; they're 
part of the deal. 

More complete discussions can be found in [23] for the latest research as well as the classic chapter 11 of 
[3]. 
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1.6 PARAMETER UNCERTAINTY 
Not only is the choice of the most appropriate model a matter of judgement, the parameters of the chosen 
model are uncertain as well.  [4] studies the Wilkie model, which models inflation, dividend yields, and an 
equity index return, as well as a long-term interest rate.  Parameter uncertainty is found to have a 
significant impact on the dispersion of these four parameters.  The paper applies its findings to a block of 
annuity contracts, finding that the distribution of outcomes is significantly wider when the parameters are 
recognized as instances of random variables.  Developing methods to apply this insight would be an avenue 
for further research. 

2 Three Continuous-Time Interest Rate Models 
In this section we provide a brief description of the three models that we consider. We consider three 
models:  the Vasicek (one and two factor) models, Cox-Ingersoll-Ross (CIR) model, and the Hull-White 
models (one and two factor). The Vasicek and CIR models are called equilibrium models or real-world 
models. The equivalent risk-neutral models can be obtained by changing the drift of those models. We 
assume that a one factor continuous-time interest rate model for short rate 𝑟𝑟𝑡𝑡 is an Itô process, i.e. 𝑟𝑟𝑡𝑡 
follows the stochastic differential equation (SDE) 

𝑑𝑑𝑟𝑟𝑡𝑡 = 𝑎𝑎(𝑟𝑟𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝑏𝑏(𝑟𝑟𝑡𝑡)𝑑𝑑𝑋𝑋𝑡𝑡   

where 𝑎𝑎(𝑟𝑟𝑡𝑡) and 𝑏𝑏(𝑟𝑟𝑡𝑡) are functions of 𝑟𝑟𝑡𝑡 and 𝑋𝑋𝑡𝑡 is a standard Wiener process. For a formal definition of an 
Itô process and an SDE one may refer to [8]. Similarly, the two-factor models satisfy the following SDE 

𝑑𝑑𝑟𝑟𝑡𝑡 = 𝑎𝑎(𝑟𝑟𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝑏𝑏1(𝑟𝑟𝑡𝑡)𝑑𝑑𝑋𝑋1,𝑡𝑡 + 𝑏𝑏2(𝑟𝑟𝑡𝑡)𝑑𝑑𝑋𝑋2,𝑡𝑡  , 

with 𝑑𝑑𝑋𝑋1,𝑡𝑡𝑑𝑑𝑋𝑋2,𝑡𝑡 = 𝜌𝜌𝑑𝑑𝑑𝑑 

In statistical calibrations, the underlying assumption is that data follows the model that we try to fit.  
Therefore, to evaluate calibration techniques we need sample paths from the interest rate model. The only 
way to get sample paths that follow the underlying distribution with known parameters is Monte Carlo 
simulation. Therefore, it is important to have an accurate method of simulating sample paths from the 
given SDE with known parameters. There are number of techniques to generate sample paths from a given 
SDE and Chapter 2 of [17] is a good introduction. However, we present two methods: Euler-Maruyama 
discretization and the transition density method introduced in [11]. Note that Chapter 17 of [24] only 
discusses implementation of Euler-Maruyama method for simulating sample paths, however we 
demonstrate that this method is not suitable for practical applications. 

2.1 THE VASICEK MODEL 
In the Vasicek model the risk free rate of interest 𝑟𝑟𝑡𝑡 is based on an SDE: 

𝑑𝑑𝑟𝑟𝑡𝑡 = 𝛾𝛾(�̅�𝑟 − 𝑟𝑟𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝜎𝜎𝑑𝑑𝑋𝑋𝑡𝑡 ,                                                                (1) 

where 𝑋𝑋𝑡𝑡 is the standard Wiener process and 𝛾𝛾, �̅�𝑟, and 𝜎𝜎 are strictly positive parameters.  The three 
parameters 𝛾𝛾, �̅�𝑟, and 𝜎𝜎 have the following interpretation: 

• �̅�𝑟 is the long term mean level; when the rate 𝑟𝑟𝑡𝑡 drifts too much from �̅�𝑟, it will be pulled back closer 
to that level. This is called mean reversion. 

• 𝛾𝛾 is the speed of mean reversion. 
• 𝜎𝜎 is the instantaneous volatility. 
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The solution of the above SDE takes the following form: 

𝑟𝑟𝑡𝑡+𝑠𝑠 = 𝑟𝑟𝑡𝑡𝑒𝑒−𝛾𝛾𝑠𝑠 + �̅�𝑟(1 − 𝑒𝑒−𝛾𝛾𝑠𝑠) + 𝜎𝜎𝑒𝑒−𝛾𝛾𝑠𝑠 ∫ 𝑒𝑒𝛾𝛾𝛾𝛾𝑑𝑑𝑋𝑋𝛾𝛾
𝑠𝑠
0  , 

where 𝑟𝑟𝑡𝑡 is the initial point (starting point) of the process and where s > 0. 

Since ∫ 𝑒𝑒𝛾𝛾𝛾𝛾𝑑𝑑𝑋𝑋𝛾𝛾
𝑠𝑠
0  is a normal random variable with mean zero and variance ∫ 𝑒𝑒2𝛾𝛾𝛾𝛾𝑑𝑑𝑑𝑑𝑠𝑠

0 , we see that 
𝑟𝑟𝑡𝑡+𝑠𝑠|𝑟𝑟𝑡𝑡 ,where s > 0 (i.e. the conditional random variable of 𝑟𝑟𝑡𝑡+𝑠𝑠 conditioned on 𝑟𝑟𝑡𝑡), is normally distributed 
with mean 𝜇𝜇(𝑟𝑟𝑡𝑡 , 𝑠𝑠) and variance 𝜎𝜎(𝑠𝑠)2 which are given as below: 

𝜇𝜇(𝑟𝑟𝑡𝑡 , 𝑠𝑠) = �̅�𝑟 + (𝑟𝑟𝑡𝑡 − �̅�𝑟)𝑒𝑒−𝛾𝛾𝑠𝑠                                                                   (2) 

𝜎𝜎(𝑠𝑠)2 = 𝜎𝜎2

2𝛾𝛾
(1 − 𝑒𝑒−2𝛾𝛾𝑠𝑠)                                                                      (3) 

As the conditional distribution o𝑟𝑟𝑡𝑡+𝑠𝑠f  is normal, the probability of 𝑟𝑟𝑡𝑡+𝑠𝑠 < 0 can be calculated as below: 

 

For example the set of values (𝑟𝑟𝑡𝑡 = 0.01, �̅�𝑟 = 0.05, 𝛾𝛾 = 0.5,𝜎𝜎 = 0.02, 𝑠𝑠 = 0.1) will yield 𝑃𝑃[𝑟𝑟𝑡𝑡+𝑠𝑠 < 0|𝑟𝑟𝑡𝑡] =
0.02637.  This implies that there is a positive probability of negative interest rates occurring, which is 
generally seen as a drawback of this model (Japanese and European experience notwithstanding).  
However, we can minimize the chance of negative rates in simulation studies by choosing parameters 
appropriately. 

2.1.1 SIMULATING PATHS OF THE VASICEK MODEL: EULER-MARUYAMA DISCRETIZATION 
In this method we discretize the Vasicek model SDE in the following manner:   

 

where 𝜖𝜖𝑡𝑡+∆ is a normal random variable with mean 0 and variance 𝜎𝜎2∆.  As 𝑑𝑑𝑋𝑋𝑡𝑡 is a standard Brownian 
motion we can write from the above: 

𝑟𝑟𝑖𝑖∆ = 𝑟𝑟(𝑖𝑖−1)∆ + 𝛾𝛾��̅�𝑟 − 𝑟𝑟(𝑖𝑖−1)∆�∆ + 𝜖𝜖𝑖𝑖∆, 𝑖𝑖 = 1, 2, … 

From the properties of Brownian motion we know that 𝜖𝜖𝑖𝑖∆, 𝑖𝑖 = 1, 2, … are independent identically 
distributed (i.i.d.) normal with mean zero and variance 𝜎𝜎2∆.  For convenience let us write: 
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Then: 

𝑟𝑟(𝑖𝑖) = 𝛼𝛼 + 𝛽𝛽𝑟𝑟(𝑖𝑖 − 1) + 𝜖𝜖𝑖𝑖 , 𝑖𝑖 = 1, 2, … 

with 𝜖𝜖𝑖𝑖 's that are i.i.d. normal with mean 0 and standard deviation 𝜎𝜎∗.  The R function “Vasicek.Euler.sim” 
in the “InterestCalibration” library implements this method. The following code snippet demonstrates use 
of “Vasicek.Euler.sim.” 

 

 
 

 

 

 

2.1.2 SIMULATING PATHS OF THE VASICEK MODEL: TRANSITION DENSITY METHOD 
The transition density method of simulating interest rate paths relies on the fact that the simulation can be 
carried out using the distribution of next observation 𝑟𝑟𝑡𝑡+𝑠𝑠  at t+s given observation 𝑟𝑟𝑡𝑡 at time t. This method 
is introduced by [11]. This is an exact method of simulation as opposed to the Euler-Maruyama scheme 
which relies on discretizing an SDE.  Since 𝑟𝑟𝑡𝑡+𝑠𝑠|𝑟𝑟𝑡𝑡  is normal with mean and variance as given in (2) and (3) 
respectively, the realized value of 𝑟𝑟𝑡𝑡+𝑠𝑠 is calculated from: 

#example2 
rm(list=ls()) # clear the workspace and functions 
set.seed(123) 
X=Vasicek.Euler.sim(Delta=1/252,M=10) 
matplot(X,type="l",main="Simulated Vasicek paths (Euler Method)", 
ylab="Short rate",xlab="Time Step in days") 
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𝑟𝑟𝑡𝑡+𝑠𝑠 = �̅�𝑟 + (𝑟𝑟𝑡𝑡 − �̅�𝑟)𝑒𝑒−𝛾𝛾𝑠𝑠 �
𝜎𝜎2

2𝛾𝛾
(1 − 𝑒𝑒−2𝛾𝛾𝑠𝑠)�

1
2

𝑍𝑍 

where Z is a standard normal random number. By writing: 

 

We can obtain: 

𝑟𝑟(𝑖𝑖) = 𝛼𝛼∗ + 𝛽𝛽∗𝑟𝑟(𝑖𝑖 − 1) + 𝜖𝜖𝑖𝑖 , 𝑖𝑖 = 1, 2, …, 

where: 

 

with 𝜖𝜖𝑖𝑖 's that are i.i.d. normal with mean 0 and standard deviation 𝜎𝜎∗∗.  The R function “Vasicek.Trans.sim” 
in the “InterestCalibration” library implements this method. The following code snippet demonstrates use 
of “Vasicek.Trans.sim.” 

 

 

 

 

 

 

#example3 
rm(list=ls()) # clear the workspace and functions 
set.seed(123) 
X =Vasicek.Trans.sim(Delta=1/252,M=10) 
matplot(X,type="l",main="Simulated Vasicek paths (Transition Density Method)", 
ylab="Short rate",xlab="Time Step in days") 
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2.2 COX-INGERSOLL-ROSS (CIR) MODEL 
The SDE describing the CIR model is as follows:   

𝑑𝑑𝑟𝑟𝑡𝑡 = 𝛾𝛾(�̅�𝑟 − 𝑟𝑟𝑡𝑡)𝑑𝑑𝑑𝑑 + �𝛼𝛼𝑟𝑟𝑡𝑡𝑑𝑑𝑋𝑋𝑡𝑡                                                             (4) 

This model is also a mean reverting model and the parameters 𝛾𝛾 and �̅�𝑟 have the same interpretation as in 
the Vasicek model. One advantage of this model over the Vasicek model is that when 𝛾𝛾�̅�𝑟 > 𝛼𝛼

2
 the rates are 

always non-negative. This model was introduced in [13] and [10] used it for modelling interest rates. 

With some difficult mathematics one can show that the transition density function of 𝑟𝑟𝑡𝑡+𝑠𝑠 conditioned on 
𝑟𝑟𝑡𝑡 is given by: 

𝑓𝑓(𝑟𝑟𝑡𝑡+𝑠𝑠|𝑟𝑟𝑡𝑡) = 𝑐𝑐𝑠𝑠𝜒𝜒2(𝑐𝑐𝑠𝑠𝑟𝑟𝑡𝑡+𝑠𝑠, 𝜈𝜈, 𝜆𝜆𝑡𝑡+𝑠𝑠)                                                         (5) 

where 𝜒𝜒2(. , 𝜈𝜈, 𝜆𝜆𝑡𝑡+𝑠𝑠) is a non-central 𝜒𝜒2 density function with 𝜈𝜈 degrees of freedom and non-centrality 
parameter 𝜆𝜆𝑡𝑡+𝑠𝑠 , with: 

 

A relatively easy way to visualize a characterization of the non-central 𝜒𝜒2 random variable with an integer-
valued degrees of freedom parameter (i.e. 𝜈𝜈 is an integer) is that it can be obtained by summing up squares 
of 𝜈𝜈 independent normal random variables with non-zero means and unit variances.  However, in our case 
𝜈𝜈 may not be an integer. 

Another characterization of the non-central 𝜒𝜒2 distributions is that they can be represented as a mixture of 
Poisson and central 𝜒𝜒2 distributions.  As given on page 436 in [18], we can write the cdf, 𝐹𝐹(𝑥𝑥; 𝜈𝜈, 𝜆𝜆 ), of a 
non-central 𝜒𝜒2 with degrees of freedom 𝜈𝜈 and non-central parameter 𝜆𝜆 as: 

 

Although the above expression involves an infinite sum, it leads to easy generation of random numbers 
from a non-central 𝜒𝜒2. It involves first generating a random number 𝐽𝐽 from a Poisson distribution with 
mean 𝜆𝜆 2⁄  and then generating a random number from a central 𝜒𝜒2 with degrees of freedom 𝜈𝜈 + 2𝐽𝐽; this 
random number will be from the non-central 𝜒𝜒2. 

2.2.1 SIMULATING PATHS OF THE CIR MODEL:  EULER-MARUYAMA DISCRETIZATION 
As in the Vasicek case we can discretize the SDE in the following manner: 

              𝑑𝑑𝑟𝑟𝑡𝑡 = 𝛾𝛾(�̅�𝑟 − 𝑟𝑟𝑡𝑡)𝑑𝑑𝑑𝑑 + �𝛼𝛼𝑟𝑟𝑡𝑡𝑑𝑑𝑋𝑋𝑡𝑡 

𝑟𝑟𝑡𝑡+∆ − 𝑟𝑟𝑡𝑡 = 𝛾𝛾(�̅�𝑟 − 𝑟𝑟𝑡𝑡)∆ + �𝑟𝑟𝑡𝑡𝜖𝜖𝑡𝑡+∆ 

where 𝜖𝜖𝑡𝑡+∆ is a normal random variable with mean 0 and variance 𝛼𝛼∆. 
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As in the Vasicek model we can further simplify and obtain: 

𝑟𝑟(𝑖𝑖) = 𝛼𝛼1 + 𝛽𝛽1𝑟𝑟(𝑖𝑖 − 1) + �𝑟𝑟(𝑖𝑖 − 1)𝜖𝜖𝑖𝑖, 𝑖𝑖 = 1, 2, …, 

where: 

 

with 𝜖𝜖𝑖𝑖’s that are i.i.d. normal with mean 0 and standard deviation σ.  The R function “CIR.Euler.sim” in the 
“InterestCalibration” library implements this method.  The following R-code snippet illustrates the usage of 
“CIR.Euler.sim.” 

 

 

 

 

 

 

As we can see from the graph, the Euler-Maruyama discretization method leads to negative values for 𝑟𝑟𝑡𝑡 
which is theoretically impossible.  Note that we can calculate the probability of 𝑟𝑟(𝑖𝑖) becoming negative 
conditioned on 𝑟𝑟(𝑖𝑖 − 1) for 𝑖𝑖 = 1, 2, … as given below: 

 

#example4 
rm(list=ls()) # clear the workspace and functions 
set.seed(123) 
X =CIR.Euler.sim(Delta=1/500,M=10) 
matplot(X,type="l",main="Simulated CIR paths (Euler Method)", 

ylab="Short rate",xlab="Time Step in days") 
abline(0,0) 
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Under the Euler-Maryuma scheme the conditional distribution of 𝑟𝑟(𝑖𝑖) conditioned on 𝑟𝑟(𝑖𝑖 − 1) is normal 
with mean 𝐸𝐸[𝑟𝑟(𝑖𝑖)|𝑟𝑟(𝑖𝑖 − 1)] and variance 𝑉𝑉𝑎𝑎𝑟𝑟[𝑟𝑟(𝑖𝑖)|𝑟𝑟(𝑖𝑖 − 1)], the probability of 𝑟𝑟(𝑖𝑖) becoming negative 
conditioned on 𝑟𝑟(𝑖𝑖 − 1) is: 

 

For example, the set of values (𝑟𝑟(𝑖𝑖) = 0.2%, �̅�𝑟 = 7%, 𝛾𝛾 = 0.3262,𝛼𝛼 = 0.0221,∆ = 1/252) will yield 
𝑃𝑃[𝑟𝑟(𝑖𝑖) < 0|𝑟𝑟(𝑖𝑖 − 1)] = 0.00108.  Therefore, the Euler-Maruyama method should be used with caution, 
though it does have the appeal of simplicity.   

2.2.2 SIMULATING PATHS OF THE CIR MODEL: TRANSITION DENSITY METHOD 

From the discussion above the conditional distribution of 𝑟𝑟𝑡𝑡+𝑠𝑠
𝑐𝑐𝑠𝑠

, conditioned on 𝑟𝑟𝑠𝑠, is distributed as a non-

central 𝜒𝜒2 with degrees of freedom 𝜈𝜈 = 4𝛾𝛾
𝛼𝛼
�̅�𝑟 and non-centrality parameter 𝜆𝜆𝑡𝑡+𝑠𝑠 = 𝑐𝑐𝑠𝑠𝑟𝑟𝑡𝑡𝑒𝑒𝑥𝑥𝑒𝑒(−𝛾𝛾𝑠𝑠).  The 

algorithm uses 𝑟𝑟𝑡𝑡 's value to generate 𝑟𝑟𝑡𝑡+𝑠𝑠. Since we use 𝑠𝑠 = Δ, a constant value, at each step the non-
centrality parameter 𝜆𝜆𝑖𝑖Δ = 𝑐𝑐Δ𝑟𝑟𝑖𝑖Δ𝑒𝑒𝑥𝑥𝑒𝑒(−Δ) has to be evaluated using 𝑟𝑟(𝑖𝑖−1)Δ before calculating 𝑟𝑟iΔ for 𝑖𝑖 =
1, 2, … . 

The R function “CIR.Trans.sim” in the “InterestCalibration” library implements this method. The following R-
code snippet illustrates the usage of “CIR.Trans.sim.” 

 

 

 

   

 

 

#example5 
rm(list=ls()) # clear the workspace and functions 
set.seed(123) 
X =CIR.Trans.sim(Delta=1/252,M=10) 
matplot(X,type="l",main="Simulated CIR paths (Transition Density Method)", 

ylab="Short rate",xlab="Time Step in days") 
abline(0,0) 
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In the implementation we assumed that the non-central 𝜒𝜒2 random number generation function “rchisq” 
works perfectly.  However, “rchisq” uses the mixture of Poisson and central 𝜒𝜒2 characterization given in (6) 
to generate random numbers.  The method is simple and straightforward but “Simulation of Square-root 
Processes” in [9] lists many drawbacks of this method and for practical applications one may use a method 
given in [12] and [2] to simulate non-central 𝜒𝜒2 random numbers. 

2.3 THE TWO-FACTOR VASICEK MODEL WITH CORRELATED FACTORS 
This model can be written as the short rate process as of the sum of two factors, a short rate factor and a 
long rate factor: 

𝑟𝑟𝑡𝑡 = 𝜙𝜙1,𝑡𝑡 + 𝜙𝜙2,𝑡𝑡 

Where each factor follows the following SDEs: 

 

With a few lines of algebra we can obtain the solution of these SDEs as follows: 

 

The conditional means and variance of these two factors are given by: 

 

Where the second to last equation follows from Itô's isometry. The conditional covariance between 𝜙𝜙1,𝑡𝑡+𝑠𝑠 
and 𝜙𝜙2,𝑡𝑡+𝑠𝑠 conditioned on 𝜙𝜙𝑖𝑖,𝑡𝑡, 𝑖𝑖 = 1, 2 is given by: 

 

The conditional correlation coefficient between 𝜙𝜙1,𝑡𝑡+𝑠𝑠 and 𝜙𝜙2,𝑡𝑡+𝑠𝑠, which can be denoted as 𝜌𝜌(𝑠𝑠), is given 
by: 
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2.3.1 SIMULATING PATHS OF THE TWO-FACTOR VASICEK MODEL:  TRANSITION DENSITY METHOD 
When simulating paths we need to simulate each factor separately and add them together. We can use the 
transition density method for each factor. It works as follows: 

• Choose initial short term rate 𝑟𝑟0 and initial long term rate 𝑟𝑟0(𝜏𝜏) for a suitable value of 𝜏𝜏. 
• Solve the following two equations for 𝜙𝜙1,0 and 𝜙𝜙2,0: 

 
The above two equations can be solved to obtain the following: 

 
• Simulate standard bivariate normal random number (𝑍𝑍1,𝑍𝑍2) with correlation coefficient 𝜌𝜌(𝑠𝑠). 

Note that this can be achieved by simulating two independent random numbers, 𝑥𝑥1 and 𝑥𝑥2, from 
a standard normal distribution and then setting: 

 
• Set: 

 

The R function “Two.factor.Vasicek.Trans.sim” in the “InterestCalibration” library implements this method. 
The following code snippet demonstrates use of “Two.factor.Vasicek.Trans.sim”. 

 

 

 

 

 

#example6 
rm(list=ls()) # clear the workspace and functions 
set.seed(123) 
X =Two.factor.Vasicek.Trans.sim(Delta=1/252,M=10) 
matplot(X,type="l",main="Simulated two factor Vasicek paths", 

ylab="Short rate",xlab="Time Step in days") 
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3 Calibration Techniques 
In this section we provide calibrations of the Vasicek models and the CIR model. We look at real-world 
calibration for the Vasicek model and CIR model followed by risk-neutral calibration for the Vasicek model, 
the CIR model and for the two-factor Vasicek model. For real-world calibration the maximum likelihood 
estimation (MLE) technique is frequently used. MLE solves for parameters that maximize a likelihood 
function. This function is the probability distribution function of the parameters. MLE finds the parameters 
with the highest likelihood of generating the observed data from a statistical distribution assumed to fit the 
underlying data. However, as we shall see the parameter estimates have some bias. 

Since the MLE parameters are estimates of the underlying data distribution's parameters, the parameters 
found by MLE are random variables with distributions and moments such as a mean. This means the 
accuracy of the estimated parameters may be estimated and evaluated for goodness of fit. 

The MLE method has several drawbacks that limit its usefulness for interest rate models. First, it fits 
parameters to a data sample from a statistical distribution chosen by the modeler but provides no 
information on whether that model is a reasonable fit to the “true” underlying distribution. This means the 
assumed statistical distribution may be statistically biased, with a mean significantly different than the 
underlying “true” distribution of the data. MLE relies on asymptotic properties of large datasets which may 
not hold for interest rate models. A small sample of short rates may not produce convergent parameters, 
while extending the data farther back in time brings in interest rates from different economic and policy 
environments (say, pre-global financial crisis) that may not be applicable for models projecting into the 
future. MLE assumes the data is stationary. Short rates may appear stationary for a period of time due to 
government monetary policy, but may exhibit a drift or jump when such policies change. This drift could be 
due to a set of complex macroeconomic interactions of economic cycles, fiscal and monetary policy, or 
shocks due to extreme weather, climate, pandemic, or demographic changes. 

3.1 THE VASICEK MODEL:  REAL-WORLD CALIBRATION 
In this section we look at calibrating a Vasicek model with real-world (equilibrium model) data. We assume 
that a random sample of short rate data 𝑟𝑟0, 𝑟𝑟Δ, 𝑟𝑟2Δ, . . . , 𝑟𝑟𝑛𝑛Δ, perhaps overnight rates observed over five 
years, is available to us. For simplicity we have assumed rates are observed at consecutive times with 
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equidistant periods. In this section we discuss two calibration techniques for the Vasicek model: maximum 
likelihood estimates and long-term quantile method. 

3.1.1 MAXIMUM LIKELIHOOD ESTIMATOR METHOD 
We have shown that the transition density function 𝑓𝑓(𝑟𝑟𝑡𝑡+𝑠𝑠|𝑟𝑟𝑡𝑡) is normal with the following means and 
variances: 

 

For notational simplicity let us define the following variables as defined in the introductory section: 

 

Then we can write: 

 

The density function, 𝑓𝑓�𝑟𝑟𝑖𝑖Δ|𝑟𝑟(𝑖𝑖−1)Δ�, of the conditional random variable 𝑟𝑟𝑖𝑖Δ|𝑟𝑟(𝑖𝑖−1)Δ for 𝑖𝑖 = 1, 2, … ,𝑛𝑛 can be 
written as: 

 

Now it remains to specify the density function of the random variable 𝑟𝑟0. The literature is not quite clear 
about how to specify it, therefore we denote it as 𝑓𝑓0(𝑟𝑟0|𝛼𝛼∗,𝛽𝛽∗,𝜎𝜎∗) without specifying its functional form. 
With this notation we can write the joint likelihood function of the random sample 𝑟𝑟0, 𝑟𝑟Δ, 𝑟𝑟2Δ, . . . , 𝑟𝑟𝑛𝑛Δ as: 

 

Then the log-likelihood function becomes: 

   (7) 
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Before we maximize 𝑙𝑙𝑛𝑛(ℒ), we need to specify the function 𝑓𝑓0(𝑟𝑟0|𝛼𝛼∗,𝛽𝛽∗,𝜎𝜎∗). If n is sufficiently large we 
could ignore the contribution of 𝑓𝑓0(𝑟𝑟0|𝛼𝛼∗,𝛽𝛽∗,𝜎𝜎∗) into the 𝑙𝑙𝑛𝑛(ℒ) and proceed. This method is called the 
quasi-maximum likelihood method. In this situation maximization is straightforward and we can obtain the 
following explicit expressions for estimates: 

 

Note that 𝜎𝜎�∗2 is the unbiased estimator for 𝜎𝜎∗2, not the MLE. Once we have these estimates we solve for 
𝛾𝛾, �̅�𝑟 and 𝜎𝜎 using the following formulas: 

 

The implementation of this in R is straightforward as we can use R function “lm” for estimation. We 
illustrate the MLE calculation using the data in chapter 14, exercise Q5 of [24], as discussed in Section 5.2 
and 5.3 below. 

 

 

 

 

 

 

 

 

 

 

The MLE’s of 𝛾𝛾, �̅�𝑟 and 𝜎𝜎 are 3.64532, 0.30769 and 1.81376, respectively.  The ANOVA table related to this 
calibration is: 

 

#example7 
# Exercises Q5 Chapter 14 of Veronesi 
#clear the workspace and functions 
rm(list=ls()) 
rt =VeronesiTable14p7q5$rt 
Delta = 1/252 
N = length(rt) 
y = rt[2:N] 
x = rt[1:(N-1)] 
model = lm(y~x) 
mle.gamma= -log(as.numeric(model$coefficients)[2])/Delta 
mle.rbar = as.numeric(model$coefficients)[1]/ 

(1-as.numeric(model$coefficients)[2]) 
mle.sigma = sigma(model)*(2*mle.gamma/ 

(1-as.numeric(model$coefficients)[2]^2))^.5 
tb = anova(model) 
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To examine the performance of the MLE we carry out a simulation study using the R code snippet given 
below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

#example8 
# clear the workspace and functions 
rm(list=ls()) 
t0=0 
T=10 
r0=0.03 
gamma=0.3 
rbar=0.05 
sigma=0.0221 
paras = c(gamma,rbar,sigma) 
# Initialize # of paths number of points in each path 
Delta = 1/252 
N = ceiling((T-t0)/Delta) 
set.seed(123) 
X=Vasicek.Trans.sim(t0,T,Delta,r0,gamma,rbar,sigma,M=1000) 
M = ncol(X) 
mle= matrix(0,3,M) 
for (i in 1:M){ 
  y = X[2:(N+1),i] 
  x = X[1:N,i] 
  model=lm(y~x) 
  mle.gamma= -log(as.numeric(model$coefficients)[2])/Delta 
  mle.rbar = as.numeric(model$coefficients)[1]/ 

(1-as.numeric(model$coefficients)[2]) 
  mle.sigma = sigma(model)*(2*mle.gamma/ 

(1-as.numeric(model$coefficients)[2]^2))^.5 
  mle[,i]=c(mle.gamma,mle.rbar,mle.sigma) 
} 
# Simulation performance criteria 
bias =rowMeans(mle-paras) 
Sd = rowSds(mle) 
rmse = rowMeans((mle-paras)^2)^0.5 
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From the table we observe that MLE of 𝜎𝜎 performs very well, �̅�𝑟 performs somewhat better, and 𝛾𝛾 performs 
poorly. This is consistent with the results of [21] and readers are encouraged to explore this by changing 
the simulation specifications. 

Instead of dropping the term 𝑓𝑓0(𝑟𝑟0|𝛼𝛼∗,𝛽𝛽∗,𝜎𝜎∗) from the likelihood function, we could assume that 𝑟𝑟0 is 
normally distributed with: 

 

This choice seems reasonable and since 𝛾𝛾 > 0, 𝛽𝛽∗ < 1 the pdf in this case becomes: 

 

Substituting this in (7) we obtain the following as the log-likelihood function: 

   (8) 

When we compare this log-likelihood function with the log-likelihood function given in equation (5.2.9) on 
page 119 in [15], we see that (8) is in fact the log-likelihood function of an AR(1) model. Now it should 
become clear to the reader why this pdf for 𝑟𝑟0 was chosen. For parameter estimation we could use R 
function ARIMA as illustrated in the code below. 

 

 

 

 

 

 

#example9 
# clear the workspace and functions 
rm(list=ls()) 
t0=0 
T=10 
r0=0.03 
gamma=0.3 
rbar=0.05 
sigma=0.0221 
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We observe that the performance of MLEs are quite similar to that of MLEs based on a quasi-likelihood 
function. 

3.1.2 LONG TERM QUANTILE METHOD 
This method is proposed in [5]. The major underlying assumption in this method is that sample quantiles are 
representative of the future observed quantiles. The second mathematically justifiable assumption is that 
theoretical quantiles are calculated based on the process behaviour when 𝑑𝑑 → ∞. The calculation of the long-
term mean and variance of 𝑟𝑟𝑡𝑡 is as follows: 

paras = c(gamma,rbar,sigma) 
# Initialize # of paths number of points in each path 
Delta = 1/252 
N = ceiling((T-t0)/Delta) 
 
set.seed(123) 
X=Vasicek.Trans.sim(t0,T,Delta,r0,gamma,rbar,sigma,M=1000) 
 
M = ncol(X) 
mle= matrix(0,3,M) 
for (i in 1:M){ 
   y = X[2:(N+1),i] 
   x = X[1:N,i] 
    
   model2 = arima(X[1:(N+1),i],order=c(1,0,0),include.mean = TRUE, 
                                method="ML") 
   mle.gamma1= -log(as.numeric(model2$coef)[1])/Delta 
   mle.rbar1 = as.numeric(model2$coef)[2] 
   mle.sigma1= (model2$sigma2*2*mle.gamma1/ 
   (1-as.numeric(model2$coef)[1]^2))^.5 
   mle[,i]=c(mle.gamma1,mle.rbar1,mle.sigma1) 
} 
# Simulation performance criteria 
bias =rowMeans(mle-paras) 
sd = rowSds(mle) 
rmse = rowMeans((mle-paras)^2)^0.5 
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As 𝑟𝑟𝑡𝑡 's are normally distributed random variables the 95% confidence interval for 𝑙𝑙𝑖𝑖𝑙𝑙𝑡𝑡→∞𝑟𝑟𝑡𝑡 is given by: 

 

Let us denote 𝑞𝑞�0.025 and 𝑞𝑞�0.975 as the 2.5th and the 97.5th percentiles respectively, based on a sample of 𝑟𝑟𝑡𝑡 
where preferably 𝑑𝑑 > 10. Then we have the following two equations: 

𝑞𝑞�0.025 = �̅�𝑟 −
1.96𝜎𝜎

�2𝛾𝛾
 

𝑞𝑞�0.975 = �̅�𝑟 +
1.96𝜎𝜎

�2𝛾𝛾
 

We can solve these two equations to obtain the following expressions for 𝛾𝛾 and �̅�𝑟: 

𝛾𝛾 = 2 �
1.96𝜎𝜎

𝑞𝑞�0.975 − 𝑞𝑞�0.025
�
2

 

�̅�𝑟 =
𝑞𝑞�0.025 + 𝑞𝑞�0.975

2
 

This procedure is easy to implement as given in the R code snippet below, but the drawback is obtaining a 
sample of 𝑟𝑟𝑡𝑡 for a large value of 𝑑𝑑. 

 

 

 

 

 

 

 

 

 

 

#example10 
# clear the workspace and functions 
rm(list=ls()) 
t0=0 
T=20 
r0=0.03 
gamma=0.3 
rbar=0.05 
sigma=0.02 
# Initialize # of paths number of points in each path 
Delta = 1/252 
N = ceiling((T-t0)/Delta) 
set.seed(123) 
# simulate M sample paths and retain the last row only. 
X=Vasicek.Trans.sim(t0,T,Delta,r0,gamma,rbar,sigma,M=100)[N+1,] 
qs = quantile(X,c(0.025,0.975)) 
est.gamma = 2*((1.96*sigma)/(as.numeric(qs[2])-as.numeric(qs[1])))^2 
est.rbar = (as.numeric(qs[2])+as.numeric(qs[1]))/2 
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The resulting estimates of 𝛾𝛾 and �̅�𝑟 are 0.28199 and 0.05267 respectively. 

3.2 THE VASICEK MODEL:  RISK-NEUTRAL CALIBRATION 
In this section we present calibration of a Vasicek model when we have a set of zero-coupon bond prices or 
a set of discount factors. The underlying assumption is that the real-world interest rate follows a Vasicek 
model and hence we can use a drift-adjusted Vasicek model that leads to the following closed-form 
formula for zero coupon bond prices. 

  

Note that we are using parameters 𝛾𝛾∗ and �̅�𝑟∗ to indicate the drift of the SDE for 𝑟𝑟𝑡𝑡, 𝛾𝛾∗(�̅�𝑟∗ − 𝑟𝑟𝑡𝑡) in the risk-
neutral world, as opposed to parameters 𝛾𝛾 and �̅�𝑟 with a drift of 𝛾𝛾(�̅�𝑟 − 𝑟𝑟𝑡𝑡) in the real-world. 

The calibration process involves minimizing the following quantity: 

 

We can use either the “nlm” function or the “optim” function for this purpose. The following example first 
calculates a bond price vector for given maturities with known parameter values and then calculates 
parameters using the minimization. It is used as a verification of our code for the minimization. 

 

 

 

 

 

 

 

 

Readers are encouraged to try various values for parameters 𝛾𝛾∗ and �̅�𝑟∗ and various reasonable guesses for 
initial values of those parameters to test the accuracy of the “nlm” and the “optim” routines. 

#example11 
# clear the workspace and functions 
rm(list=ls()) 
bond.maturities = seq(0.5,10,0.5) #Time_to_maturity 
bond.prices = Vasicek.zcbp(r0=0.02,t=0,T=bond.maturities, 
                                                 gamma=0.5,rbar=0.07,sigma=0.02) 
model = nlm(f=Vasicek.J,p=c(0.4,0.01),r0=0.02,sigma=0.02, 
                       bond.prices=bond.prices,bond.maturities=bond.maturities) 
model1 = optim(c(0.4,0.01),Vasicek.J,method=("BFGS") 
                              ,r0=0.02,sigma=0.02,bond.prices=bond.prices, 
                              bond.maturities=bond.maturities) 
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Another option we may consider is if we do not have a reliable estimate for 𝜎𝜎 we could also estimate it 
from observed bond price data as described in the following code snippets. 

 

 

 

 

 

 

 

 

 

After trying out a few different initial values and increasing the maximum number of iterations in “nlm” we 
see that “nlm” produces values close to the actual values, but values produced by “optim” are not very 
close. This led to examination of other optimization methods available in R. Instead of writing our own 
function to minimize we can use the “nls” package for non-linear least squares minimization.  Readers who 
may want to know more about non-linear regression with R may consult [22]. 

We realized using “nls” for yield rates instead of bond prices yields better results.  The following code 
snippet illustrates usage of “nls” with bond yields. 

 

 

 

 

 

 

 

 

 

 

#example12 
# clear the workspace and functions 
rm(list=ls()) 
bond.maturities = seq(0.5,10,0.5) #Time_to_maturity 
bond.prices = Vasicek.zcbp(r0=0.02,t=0,T=bond.maturities, 
                                                 gamma=0.5,rbar=0.07,sigma=0.02) 
model = nlm(f=Vasicek.J,p=c(0.4,0.02,0.04),r0=0.02,iterlim=1000, 
                        bond.prices=bond.prices,bond.maturities=bond.maturities) 
model1 = optim(c(0.4,0.02,0.04),lower=c(0,0,0),Vasicek.J, 
                             method=("L-BFGS-B"),r0=0.02, 
                             bond.prices=bond.prices, 
                             bond.maturities=bond.maturities) 

#example13 
rm(list=ls()) 
bond.maturities = seq(0.5,10,0.5) #Time_to_maturity 
bond.yields = Vasicek.yield(r0=0.02,t=0,T=bond.maturities, 
                                                 gamma=0.5,rbar=0.07,sigma=0.02) 
bonddata = data.frame(cbind(bond.maturities,bond.yields)) 

Vasicek.fit = 
     nls(bond.yields~Vasicek.yield(r0=0.02,t=0,T=bond.maturities, 
                                                           gamma,rbar,sigma), 
           start=list(gamma=0.2,rbar=0.02,sigma=0.01), 
           data=bonddata,algorithm = "port", 
           lower=list(gamma=0.1,rbar=0.01,sigma=0.005), 
           upper =list(gamma=3,rbar=1,sigma=1), 
           nls.control(maxiter = 100, tol = 1e-3, minFactor = 1/1024, 
                               printEval = FALSE, warnOnly = FALSE, 
                               scaleOffset = 0, nDcentral = FALSE)) 
sum_mod= summary(Vasicek.fit) 
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The “nls” algorithm converged in 9 iterations and summary statistics are: 

 

We can also try to estimate 𝜎𝜎 using bond yield data with “nls” as given below: 

 

 

 

 

 

 

 

 

 

 

 

The “nls” algorithm converged in 35 iterations and summary statistics are: 

 

We can also add a random error to simulated bond yields to evaluate the performance. 

 

 

 

 

 

 

 

#example14 
rm(list=ls()) 
bond.maturities = seq(0.5,10,0.5) #Time_to_maturity 
bond.yields = Vasicek.yield(r0=0.02,t=0,T=bond.maturities, 
                                                 gamma=0.5,rbar=0.07,sigma=0.02) 
bonddata = data.frame(cbind(bond.maturities,bond.yields)) 
Vasicek.fit = 
     nls(bond.yields~Vasicek.yield(r0=0.02,t=0,T=bond.maturities, 
                                                           gamma,rbar,sigma), 
           start=list(gamma=0.2,rbar=0.02,sigma=0.01), 
           data=bonddata,algorithm = "port", 
           lower=list(gamma=0.1,rbar=0.01,sigma=0.005), 
           upper =list(gamma=3,rbar=1,sigma=1), 
           nls.control(maxiter = 100, tol = 1e-3, minFactor = 1/1024, 
                               printEval = FALSE, warnOnly = FALSE, 
                               scaleOffset = 0, nDcentral = FALSE)) 
sum_mod= summary(Vasicek.fit) 
 

#example15 
rm(list=ls()) 
bond.maturities = seq(0.5,10,0.5) #Time_to_maturity 
bond.yields = Vasicek.yield(r0=0.02,t=0,T=bond.maturities, 
                                                  gamma=0.5,rbar=0.07,sigma=0.02)+ 
                                                  rnorm(length(bond.maturities),0.00,0.001) 
bonddata = data.frame(cbind(bond.maturities,bond.yields)) 
Vasicek.fit = 
   nls(bond.yields~Vasicek.yield(r0=0.02,t=0,T=bond.maturities, 
                                                         gamma,rbar,sigma=0.02), 
         start=list(gamma=0.2,rbar=0.02), 
         data=bonddata,algorithm = "port", 
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The “nls” algorithm converged in 10 iterations and summary statistics are: 

 

We can try estimating 𝜎𝜎 from the same data set with a random error added to the yields: 

 

 

 

 

 

 

 

 

 

 

 

 
The “nls” algorithm converged in 44 iterations and summary statistics are: 

 

We see that when there is a random error, the estimate of 𝜎𝜎 is not close to the actual value. Irrespective of 
what the results are, it is not a good practice to estimate 𝜎𝜎 from the same data set; it has to be estimated 
from short rate volatility under a real life scenario. 

We encourage readers to try different parameters and different initial values for all three methods using 
”optim”, “nlm” and “nls”. Based on our limited testing presented here for real applications, we recommend 

#example16 
rm(list=ls()) 
bond.maturities = seq(0.5,10,0.5) #Time_to_maturity 
bond.yields = Vasicek.yield(r0=0.02,t=0,T=bond.maturities, 
                                                 gamma=0.5,rbar=0.07,sigma=0.02)+ 
                         rnorm(length(bond.maturities),0.00,0.001) 
bonddata = data.frame(cbind(bond.maturities,bond.yields)) 
Vasicek.fit = 
    nls(bond.yields~Vasicek.yield(r0=0.02,t=0,T=bond.maturities, 
                                                          gamma,rbar,sigma), 
           start=list(gamma=0.2,rbar=0.02,sigma=0.01), 
           data=bonddata,algorithm = "port", 
           lower=list(gamma=0.1,rbar=0.01,sigma=0.005), 
           upper =list(gamma=3,rbar=1,sigma=1), 
           nls.control(maxiter = 100, tol = 1e-3, minFactor = 1/1024, 
                               printEval = FALSE, warnOnly = FALSE, 
                               scaleOffset = 0, nDcentral = FALSE)) 
sum_mod= summary(Vasicek.fit) 

         lower=list(gamma=0.1,rbar=0.01), 
         upper =list(gamma=3,rbar=1), 
         nls.control(maxiter = 100, tol = 1e-3, minFactor = 1/1024, 
                             printEval = FALSE, warnOnly = FALSE, 
                             scaleOffset = 0, nDcentral = FALSE)) 
sum_mod= summary(Vasicek.fit) 
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using “nls” and trying out many different initial values and increasing number of iterations, before settling 
into one solution. 

In the following code chunk we use data in Table 15.1 of [24]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We see that values produced by “nlm” are close to the values given in Example 15.1 of [24]. The following 
is a summary statistics of the “nls” method, which converged after 7 iterations. 

 

To understand which optimization routine performs better we plot the fitted data along with market data 
and textbook estimates: 

 

#example17 
# clear the workspace and functions 
rm(list=ls()) 
 
bond.prices = VeronesiTable15p1$Strips/100 
bond.maturities = VeronesiTable15p1$’Time to Maturity’ 
bond.yields = -log(bond.prices)/bond.maturities 
bonddata = data.frame(cbind(bond.maturities,bond.yields)) 
model = nlm(f=Vasicek.J,p=c(0.4,0.06),r0=0.0168,sigma=0.0221, 
                        bond.prices=bond.prices,bond.maturities=bond.maturities) 
model1 = optim(c(0.4,0.06),Vasicek.J,method=("CG"),sigma=0.0221 
                             ,bond.prices=bond.prices,bond.maturities=bond.maturities) 
Vasicek.fit = 
    nls(bond.yields~Vasicek.yield(r0=0.0168,t=0,T=bond.maturities, 
                                                          gamma,rbar,sigma=0.0221), 
          start=list(gamma=0.4,rbar=0.06), 
          data=bonddata,algorithm = "port", 
          lower=list(gamma=0.1,rbar=0.01), 
          upper =list(gamma=10,rbar=10), 
          nls.control(maxiter = 1000, tol = 1e-3, minFactor = 1/1024, 
                              printEval = FALSE, warnOnly = FALSE, 
                              scaleOffset = 0, nDcentral = FALSE)) 
sum_mod= summary(Vasicek.fit) 
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#example18 
optim.yield =Vasicek.yield(r0=0.0168,t=0,T=bond.maturities, 
                                                gamma=model$estimate[1],rbar=model$estimate[2], 
                                                sigma=0.0222) 
nlm.yield =Vasicek.yield(r0=0.0168,t=0,T=bond.maturities, 
                                            gamma=model1$par[1],rbar=model1$par[2], 
                                            sigma=0.0222) 
text.yield = Vasicek.yield(r0=0.0168,t=0,T=bond.maturities, 
                                             gamma=0.4653,rbar=0.0634,sigma=0.0222) 
plot(bond.maturities,bond.yields*100,xlab="Maturities",ylab="Yield(%)", 
         type="b",pch=10,lty="solid",col="red1") 
lines(bond.maturities,fitted(Vasicek.fit)*100,type="b",pch=20,lty="solid", 
          col="rosybrown") 
lines(bond.maturities,optim.yield*100,type="b",pch=12,col="green4") 
lines(bond.maturities,nlm.yield*100,type="b",pch=8,col="royalblue") 
lines(bond.maturities,text.yield*100,type="b",pch=13,col="magenta") 
legend("bottomright",legend=c("Market Yield(%)","nls Yield(%)", 
                                                          "optim Yield(%)","nlm Yield(%)","Text Yield(%)"), 
             col=c("red1","rosybrown","green4","royalblue","magenta"), 
             lty=c(1,1,1),pch=c(10,20,12,8,13)) 
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3.3 THE CIR MODEL:  REAL-WORLD CALIBRATION 
In this section we consider three calibration methods: the Euler method, exact likelihood estimates and the 
generalized method of moments (GMM). The Euler discretization method leads to explicit expressions for 
estimates, while the exact maximum likelihood estimate method and GMM require using numerical 
routines to obtain solutions. 

3.3.1 EULER METHOD 
As we saw earlier the Euler discretization of the CIR model leads to: 

 

with 𝜖𝜖𝑖𝑖 's that are i.i.d. normal with mean 0 standard deviation 𝜎𝜎. We can rearrange this to get a linear 
regression as below: 

 

Now write: 

 

To obtain MLEs of 𝛼𝛼1 and 𝛽𝛽1 we can use the “lm” function in R. Once we obtain least square estimates (or 
MLE) of 𝛼𝛼1 and 𝛽𝛽1 we can obtain 𝛾𝛾, �̅�𝑟 and 𝛼𝛼 using: 

 

The following R code snippet illustrates this point along with a simple study of bias and mean square error 
of this estimate. 

 

 

 

 

 

#example19 
# The following code snippets calculate the bias of simulated parameters 
#CIR Calibration 
rm(list=ls()) # clear the workspace and functions 
graphics.off() # clear the plots 
# CIR Euler estimate 
# Initialize parameters 
library(matrixStats) 
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3.3.2 MAXIMUM LIKELIHOOD ESTIMATE 
As we saw earlier a short rate sample can be stated as 𝑟𝑟(0), 𝑟𝑟(1), … , 𝑟𝑟(𝑛𝑛). Using (5) we can write the 
following expression for the full likelihood function: 

 
t0=0 
T=10 
r0=0.02 
gamma=0.3807 
rbar=0.072 
alpha=0.0548 
paras = c(gamma,rbar,alpha) 
# Initialize # of paths number of points in each path 
Delta = 1/252 
N = ceiling((T-t0)/Delta) 
 
set.seed(123) 
X=CIR.Trans.sim(t0=0,T=10,Delta=1/252,r0=0.02, 
                              gamma=0.3807,rbar=0.072,alpha=0.0548,M=1000) 

M = ncol(X) 
euler.est= matrix(NA,3,M) 
for (i in 1:M){ 
   x1 = X[1:N,i]^(-0.5) 
   x2 = X[1:N,i]^(0.5) 
   y = X[2:(N+1),i]*x1 
   model=lm(y~0+x1+x2) 
   euler.est[1,i]= (1-as.numeric(model$coefficients)[2])/Delta 
   euler.est[2,i] = as.numeric(model$coefficients)[1]/ 
                         (1-as.numeric(model$coefficients)[2]) 
   euler.est[3,i] = sigma(model)^2/Delta 
} 
 
bias=rowMeans(euler.est-paras) 
sd =rowSds(euler.est) 
rmse =(rowMeans((euler.est-paras)^2))^0.5 
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where 𝑓𝑓(𝑟𝑟(0)|𝛾𝛾, �̅�𝑟,𝛼𝛼) is a pdf of 𝑟𝑟(0), 𝑓𝑓(𝑟𝑟(0)|𝛾𝛾, �̅�𝑟,𝛼𝛼) are the conditional pdfs of 𝑟𝑟(𝑖𝑖 + 1)|𝑟𝑟(𝑖𝑖) for 𝑖𝑖 =
0, 1, 2, … , 𝑐𝑐∆, 𝜗𝜗 and 𝜆𝜆𝑖𝑖  are as given below: 

 

Since 𝑓𝑓(𝑟𝑟(𝑖𝑖 + 1)|𝑟𝑟(𝑖𝑖), 𝛾𝛾, �̅�𝑟,𝛼𝛼) is a function of a non-central 𝜒𝜒2 pdf, we will have the full likelihood function 
if we specify the pdf, 𝑓𝑓(𝑟𝑟(0)|𝛾𝛾, �̅�𝑟,𝛼𝛼). However, in CIR calibration using MLE both [19] and [20] ignore the 
contribution of 𝑓𝑓(𝑟𝑟(0)|𝛾𝛾, �̅�𝑟,𝛼𝛼) and call them as MLEs, even though it is actually based on quasi-likelihood 
functions. 

The maximization of the quasi-likelihood function can be easily implemented in R as given below; however 
numerical solutions mostly depend on the initial guess. There are some concerns with this method, which 
uses R function “dchisq” as it is based on evaluation of a truncated form of the infinite sum in (6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

#example20 
# The following code snippets calculate the bias of simulated parameters 
# CIR Calibration 
rm(list=ls()) # clear the workspace and functions 
graphics.off() # clear the plots 
# CIR Euler estimate 
# Initialize parameters 
library(matrixStats) 
t0=0 
T=10 
r0=0.02 
gamma=0.3807 
rbar=0.072 
alpha=0.0548 
paras = c(gamma,rbar,alpha) 
# Initialize # of paths number of points in each path 
Delta = 1/252 
N = ceiling((T-t0)/Delta) 
 
set.seed(123) 
X=CIR.Trans.sim(t0=0,T=10,Delta=1/252,r0=0.02, 
                              gamma=0.3807,rbar=0.072,alpha=0.0548,M=100) 
 
M = ncol(X) 
euler.est= matrix(NA,3,M) 
mle.est = matrix(NA,3,M) 
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As you see in each of the sample calculations, the estimate of 𝛼𝛼 has relatively smaller bias and the 
estimates of 𝛾𝛾 and �̅�𝑟 have a larger bias. 

3.4 THE GENERALIZED METHOD OF MOMENTS 
The idea of the generalized method of moments (GMM) first appeared in [16]. This method compares 
sample moments with their theoretical values. The parameters are estimated by minimizing the distance 
between sample moments and their theoretical values. Chan, Karolyi, Longstaff and Sanders (CKLS) [7] 
illustrate how to use GMM for the CKLS short rate model given by the following SDE: 

𝑑𝑑𝑟𝑟𝑡𝑡 = 𝛾𝛾(�̅�𝑟 − 𝑟𝑟𝑡𝑡)𝑑𝑑𝑑𝑑 + (𝛼𝛼)1/2𝑟𝑟𝑡𝑡𝜏𝜏𝑑𝑑𝑋𝑋𝑡𝑡  

Wsample = NULL 
for (i in 1:M){ 
  x1 = X[1:N,i]^(-0.5) 
  x2 = X[1:N,i]^(0.5) 
  y = X[2:(N+1),i]*x1 
  model=lm(y~0+x1+x2) 
  euler.est[1,i]= (1-as.numeric(model$coefficients)[2])/Delta 
  euler.est[2,i] = as.numeric(model$coefficients)[1]/ 
                        (1-as.numeric(model$coefficients)[2]) 
  euler.est[3,i] = sigma(model)^2/Delta 
  model1 = optim(euler.est[,i],CIR.log.lik,NULL,X[,i],method="BFGS") 
  mle.est[,i]= model1$par 
  if (!is.null(model1$message)) 
    Wsample = append(Wsample,i) 
} 

bias.euler= rowMeans(euler.est-paras) 
sd.euler= rowSds(euler.est) 
rmse.euler =(rowMeans((euler.est-paras)^2))^0.5 
bias.mle =rowMeans(mle.est-paras) 
sd.mle= rowSds(mle.est) 
rmse.mle = (rowMeans((mle.est-paras)^2))^0.5 
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Note that the above is a generalization of both the Vasicek and the CIR models as 𝛼𝛼 = 𝜎𝜎2, 𝜏𝜏 = 0 and 𝜏𝜏 =
1/2 yields the Vasicek and the CIR models respectively. As CIR contains only three parameters we can 
adopt GMM as follows: 

First define: 

 

We choose 𝛼𝛼1,𝛽𝛽1 and 𝜎𝜎 to set 𝑓𝑓1, 𝑓𝑓2 and 𝑓𝑓3 to zero, for instance by minimizing: 

𝐽𝐽(𝛼𝛼1,𝛽𝛽1,𝜎𝜎) = 𝑓𝑓12 + 𝑓𝑓22 + 𝑓𝑓32 

The above equations are implemented in the code chunk: 

 

 

 

 

 

 

 

 

 

 

Once we obtain GMM estimates for 𝛼𝛼1,𝛽𝛽1 and 𝜎𝜎 we obtain estimates for 𝛾𝛾, �̅�𝑟 and 𝛼𝛼 using the following as 
in the Euler method: 

 

The following R-code snippets implement this method: 

 

CIR.gmm = function(param,X){ 
  alpha1 = param[1] 
  beta1= param[2] 
  sigma = param[3] 
  N = length(X) 
  f1=0 
  f2=0 
  f3=0 
  for (i in (2:N)) 
  { 
    f1 = f1 +  X[i]-alpha1-beta1*X[i-1] 
    f2 = f2 + (X[i]-alpha1-beta1*X[i-1])^2 - X[i-1]*sigma^2 
    f3 = f3 + (X[i]-alpha1-beta1*X[i-1]) * X[i-1] 
  } 
  return(1/(N-1)*(f1^2+f2^2+f3^2)) 
} 
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#example21 
rm(list=ls()) # clear the workspace and functions 
graphics.off() # clear the plots 
# CIR Euler estimate 
# Initialize parameters 
library(matrixStats) 

t0=0 
T=10 
r0=0.02 
gamma=0.3807 
rbar=0.072 
alpha=0.0548 
paras = c(gamma,rbar,alpha) 
# Initialize # of paths number of points in each path 
Delta = 1/252 
N = ceiling((T-t0)/Delta) 

set.seed(123) 
X=CIR.Trans.sim(t0=0,T=10,Delta=1/252,r0=0.02, 
                              gamma=0.3807,rbar=0.072,alpha=0.0548,M=10) 
 
M = ncol(X) 
euler.est= matrix(NA,3,M) 
gmm.est = matrix(NA,3,M) 
Wsample = NULL 
for (i in 1:M){ 
  x1 = X[1:N,i]^(-0.5) 
  x2 = X[1:N,i]^(0.5) 
  y = X[2:(N+1),i]*x1 
  model=lm(y~0+x1+x2) 
  euler.est[1,i] = (1-as.numeric(model$coefficients)[2])/Delta 
  euler.est[2,i] = as.numeric(model$coefficients)[1]/ 
                        (1-as.numeric(model$coefficients)[2]) 
  euler.est[3,i] = sigma(model)^2/Delta 
  model2 = optim(c(as.numeric(model$coefficients)[1], 
                                   as.numeric(model$coefficients)[2],sigma(model)) 
                                ,CIR.gmm,NULL,X[,i],method="L-BFGS-B") 
  gmm.est[1,i] = (1- model2$par[2])/Delta 
  gmm.est[2,i] = model2$par[1]/(1-model2$par[2]) 
  gmm.est[3,i] = model2$par[3]^2/Delta 
} 
# performance measurements 
bias.euler = rowMeans(euler.est-paras) 
sd.euler = rowSds(euler.est) 
rmse.euler = (rowMeans((euler.est-paras)^2))^0.5 
bias.gmm = rowMeans(gmm.est-paras) 
sd.gmm = rowSds(gmm.est) 
rmse.gmm = (rowMeans((gmm.est-paras)^2))^0.5 
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Simulation Performance Based 
On 10 Sample Paths 

 

As we can see from the results, the difference between the Euler method and this method is minor. 
Mathematically, we can prove that the Euler method and GMM would produce identical estimates in the 
CIR model. 

3.5 THE CIR MODEL:  RISK-NEUTRAL CALIBRATION 
This section is very similar to the Section 3.2 “Vasicek model: risk-neutral calibration”.  The main difference 
is, in this section we use CIR model zero coupon bond pricing formulas (15.70) to (15.72) of [24] which are 
listed below, instead of the formulas in Section 3.2. 

 

The calibration process involves minimizing the following quantity for a given value of 𝛼𝛼: 

𝐽𝐽(𝛾𝛾∗, �̅�𝑟∗) = ��𝑍𝑍𝐶𝐶𝐶𝐶𝐶𝐶(𝑟𝑟0, 0;𝑇𝑇𝑖𝑖) − 𝑍𝑍𝐷𝐷𝐷𝐷𝑡𝑡𝐷𝐷(0,𝑇𝑇𝑖𝑖)�
2

𝑛𝑛

𝑖𝑖=1

 

We can use either “nlm” or “optim” for this purpose as before. The following example first calculates a 
bond price vector for given maturities with known parameter values and then calculates parameters using 
the minimization. It is used as a verification of our code for the minimization as in the Vasicek case. 

 

 

 

 

 

 

 

#example22 
rm(list=ls()) # clear the workspace and functions 
bond.maturities = seq(0.5,10,0.5) 
bond.prices = CIR.zcbp(r0=0.02,t=0,T=bond.maturities,gamma=0.5, 
                                          rbar=0.07,alpha=0.05) 
model = nlm(f=CIR.J,p=c(0.4,0.05),r0=0.02,alpha=0.05, 
                        bond.prices=bond.prices, 
                        bond.maturities=bond.maturities) 
model1 = optim(c(0.4,0.05),CIR.J,method=("BFGS") 
                              ,r0=0.02,alpha=0.05, 
                              bond.prices=bond.prices, 
                              bond.maturities=bond.maturities) 
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CIR Risk-Neutral Parameter Estimates With 𝜶𝜶 = 𝟎𝟎.𝟎𝟎𝟎𝟎 

 

As in the Vasicek case we could try to estimate all three parameters from bond pricing data. 

 

 

 

 

 

 

 

After a few initial guesses, we see that the results given in the table below are not satisfactory. 

CIR Risk-neutral Parameter Estimates 

 

Therefore, we do not recommend using bond prices to estimate 𝛼𝛼. 

As in the Vasicek case, instead of writing our own function to minimize we can use the “nls” package for 
non-linear least squares minimization. The following code snippet illustrates usage of “nls” with bond 
yields. 

 

 

 

 

 

 

 

 

#example23 
rm(list=ls()) # clear the workspace and functions 
bond.maturities = seq(0.5,10,0.5) 
bond.prices = CIR.zcbp(r0=0.02,t=0,T=bond.maturities,gamma=0.5, 
                                          rbar=0.07,alpha=0.05) 
model = nlm(f=CIR.J,p=c(0.3,0.05,0.02),r0=0.02, 
                        bond.prices=bond.prices, 
                        bond.maturities=bond.maturities) 
model1 = optim(c(0.3,0.05,0.02),lower = c(0,0,0),CIR.J,method=("L-BFGS-B") 
                             ,r0=0.02,bond.prices=bond.prices, 
                              bond.maturities=bond.maturities) 

#example24 
rm(list=ls()) 
CIR.yield = function(r0=0.02,t=0,T=1,gamma=0.3807,rbar=0.072,alpha=0.0548){ 
    psi1 = (gamma^2+2*alpha)^0.5 
    Denom = (gamma+psi1)*(exp(psi1*(T-t))-1)+ 2*psi1 
    B = 2*(exp(psi1*(T-t))-1)/Denom 
    A = 2*rbar*gamma/alpha* log((2*psi1*exp((psi1+gamma)*(T-t)/2))/Denom) 
    return((-A+B*r0)/(T-t)) 
} 
bond.maturities = seq(0.5,10,0.5) #Time_to_maturity 
bond.yields = CIR.yield(r0=0.02,t=0,T=bond.maturities, 
                                          gamma=0.5,rbar=0.07,alpha=0.05) 
bonddata = data.frame(cbind(bond.maturities,bond.yields)) 
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The “nls” algorithm converged in 9 iterations and summary statistics are: 

The Vasicek Fit (Simulated Data):  Summary Statistics 

 

This illustrates that as in the Vasicek case “nls” performs better than both “optim” and “nlm” when the 
underlying distribution is CIR. As in the Vasicek case we may try to estimate the standard deviation 
parameter from the bond yield data as illustrated below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The “nls” algorithm converged in 26 iterations and summary statistics are: 

#example25 
rm(list=ls()) 
CIR.yield = function(r0=0.02,t=0,T=1,gamma=0.3807,rbar=0.072,alpha=0.0548){ 
    psi1 = (gamma^2+2*alpha)^0.5 
    Denom = (gamma+psi1)*(exp(psi1*(T-t))-1)+ 2*psi1 
    B = 2*(exp(psi1*(T-t))-1)/Denom 
    A = 2*rbar*gamma/alpha* log((2*psi1*exp((psi1+gamma)*(T-t)/2))/Denom) 
    return((-A+B*r0)/(T-t)) 
} 
bond.maturities = seq(0.5,10,0.5) #Time_to_maturity 
bond.yields = CIR.yield(r0=0.02,t=0,T=bond.maturities, 
                                          gamma=0.5,rbar=0.07,alpha=0.05) 
bonddata = data.frame(cbind(bond.maturities,bond.yields)) 
CIR.fit = 
    nls(bond.yields~CIR.yield(r0=0.02,t=0,T=bond.maturities, 
          gamma,rbar,alpha), 
          start=list(gamma=0.2,rbar=0.02,alpha=0.02), 
          data=bonddata,algorithm = "port", 
          lower=list(gamma=0.1,rbar=0.01,alpha=0.02), 
          upper=list(gamma=3,rbar=1,alpha=1), 
          nls.control(maxiter = 1000, tol = 1e-3, minFactor = 1/1024, 
                              printEval = FALSE, warnOnly = FALSE, 
                              scaleOffset = 0, nDcentral = FALSE)) 

 

CIR.fit = 
    nls(bond.yields~CIR.yield(r0=0.02,t=0,T=bond.maturities, 
                                                  gamma,rbar,alpha=0.05), 
          start=list(gamma=0.2,rbar=0.02), 
          data=bonddata,algorithm = "port", 
          lower=list(gamma=0.1,rbar=0.01), 
          upper=list(gamma=3,rbar=1), 
          nls.control(maxiter = 100, tol = 1e-3, minFactor = 1/1024, 
                              printEval = FALSE, warnOnly = FALSE, 
                              scaleOffset = 0, nDcentral = FALSE)) 
sum_mod=summary(CIR.fit) 
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The Vasicek Fit (Simulated Data):  Summary Statistics 

 

For a practical example we could try using data from Table 15.1 of [24]: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CIR Risk-Neutral Parameter Estimates With 𝜶𝜶 = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 

 

#example26 
rm(list=ls()) # clear the workspace and functions 
CIR.yield = function(r0=0.02,t=0,T=1,gamma=0.3807,rbar=0.072,alpha=0.0548){ 
    psi1 = (gamma^2+2*alpha)^0.5 
    Denom = (gamma+psi1)*(exp(psi1*(T-t))-1)+ 2*psi1 
    B = 2*(exp(psi1*(T-t))-1)/Denom 
    A = 2*rbar*gamma/alpha* log((2*psi1*exp((psi1+gamma)*(T-t)/2))/Denom) 
    return((-A+B*r0)/(T-t)) 
} 
bond.maturities = VeronesiTable15p1$’Time to Maturity’ 
bond.prices=VeronesiTable15p1$Strips/100 
bond.yields = -log(bond.prices)/bond.maturities 
bonddata = data.frame(cbind(bond.maturities,bond.yields)) 
model = nlm(f=CIR.J,p=c(0.4,0.05),r0=0.0168,alpha=0.0548, 
                        bond.prices=bond.prices, 
                        bond.maturities=bond.maturities) 
model1 = optim(c(0.4,0.05),CIR.J,method=("BFGS") 
                             ,r0=0.0168,alpha=0.0548,bond.prices=bond.prices, 
                              bond.maturities=bond.maturities) 
CIR.fit = 
    nls(bond.yields~CIR.yield(r0=0.0168,t=0,T=bond.maturities, 
                                                  gamma,rbar,alpha=0.0548), 
           start=list(gamma=0.4,rbar=0.06), 
           data=bonddata,algorithm = "port", 
           lower=list(gamma=0.1,rbar=0.01), 
           upper=list(gamma=10,rbar=10), 
           nls.control(maxiter = 1000, tol = 1e-3, minFactor = 1/1024, 
                               printEval = FALSE, warnOnly = FALSE, 
                               scaleOffset = 0, nDcentral = FALSE)) 
sum_mod= summary(CIR.fit) 
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We see that “optim” produced values that are close to the estimates of 𝛾𝛾∗ = 0.3807 and �̅�𝑟∗ = 7.2% in 
footnote 10 of page 552 of [24]. However, the resulting estimates do not satisfy the required constraint of  
𝛾𝛾 × �̅�𝑟 > 𝛼𝛼/2. 

The following are summary statistics of the “nls” method, which converged after 11 iterations: 

The CIR Fit (Simulated Data):  Summary Statistics 

 

If 𝛼𝛼 is also unknown, we need to modify the code as given below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

#example27 
rm(list=ls()) # clear the workspace and functions 
CIR.yield = function(r0=0.02,t=0,T=1,gamma=0.3807,rbar=0.072,alpha=0.0548){ 
    psi1 = (gamma^2+2*alpha)^0.5 
    Denom = (gamma+psi1)*(exp(psi1*(T-t))-1)+ 2*psi1 
    B = 2*(exp(psi1*(T-t))-1)/Denom 
    A = 2*rbar*gamma/alpha* log((2*psi1*exp((psi1+gamma)*(T-t)/2))/Denom) 
    return((-A+B*r0)/(T-t)) 
} 
bond.maturities = VeronesiTable15p1$’Time to Maturity’ 
bond.prices = VeronesiTable15p1$Strips/100 
bond.yields = -log(bond.prices)/bond.maturities 
bonddata = data.frame(cbind(bond.maturities,bond.yields)) 
model = nlm(f=CIR.J,p=c(0.4,0.05,0.03),r0=0.0168, 
                        bond.prices=bond.prices,iterlim=2000, 
                        bond.maturities=bond.maturities) 
model1 = optim(c(0.4,0.05,0.03),CIR.J,method=("BFGS") 
                              ,r0=0.0168,bond.prices=bond.prices, 
                              bond.maturities=bond.maturities) 
CIR.fit = 
    nls(bond.yields~CIR.yield(r0=0.0168,t=0,T=bond.maturities, 
                                                  gamma,rbar,alpha), 
          start=list(gamma=0.4,rbar=0.06,alpha=0.03), 
          data=bonddata,algorithm = "port", 
          lower=list(gamma=0.1,rbar=0.01,alpha=0.03), 
          upper=list(gamma=10,rbar=10,alpha=1), 
          nls.control(maxiter = 1000, tol = 1e-3, minFactor = 1/1024, 
                              printEval = FALSE, warnOnly = FALSE, 
                              scaleOffset = 0, nDcentral = FALSE)) 
sum_mod= summary(CIR.fit) 
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CIR Risk-Neutral Parameter Estimates 

 

We see that only “optim” produces acceptable estimates but the resulting 𝛼𝛼 value is not close to 0.0548. 
The following is a summary statistics of “nls” method which converged after 55 iterations: 

The CIR Fit (Simulated Data):  Summary Statistics 

 

Based on the summary statistics we can conclude that CIR is not suitable model for the data set. To 
evaluate this issue further we can look at the fit of the model with the Vasicek model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

#example28 
rm(list=ls()) # clear the workspace and functions 
CIR.yield = function(r0=0.02,t=0,T=1,gamma=0.3807,rbar=0.072,alpha=0.0548){ 
    psi1 = (gamma^2+2*alpha)^0.5 
    Denom = (gamma+psi1)*(exp(psi1*(T-t))-1)+ 2*psi1 
    B = 2*(exp(psi1*(T-t))-1)/Denom 
    A = 2*rbar*gamma/alpha* log((2*psi1*exp((psi1+gamma)*(T-t)/2))/Denom) 
    return((-A+B*r0)/(T-t)) 
} 
bond.maturities = VeronesiTable15p1$’Time to Maturity’ 
bond.prices = VeronesiTable15p1$Strips/100 
bond.yields = -log(bond.prices)/bond.maturities 
bonddata = data.frame(cbind(bond.maturities,bond.yields)) 
Vasicek.fit = 
    nls(bond.yields~Vasicek.yield(r0=0.0168,t=0,T=bond.maturities, 
                                                          gamma,rbar,sigma=0.0221), 
           start=list(gamma=0.4,rbar=0.06), 
           data=bonddata,algorithm = "port", 
           lower=list(gamma=0.1,rbar=0.01), 
           upper=list(gamma=10,rbar=10), 
           nls.control(maxiter = 1000, tol = 1e-3, minFactor = 1/1024, 
                               printEval = FALSE, warnOnly = FALSE, 
                               scaleOffset = 0, nDcentral = FALSE)) 
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From the plot we see that the CIR fit is marginally better than the Vasicek fit but the CIR fitted values may 
lead to negative interest rates; therefore we recommend using the Vasicek model for the given data. 

CIR.fit = 
    nls(bond.yields~CIR.yield(r0=0.0168,t=0,T=bond.maturities, 
                                                  gamma,rbar,alpha), 
          start=list(gamma=0.4,rbar=0.06,alpha=0.03), 
          data=bonddata,algorithm = "port", 
          lower=list(gamma=0.1,rbar=0.01,alpha=0.03), 
          upper =list(gamma=10,rbar=10,alpha=1), 
          nls.control(maxiter = 1000, tol = 1e-3, minFactor = 1/1024, 
                              printEval = FALSE, warnOnly = FALSE, 
                              scaleOffset = 0, nDcentral = FALSE)) 
plot(bond.maturities,bond.yields*100,xlab="Maturities",ylab="Yield(%)", 
         type="b",pch=10,lty="solid",col="red1") 
lines(bond.maturities,fitted(Vasicek.fit)*100,type="b",pch=20,lty="solid", 
          col="green3") 
lines(bond.maturities,fitted(CIR.fit)*100,type="b",pch=12,col="blue") 
legend("bottomright",legend=c("Market Yield(%)","Vasicek fitted yield(%)", 
                                                          "CIR fitted yield(%)"),col=c("red1","green3","blue"), 
                                                          lty=c(1,1,1),pch=c(10,20,12)) 
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3.6 THE TWO-FACTOR VASICEK MODEL CALIBRATION 
The literature on real-world calibration of the two-factor Vasicek model is non-existent. Even the seminal 
text on interest rate models by Brigo (2009) focuses on calibrating in the risk-neutral environment. The 
difficulty in calibrating in the real world lies in selecting short term rates and then long term rates. 
However, short and long term rates are extracted from bond prices which in turn use the risk-neutral world 
to model and calculate yields.  Essentially, to calibrate in the real world we need the observed values of 
𝜙𝜙1,𝑡𝑡 and 𝜙𝜙2,𝑡𝑡 individually but the market data (say overnight rates) are 𝑟𝑟𝑡𝑡 values. Therefore we have to use 
statistical mixture models to calibrate to real time data, but that is beyond the scope of this paper. As the 
appendix shows, zero-coupon bond prices under the two-factor Vasicek model are given by: 

𝑍𝑍�𝜙𝜙1,𝑡𝑡 ,𝜙𝜙2,𝑡𝑡 , 𝑑𝑑;𝑇𝑇� = 𝑒𝑒𝑥𝑥𝑒𝑒 �𝐴𝐴(𝑑𝑑;𝑇𝑇) − 𝜙𝜙1,𝑡𝑡𝐵𝐵1(𝑑𝑑;𝑇𝑇) − 𝜙𝜙2,𝑡𝑡𝐵𝐵2(𝑑𝑑;𝑇𝑇)�  (9) 

where:  

 

and 

𝐵𝐵𝑖𝑖(𝑑𝑑;𝑇𝑇) = � 𝑒𝑒𝑥𝑥𝑒𝑒(−𝛾𝛾𝑖𝑖𝑠𝑠)
𝑇𝑇−𝑡𝑡

0
𝑑𝑑𝑠𝑠, 𝑖𝑖 = 1,2,3 

With 𝛾𝛾3 = 𝛾𝛾1 + 𝛾𝛾2.  We write 𝐵𝐵𝑖𝑖(𝑑𝑑;𝑇𝑇) in an integral form as it is easy to evaluate it for 𝛾𝛾𝑖𝑖 = 0 and 𝛾𝛾𝑖𝑖 ≠ 0.  
The calibration process involves minimizing the following quantity: 

𝐽𝐽(𝛾𝛾∗, �̅�𝑟∗) = ∑ �𝑍𝑍𝑇𝑇𝑇𝑇𝑇𝑇−𝑓𝑓𝐷𝐷𝑐𝑐𝑡𝑡𝑇𝑇𝑟𝑟−𝑉𝑉𝐷𝐷𝑠𝑠𝑖𝑖𝑐𝑐𝑉𝑉𝑉𝑉(𝑟𝑟0, 0;𝑇𝑇𝑖𝑖) − 𝑍𝑍𝐷𝐷𝐷𝐷𝑡𝑡𝐷𝐷(0,𝑇𝑇𝑖𝑖)�
2

𝑛𝑛
𝑖𝑖=1   (10) 

where 𝑍𝑍𝑇𝑇𝑇𝑇𝑇𝑇−𝑓𝑓𝐷𝐷𝑐𝑐𝑡𝑡𝑇𝑇𝑟𝑟−𝑉𝑉𝐷𝐷𝑠𝑠𝑖𝑖𝑐𝑐𝑉𝑉𝑉𝑉(𝑟𝑟0, 0;𝑇𝑇𝑖𝑖) is as given in (9). As we need to estimate three parameters, we use a 
nonlinear least square minimization algorithm for this task. The R package “nls” is suitable for this task. In 
some cases 𝛾𝛾1 or 𝛾𝛾2 may turn out to be negative and in iterative computations the parameter values may 
go through zero; therefore it is important to know the behavior of 𝐴𝐴(𝑑𝑑;𝑇𝑇) and 𝐵𝐵(𝑑𝑑;𝑇𝑇) in the neighborhood 
of zero. As the appendix points out we can write: 

• When 𝛾𝛾1 = 0, 𝛾𝛾2 ≠ 0 

 

• When 𝛾𝛾1 ≠ 0, 𝛾𝛾2 = 0 
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• When 𝛾𝛾1 = 𝛾𝛾2 = 0 

 

The R function “Two.factor.Vasicek.A” implements these formulas. For the calibration we assume we have 
the following data after choosing a possible long-term rate (for example 5 years or 10 years): 

• Volatility of short-term rate 𝑑𝑑𝑟𝑟𝑡𝑡 ,𝜎𝜎𝜏𝜏 
• Volatility of long-term rate 𝑑𝑑𝑟𝑟𝑡𝑡(𝜏𝜏),𝜎𝜎(𝜏𝜏) 
• Correlation between short-term rate 𝑑𝑑𝑟𝑟𝑡𝑡 and long-term rate 𝑑𝑑𝑟𝑟𝑡𝑡(𝜏𝜏),𝜌𝜌(0, 𝜏𝜏) 
• Series of zero-coupon strip prices. 

For each set of given values of 𝛾𝛾1∗, 𝛾𝛾2∗,𝜙𝜙�⃗ 1∗ and 𝜙𝜙�⃗ 2∗ we solve following three simultaneous equations for 𝜎𝜎1,  
𝜎𝜎2 and 𝜌𝜌: 

 

Although the above three equations appear to be non-linear, they can be converted into linear equations 
of 𝜎𝜎1,  𝜎𝜎2 and cova, where cova is defined as 𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎 = 𝜌𝜌𝜎𝜎1𝜎𝜎2.  The R function “Two.factor.Vasicek.Vols” 
given below implements this. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Two.factor.Vasicek.Vols = function(phi1=-0.0413,phi2=0,gamma1=0.8269, 
                                                               gamma2=-0.0288,Tau=5,short.term.vol=0.0221, 
                                                               long.term.vol=0.0125,correlation=0.4713){ 
B1Tau = Vasicek.B(gamma=gamma1,T=Tau)/Tau 
B2Tau = Vasicek.B(gamma=gamma2,T=Tau)/Tau 
if (correlation==0) { 
  A = matrix(c(1,1,B1Tau^2,B2Tau^2),nrow=2,ncol=2,byrow=TRUE) 
  B = matrix(c(short.term.vol^2,long.term.vol^2),nrow=2,ncol=1) 
  est= solve(A,B) 
  paras = c(est[1]^0.5,est[2]^0.5) 
  return(paras) 
} 
else { 
  cova = short.term.vol*long.term.vol*correlation 
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Use these values of 𝜎𝜎1,  𝜎𝜎2 and 𝜌𝜌 in (9) along with strip prices to minimize (10) with respect to  𝛾𝛾1∗, 𝛾𝛾2∗,𝜙𝜙�⃗ 1∗ 
and 𝜙𝜙�⃗ 2∗.  In an iterative scheme with each set of new values of  𝛾𝛾1∗, 𝛾𝛾2∗,𝜙𝜙�⃗ 1∗ and 𝜙𝜙�⃗ 2∗, the parameters 𝜎𝜎1,  𝜎𝜎2 
and 𝜌𝜌 have to be calculated. Therefore, to feed to non-linear regression analysis we use the following 
routine for log bond yield calculation under the two-factor Vasicek model. 

 

 

The final call for the minimization is carried out as given below: 

 

 

 

 

 

 

 

#example29 
# Two factor Vasicek risk-neutral calibration with simulated data example 
rm(list=ls()) # clear the workspace and functions 
bond.maturities =seq(0.5,20,0.5) 
set.seed(12345) 

  A = matrix(c(1,1,2,B1Tau^2,B2Tau^2,2*B1Tau*B2Tau,B1Tau,B2Tau, 
                        (B1Tau+B2Tau)),nrow=3,ncol=3,byrow=TRUE) 
  B = matrix(c(short.term.vol^2,long.term.vol^2,cova),nrow=3,ncol=1) 
  est= solve(A,B) 
  paras = c(est[1]^0.5,est[2]^0.5,est[3]/(est[1]*est[2])^0.5) 
  return(paras) 
  } 
} 
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The “nls” algorithm converged in 74 iterations and summary statistics are: 

The Two-Factor Vasicek Fit (Simulated Data):  Summary Statistics 

 

The following values are obtained using the estimated values of 𝜙𝜙�⃗ 1∗, 𝛾𝛾1∗ and 𝛾𝛾2∗: 

 

                                 start=list(phi1=-0.1,gamma1=0.08,gamma2=-0.1), 
                                 data=bonddata,algorithm = "port", 
                                 lower=list(phi1=-1,gamma1=0,gamma2=-0.5), 
                                 upper =list(phi1=1,gamma1=0.999,gamma2=-0.01), 
                                 nls.control(maxiter = 100, tol = 1e-3, minFactor = 1/1024, 
                                                     printEval = FALSE, warnOnly = FALSE, 
                                                     scaleOffset = 0, nDcentral = FALSE)) 
sum_mod = summary(Two.factor.Vasicek.fit) 
est.nls= 
Two.factor.Vasicek.Vols(phi1=as.numeric(coef(Two.factor.Vasicek.fit))[1], 
                                            phi2=0, 
                                            gamma1=as.numeric(coef(Two.factor.Vasicek.fit))[2], 
                                            gamma2=as.numeric(coef(Two.factor.Vasicek.fit))[3], 
                                            Tau=5,short.term.vol=0.0221, 
                                                        long.term.vol=0.0125,correlation=0.4713) 

bond.prices = Two.factor.Vasicek.zcbpv2(t=0,T=bond.maturities,Tau=5, 
                                                                          rt=0.0168,rlTau=0.0452, 
                                                                          phi1=-0.0413,phi2=0, 
                                                                          gamma1=0.8269,gamma2=-0.0288, 
                                                                          short.term.vol = 0.0221, 
                                                                          long.term.vol = 0.0125, 
                                                                          correlation = 0.4713) 
bonddata = data.frame(cbind(bond.maturities,bond.prices)) 
 
Two.factor.Vasicek.fit = 
  nls(bond.prices~Two.factor.Vasicek.zcbpv2(t=0,T=bond.maturities, 
                                                                                Tau=5,rt=0.0168, 
                                                                                rlTau=0.0452, 
                                                                                phi1,phi2=0, 
                                                                                gamma1,gamma2, 
                                                                                short.term.vol = 0.0221, 
                                                                                long.term.vol = 0.0125, 
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From the summary statistics we see that the “nls” function converges to its true value quite easily. Now we 
can test the fit using an actual data set. For this purpose we use Table 15.1 of [24]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The “nls” algorithm converged in 12 iterations and summary statistics are: 

The Two-Factor Vasicek Fit:  Summary Statistics 

 

The following values are obtained using the estimated values of 𝜙𝜙�⃗ 1∗, 𝛾𝛾1∗ and 𝛾𝛾2∗: 

#example30 
rm(list=ls()) # clear the workspace and functions 
bond.maturities = VeronesiTable15p1$’Time to Maturity’ 
bond.yields = -log(VeronesiTable15p1$Strips/100)/bond.maturities 
bonddata = data.frame(cbind(bond.maturities,bond.yields)) 
Two.factor.Vasicek.fit = 
   nls(bond.yields~Two.factor.Vasicek.yield(t=0,T=bond.maturities, 
                                                                             Tau=5,rt=0.0168,rlTau=0.0452, 
                                                                             phi1,phi2=0,gamma1,gamma2, 
                                                                             short.term.vol = 0.0221, 
                                                                             long.term.vol = 0.0125, 
                                                                             correlation = 0.4713), 
                                                     start=list(phi1=-0.08,gamma1=0.7,gamma2=-0.04), 
                                                     data=bonddata,algorithm = "port", 
                                                     lower=list(phi1=-0.9,gamma1=-2,gamma2=-2), 
                                                     upper=list(phi1=0.9,gamma1=2,gamma2=2), 
                                                     nls.control(maxiter = 10000, tol = 1e-8, 
                                                                         minFactor = 1/10240, 
                                                                         printEval = FALSE, 
                                                                         warnOnly = TRUE, scaleOffset = 0, 
                                                                         nDcentral = FALSE),trace=FALSE) 
 
## Warning in nls(bond.yields ~ Two.factor.Vasicek.yield(t = 0, T = bond.maturities, 
:    Convergence failure:  false convergence (8) 
 
sum_mod = summary(Two.factor.Vasicek.fit) 
est.nls = Two.factor.Vasicek.Vols( 
       gamma1 = as.numeric(coef(Two.factor.Vasicek.fit))[2], 
       gamma2 = as.numeric(coef(Two.factor.Vasicek.fit))[3], 
                           Tau=5,short.term.vol=0.0221,long.term.vol=0.0125,correlation=0.4713) 
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We tried many possible starting values but it converged only to these values. However the convergence 
was always accompanied a warning message “false convergence(8)”. It may mean the yield rate function 
may not be continuous in the neighborhood of converging values. One may refer to [14] complete list of 
return codes2. 

The summary statistics suggests that the model is not appropriate. To examine further we plot the fitted 
value based on the two-factor Vasicek model along with the Vasicek model: 

 

 

 

2 return code 8: false convergence: the gradient ∇𝑓𝑓(𝑥𝑥) may be computed incorrectly, the other stopping tolerances may be too tight, or either 
𝑓𝑓 or ∇𝑓𝑓 may be discontinuous near the current iterate 𝑥𝑥. 
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The diagnostic p-values indicate that the two-factor Vasicek model is not an appropriate model for this 
data set. This agrees with the conclusion drawn in [24]. 

4 No-Arbitrage Models 
When we fit risk-neutral versions of Vasicek and CIR models to a term structure extracted from Treasury 
bond prices we see that the resulting models are not exact fits, they just minimize the total error between 
market values and model values. To eliminate this mismatch, Hull-White (1990, 1993) extend Vasicek 
models by including a time dependent drift parameter. The two-factor Hull-White model and the LIBOR 
Market models are two more examples of no arbitrage models. 

4.1 HULL-WHITE MODELS 
In this section we describe the single factor Hull-White model and the two factor Hull-White model. In 
theory arbitrage-free models reproduce the yield curve and prices for a set of interest rate derivatives such 
as caps, floors or swaptions. In the calibration process that we outline, we see that they do not precisely 
reproduce the yield curve and derivative prices, but the error is minimal.  

4.1.1 ONE FACTOR HULL-WHITE MODEL 
The one factor Hull-White model is an extension of the Vasicek model with a time-varying drift coefficient 
given below: 

𝑑𝑑𝑟𝑟𝑡𝑡 = (𝜃𝜃𝑡𝑡 − 𝛾𝛾∗𝑟𝑟𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝜎𝜎𝑑𝑑𝑋𝑋𝑡𝑡 
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The solution of this is: 

 

As the Hull-White model is a Gaussian model (Ornstein-Uhlenbeck process3) the zero-coupon bond prices 
take the form: 

 

When the Hull-White model is calibrated to be arbitrage-free, market discount factors should match the 
model price. We can solve for function 𝜃𝜃𝑡𝑡 as illustrated below: 

 

But 

 

Differentiating both sides with respect to 𝑇𝑇 we can obtain an expression for 𝜃𝜃𝑇𝑇 

 

 

3 An Ornstein-Uhlenbeck process is a Weiner process (random walk) modified so that it mean-reverts. 
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We notice that to evaluate 𝐸𝐸[𝑟𝑟𝑠𝑠+𝑡𝑡|𝑟𝑟𝑡𝑡], we need ∫ 𝜃𝜃𝛾𝛾𝑒𝑒𝑥𝑥𝑒𝑒(𝛾𝛾∗𝑑𝑑)𝑠𝑠+𝑡𝑡
𝑡𝑡 𝑑𝑑𝑑𝑑. However, this integral can be 

simplified as illustrated below. 

We already have the following from the derivation of 𝜃𝜃𝑡𝑡: 

 

From this we see: 

 

Therefore, we have the following expression for 𝐸𝐸[𝑟𝑟𝑠𝑠+𝑡𝑡|𝑟𝑟𝑡𝑡]: 

 

This expression along with the expression for the 𝑉𝑉𝑎𝑎𝑟𝑟[𝑟𝑟𝑠𝑠+𝑡𝑡|𝑟𝑟𝑡𝑡] can be used to simulate interest rate paths 
from the Hull-White model. 

4.1.2 THE TWO-FACTOR HULL-WHITE MODEL 
The two-factor Hull-White model is a generalization of the two-factor Vasicek model. As in the two-factor 
Vasicek model, short rates are the sum of two factors, 

𝑟𝑟𝑡𝑡 = 𝜙𝜙1,𝑡𝑡 + 𝜙𝜙2,𝑡𝑡 , 

Where each factor follows the following SDEs: 
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As given in ([24]) this is in fact the two-factor Vasicek model with 𝛾𝛾1∗𝜙𝜙�⃗ 1∗ replaced by a time-varying function 
𝜃𝜃𝑡𝑡 and setting 𝜙𝜙�⃗ 2 = 0.  As in the two-factor Vasicek model, the SDE for each factor can be solved to obtain 
the following: 

 

Hence we can obtain the following expressions for conditional expectations, variances and covariance: 

 

As we worked out for the one-factor Hull-White model we can obtain expressions for 𝜃𝜃𝑡𝑡 in terms of 
instantaneous forward rates, 𝑓𝑓(0, 𝑑𝑑), and 𝛾𝛾1∗, 𝛾𝛾2∗,𝜎𝜎1∗ and 𝜎𝜎2∗ and hence an expression for 𝐸𝐸[𝑟𝑟𝑠𝑠+𝑡𝑡|𝑟𝑟𝑡𝑡] but it is a 
quite long and involved expression, so we avoid reproducing it here. 

4.1.3 HULL-WHITE MODEL CALIBRATION 
Both one-factor and two-factor Hull-White model calibrations involve two steps. In the first step the yield 
curve will be interpolated to obtain values for chosen derivative cash flow timings. Then the time 
independent parameters of the Hull-White model are estimated using the interpolated yield curve, 
derivative prices, and non-linear least square methods. Least square methods can be used as long as the 
number of parameters is smaller than the available derivative prices. Then, using these estimated 
parameters, the time dependent parameter 𝜃𝜃𝑡𝑡 will be calculated. 

The yield curve interpolation stage is the same for both one-factor and two-factor Hull-White models. For 
the yield curve interpolation one may use cubic splines, higher degree (degree of six or ten) polynomial fit, 
or Nelson-Siegel curve. 

As it is difficult to cover all the possible option prices that can be used for calibration of time independent 
parameters in implementation, we concentrate on using cap prices. In the yield curve interpolation stage 
both one-factor and two-factor model use the following steps: 

1. Obtain rates 𝑟𝑟(0, 𝑑𝑑𝑖𝑖) using the discount factors 𝑍𝑍(𝑟𝑟, 𝑑𝑑𝑖𝑖) from 𝑟𝑟(0, 𝑑𝑑𝑖𝑖) = − 1
𝑡𝑡𝑖𝑖
𝑙𝑙𝑛𝑛�𝑍𝑍(0, 𝑑𝑑𝑖𝑖)�, 𝑖𝑖 =

1,2, … ,𝑛𝑛. 
2. Fit a curve, �̂�𝑟(0, 𝑑𝑑𝑖𝑖), for the points �𝑑𝑑𝑖𝑖 , 𝑟𝑟(0, 𝑑𝑑𝑖𝑖)�, 𝑖𝑖 = 1,2, … ,𝑛𝑛. 

3. Use the fitted curve to get an estimate 𝑓𝑓(0, 𝑑𝑑) for 𝑓𝑓(0, 𝑑𝑑) using 𝑓𝑓(0, 𝑑𝑑) = − 𝜕𝜕
𝜕𝜕𝑡𝑡

[𝑑𝑑�̂�𝑟(0, 𝑑𝑑)] 
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4.2 YIELD CURVE INTERPOLATION: ONE-FACTOR MODEL 
In fitting a curve for 𝑟𝑟(0, 𝑑𝑑) we found that cubic-spline interpolation works poorly as the resulting 𝑓𝑓(0, 𝑑𝑑) 
was an oscillating function. [24] suggests using a polynomial of degree 6 or degree 10 for 𝑟𝑟(0, 𝑑𝑑). As an 
alternative we can fit using a Nelson-Siegel curve. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cubic Spline Fit 

  

 

#example 32 
# Hull-White model 
TM = VeronesiTable15p1$’Time to Maturity’ 
Yield = VeronesiTable15p1$’Yield %’*100 
sigma=0.0196 
gamma=0.19 
xvals = seq(0,10,0.01) 
rates= model1(xvals) 
ratesdash = model1(xvals,1) 
rates2dash = model1(xvals,2) 
f0t = rates+ratesdash*xvals 
thetat = 2*ratesdash/100+xvals*rates2dash/100+sigma^2*xvals+ 
  gamma*f0t/100+sigma^2/ 
  (2*gamma)*(1-exp(-2*gamma*xvals)) 
plot(xvals,f0t,type="l",lty=2,col="blue",main="Cubic Spline fit", 
        xlab="Maturity",ylab="Rates(%)" ) 
points(TM,Yield,type="b",lty=1,col="red") 
points(xvals,rates,type="l",lty=1,col="green") 
legend("bottomright",legend=c("Forward curve","Current yield", 
                                                          "Fitted Yield"), 
             col=c("blue","red","green"),lty=c(2,1,1)) 
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The function θ (With Cubic Splines) 

  

4.2.1 FITTING AN 𝒏𝒏 DEGREE POLYNOMIAL FOR 𝒓𝒓(𝟎𝟎, 𝒕𝒕) 
R’s “poly” function fits the polynomial model: 

 

 

 

 

 

 

plot(xvals,thetat,type="l", 
        main=expression(paste("The function ", 
                                        theta," (With Cubic Splines)")), 
        xlab="Time",ylab="Theta") 

#example33 
TM = VeronesiTable15p1$’Time to Maturity’ 
Yield = VeronesiTable15p1$’Yield %’*100 
model1 = splinefun(TM,Yield,method="natural") 
sigma=0.0196 
gamma=0.19 
model2 = lm(Yield~poly(TM,6,raw=TRUE)) 
coefs = as.numeric(coef(model2)) 
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6th Degree Polynomial Fit 

 

 

 

 

 

 

 

 

 

plot(xvals,thetat,type="l", 
        main=expression(paste("The function ", 
                                        theta," (With 6 Degree Polynomial)")), 
        xlab="Time",ylab="Theta") 

xvals = seq(0,10,0.25) 
rates = sapply(xvals,polyfit,coeffs=coefs) 
ratesdash = sapply(xvals,polyfit,coeffs=coefs,deriv=1) 
rates2dash = sapply(xvals,polyfit,coeffs=coefs,deriv=2) 
f0t = rates+ratesdash*xvals 
thetat = 2*ratesdash/100+xvals*rates2dash/100+sigma^2*xvals+ 
    gamma*f0t/100+sigma^2/(2*gamma)*(1-exp(-2*gamma*xvals)) 
plot(xvals,f0t,type="l",lty=2,col="blue", 
        main="6th degree polynomial fit",xlab="Maturity",ylab="Rates(%)" ) 
points(TM,Yield,type="b",lty=1,col="red") 
points(xvals,rates,type="l",lty=1,col="green") 
legend("bottomright",legend=c("Forward curve","Current yield", 
                                                          "Fitted Yield"), 
              col=c("blue","red","green"),lty=c(2,1,1)) 
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The function θ (With 6th Degree Polynomial) 

 

4.2.2 FITTING A NELSON-SIEGEL CURVE TO 𝒓𝒓(𝟎𝟎, 𝒕𝒕) 
The Nelson-Siegel model specifies 𝑓𝑓(0, 𝑑𝑑) in the following form: 

𝑓𝑓(0, 𝑑𝑑) = 𝛽𝛽0 + 𝛽𝛽1𝑒𝑒𝑥𝑥𝑒𝑒 �−
𝑑𝑑
𝜏𝜏
� +

𝛽𝛽2𝑑𝑑
𝜏𝜏
𝑒𝑒𝑥𝑥𝑒𝑒 �−

𝑑𝑑
𝜏𝜏
� 

However since we are fitting market yields we will get an expression for 𝑟𝑟(0, 𝑑𝑑): 

 

Also we need: 

𝜕𝜕
𝜕𝜕𝑑𝑑
𝑓𝑓(0, 𝑑𝑑) = −

𝛽𝛽1
𝜏𝜏
𝑒𝑒𝑥𝑥𝑒𝑒 �−

𝑑𝑑
𝜏𝜏
� +

𝛽𝛽2
𝜏𝜏
𝑒𝑒𝑥𝑥𝑒𝑒 �−

𝑑𝑑
𝜏𝜏
� −

𝛽𝛽2𝑑𝑑
𝜏𝜏2

𝑒𝑒𝑥𝑥𝑒𝑒 �−
𝑑𝑑
𝜏𝜏
� 

 

 

 

 

 

#example 34 
# This example uses function “YieldCurve” package 
# first it must be installed and loaded, before running this example. 
# 
TM = VeronesiTable15p1$’Time to Maturity’ 
Yield =-log(VeronesiTable15p1$Strips/100)/TM*100 
xvals = seq(0,10,0.01) 
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Nelson-Siegel Fit 

 

 

 

 

 

 

plot(xvals,thetat,type="l", 
        main=expression(paste("The function ", 
                                                   theta," (with Nelson-Siegel)")), 
        xlab="Time",ylab="Theta") 

# The function “Nelson.Siegel” is from the Yield curve package. 
NSP = Nelson.Siegel(Yield,TM) 
# The following three functions are developed with this paper. 
rates = NSRates(as.numeric(NSP),xvals) 
f0t = NSForwards(as.numeric(NSP),xvals) 
thetat = Theta(as.numeric(NSP),sigma=0.0221,gamma=0.19, xvals) 
 
plot(xvals,f0t,type="l",lty=2,col="blue",main="Nelson-Siegel Fit", 
        xlab="Maturity",ylab="Rates(%)" ) 
points(TM,Yield,type="b",lty=1,col="red") 
points(xvals,rates,type="l",lty=1,col="green") 
legend("bottomright",legend=c("Forward curve","Current yield", 
                                                          "Fitted Yield"),col=c("blue","red","green"),lty=c(2,1,1)) 
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The Function 𝜽𝜽 (with Nelson-Siegel) 

 

4.3 CALIBRATION OF THE ONE-FACTOR HULL-WHITE MODEL 
For both one-factor and two-factor Hull-White model calibration we assume that we have a data set similar 
to Table 19.4: 

Swap Rates and Cap Prices on November 3, 2008 

Cap# Maturity (T) Swap Rate Price (x100) Discount Factors 

1 0.25 0.028588 0 0.9929037 

2 0.50 0.026486 0.0528 0.9868908 

3 0.75 0.024929 0.1313 0.9815442 

4 1.00 0.024320 0.2401 0.9760606 

5 1.25 0.024491 0.3826 0.9699535 

6 1.50 0.024938 0.5405 0.9633988 

7 1.75 0.025561 0.7106 0.9563730 

8 2.00 0.026260 0.8932 0.9489501 

9 2.25 0.027252 1.1095 0.9406132 
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Cap# Maturity (T) Swap Rate Price (x100) Discount Factors 

10 2.50 0.028630 1.3729 0.9309471 

11 2.75 0.030108 1.6636 0.9204540 

12 3.00 0.031400 1.9502 0.9098978 

13 3.25 0.032471 2.2235 0.8995225 

14 3.50 0.033474 2.4973 0.8889794 

15 3.75 0.034408 2.7711 0.8783263 

16 4.00 0.035270 3.0451 0.8676278 

17 4.25 0.036076 3.3208 0.8568746 

18 4.50 0.036835 3.5968 0.8460722 

19 4.75 0.037531 3.8700 0.8353260 

20 5.00 0.038150 4.1370 0.8247441 

 

The above table contains one additional column, discount factors, which is derived from the Swap Rate 
column ([24]) of Table 19.4. The data set gives cap prices for 20 caps, each cap is quarterly spaced and the 
cap rate for each cap is the associated swap rate. For example, cap 12 is a 3-year cap with four payments 
per year and the cap rate is 3.14% with the first payment occurring at 0.5 years, if the observed rate is 
above the cap rate of 3.14%. The value of a caplet is given by the following formulas from [24]: 

 

while 𝐵𝐵(𝑑𝑑;𝑇𝑇) remains as: 

𝐵𝐵(𝑑𝑑;𝑇𝑇) =
1
𝛾𝛾∗
�1 − 𝑒𝑒−𝛾𝛾∗(𝑇𝑇−𝑡𝑡)� 

A careful observation reveals that this is the put option formula under the Vasicek model with modeled 
bond prices replaced by market observed bond prices. The cap prices are obtained by adding all the prices 
of corresponding caplets together. We first implement a caplet formula in the code block given below. 
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Note that the R function Vasicek.B is implemented as: 

 

 

 

 

 

 

Once the caplet prices are calculated the cap price is calculated as the sum of these caplets as given below: 

 

 

 

 

 

 

 

 

 

 

 

 

#Text (19.45) 
Hull.White.caplet = function(rK= 0.03815,T=5,Delta=0.25, 
                                                    ZT1=0.835326,ZT2=0.8247441, 
                                                    gamma=0.054523,sigma=0.0149) 
{ 
  BTOTB = Vasicek.B(gamma,Delta) 
  SZ = (BTOTB^2*sigma^2*Vasicek.B((2*gamma),(T-Delta)))^0.5 
  K = 1/(1+rK*Delta) 
  d1 = 1/SZ*log(ZT2/(K*ZT1))+ SZ/2 
  d2 = d1-SZ 
  return(ZT1*pnorm(-d2)-ZT2/K*pnorm(-d1)) 
} 

# Vasicek bond pricing formula B 
Vasicek.B = function(gamma,T){ 
  if (gamma==0) { 
    return(T) 
  } 
  else { 
    return((1-exp(-gamma*T))/gamma) 
  } 
} 

Hull.White.cap = function(rK=0.05,TK=5,Delta=0.25,discount_factors, 
                                               gamma,sigma) 
{ 
  no.caplets = TK/Delta -1 
  sum(Hull.White.caplet(rK=rK,T=seq(2*Delta,TK,Delta),Delta=Delta, 
                                           ZT1=discount_factors[1:no.caplets], 
                                           ZT2=discount_factors[2:(no.caplets+1)],gamma, 
                                           sigma)) 
} 
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Now to calculate a cap price vector as given in Table 19.4 of ([24]) we can use the following R function: 

 

 

 

 

 

 

 

 

Now we can estimate 𝛾𝛾∗ and 𝜎𝜎∗ using the non-linear least squares function “nls” which can be downloaded 
from R's CRAN archive. To verify the nls function we first use a simulated data set assuming the prices are 
from a Hull-White model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The “nls” algorithm converged in 4 iterations and summary statistics are: 

The Hull-White Model Fit:  Summary Statistics 

 

#example35 
# Hull-White fit with simulated data example 
Testdata2 = VeronesiTable19p4 
Testdata2$’Cap Price (x100)’ = 
       Hull.White.cap.price.vector( 
       Maturity=VeronesiTable19p4$Maturity, 
       cap_rates=VeronesiTable19p4$’Swap Rate’, 
       discount_factors=VeronesiTable19p4$discount_factors, 
       gamma=1,sigma=0.015)+rnorm(20,0,0.0001) 

Hull.White.fit = 
  nls(‘Cap Price (x100)’~ 
          Hull.White.cap.price.vector(Maturity=Testdata2$Maturity, 
                              cap_rates=Testdata2$’Swap Rate’, 
                              discount_factors=Testdata2$discount_factors, 
                              gamma=gamma,sigma=sigma), 
          data= Testdata2,start=list(gamma=.1,sigma=0.01), 
          nls.control(maxiter = 100, tol = 1e-05, minFactor = 1/1024, 
                              printEval = FALSE, warnOnly = FALSE, scaleOffset = 0, 
                              nDcentral = FALSE)) 
sum_mod = summary(Hull.White.fit) 

Hull.White.cap.price.vector = function(cap_rates,Maturity,Delta=0.25, 
                                                                      discount_factors,gamma,sigma) 
{ 
  n = length(Maturity)-1 
  caps =rep(0,n+1) 
  for (i in 2:(n+1)){ 
    caps[i] = Hull.White.cap(rK=cap_rates[i],TK=Maturity[i], 
                                                Delta=Delta,discount_factors =discount_factors, 
                                                gamma=gamma,sigma=sigma) 
  } 
  return(caps) 
} 
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From the output it is clear that “nls” function estimates are very close to the actual values. Now we can do 
the analysis for the data in Table 19.4 of [24]. The code snippet for the analysis is: 

 

 

 

 

 

 

 

 

 

 

 

 

The “nls” algorithm converged in 5 iterations and summary statistics are: 

The Hull-White Model Fit:  Summary Statistics 

 

From the summary statistics we see that the fit is very good. As further evidence of the appropriateness of 
the fit we consider some graphical analysis with code snippets: 

 

 

 

 

#example36 
Data_set =VeronesiTable19p4 
Data_set$’Cap Price (x100)’ = VeronesiTable19p4$’Cap Price (x100)’/100 
Data_set$’Cap Price (x100)’[1]=0 
Hull.White.fit = 
nls(Data_set$’Cap Price (x100)’~ Hull.White.cap.price.vector( 
                                                                            Maturity=Data_set$Maturity, 
                                                                            cap_rates=Data_set$’Swap Rate’, 
                                                                            discount_factors= 
                                                                            Data_set$discount_factors, 
                                                                            gamma=gamma, 
                                                                            sigma=sigma), 

                                                data=Data_set ,start=list(gamma=.1,sigma=0.1), 
                                                nls.control(maxiter = 100, tol = 1e-05, 
                                                                    minFactor = 1/10240, 
                                                                    printEval = FALSE, warnOnly = FALSE, 
                                                                    scaleOffset = 0,nDcentral = FALSE)) 
sum_mod = summary(Hull.White.fit) 

#example37 
# Hull-White fit graphical illustration 
plot(‘Cap Price (x100)’~ ‘Swap Rate’, data =Data_set, 
        xlab = "Swap Rate", ylab = "Cap Price") 
lines(Data_set$’Swap Rate’, fitted(Hull.White.fit)) 
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 plot(fitted(Hull.White.fit),residuals(Hull.White.fit),xlab="Fitted Values", 
        ylab="Residuals") 
abline(a=0,b=0) 

plot(‘Cap Price (x100)’~ ‘Maturity’, data =Data_set, 
        xlab = "Maturity", ylab = "Cap Price") 
lines(Data_set$’Maturity’, fitted(Hull.White.fit)) 
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As the graphs indicate the fitted model is an ideal one. 

 

4.4 CALIBRATION OF THE TWO-FACTOR HULL-WHITE MODEL 
The calibration of time-independent parameters will work as follows: 

• First calculate the value of a caplet using the following formulas: 

 

In the above formula bond prices are market or interpolated bond prices. The above formulas are 
implemented in the following code chunk: 
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• In the R functions for cap price, the cap price vector is similar to functions in the one-factor 
Vasicek model. 

The following example illustrates calibration using a simulated data set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

#example 38 
# Hull-White fit with simulated data example 
Testdata2 = VeronesiTable19p4 
Testdata2$’Cap Price (x100)’ = 
  Two.factor.Hull.White.cap.price.vector(cap_rates=VeronesiTable19p4$’Swap Rate’, 
                                                                         Maturity=VeronesiTable19p4$Maturity, 
                                         discount_factors=VeronesiTable19p4$discount_factors, 
                                         gamma1=0.1,gamma2=-0.2,sigma1=0.2,sigma2=0.3,rho=0.5) 
 
Testdata2$’Cap Price (x100)’[1]=0 
 
Two.factor.Hull.White.fit =nls(‘Cap Price (x100)’~ 
               Two.factor.Hull.White.cap.price.vector(cap_rates=Testdata2$’Swap Rate’, 
               Maturity=Testdata2$Maturity, 
               discount_factors=Testdata2$discount_factors, 
               gamma1=gamma1,gamma2=gamma2,sigma1=sigma1,sigma2=sigma2,rho=rho), 
               data= Testdata2, 
               start=list(gamma1=.3,gamma2=-0.3,sigma1=0.1,sigma2=0.4,rho=0.6), 
               nls.control(maxiter = 100, tol = 1e-05, minFactor = 1/1024, 
               printEval = FALSE, warnOnly = FALSE, scaleOffset = 0, 
               nDcentral = FALSE)) 

Two.factor.Hull.White.caplet = function(rK,T,Delta=0.25,ZTO,ZTB, 
                                                                        gamma1,gamma2,sigma1,sigma2,rho){ 
  TB =T 
  TO = T-Delta 
  K = 1/(1+rK*Delta) 
  B1TOTB = Vasicek.B(gamma=gamma1,T=(TB-TO)) 
  B2TOTB = Vasicek.B(gamma=gamma2,T=(TB-TO)) 
  SZTO2 = B1TOTB^2 * sigma1^2*Vasicek.B(gamma=2*gamma1,T=TO) + 
                  B2TOTB^2 * sigma2^2*Vasicek.B(gamma=2*gamma2,T=TO) + 
                  B1TOTB*B2TOTB* sigma1*sigma2*rho* 
                  Vasicek.B(gamma=(gamma1+gamma2),T=TO) 
  SZTO = SZTO2^0.5 
  d1 = 1/SZTO * log(ZTB/(K*ZTO))+SZTO/2 
  d2 = d1 - SZTO 
  V0 = -ZTB*pnorm(-d1)+K*ZTO*pnorm(-d2) 
  return (V0) 
} 
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After trying out several initial values we failed to find results.  If we look at the cap price vector formula 

closely we see that each element is a function similar to ∑ 𝑎𝑎𝑖𝑖𝑖𝑖 Φ �𝑥𝑥𝑖𝑖 , 𝜇𝜇𝑖𝑖,𝜎𝜎𝑖𝑖� where 𝑎𝑎𝑖𝑖 , 𝑖𝑖 = 1,2, … are known 

constants and Φ�𝑥𝑥𝑖𝑖 , 𝜇𝜇𝑖𝑖 ,𝜎𝜎𝑖𝑖�, cdf of a normal distribution, is as given below: 

Φ�𝑥𝑥𝑖𝑖 , 𝜇𝜇𝑖𝑖 ,𝜎𝜎𝑖𝑖� =
1

2𝜋𝜋𝜎𝜎𝑖𝑖
� 𝑒𝑒𝑥𝑥𝑒𝑒 �−

�𝑑𝑑 − 𝜇𝜇𝑖𝑖�
𝜎𝜎𝑖𝑖2

�
𝑥𝑥𝑖𝑖

−∞
𝑑𝑑𝑑𝑑, 

In the above expression, 𝜇𝜇𝑖𝑖  and 𝜎𝜎𝑖𝑖  are functions of the five parameters 𝛾𝛾1, 𝛾𝛾2,𝜎𝜎1,𝜎𝜎2, and 𝜌𝜌. In the non-

linear least squares minimization, we minimize the distance between ∑ 𝑎𝑎𝑖𝑖𝑖𝑖 Φ �𝑥𝑥𝑖𝑖 ,𝜇𝜇𝑖𝑖 ,𝜎𝜎𝑖𝑖� and its observed 

values. It may be very sensitive to initial guesses and it may also have local values that minimize the 
objective function. So, we need an alternative method to compute parameters. 

When we look at (22.57) of [24] carefully we see that caplet with a pay-off at time T is a function of 
𝑆𝑆𝑍𝑍(𝑇𝑇 − Δ;𝑇𝑇), where it is given by: 

 

The above formula can be coded as:

 

## Error in nls(`Cap Price (x100)` ~ Two.factor.Hull.White.cap.price.vector(cap rates 
= Testdata2$`Swap Rate`, : step factor 0.000488281 reduced below 'minFactor' 
of 0.000976562 
 
summary(Two.factor.Hull.White.fit) 
 
## Error in summary(Two.factor.Hull.White.fit): object 'Two.factor.Hull.White.fit' 
not found 
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We see that 𝑆𝑆𝑧𝑧(𝑇𝑇 − Δ;𝑇𝑇) characterizes the particular caplet, independent of which caplet it belongs to. We 
can exploit this fact first to obtain 𝑆𝑆𝑍𝑍((𝑖𝑖 − 1)Δ; 𝑖𝑖Δ) for 𝑖𝑖 = 1,2, … and then applying the nonlinear least 
squares method to estimate parameters  and σ2. Extracting 𝑆𝑆𝑍𝑍�(𝑖𝑖 − 1)Δ; 𝑖𝑖Δ� i = 1,2,... is similar 
to extracting forward volatilities from flat volatilities as given in section 20.1.2 of [24]. It works as follows: 

• Use the caplet with payment at time 0.5 to obtain 𝑆𝑆𝑧𝑧(0; 0.5) This is similar to computing Black 
implied volatility. 

• Calculate the price of a caplet with a payout at time 0.5 with cap rate applicable to a cap maturing 
at time 0.75. Subtract this caplet value from the cap maturing at time 0.75 to obtain caplet with a 
payoff at time 0.75. Use this to compute 𝑆𝑆𝑍𝑍(0.5; 0.75). 

• Proceed similarly to calculate caplet prices and then compute 𝑆𝑆𝑍𝑍(0.25(𝑖𝑖 − 1), 0.25𝑖𝑖), 𝑖𝑖 = 4,5, … 

Note that the above procedure of extracting 𝑆𝑆𝑍𝑍((𝑖𝑖 − 1)Δ; 𝑖𝑖Δ) for 𝑖𝑖 = 1,2, …values are identical for both 
one factor and two factor Hull-White model, except for the one factor model 𝑆𝑆𝑍𝑍(𝑇𝑇 − Δ, ;𝑇𝑇) given as: 

 

The above formula can be coded as: 

 

We can implement the above algorithm as given below: 

 

 

 

 

 

 

 

 

 

 

 

 

HW.forward.vol = function(Maturity,discount_factors, cap_rates,cap_prices)f 
    Nsize = length(Maturity) 
    sigma.forward = rep(0,Nsize) 
    sigma.forward[2]=uniroot(HW.caplet.implied.vol,c(0,1), 
                                                    price=cap_prices[2], 
                                                    rK= cap_rates[2], 
                                                    T=Maturity[2], 
                                                    ZTO=discount_factors[1], 
                                                    ZTB=discount_factors[2])$root 
    for ( i in (3:Nsize)){ 
        price.caplet = cap_prices[i]- 
            Hull.White.capv2(rK= cap_rates[i], 
                                            TK= Maturity[i-1], 
                                            discount_factors = discount_factors[1:i], 
                                            sigmaf = sigma.forward[2:(i-1)]) 
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The auxiliary functions needed for the above functions are given below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hull.White.cap.price.vectorv2 = function(cap_rates,Maturity,Delta=0.25, 
                                                                          discount_factors,sigma){ 
    n = length(Maturity)-1 
    caps =rep(0,n+1) 
    for (i in 2:(n+1)){ 
        caps[i] = Hull.White.capv2(rK=cap_rates[i],TK=Maturity[i], 
                                                        Delta=Delta, 
                                                        discount_factors =discount_factors, 
                                                        sigmaf=sigma[i]) 
    } 
    return(caps) 
} 

Hull.White.capletv2 = function(rK,T,Delta=0.25,ZTO,ZTB,SZTO)f 
    TB =T 
    TO = T-Delta 
    K = 1/(1+rK*Delta) 
    d1 = 1/SZTO * log(ZTB/(K*ZTO))+SZTO/2 
    d2 = d1 - SZTO 
    V0 = ZTO*pnorm(-d2)-ZTB/K*pnorm(-d1) 
    return (V0) 
} 
 
Hull.White.capv2 = function(rK=0.05,TK=5,Delta=0.25,discount_factors,sigmaf){ 
    no.caplets = TK/Delta -1 
    sum(Hull.White.capletv2(rK=rK,T=seq(2*Delta,TK,Delta),Delta=Delta, 
    ZTO=discount_factors[1:no.caplets], 
    ZTB=discount_factors[2:(no.caplets+1)],SZTO=sigmaf)) 
} 
 

    sigma.forward[i] = 
        uniroot(HW.caplet.implied.vol,c(0,1), 
                       price=price.caplet, 
                       rK= cap_rates[i], 
                       T=Maturity[i], 
                       ZTO=discount_factors[i-1], 
                       ZTB=discount_factors[i])$root 
    } 
    return(sigma.forward) 
} 
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 Even though the Hull-White model performance with cap prices and “nls” was excellent, we can try it with 
the method proposed in this section. The following code block illustrates this method with a simulated data 
set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

#example39 
# simulate a data set as in example 36 
# Hull-White fit with simulated data example 
rm(list=ls()) # clear the workspace and functions 
Testdata =subset(VeronesiTable19p4,select=-c(‘Cap Price (x100)’)) 
Testdata$’Cap Prices’ = 
    Hull.White.cap.price.vector( 
    Maturity=Testdata$Maturity, 
    cap_rates=Testdata$’Swap Rate’, 
    discount_factors=Testdata$discount_factors, 
    gamma=.1,sigma=0.015)+rnorm(length(Testdata$Maturity),0,0.00001) 
Testdata$’Cap Prices’[1]=0 
fvol.dat = HW.forward.vol(Maturity=Testdata$Maturity, 
                                                discount_factors =Testdata$discount_factors, 
                                                cap_rates=Testdata$’Swap Rate’, 
                                                cap_prices =Testdata$’Cap Prices’) 
Hull.White.fit =nls(‘Forward Vol.’~ Vasicek.SZ( 
                                                                  TB=Maturity, 
                                                                  TO = Maturity-0.25, 
                                                                  gamma=gamma,sigma=sigma), 
                                                         data= fvol.dat, 
                                                         start=list(gamma=.3,sigma=0.1), 
                                                         algorithm = "port", 
                                                         upper=list(gamma=5,sigma=1), 
                                                         lower=list(gamma=-5,sigma=0.001), 
                                                         nls.control(maxiter = 1000000, 
                                                                             tol = 1e-05, 
                                                                             minFactor = 1/10240, 
                                                                             printEval = FALSE, 
                                                                             warnOnly = FALSE, 
                                                                             scaleOffset = 0, 
                                                                             nDcentral = FALSE)) 
sum_mod = summary(Hull.White.fit) 

HW.caplet.implied.vol = function(sigmaf, price=0.0786/100, 
                                                            rK= 0.02442,T=0.75,Delta=0.25, 
                                                            ZTO=0.988510,ZTB=0.981899){ 
    TB =T 
    TO = T-Delta 
    K = 1/(1+rK*Delta) 
    d1 = 1/sigmaf * log(ZTB/(K*ZTO))+sigmaf/2 
    d2 = d1 - sigmaf 
    V0 = ZTO*pnorm(-d2)-ZTB/K*pnorm(-d1)-price 
    return(V0) 
} 
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We see that in this case also the “nls” algorithm converged in 6 iterations.  Summary statistics are: 

The Hull-White Model Fit:  Summary Statistics 

 

Now we can attempt the same analysis with the data set in Table 19.4 of [24]: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We see that in this case the “nls” algorithm converged in 7 iterations and summary statistics are: 

The Hull-White Model Fit:  Summary Statistics 

 

From the summary statistics we see that the estimate of 𝛾𝛾∗ is a little different but the estimate of σ is quite 
close to that in example 36. 

Since we were successful with the new method in the Hull-White case, we try the calibration of the two-
factor Hull-White model with the new method: 

 

 

#example40 
rm(list=ls()) # clear the workspace and functions 
fvol.dat = HW.forward.vol(Maturity=VeronesiTable19p4$Maturity, 
                                                discount_factors =VeronesiTable19p4$discount_factors, 
                                                cap_rates=VeronesiTable19p4$’Swap Rate’, 
                                                cap_prices =VeronesiTable19p4$’Cap Price (x100)’/100 ) 
Hull.White.fit =nls(‘Forward Vol.’~ Vasicek.SZ(TB=Maturity, 
                                                                                  TO = Maturity-0.25, 
                                                                                  gamma=gamma, 
                                                                                  sigma=sigma), 
                                                     data= fvol.dat, 
                                                     start=list(gamma=.3,sigma=0.1), 
                                                     algorithm = "port", 
                                                     upper=list(gamma=5,sigma=1), 
                                                     lower=list(gamma=-5,sigma=0.001), 
                                                     nls.control(maxiter = 1000000, 
                                                                         tol = 1e-05, 
                                                                         minFactor = 1/10240, 
                                                                         printEval = FALSE, 
                                                                         warnOnly = FALSE, 
                                                                         scaleOffset = 0, 
                                                                         nDcentral = FALSE)) 
sum_mod = summary(Hull.White.fit) 
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fvol.dat = HW.forward.vol(Maturity=Testdata$Maturity, 
                                                discount_factors =Testdata$discount_factors, 
                                                cap_rates=Testdata$’Swap Rate’, 
                                                cap_prices =Testdata$’Cap Prices’)+ 
                  rnorm(length(Testdata$Maturity),0,0.001) 
sim.SZ = Two.factor.Vasicek.SZ(TB=fvol.dat$Maturity, 
                                                        TO = fvol.dat$Maturity-0.25, 
                                                        gamma1=0.1,gamma2=-0.2, 
                                                        sigma1=0.02,sigma2=0.03, 
                                                        rho=-0.4) 
fvol.dat$sim.SZ = sim.SZ 
Two.factor.Hull.White.fit =nls(‘Forward Vol.’~ 
                                                        Two.factor.Vasicek.SZ(TB=Maturity, 
                                                                                                TO = Maturity-0.25, 
                                                                                                gamma1=gamma1, 
                                                                                                gamma2=gamma2, 
                                                                                                sigma1=sigma1, 
                                                                                                sigma2=sigma2, 
                                                                                                rho=rho), 
                                                        data= fvol.dat, 
                                                        start=list(gamma1=.3,gamma2=-0.3,sigma1=0.1, 
                                                                         sigma2=0.4,rho=0.6), 
                                                        algorithm = "port", 
                                                        upper=list(gamma1=1,gamma2=1,sigma1=1, 
                                                                           sigma2=1,rho=0.9), 
                                                        lower=list(gamma1=-1,gamma2=-1,sigma1=0.001, 
                                                                           sigma2=0.001,rho=-0.9), 
                                                        nls.control(maxiter = 1000, 
                                                                            tol = 1e-05, 
                                                                            minFactor = 1/10240, 
                                                                            printEval = FALSE, 
                                                                            warnOnly = FALSE, 
                                                                            scaleOffset = 0, 
                                                                            nDcentral = FALSE)) 

# example41 
# Two factor Hull-White fit with simulated data example 
rm(list=ls()) # clear the workspace and functions 
Testdata =subset(VeronesiTable19p4,select=-c(‘Cap Price (x100)’)) 
Testdata$’Cap Prices’ = 
    Two.factor.Hull.White.cap.price.vector(cap_rates=Testdata$’Swap Rate’, 
                                                                           Maturity=Testdata$Maturity, 
                                                 discount_factors=Testdata$discount_factors, 
                                                 gamma1=0.1,gamma2=-0.2,sigma1=0.02,sigma2=0.03, 
                                                 rho=-0.4) 
Testdata$’Cap Prices’[1]=0 
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With many different initial values for the parameters, this method did not converge to a value close to the 
true value. Therefore we decided to use a nonlinear least squares estimation package “nlrs” which has 
been developed recently. In the package “nlrs” the function “nlfb” performs very well. However, the input 
for “nlfb” is different from that of “nls”. We need to input the residual function and the gradient of the 
residual function. 

The following code chunk implements the residual function to be used with “nflb”: 

 

 

 

 

 

 

 

 

 

 

 

 

We also developed a function that calculates the Jacobian of the residual function with respect to 
parameters that need to be estimated; it is given in the following code chunk: 

 

 

 

 

 

Two.factor.Vasicek.SZ.res = function(paras,forward_vol.dat){ 
    gamma1=paras[1] 
    gamma2=paras[2] 
    sigma1 = paras[3] 
    sigma2 = paras[4] 
    rho = paras[5] 
    Delta = 0.25 
    TO = forward_vol.dat$Maturity-0.25 
    B1 = Vasicek.B(gamma=gamma1,T=Delta) 
    B2 = Vasicek.B(gamma=gamma2,T=Delta) 
    B1G1T = Vasicek.B(gamma=(2*gamma1),T=TO) 
    B2G2T = Vasicek.B(gamma=(2*gamma2),T=TO) 
    BG1G2T = Vasicek.B(gamma=(gamma1+gamma2),T=TO) 
    Res = ((B1*sigma1)^2*B1G1T+(B2*sigma2)^2*B2G2T+ 
                B1*B2*BG1G2T*sigma1*sigma2*rho)/TO- 
    forward_vol.dat$’Forward Vol.sq’ 
    return(Res) 
} 

## Error in nls(`Forward Vol.` ~ Two.factor.Vasicek.SZ(TB = Maturity, TO = Maturity 
- : Convergence failure: singular convergence (7) 
 
sum_mod = summary(Two.factor.Hull.White.fit) 
 
## Error in eval(expr, envir, enclos): object 'Two.factor.Hull.White.fit' not found 
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The function “Two.factor.Vasicek.SZ.gradient” calls another function, “Vasicek.DB”, which calculates the 
derivative of 𝐵𝐵(𝑑𝑑;𝑇𝑇) with respect to 𝛾𝛾 and it is: 

 

 

 

 

 

 

 

Vasicek.DB = function(gamma,T){ 
    if (abs(gamma)<1e-8) { 
        return(-(T^2)/2) 
    } 
    else { 
        return(-(1-exp(-gamma*T))/gamma^2+T*exp(-gamma*T)/gamma) 
    } 
} 

Two.factor.Vasicek.SZ.gradient = function(paras,forward_vol.dat){ 
    gamma1=paras[1] 
    gamma2=paras[2] 
    sigma1 = paras[3] 
    sigma2 = paras[4] 
    rho = paras[5] 
    Delta = 0.25 
    TO = forward_vol.dat$Maturity-0.25 
    Nsize = length(fvol.dat$Maturity) 
    B1 = Vasicek.B(gamma=gamma1,T=Delta) 
    B2 = Vasicek.B(gamma=gamma2,T=Delta) 
    B1G1T = Vasicek.B(gamma=(2*gamma1),T=TO) 
    B2G2T = Vasicek.B(gamma=(2*gamma2),T=TO) 
    BG1G2T = Vasicek.B(gamma=(gamma1+gamma2),T=TO) 
    B1D = Vasicek.DB(gamma=gamma1,T=Delta) 
    B2D = Vasicek.DB(gamma=gamma2,T=Delta) 
    B1G1TD = Vasicek.DB(gamma=(2*gamma1),T=TO)*2 
    B2G2TD = Vasicek.DB(gamma=(2*gamma2),T=TO)*2 
    BG1G2TD = Vasicek.DB(gamma=(gamma1+gamma2),T=TO) 
    Jacob = matrix(0.0,Nsize,5) 
    Jacob[1:Nsize,1] = (2*B1*B1D*B1G1T + B1^2*B1G1TD)*sigma1^2+ 
        (B1D*B2*BG1G2T+B1*B2*BG1G2TD)*sigma1*sigma2*rho 
    Jacob[1:Nsize,2] = (2*B2*B2D*B2G2T + B2^2*B2G2TD)*sigma2^2+ 
        (B2D*B1*BG1G2T+B1*B2*BG1G2TD)*sigma1*sigma2*rho 
    Jacob[1:Nsize,3] = B1^2*B1G1T*2*sigma1+ B1*B2*BG1G2T*sigma2*rho 
    Jacob[1:Nsize,4] = B2^2*B2G2T*2*sigma2+ B1*B2*BG1G2T*sigma1*rho 
    Jacob[1:Nsize,5] = B1*B2*BG1G2T*sigma1*sigma2 
    Jacob = Jacob/TO 
    attr(Jacob,"gradient") =Jacob 
    return(Jacob) 
} 
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We illustrate the use of these functions in the following code chunk: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We see that in this case the “nlfb” algorithm converged in 22 iterations and summary statistics are: 

The Hull-White Model Fit:  Summary Statistics 

 

We tried many different starting values and the values presented here were the best. We see that 
estimates of 𝛾𝛾1∗, 𝛾𝛾2∗,𝜎𝜎1 and 𝜎𝜎2 are very close to the actual values and the estimate of 𝜌𝜌 is a little away from 
the actual value. To evaluate the performance of the function “nlfb” for our situation, we need to carry out 
an extensive Monte Carlo simulation study which is beyond the scope of this paper. We would like to 
conclude this section by stating that non-linear least square minimization to estimate the five parameters 
in the two-factor Hull White model is a challenging problem even with most recently developed R 
functions. 

#example42 
rm(list=ls()) # clear the workspace and functions 
# first calculate cap price vector similar to Veronesi Table 19.4 
Testdata =subset(VeronesiTable19p4,select=-c(‘Cap Price (x100)’)) 
Testdata$’Cap Prices’ = 
    Two.factor.Hull.White.cap.price.vector(cap_rates=Testdata$’Swap Rate’, 
                                                        Maturity=Testdata$Maturity, 
                                                        discount_factors=Testdata$discount_factors, 
                                                        gamma1=0.1,gamma2=-0.2,sigma1=0.2,sigma2=0.3,rho=-0.2) 
 
Testdata$’Cap Prices’[1]=0 
# Now calculate forward volatility from the cap prices. 
fvol.dat = HW.forward.vol(Maturity=Testdata$Maturity, 
                                                discount_factors =Testdata$discount_factors, 
                                                cap_rates=Testdata$’Swap Rate’, 
                                                cap_prices =Testdata$’Cap Prices’) 
 
fvol.dat$’Forward Vol.sq’ = fvol.dat$’Forward Vol.’^2/(fvol.dat$Maturity-0.25) 
 
st = c(gamma1=0.4,gamma2=0.4,sigma1=0.4,sigma2=0.5,rho=-0.1) 
paras = st 
Two.factor.Hull.White.fit=nlfb(start=st, resfn=Two.factor.Vasicek.SZ.res, 
                             jacfn=Two.factor.Vasicek.SZ.gradient,data=fvol.dat, 
                             trace=FALSE, control=list(prtlvl=1),forward_vol.dat=fvol.dat) 
sum_mod = summary(Two.factor.Hull.White.fit) 
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5 Model Validation 
At a high level, model validation is about the process around actual modeling work. It specifies the business 
purposes for using the model and assesses and confirms whether: 

• The model is “fit for purpose” 
• The methods used are accepted practice and compliant with standards and regulation. 

In the U.S. applicable guidance is in Actuarial Standard of Practice 56, Modeling, and American Academy of 
Actuaries Model Governance Practice Note, April 2017, pages 11-14. 

Canadian practice is evolving from CALM to IFRS. CALM guidance is in “Calibration of Stochastic Risk-Free 
Interest Rate Models for Use in CALM Valuation”, from the Canadian Institute of Actuaries' Committee for 
Life Insurance Financial Reporting (CIA, CLIFR), June 2021. 

ASOP 56 Section 3.6 covers model risk, and outlines the process of model validation as a means of dealing 
with model risk. Section 3.6 breaks model validation into model testing (3.6.1) and model output validation 
(3.6.2). 

The AAA practice note lays out review and model testing procedures. It begins with Design Use/Fit, about 
the business uses for the model and whether it is appropriate to use the particular model in those 
situations – whether it is “fit for purpose”.  Next is Design Methods/Processing – whether the methods 
used are accepted practice and compliant with standards and regulation. Explicitly stating the modeling 
work's purposes – stress testing, or setting prices as of a specific date, or showing realistic balance sheets 
and income statements into the future – will clarify certain design decisions. These issues were discussed in 
Sections 1.4 and 1.5. 

5.1 DATA AND ASSUMPTIONS 
Whether input data is accurate, consistent, complete, and correctly loaded is a simple matter for the initial 
yield curve. In contrast, the mean reversion strength and target are assumptions that must be developed. 
There isn't one right answer; we will have to experiment, use judgement, and document our reasoning. 

In Section 2.1.1 the Vasicek model was run. Opening the R function we see time and time step parameters 
(daily), plus the starting value, mean reversion speed, long term mean reversion target, and instantaneous 
volatility. 

 

 

 

 

 

Above these were given, but in practice they must be estimated. This is done in section 3.1.1, where 
Example 6 works [24] Chapter 14 Question 5: 

 

# Default values of r0, gamma, rbar, and alpha are the ones given 
# in Veronesi (2010) Table 15.3 real-world parameters. 
# 
Vasicek.Euler.sim= function(t0=0,T=10,Delta=1/252, 
                                                   r0=0.03,gamma=0.3262,rbar=0.0509,sigma=0.0221,M=10) 
{} 
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Notice how the gamma, rbar, and sigma code directly implement the formulas immediately preceding 
Example 6 in 3.1.1 above. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

model = lm(y~x) 
mle.gamma= -log(as.numeric(model$coefficients)[2])/Delta 
mle.rbar = as.numeric(model$coefficients)[1]/ 
               (1-as.numeric(model$coefficients)[2]) 
mle.sigma = sigma(model)*(2*mle.gamma/ 
               (1-as.numeric(model$coefficients)[2]^2))^.5 

rm(list=ls()) 
summary(VeronesiTable14p7q5) 
 
##                  DATE                                         TCMNOMM1                  c.c. 
##   Min.        :2008-01-02 00:00:00.00   Min.       :0.0000   Min.       :0.0000 
##   1st Qu.   :2008-07-16 18:00:00.00   1st Qu.   :0.0575   1st Qu.  :0.0575 
##   Median  :2009-02-02 12:00:00.00   Median  :0.1400   Median  :0.1400 
##   Mean     :2009-01-31 11:36:10.58   Mean      :0.6446   Mean     :0.6418 
##   3rd Qu.  :2009-08-17 06:00:00.00   3rd Qu.   :1.4725   3rd Qu. :1.4671 
##   Max.       :2010-03-05 00:00:00.00   Max.       :3.3700   Max.      :3.3419 
##                 rt 
##   Min.       :0.0000 
##   1st Qu.  :0.0575 
##   Median :0.1400 
##   Mean    :0.6466 
##   3rd Qu. :1.4770 
##   Max.      :3.3419 
 
rt = VeronesiTable14p7q5$rt 
Delta = 1/252 
N = length(rt) 
y = rt[2:N] 
x = rt[1:N-1] 

# Example6 
# Exercises Q5 Chapter 14 of Veronesi 
# clear the workspace and functions 
rm(list=ls()) 
summary(VeronesiTable14p7q5) 
rt = VeronesiTable14p7q5$rt 
Delta = 1/252 
N = length(rt) 
y = rt[2:N] 
x = rt[1:N-1] 
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The practice notes advise us that the values of these parameters need to be accurate, consistent, in line 
with accepted practice and compliant with standards and regulation. 

The short rate r0 will most likely be taken from the model start date's actual yield curve, with the same 
tenor (time to maturity) as the short rate used in calibration. The data used here is the one-month U.S. 
Treasury Bill rate. 

The other parameters – short rate volatility (sigma), mean reversion strength (gamma), and long term 
mean reversion target (rbar) – are typically estimated from historical data.  Rbar is estimated at 0.31% 
(rounded), which is low because the data is from the global financial crisis (GFC) period. 

This model can be tested by using these values of gamma, rbar, and sigma to generate scenarios: 

 

 

 

 

 

 

 

 

 

 

 

mle.sigma = sigma(model)*(2*mle.gamma/ 
                                 (1-as.numeric(model$coefficients)[2]^2))^.5 
mle.sigma 
 
## [1] 1.8138 

#example43 
rm(list=ls()) 
t0=0 
T=10 
r0=0.03 
gamma=3.645321 
rbar = 0.3076885 
sigma=1.813762 
paras=c(gamma,rbar,sigma) 
# Initaliaaze # of paths number of points in each path 
Delta = 1/252 
N = ceiling((T-t0)/Delta) 
set.seed(123) 
X = Vasicek.Trans.sim(t0,T,Delta,r0,gamma,rbar,sigma,M=1000) 
M = ncol(X) 
mle = matrix(0,3,M) 

model = lm(y~x) 
mle.gamma= -log(as.numeric(model$coefficients)[2])/Delta 
mle.gamma 
 
## [1] 3.6453 
 
mle.rbar = as.numeric(model$coefficients)[1]/ 
                                       (1-as.numeric(model$coefficients)[2]) 
mle.rbar 
 
## [1] 0.30769 
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Simulation performance based on 1000 sample paths 

 

In the code, the matrix “mle” is the gamma, rbar, and sigma of each scenario. “bias” is the difference 
between the average gamma, rbar, and sigma, versus the gamma, rbar, and sigma estimated in Example 6, 
meaning this set of scenarios is “off” by that much. A bias very close to zero is desired. rbar and sigma 
appear to satisfy that, while gamma's bias is about 0.45. Is that tolerable? 

To assess this we consider the root mean squared error (RMSE), which is the average residual, or the 
average across all scenarios of how far the three parameters are from the line of best fit. If we found 
another model or another calibration with a lower RMSE it would be a better fit to the underlying data. 

The RMSE for gamma also looks large at 1.078. However, RMSE scales with the data so again it is hard to 
know. Relative RMSE (RRMSE) normalizes RMSE against the actual value.  An RRMSE above 30% is 
considered a poor fit. The value for gamma is borderline, but now rbar is assessed as a very poor fit. We 
need to adjust the model calibration. 

5.2 INVESTIGATE THE DATA 
The example being studied here is from Veronesi [24]. We see the data is a daily short rate series from 
January 2, 2008 to March 5, 2010. This is through the beginning of the GFC. The series begins with the rate 
drifting down from 3.09% to 1.56%. On March 14, 2008, the rate jumps to 1.20%, on March 18 to 0.71%, 

# Simulation performance criteria 
bias =rowMeans(mle-paras) 
Sd = rowSds(mle) 
rmse = rowMeans((mle-paras)^2)^0.5 
rrmse =((rowMeans((mle-paras)^2))/(paras^2))^0.5 

for (i in 1:M){ 
  y = X[2:(N+1),i] 
  x= X[1:N,i] 
  model = lm(y~x) 
  mle.gamma = -log(as.numeric(model$coefficients)[2])/Delta 
  mle.gamma= -log(as.numeric(model$coefficients)[2])/Delta 
  mle.rbar = as.numeric(model$coefficients)[1]/ 
                                          (1-as.numeric(model$coefficients)[2]) 
  mle.sigma = sigma(model)*(2*mle.gamma/ 
                                   (1-as.numeric(model$coefficients)[2]^2))^.5 
  mle[,i]=c(mle.gamma,mle.rbar,mle.sigma) 
} 
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and on March 19 to 0.26%. This is when Bear Stearns collapsed and was taken over by J.P. Morgan. On 
March 25 the rate jumped +0.80% to 1.47%. Later, on September 15, 2008, the rate jumps down from 
1.37% to 0.36% when Lehman Brothers collapsed. 

The Vasicek model is not designed to handle jumps like this. We will need to try fitting a different model, 
such as a regime switching model or a jump-diffusion version of CIR. 

Continuing with this example and the Vasicek model for a moment, the data series ends on March 5, 2010, 
with a short rate of 0.11%. The modeled interest rates are then projected forward from that point in time 
(cell J9 references cell C552, the continuously compounded version of the observed “nominal” short rate in 
B552). However, the data used to calibrate the model include 3%+ rates from before the two major 
financial system shocks. 

The modeler may make some design choices here. If a local model of very low rates is desired, the Vasicek 
model could be recalibrated using data beginning September 15, 2008. However, this series is unlikely to 
generate scenarios with rates in the 3% to 6% range that were the norm before the GFC. 

Instead of daily data the modeler could choose to use monthly data from a much longer time span, say 
1980 to present. This could be desirable if the model for which the scenarios are being generated will run 
with a monthly time step. However, that time span had generally declining rates, so the long-run mean 
reversion target �̅�𝑟 is unclear. 

There is no one clear correct choice. This is the art of modeling. 

5.3 RECALIBRATE 
Download the rate data from the US Treasury Department’s website4.  Open it in Excel.  Filter the data to 
eliminate rows with a blank or an ND in the one-month column. Convert semi-annual rates to effective 
annual rates. Create a new tab and copy the date and one-month rate column for the dates needed into it.  
Insert a simple header row, say Date and OneMonthTBill.  Save as a .xlsx file. 

In RStudio’s top right window, Environment tab, select Import Dataset.  R may want to install an updated 
readxl package.  Browse for and select the downloaded rate data file.  In Import Options (lower left), select 
the new sheet.  Import. 

 

 

 

 

 

 

 

 

4Market yield on U.S. Treasury securities at 1-month  constant maturity, quoted on investment basis, series H15/H15/RIFLGFCM01_N.B can be 
selected from www.federalreserve.gov/DataDownload. Filtered data can be obtained directly at https://home.treasury.gov/resource-
center/data-chart-center/interest-rates/TextView?type=daily_treasury_yield_curve&field_tdr_date_value=all&data=yieldAll.  

#example44 
# refit to CIR example13 
# The following code snippets calculate the bias of simulated parameters 
# CIR Calibration 
rm(list=ls()) # clear the workspace and functions 
graphics.off() # clear the plots 
# CIR Euler estimate 
# Initialize parameters 
 

http://www.federalreserve.gov/DataDownload
https://home.treasury.gov/resource-center/data-chart-center/interest-rates/TextView?type=daily_treasury_yield_curve&field_tdr_date_value=all&data=yieldAll
https://home.treasury.gov/resource-center/data-chart-center/interest-rates/TextView?type=daily_treasury_yield_curve&field_tdr_date_value=all&data=yieldAll
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We now have 1000 scenarios and want to evaluate whether they are a good fit relative to our calibrated 
parameters. To do this we'll calculate the CIR parameters implied by each scenario, and see whether on 
average they are close to our calibrated parameters. If so, then the set is valid and the calibration 
“worked”. 

gamma = (1-as.numeric(model$coefficients)[2])/Delta 
rbar = as.numeric(model$coefficients)[1]/ 
       (1-as.numeric(model$coefficients)[2]) 
alpha= sigma(model)^2/Delta 
gamma 
 
## [1] 4.4757 
 
rbar 
 
## [1] 0.37285 
 
alpha 
 
## [1] 7.6638 
 
paras = c(gamma,rbar,alpha) 
 
# Now generate a scenario set with these parameters 
# Initialize # of paths and number of points on each path 
t0=0 
T=5 
Delta = 1/252 
M =1000 
N = ceiling((T-t0)/Delta) 
set.seed(123) 
# A version of CIR.Trans.Sim without locked parameters 
scenarioSet = CIR.Trans.sim(t0,T,Delta,r0,gamma,rbar,alpha,M) 

library(matrixStats) 
rt = VeronesiTable14p7q5$rt 
N = length(rt) 
r0 =rt[N] 
t0=0 
Delta = 1/252 
X=rt 
euler.est= matrix(NA,3) 
X[X<0.01]=0.01 # floor rates at 1 bp 
x1 = X[1:N]^(-0.5) 
x2 = X[1:N]^(0.5) 
y = X[2:(N+1)]*x1 
model=lm(y~0+x1+x2) 
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The code above was adapted from Example 13 code. We started with r0 set to 2.741129, the first value in 
the data series, so we produce a set of scenarios “around” the historical data used for calibration. Across 
the 1000 scenarios, the gamma, rbar, and alpha compare to the calibration gamma, rbar, and alpha as 
follows: 

Simulation performance based on 1000 sample paths 

 

All three parameters show little bias, with rbar very close. The standard deviation across the 1000 scenarios 
is broader, which also shows up in the RMSE and relative RMSE metrics.  Indeed, gamma and rbar have 
RRMSEs greater than 30%, indicating a poor fit. Looking at the scenarios produced, 

 

 

 

#example44 continues 
M = ncol(scenarioSet) 
X = scenarioSet 
X[X<0.01]=0.01 
euler.est= matrix(NA,3,M) 

for (i in 1:M){ 
  x1 = X[1:(N-1),i]^(-0.5) 
  x2 = X[1:(N-1),i]^(0.5) 
  y = X[2:N,i]*x1 
  model=lm(y~0+x1+x2) 
  euler.est[1,i]= (1-as.numeric(model$coefficients)[2])/Delta 
  euler.est[2,i] = as.numeric(model$coefficients)[1]/ 
                        (1-as.numeric(model$coefficients)[2]) 
  euler.est[3,i] = sigma(model)^2/Delta 
} 
 
bias=rowMeans(euler.est-paras) 
sd =rowSds(euler.est) 
rmse =(rowMeans((euler.est-paras)^2))^0.5 
rrmse =((rowMeans((euler.est-paras)^2))/(paras))^0.5 

# example 44 continues 
# plot the first year of the 5%ile, 15%ile,.. 95n%ile scenarios sorted at the one year point 
o = order(scenarioSet[252,]) 
matplot(scenarioSet[,c(1,o[-(M/20)+(M/10)*1:10],M)], type="l", main="CIR paths", 
               ylab="Short Rate", xlab="days") 
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CIR paths 

                            

The scenarios show material dispersion during the first year, but they then settle down to extended low 
rates clustered in the 0% to 1.5% range. This is roughly the pattern of the historical data used for 
calibration, so the CIR model appears to produce scenarios in line with the calibration data, in this case. 
Calibrating to a historical dataset with higher or more variable rates might produce more dispersion in the 
scenario set. Alternatively, we notice the mean reversion strength gamma produced by our calibration is 
greater than 1.0. Reviewing the CIR model in equation (4), this could amplify volatility, which could be 
offset by the �𝛼𝛼𝑟𝑟𝑡𝑡 volatility term. This emphasizes the need for assessing the scenario set produced by the 
model.  Alternatively it is usable with the caveat that the scenario set only spans scenarios in a regime like 
2017 to 2019 U.S. rates, but not scenarios from a different regime. 

5.4 VALIDATE 
Assuming that the scenario set is appropriate for the modeling work to be undertaken, we proceed to 
complete the validation process. 

The Practical Guide [1] Section 6.3 explores desirable properties for a set of economic scenarios. Focusing 
on government yield curve projections, we assess the properties of our scenario set: 

1. Yields for longer maturities are usually greater than yields for shorter maturities, i.e. the yield 
curve is “upward sloping”. 

2. The volatility of short maturity yields tends to be greater than long maturity yields – but not during 
periods of central bank intervention. 

3. Short and long maturity yields are highly correlated. 
4. When short rates are low, long rates tend to be greater than short rates. 
5. When short rates are high, long rates tend to be lower than short rates (i.e., the yield curve is said 

to be “inverted”). The above properties are not applicable for a one-factor short rate model, and 
point to the need to consider two-factor and other models. 
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6. Negative short rates are possible. The scenarios generated here do not span negative rates but 
they do produce many scenarios with rates close to zero. 

7. Higher rates occur but do not persist for long. The scenarios generated here do not probe higher 
rates. The highest rate scenario at the one year point gets to about 6% and then reverts toward 
the mean reversion target of 0.37%. 

Further stylized facts can be considered for corporate bond yields or spreads, equity market scenarios, and 
inflation and other economic variables. These are beyond the scope of models considered in this paper. 

The following considerations may also apply: 

1. Actual Results –  is this model similar to others? We know that Vasicek and CIR scenario sets don't 
model long rates, inverted yield curves, or very low or high rate paths. 

2. Evaluate with benchmarking and replication (static validation, parallel testing, spreadsheet 
replica). The Veronesi spreadsheet plots a zero-volatility trend developed in column J. 

3. Evaluate with outcome analysis (dynamic replication, back-testing, out-of-sample testing). By 
about day 80 of the historical data, actual short rates went to zero as the central bank responded 
to the COVID-19 pandemic. The Vasicek scenarios did not encompass such an outcome, while the 
CIR scenarios seem to do so. 

4. Sound/Stable Results – are results sound and stable across a range of use and scenarios? The 
scenarios are quite stable. 

5. Stress, sensitivity, or extreme value testing. A test scenario set with gamma reduced or alpha 
increased may conform better to stylized facts, and would be worth exploring. 

6. Dependencies and correlations – how is inflation correlated with the short rate?  Should the 
inflation assumption in the broader model be linked to the interest rate scenario set, perhaps with 
a lag? 

5.5 MODEL GOVERNANCE 
As of this writing, standard practice is to submit model assumptions and design choices to a Model 
Governance Committee. The choices of model, data series, time steps, and the implications should be 
listed and described in accordance with applicable standards of practice. They then are submitted to the 
Model Governance Committee or the Principal sponsoring the work assignment for discussion and 
acceptance or further investigation.  This aligns with standards of practice that a) results should be 
communicated in a useful and understandable way, and b) the model is appropriately documented and 
governed.  Generally the interest rate or economic scenario model would be run as part of a larger 
modeling process, so documentation and review and acceptance may be part of the larger modeling effort. 

A word of encouragement on documentation. We know we should do it, and standards of practice such as 
ASOP 56 Modeling, section 3.7 in the U.S. recommend it. Yet as a new procedure is developed it is unclear 
what to write, and as deadlines approach documentation falls by the wayside. Don't let the perfect be the 
enemy of the good. As the work progresses write down the project objectives, then the data sources, then 
the data transforms and loads, then the run procedure and results interpretation, then why the model is 
plausible.  Do this as work proceeds. You will have a solid start at documentation! Then the next time the 
process is run, refine the documentation. Last, check back to the standards of practice and add an item or 
two to ensure compliance. 
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6 Conclusion 
Each model has issues which become apparent when fit to an actual historical data series or a specific yield 
curve. In Section 5 we saw that the one-factor models have difficulty fitting historical data where 
exogenous shocks caused discontinuities, or “jumps”, in the data series. Adding a random jump term can 
be done, at the cost of additional complexity.  The practitioner can also test the two-factor Vasicek model 
with correlated factors and the two-factor Hull-White model, as explored in Section 4. Both of these 
models are in the class of G2++ models, which can be explored further in [6] section 4.2. Ultimately the 
choice of model and calibration data comes down to art and professional judgement. Real world data is 
messy, with exogenous shocks from political shifts, central bank intervention, geopolitical events, and 
more. There's no one right answer, but rather informed choices and trade-offs. That's what makes it 
interesting. Best wishes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://soa.qualtrics.com/jfe/form/SV_0OIohMDL9PC5nTg


  88 

 

Copyright © 2023 Society of Actuaries Research Institute 

7 Acknowledgments  
The researchers’ deepest gratitude goes to those without whose efforts this project could not have come 
to fruition: the Project Oversight Group and others for their diligent work in reviewing and editing this 
report for accuracy and relevance.  Project Oversight Group members: 

Ted Chang, FSA, MAAA, PhD 

Gary Hatfield, FSA, MAAA, CFA, PhD 

Jason Kehrberg, FSA, MAAA, PhD 

Paul Ngai, FSA, FCIA 

At the Society of Actuaries: 

Doug Chandler, FSA FCIA 

The volunteers who generously shared their wisdom, insights, advice, guidance, and arm’s-length review of 
this study prior to publication. Any opinions expressed may not reflect their opinions nor those of their 
employers. Any errors belong to the authors alone. 

Steve Strommen, FSA, MAAA 

 

  



  89 

 

Copyright © 2023 Society of Actuaries Research Institute 

References  
 

[1] Economic Scenario Generators: A Practical Guide. Society of Actuaries, 2016. 

[2] Leif BG Andersen. Efficient simulation of the Heston stochastic volatility model. Available at SSRN 
946405, 2007. 

[3] David F Babbel and Frank J Fabozzi. Investment management for insurers, volume 43.  John Wiley & 
Sons, 1999. 

[4] Jean-François Bégin. Economic scenario generator and parameter uncertainty: A Bayesian approach. 
ASTIN Bulletin: The Journal of the IAA, 49(2):335-372, 2019. 

[5] Victor Bernal. Calibration of the Vasicek model: a step by step guide. 2016. 

[6] Damiano Brigo and Fabio Mercurio. Interest rate models - theory and practice.  Springer Finance. 
Springer, Berlin, Germany, 2 edition, Aug 2007. 

[7] Kalok C Chan, G Andrew Karolyi, Francis A Longstaff, and Anthony B Sanders.  An empirical comparison 
of alternative models of the short-term interest rate. The Journal of Finance, 47(3):1209-1227, 1992. 

[8] Eric Chin, Sverrir Olafsson, and Dian Nel. Problems and Solutions in Mathematical Finance, Volume 1: 
Stochastic Calculus. John Wiley & Sons, 2014. 

[9] Rama Cont. Encyclopedia of quantitative finance. Wiley, 2010. 

[10] John Cox, Jonathan Ingersoll, and Stephen Ross. A theory of the term structure of interest rates. 
Econometrica, 53:385-407, 02 1985. 

[11] J. L. Doob. The Brownian Movement and Stochastic Equations, volume 43. Annals of Mathematics, 
1942. 

[12] Daniel Dufresne, Felisa Vázquez-Abad, and Stephen Chin. Change of measure for the square-root 
process. In Proceedings of the Winter Simulation Conference 2014, pages 465-475, 2014. 

[13] William Feller. Two singular diffusion problems. Annals of Mathematics, 54(1):173-182, 1951. 

[14] David M Gay. Usage summary for selected optimization routines. Computing Science Technical Report 
153, AT&T Bell Laboratories, Murray Hill, NJ 07974, October 1990. 

[15] James Douglas Hamilton. Time Series analysis. Princeton University Press, 1994. 

[16] Lars Peter Hansen. Large sample properties of generalized method of moments estimators. 
Econometrica: Journal of the econometric society, pages 1029-1054, 1982. 

[17] Stefano M Iacus. Simulation and inference for stochastic differential equations: with R examples, 
volume 486. Springer, 2008. 

[18] Norman L Johnson, Samuel Kotz, and Narayanaswamy Balakrishnan. Continuous univariate 
distributions, volume 2, volume 289. John Wiley & Sons, 1995. 



  90 

 

Copyright © 2023 Society of Actuaries Research Institute 

[19] Giuseppe Orlando, Rosa Mininni, and Michele Bufalo. Interest rates calibration with a CIR model. The 
Journal of Risk Finance, 20(4):370-387, 2019. 

[20] Giuseppe Orlando, Rosa Maria Mininni, and Michele Bufalo. Forecasting interest rates through Vasicek 
and CIR models: A partitioning approach. Journal of Forecasting, 39(4):569-579, July 2020. 

[21] Hansen Pei. Mean-Reverting Spread Modeling: Caveats in Calibrating the OU Process.  Hudson and 
Thames Research, August 2021. 

[22] Christian Ritz and Jens Carl Streibig. Nonlinear regression with R. Springer, 2008. 

[23] Stephen J. Strommen. Understanding the Connection Between Real-World and Risk-Neutral Scenario 
Generators. Society of Actuaries, 2022. 

[24] Pietro Veronesi. Fixed income securities: Valuation, risk, and risk management. John Wiley & Sons, 
2010. 

 

 

 

  



  91 

 

Copyright © 2023 Society of Actuaries Research Institute 

Appendix A: Zero coupon bond prices under one-factor Vasicek model 
Under one factor Vasicek model zero-coupon bond prices are given by: 

 

Note that we are using parameters 𝛾𝛾∗ and �̅�𝑟∗ to indicate the drift of the SDE for 𝑟𝑟𝑡𝑡, 𝛾𝛾∗(�̅�𝑟∗ − 𝑟𝑟𝑡𝑡) in the risk-
neutral world, as opposed to parameters 𝛾𝛾 and �̅�𝑟 with the drift of 𝛾𝛾(�̅�𝑟 − 𝑟𝑟𝑡𝑡) in the real world. 

When we fit these to market bond prices we need to use a numerical search algorithm.  As [24] points out 
in many places it is possible to get negative values for the parameter 𝛾𝛾∗ so we must look at the behaviour 
of the bond price function in the neighbourhood of 𝛾𝛾∗ = 0. We see that 𝐵𝐵(𝑑𝑑;𝑇𝑇) is a continuous function 
with the limit of 𝛾𝛾 → 0 being (𝑇𝑇 − 𝑑𝑑).  However, we see that calculating the limiting value of 𝐴𝐴(𝑑𝑑;𝑇𝑇) as 
𝛾𝛾∗ → 0 is zero is not an easy task based on [24] (15.30), but with some calculus we can prove that 𝐴𝐴(𝑑𝑑;𝑇𝑇) is 
discontinuous at 𝛾𝛾∗ = 0.  So if we do not address this properly in the implementation of numerical 
optimizations, we may end up getting wrong values.  To calculate the bond price formula when 𝛾𝛾∗ = 0 
takes some effort. For this we can either use the fact that when 𝛾𝛾∗ = 0 the Vasicek model reduces to a 
zero-drift Ho-Lee model and then using [24] (19.8)-(19.9), or we can use the following approach. 

First notice that bond prices are given by: 

𝑍𝑍(𝑟𝑟𝑡𝑡 , 𝑑𝑑;𝑇𝑇) = 𝐸𝐸ℚ �exp �−� 𝑟𝑟𝑠𝑠𝑑𝑑𝑠𝑠
𝑇𝑇

𝑡𝑡
�  | 𝑟𝑟𝑡𝑡� 

In the risk-neutral world the SDE of 𝑟𝑟𝑡𝑡 is given as: 

𝑑𝑑𝑟𝑟𝑡𝑡 = 𝛾𝛾∗(�̅�𝑟∗ − 𝑟𝑟𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝜎𝜎𝑑𝑑𝑋𝑋𝑡𝑡 

The solution of the above SDE takes the following form: 

 

From this we can obtain: 

 

Using Stochastic Fubini’s theorem, 
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Since ∫ 𝑟𝑟𝑠𝑠𝑑𝑑𝑠𝑠
𝑇𝑇
𝑡𝑡  | 𝑟𝑟𝑡𝑡  is a normal random variable the bond pricing formula reduces to: 

  (12) 

But: 

 

where the first equation follows from the fact that expectation of the Itô integral is zero and the second 
equation follows from Itô isometry. By comparing (12) with the [24] (15.28)-(15.30) we see that: 

 

Readers are encouraged to verify that when 𝛾𝛾∗ ≠ 0 the above integrals simplify to [24] (15.29) and (15.30). 
Now we can easily calculate values of 𝐵𝐵(𝑑𝑑;𝑇𝑇) and 𝐴𝐴(𝑑𝑑;𝑇𝑇) when 𝛾𝛾∗ = 0 by substituting 𝛾𝛾∗ = 0 in the 
above: 

 

Note that when 𝛾𝛾∗ = 0 the model is a Ho-Lee model with zero drift and our result agrees with [24] (19.9). 
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Appendix B: Zero coupon bond prices under the two-factor Vasicek model 
This model can be written as the short rate process written as the sum of two factors, a short rate factor 
and a long rate factor: 

𝑟𝑟𝑡𝑡 = 𝜙𝜙1,𝑡𝑡 + 𝜙𝜙2,𝑡𝑡 

where each factor follows the following SDEs: 

𝑑𝑑𝜙𝜙𝑖𝑖,𝑡𝑡 = 𝛾𝛾𝑖𝑖�𝜙𝜙�⃗ 𝑖𝑖 − 𝜙𝜙𝑖𝑖,𝑡𝑡�𝑑𝑑𝑑𝑑 + 𝜎𝜎𝑖𝑖𝑑𝑑𝑋𝑋𝑖𝑖,𝑡𝑡 , 𝑖𝑖 = 1,2. 

With a few lines of algebra we can obtain the solution to these SDEs as follows: 

𝜙𝜙𝑖𝑖,𝑡𝑡+𝑠𝑠 = 𝜙𝜙𝑖𝑖,𝑡𝑡𝑒𝑒𝑥𝑥𝑒𝑒(−𝛾𝛾𝑖𝑖𝑠𝑠) + 𝜙𝜙�⃗ 𝑖𝑖�1 − 𝑒𝑒𝑥𝑥𝑒𝑒(−𝛾𝛾𝑖𝑖𝑠𝑠)� + 𝜎𝜎𝑖𝑖𝑒𝑒𝑥𝑥𝑒𝑒(−𝛾𝛾𝑖𝑖𝑠𝑠)� 𝑒𝑒𝑥𝑥𝑒𝑒(𝛾𝛾𝑖𝑖𝑐𝑐)
𝑠𝑠

0
𝑑𝑑𝑋𝑋𝑖𝑖,𝑣𝑣 , 𝑖𝑖 = 1,2. 

The conditional means and variance of these two factors are given by: 

 

where the second to last equation follows from the Itô isometry. The conditional covariance between 
𝜙𝜙1,𝑡𝑡+𝑠𝑠 and 𝜙𝜙2,𝑡𝑡+𝑠𝑠 conditioned on 𝜙𝜙𝑖𝑖,𝑡𝑡 , 𝑖𝑖 = 1,2 is given by: 

 

 

The conditional correlation coefficient between 𝜙𝜙1,𝑡𝑡+𝑠𝑠 and 𝜙𝜙2,𝑡𝑡+𝑠𝑠, which can be denoted as 𝜌𝜌(𝑠𝑠), is given 
by: 

 

The zero-coupon bond prices can be calculated by evaluating: 

𝑍𝑍(𝑟𝑟𝑡𝑡 , 𝑑𝑑;𝑇𝑇) = 𝐸𝐸ℚ �exp �−� 𝑟𝑟𝑠𝑠𝑑𝑑𝑠𝑠
𝑇𝑇

𝑡𝑡
�  | 𝑟𝑟𝑡𝑡� 

Since 𝑟𝑟𝑡𝑡 = 𝜙𝜙1,𝑡𝑡 + 𝜙𝜙2,𝑡𝑡 let us look at obtaining ∫ 𝜙𝜙𝑖𝑖,𝛾𝛾𝑑𝑑𝑑𝑑
𝑠𝑠
𝑡𝑡  first: 
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Using the stochastic Fubini's lemma we can exchange the order of the last integral: 

 

Now we see that all three integrals can be simplified when 𝛾𝛾𝑖𝑖 ≠ 0 and when 𝛾𝛾𝑖𝑖 = 0.  However we leave 
them as it is for now and observe the following.  Each integral is a normally distributed random variable and 
the means, variances and covariances are given as below: 

 

When 𝛾𝛾𝑖𝑖 ≠ 0 the above integrals simplify to: 

 

 

By defining 𝐵𝐵𝑖𝑖(𝑑𝑑;𝑇𝑇) as in [24], 

𝐵𝐵𝑖𝑖(𝑑𝑑;𝑇𝑇) =
1
𝛾𝛾𝑖𝑖
�1 − 𝑒𝑒𝑥𝑥𝑒𝑒�−𝛾𝛾𝑖𝑖(𝑇𝑇 − 𝑑𝑑)�� ,   𝑖𝑖 = 1,2 

we can write: 

 

Let us simplify the conditional covariance between ∫ 𝜙𝜙1,𝑠𝑠𝑑𝑑𝑠𝑠
𝑇𝑇
𝑡𝑡  and ∫ 𝜙𝜙2,𝑠𝑠𝑑𝑑𝑠𝑠

𝑇𝑇
𝑡𝑡  conditioned on 𝑟𝑟𝑡𝑡. 

 

when 𝛾𝛾𝑖𝑖 ≠ 0 for 𝑖𝑖 = 1,2 the above integral can be evaluated as: 
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By writing: 

𝐵𝐵3(𝑑𝑑;𝑇𝑇) =
1

𝛾𝛾1 + 𝛾𝛾2
�1 − 𝑒𝑒𝑥𝑥𝑒𝑒�−(𝛾𝛾1 + 𝛾𝛾2)(𝑇𝑇 − 𝑑𝑑)�� 

we can rewrite the above expression for covariance as below: 

 

As [6] explains the 

𝑍𝑍(𝑟𝑟𝑡𝑡 , 𝑑𝑑;𝑇𝑇) = 𝑒𝑒𝑥𝑥𝑒𝑒 �𝐸𝐸ℚ �−� 𝑟𝑟𝑠𝑠𝑑𝑑𝑠𝑠
𝑇𝑇

𝑡𝑡
| 𝑟𝑟𝑡𝑡� +

1
2
𝑉𝑉𝐴𝐴𝑉𝑉ℚ �−� 𝑟𝑟𝑠𝑠𝑑𝑑𝑠𝑠

𝑇𝑇

𝑡𝑡
| 𝑟𝑟𝑡𝑡�� 

But 

 

 

Therefore: 
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However [24] writes zero-coupon bond prices as: 

𝑍𝑍�𝜙𝜙1,𝑡𝑡 ,𝜙𝜙2,𝑡𝑡 , 𝑑𝑑;𝑇𝑇� = 𝑒𝑒𝑥𝑥𝑒𝑒 �𝐴𝐴(𝑑𝑑,𝑇𝑇) − 𝜙𝜙1,𝑡𝑡𝐵𝐵1(𝑑𝑑,𝑇𝑇) − 𝜙𝜙2,𝑡𝑡𝐵𝐵2(𝑑𝑑,𝑇𝑇)� 

Therefore: 

 

Since: 

𝐵𝐵𝑖𝑖(𝑑𝑑;𝑇𝑇) = � 𝑒𝑒𝑥𝑥𝑒𝑒(−𝛾𝛾𝑖𝑖𝑠𝑠)
𝑇𝑇−𝑡𝑡

0
𝑑𝑑𝑠𝑠,   𝑖𝑖 = 1,2,3 

it is obvious that 𝐵𝐵𝑖𝑖(𝑑𝑑;𝑇𝑇), 𝑖𝑖 = 1, 2, 3 are continuous in the neighbourhood of 𝛾𝛾𝑖𝑖 = 0 and its value at 𝛾𝛾𝑖𝑖 = 0 
is 𝑇𝑇 − 𝑑𝑑.  However, 𝐴𝐴(𝑑𝑑;𝑇𝑇) is not continuous around 𝛾𝛾𝑖𝑖 = 0 for 𝑖𝑖 = 1 or 𝑖𝑖 = 2 and the function has to be 
evaluated using its integral expression. 

 

Therefore if 𝛾𝛾1 = 0 and 𝛾𝛾2 ≠ 0 𝐴𝐴(𝑑𝑑;𝑇𝑇) becomes: 

 



  97 

 

Copyright © 2023 Society of Actuaries Research Institute 

Upon simplification we obtain: 

 

By symmetry when 𝛾𝛾1 ≠ 0 and 𝛾𝛾2 = 0, the expression for 𝐴𝐴(𝑑𝑑;𝑇𝑇) simplifies to: 

 

When both 𝛾𝛾1 = 0 and 𝛾𝛾2 = 0 the integral for 𝐴𝐴(𝑑𝑑;𝑇𝑇) becomes: 

 

Which simplifies to: 
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