

Calibrating Interest Rate Models

October 2023

 2

Copyright © 2023 Society of Actuaries Research Institute

Calibrating Interest Rate Models

AUTHORS Rohana Ambagaspitiya, FSA, FCIA, PhD

Charles Ford, FSA, MAAA, CFA

SPONSOR Quantitative Finance and Investment
Curriculum Committee

Caveat and Disclaimer
The opinions expressed and conclusions reached by the authors are their own and do not represent any official position or opinion of the Society of
Actuaries Research Institute, the Society of Actuaries or its members. The Society of Actuaries Research Institute makes no representation or warranty to
the accuracy of the information.

Copyright © 2023 by the Society of Actuaries Research Institute. All rights reserved.

https://soa.qualtrics.com/jfe/form/SV_0OIohMDL9PC5nTg

 3

Copyright © 2023 Society of Actuaries Research Institute

TABLE OF CONTENTS

Executive Summary .. 5

1 Introduction .. 7
1.1 R Setup ... 7
1.2 Introduction to Scenarios .. 8
1.3 Interest Rate Markets.. 8
1.4 Market-Consistent Models ... 9
1.5 The Market Price of Risk ... 9
1.6 Parameter Uncertainty .. 11

2 Three Continuous-Time Interest Rate Models .. 11
2.1 The Vasicek Model .. 11

2.1.1 Simulating paths of the Vasicek model: Euler-Maruyama discretization ... 12
2.1.2 Simulating paths of the Vasicek model: Transition Density Method .. 13

2.2 Cox-Ingersoll-Ross (CIR) Model ... 15
2.2.1 Simulating paths of the CIR Model: Euler-Maruyama discretization .. 15
2.2.2 Simulating paths of the CIR model: Transition density method ... 17

2.3 The Two-Factor Vasicek model with correlated factors .. 18
2.3.1 Simulating paths of the two-factor Vasicek model: Transition density method 19

3 Calibration Techniques .. 20
3.1 The Vasicek model: real-world calibration .. 20

3.1.1 Maximum Likelihood Estimator Method ... 21
3.1.2 Long Term Quantile Method .. 25

3.2 The Vasicek model: risk-neutral calibration .. 27
3.3 The CIR model: real-world calibration ... 33

3.3.1 Euler method .. 33
3.3.2 Maximum likelihood estimate .. 34

3.4 THE GENERALIZED METHOD OF MOMENTS .. 36
3.5 The CIR model: risk-neutral calibration ... 39
3.6 The two-factor Vasicek model calibration ... 46

4 No-Arbitrage Models ... 52
4.1 Hull-white models ... 52

4.1.1 One factor Hull-white model .. 52
4.1.2 The two-factor Hull-white model ... 54
4.1.3 Hull-white model calibration .. 55

4.2 Yield curve interpolation: one-factor model .. 56
4.2.1 Fitting an 𝒏𝒏 degree polynomial for 𝒓𝒓𝟎𝟎, 𝒕𝒕 ... 57
4.2.2 Fitting a Nelson-Siegel Curve to 𝒓𝒓𝟎𝟎, 𝒕𝒕 .. 59

4.3 Calibration of the One-Factor Hull-White Model .. 61
4.4 Calibration of the Two-Factor Hull-White Model .. 67

5 Model Validation ... 78
5.1 Data and Assumptions .. 78
5.2 Investigate the Data .. 81
5.3 Recalibrate ... 82
5.4 Validate .. 85
5.5 Model Governance .. 86

6 Conclusion ... 87

7 Acknowledgments ... 88

 4

Copyright © 2023 Society of Actuaries Research Institute

References .. 89

Appendix A: Zero coupon bond prices under one-factor Vasicek model .. 91

Appendix B: Zero coupon bond prices under the two-factor Vasicek model .. 93

About The Society of Actuaries Research Institute .. 98

 5

Copyright © 2023 Society of Actuaries Research Institute

Calibrating Interest Rate Models

Executive Summary
Investment Actuaries and now Valuation Actuaries need a mastery of stochastic interest rate models. This
includes selecting a model appropriate for a given application, the correct use of real world versus risk
neutral scenario sets, and how to calibrate and validate them properly.

Models like Vasicek and Cox-Ingersoll-Ross (CIR) are stochastic models that, when the parameters are set,
determine the yield curve. They are appropriate when a stochastic model is needed and it is less important
whether or not the yield curve implied by the model actually matches the "actual" observed yield curve. This
setup is mainly used for US Statutory Valuation VM20, VM21 and Economic Capital calculations.

If the requirement is to price interest sensitive cash flows in a market consistent way, something else is
needed. Both the CIR and Vasicek can be modified to get market consistent versions and obviously there are
many other models beyond these. Examples of market-consistent applications are IFRS 17 valuation,
measuring the cost of guarantees for universal life minimum interest rates, and measuring the cost of
guarantees for participating insurance products. The following table summarizes what type of interest rate
models should be used under different circumstances and to what they should be calibrated.

Table 1
TABLE TITLE OR DESCRIPTION

Purpose of the Interest Rate
Generator

Interest Rate Model Items Calibrated to

US Statutory Valuation

Required Capital

Vasicek

CIR

Historical rates, current yield
curve, expert opinion, and/or
regulatory criteria

Market Consistent Valuation

Pricing of Options

IFRS 17 valuation

2-factor Hull-White
Lognormal Forward Model

Extended CIR

Current Yield curve

Current option prices

SOA QFI Curriculum

The existing literature presents the theory, but it can be challenging for the practitioner new to this
specialty to take that theory, write code to implement it, use historical data to calibrate the model, and
assess whether the resulting set of scenarios is reasonable.

This paper addresses this need by introducing practitioners to the selection and calibration of stochastic
interest rate models. Six continuous time interest rate models and their calibration are presented. Actual
code and data examples are added to help the practitioner implement them. The emphasis is on hands-on
calibration with RStudio. The reader is assumed to have a working knowledge of RStudio, including writing
R scripts.

 6

Copyright © 2023 Society of Actuaries Research Institute

The focus of this paper is narrow: calibrating and validating an interest rate model for default-free bond
yields in a single economy. Out of scope are inflation and equity index variables, credit spreads, and factors
for multiple economies such as foreign exchange.

With this focus the practitioner may begin their journey in stochastic interest rate modeling.

https://soa.qualtrics.com/jfe/form/SV_0OIohMDL9PC5nTg

 7

Copyright © 2023 Society of Actuaries Research Institute

1 Introduction
In this paper we present calibration of six continuous time interest rate models. We use the notation in [24]
and cite relevant chapters throughout the report. The emphasis is on hands-on calibration with RStudio.
We assume the reader has some working knowledge of RStudio, including writing R scripts.

The focus of this paper is narrow: calibrating and validating an interest rate model for default-free bond
yields in a single economy. These are outlined at a higher level in [1]. This paper adds actual code and data
examples to help the practitioner implement these ideas. Out of scope are inflation and equity index
variables, credit spreads, and factors for multiple economies such as foreign exchange.

In this paper the acronym ESG refers to economic scenario generators and not to environmental, social,
and governance aspects of investing.

1.1 R SETUP
R is used for examples. The RStudio environment for working with R will be necessary for the reader to
follow along and experiment with the code presented in this paper. If RStudio has not been downloaded
and installed, now would be a good time to do so.

The R functions and examples given in this paper are available as a bundled package on the SOA website at
https://www.soa.org/resources/research-reports/2023/interest-rate-model-calibration-study/ You may
install “InterestCalibrationv1_1.2.0.tar.gz” in RStudio using “Tools → Install packages → Install from: →
Package Archive”. When you extract the package archive, its subfolders “R” and “examples” contain all the
functions and examples respectively. However, readers are encouraged to key in the code chunks instead
of copy/pasting them.

R is both a software environment and a scripting language, and it may interpret certain manipulations in an
unintended way. When a new session is begun it is good idea to either restart R or clean the workspace
using:

https://www.soa.org/resources/research-reports/2023/interest-rate-model-calibration-study/

 8

Copyright © 2023 Society of Actuaries Research Institute

1.2 INTRODUCTION TO SCENARIOS
This paper explores the nuances of calibrating continuous-time interest rate models. It is not an
introduction to economic scenario generators (ESGs). In actual practice there are several steps to the
process of setting up a model to run multiple, stochastically generated interest rate scenarios:

• The application for the modeling work should be clear to practitioners
o Derivative valuation, valuing financial guarantees such as insurance business pricing, financial

planning, and economic capital or tail risk analysis
• Specify “stylized facts”

o Clarify an understanding of how economic variables are expected to evolve over time and in
what circumstances the relationships between them change, such as during a recession

• Source and analyze historical data
• Calibrate the model
• Run the generator
• Confirm that the resulting scenarios are fit for purpose. How well do they conform to the pre-

determined stylized facts? Are changes necessary?
• Run the model of the security or business, iterating through each scenario
• Validate the model results
• Document each step so that:

o choices made can be explained in management presentations and regulatory filings
o the whole process can be run in an efficient, consistent manner when next required

This broader context is examined in Economic Scenario Generators: A Practical Guide, (SOA, 2016) (the
“Practical Guide”)[1]. This paper will only comment briefly on these points and suggest initial choices to
provide context and a pathway through this process. Experienced practitioners will have reasons to make
different judgements on these issues.

1.3 INTEREST RATE MARKETS
This paper assumes a context of US fixed income markets. Some other sovereign bond markets have the
trading liquidity and full term structure seen in the US Treasury bond market. Practitioners in other
markets are encouraged to consult with a bond analyst or trader for local market characteristics, such as
liquidity and yield quoting conventions.

 A word about U.S. Treasury yields. The U.S. Department of the Treasury issues intermediate and longer
maturity notes (to 10 years) and bonds (longer than 10 years) every few months. Loosely speaking they are
all often called “bonds”, which we will do here. Consider a newly issued 10-year bond, which is said to be
“on-the-run”. A 30-year bond issued 20 years ago also has 10 years until maturity, but it is said to be “off-
the-run”. Trading in it is less liquid and it may trade for a couple of basis points higher yield.

As time passes that newly issued 10-year bond will no longer have 10 years until maturity, but rather 9
years 11 months, 10 months, etc. In an upwardly sloping yield curve environment these trade at a slightly
lower yield than a true 10-year note. The Treasury Department does a curve fitting exercise every trading
day to calculate that day’s closing yield for a true 10-year bond, and other key maturities as well. These are

 9

Copyright © 2023 Society of Actuaries Research Institute

said to be “constant maturity treasury” (CMT) yields1 and are often used for modeling, even though they
are not actually tradable securities. CMT yields and discussion can be found by doing an internet search for
“US Treasury CMT rates”.

Six months after issue a new 10-year note is issued and becomes the on-the-run 10-year bond. The first
bond now has just 9.5 years until maturity, and is said to be off-the-run. Trading liquidity will shift to the
new on-the-run note.

1.4 MARKET-CONSISTENT MODELS
Before a model can be calibrated it must be selected. To select an appropriate model the practitioner must
be clear on the uses to which the model will be applied.

One class is for realistic simulation of how something – an asset, a financial liability, or a business segment
with both – evolves over time. By “realistic” we mean plausible given an accepted set of stylized facts about
how market participants make decisions and how interest rates “should” evolve over time. These are
discussed in detail in [1], chapter 6.

A different problem is to determine a value for a security that is not frequently traded. A model can be
calibrated to observed market prices of similar securities and then used to calculate (estimate) values for
illiquid securities.

Either problem can be solved with a model and an economic scenario generator. If equity index variables
and economic variables such as inflation need not be modeled then those factors may be set to zero, one,
or otherwise not used, leaving the interest rate model the only active part of the ESG. The generator is
then set up with initial conditions such as observed yields and market prices as of the desired model start
date. The generator has an interest rate model component which evolves yield curves forward one time
step at a time to produce one interest rate scenario. This step is repeated 1,000, 10,000, or more times to
generate a set of interest rate scenarios. For each scenario, a value is calculated for each security.

These values do not automatically reproduce observed market prices at the model start date. The model
must be “calibrated”, that is, its parameters must be adjusted to match specific criteria.

If the task at hand is to calculate prices for infrequently traded securities that are reasonably consistent
with the observed market prices of frequently traded securities, then the calibration adjusts the
parameters to reproduce those prices. Such a calibration is “market-consistent”. The adjusted, or
calibrated, scenario set may then be used to calculate estimated market values for similar non-traded
securities. It should not be used for dissimilar securities.

Note that so far nothing has been said about risk neutral or real world.

1.5 THE MARKET PRICE OF RISK
One stylized fact is that market participants are risk averse. Market prices embed a factor for this called the
”market price of risk”.

1 https://home.treasury.gov/policy-issues/_nancing-the-government/interest-rate-statistics/interest-rates-
frequently-asked-questions

 10

Copyright © 2023 Society of Actuaries Research Institute

If the scenario set is only being used to value securities at the model start date, a useful mathematical tool
is to assume the market price of risk is zero. The calibration step can still find parameters to match the
observed securities prices, but it does so by adjusting the probability of each scenario occurring.

This is useful because the market price of risk can be estimated but not directly observed in the market.
With the assumption of a zero market price of risk, the calibrated scenario set is said to be “risk-neutral.” It
is also market-consistent because it reproduces the observed market prices of the selected securities at the
specified date. The trade-off is that this scenario set can no longer provide reliable information about
future time steps or period; it is not fit for such a purpose.

It is also possible to choose a market price of risk from historical data. As with the other parameters this
would need to fit the stylized facts and interact with other parameters in a reasonable way. The model
calibration can then either fit the scenarios to observed market prices so as to be market consistent, or left
in an equilibrium state. The latter approach might be desirable for stress testing or tail risk analysis. The
former approach is necessary for estimating values of similar securities (“valuation”).

Why might the former approach of setting a historically based market price of risk and calibrating to
observed market prices be preferred to assuming a zero market price of risk (the risk-neutral approach)?
When the item being modeled has complex future interactions, such as modeling a hedging program or
embedded options in new business in a financial plan model, having scenarios and model outcomes that
are intuitively understandable and can be explained to stakeholders beyond the modeling team may be
important for credibility and influencing decisions. Silly-looking scenarios come with risk-neutral; they're
part of the deal.

More complete discussions can be found in [23] for the latest research as well as the classic chapter 11 of
[3].

 11

Copyright © 2023 Society of Actuaries Research Institute

1.6 PARAMETER UNCERTAINTY
Not only is the choice of the most appropriate model a matter of judgement, the parameters of the chosen
model are uncertain as well. [4] studies the Wilkie model, which models inflation, dividend yields, and an
equity index return, as well as a long-term interest rate. Parameter uncertainty is found to have a
significant impact on the dispersion of these four parameters. The paper applies its findings to a block of
annuity contracts, finding that the distribution of outcomes is significantly wider when the parameters are
recognized as instances of random variables. Developing methods to apply this insight would be an avenue
for further research.

2 Three Continuous-Time Interest Rate Models
In this section we provide a brief description of the three models that we consider. We consider three
models: the Vasicek (one and two factor) models, Cox-Ingersoll-Ross (CIR) model, and the Hull-White
models (one and two factor). The Vasicek and CIR models are called equilibrium models or real-world
models. The equivalent risk-neutral models can be obtained by changing the drift of those models. We
assume that a one factor continuous-time interest rate model for short rate 𝑟𝑟𝑡𝑡 is an Itô process, i.e. 𝑟𝑟𝑡𝑡
follows the stochastic differential equation (SDE)

𝑑𝑑𝑟𝑟𝑡𝑡 = 𝑎𝑎(𝑟𝑟𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝑏𝑏(𝑟𝑟𝑡𝑡)𝑑𝑑𝑋𝑋𝑡𝑡

where 𝑎𝑎(𝑟𝑟𝑡𝑡) and 𝑏𝑏(𝑟𝑟𝑡𝑡) are functions of 𝑟𝑟𝑡𝑡 and 𝑋𝑋𝑡𝑡 is a standard Wiener process. For a formal definition of an
Itô process and an SDE one may refer to [8]. Similarly, the two-factor models satisfy the following SDE

𝑑𝑑𝑟𝑟𝑡𝑡 = 𝑎𝑎(𝑟𝑟𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝑏𝑏1(𝑟𝑟𝑡𝑡)𝑑𝑑𝑋𝑋1,𝑡𝑡 + 𝑏𝑏2(𝑟𝑟𝑡𝑡)𝑑𝑑𝑋𝑋2,𝑡𝑡 ,

with 𝑑𝑑𝑋𝑋1,𝑡𝑡𝑑𝑑𝑋𝑋2,𝑡𝑡 = 𝜌𝜌𝑑𝑑𝑑𝑑

In statistical calibrations, the underlying assumption is that data follows the model that we try to fit.
Therefore, to evaluate calibration techniques we need sample paths from the interest rate model. The only
way to get sample paths that follow the underlying distribution with known parameters is Monte Carlo
simulation. Therefore, it is important to have an accurate method of simulating sample paths from the
given SDE with known parameters. There are number of techniques to generate sample paths from a given
SDE and Chapter 2 of [17] is a good introduction. However, we present two methods: Euler-Maruyama
discretization and the transition density method introduced in [11]. Note that Chapter 17 of [24] only
discusses implementation of Euler-Maruyama method for simulating sample paths, however we
demonstrate that this method is not suitable for practical applications.

2.1 THE VASICEK MODEL
In the Vasicek model the risk free rate of interest 𝑟𝑟𝑡𝑡 is based on an SDE:

𝑑𝑑𝑟𝑟𝑡𝑡 = 𝛾𝛾(�̅�𝑟 − 𝑟𝑟𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝜎𝜎𝑑𝑑𝑋𝑋𝑡𝑡 , (1)

where 𝑋𝑋𝑡𝑡 is the standard Wiener process and 𝛾𝛾, �̅�𝑟, and 𝜎𝜎 are strictly positive parameters. The three
parameters 𝛾𝛾, �̅�𝑟, and 𝜎𝜎 have the following interpretation:

• �̅�𝑟 is the long term mean level; when the rate 𝑟𝑟𝑡𝑡 drifts too much from �̅�𝑟, it will be pulled back closer
to that level. This is called mean reversion.

• 𝛾𝛾 is the speed of mean reversion.
• 𝜎𝜎 is the instantaneous volatility.

 12

Copyright © 2023 Society of Actuaries Research Institute

The solution of the above SDE takes the following form:

𝑟𝑟𝑡𝑡+𝑠𝑠 = 𝑟𝑟𝑡𝑡𝑒𝑒−𝛾𝛾𝑠𝑠 + �̅�𝑟(1 − 𝑒𝑒−𝛾𝛾𝑠𝑠) + 𝜎𝜎𝑒𝑒−𝛾𝛾𝑠𝑠 ∫ 𝑒𝑒𝛾𝛾𝛾𝛾𝑑𝑑𝑋𝑋𝛾𝛾
𝑠𝑠
0 ,

where 𝑟𝑟𝑡𝑡 is the initial point (starting point) of the process and where s > 0.

Since ∫ 𝑒𝑒𝛾𝛾𝛾𝛾𝑑𝑑𝑋𝑋𝛾𝛾
𝑠𝑠
0 is a normal random variable with mean zero and variance ∫ 𝑒𝑒2𝛾𝛾𝛾𝛾𝑑𝑑𝑑𝑑𝑠𝑠

0 , we see that
𝑟𝑟𝑡𝑡+𝑠𝑠|𝑟𝑟𝑡𝑡 ,where s > 0 (i.e. the conditional random variable of 𝑟𝑟𝑡𝑡+𝑠𝑠 conditioned on 𝑟𝑟𝑡𝑡), is normally distributed
with mean 𝜇𝜇(𝑟𝑟𝑡𝑡 , 𝑠𝑠) and variance 𝜎𝜎(𝑠𝑠)2 which are given as below:

𝜇𝜇(𝑟𝑟𝑡𝑡 , 𝑠𝑠) = �̅�𝑟 + (𝑟𝑟𝑡𝑡 − �̅�𝑟)𝑒𝑒−𝛾𝛾𝑠𝑠 (2)

𝜎𝜎(𝑠𝑠)2 = 𝜎𝜎2

2𝛾𝛾
(1 − 𝑒𝑒−2𝛾𝛾𝑠𝑠) (3)

As the conditional distribution o𝑟𝑟𝑡𝑡+𝑠𝑠f is normal, the probability of 𝑟𝑟𝑡𝑡+𝑠𝑠 < 0 can be calculated as below:

For example the set of values (𝑟𝑟𝑡𝑡 = 0.01, �̅�𝑟 = 0.05, 𝛾𝛾 = 0.5,𝜎𝜎 = 0.02, 𝑠𝑠 = 0.1) will yield 𝑃𝑃[𝑟𝑟𝑡𝑡+𝑠𝑠 < 0|𝑟𝑟𝑡𝑡] =
0.02637. This implies that there is a positive probability of negative interest rates occurring, which is
generally seen as a drawback of this model (Japanese and European experience notwithstanding).
However, we can minimize the chance of negative rates in simulation studies by choosing parameters
appropriately.

2.1.1 SIMULATING PATHS OF THE VASICEK MODEL: EULER-MARUYAMA DISCRETIZATION
In this method we discretize the Vasicek model SDE in the following manner:

where 𝜖𝜖𝑡𝑡+∆ is a normal random variable with mean 0 and variance 𝜎𝜎2∆. As 𝑑𝑑𝑋𝑋𝑡𝑡 is a standard Brownian
motion we can write from the above:

𝑟𝑟𝑖𝑖∆ = 𝑟𝑟(𝑖𝑖−1)∆ + 𝛾𝛾��̅�𝑟 − 𝑟𝑟(𝑖𝑖−1)∆�∆ + 𝜖𝜖𝑖𝑖∆, 𝑖𝑖 = 1, 2, …

From the properties of Brownian motion we know that 𝜖𝜖𝑖𝑖∆, 𝑖𝑖 = 1, 2, … are independent identically
distributed (i.i.d.) normal with mean zero and variance 𝜎𝜎2∆. For convenience let us write:

 13

Copyright © 2023 Society of Actuaries Research Institute

Then:

𝑟𝑟(𝑖𝑖) = 𝛼𝛼 + 𝛽𝛽𝑟𝑟(𝑖𝑖 − 1) + 𝜖𝜖𝑖𝑖 , 𝑖𝑖 = 1, 2, …

with 𝜖𝜖𝑖𝑖 's that are i.i.d. normal with mean 0 and standard deviation 𝜎𝜎∗. The R function “Vasicek.Euler.sim”
in the “InterestCalibration” library implements this method. The following code snippet demonstrates use
of “Vasicek.Euler.sim.”

2.1.2 SIMULATING PATHS OF THE VASICEK MODEL: TRANSITION DENSITY METHOD
The transition density method of simulating interest rate paths relies on the fact that the simulation can be
carried out using the distribution of next observation 𝑟𝑟𝑡𝑡+𝑠𝑠 at t+s given observation 𝑟𝑟𝑡𝑡 at time t. This method
is introduced by [11]. This is an exact method of simulation as opposed to the Euler-Maruyama scheme
which relies on discretizing an SDE. Since 𝑟𝑟𝑡𝑡+𝑠𝑠|𝑟𝑟𝑡𝑡 is normal with mean and variance as given in (2) and (3)
respectively, the realized value of 𝑟𝑟𝑡𝑡+𝑠𝑠 is calculated from:

#example2
rm(list=ls()) # clear the workspace and functions
set.seed(123)
X=Vasicek.Euler.sim(Delta=1/252,M=10)
matplot(X,type="l",main="Simulated Vasicek paths (Euler Method)",
ylab="Short rate",xlab="Time Step in days")

 14

Copyright © 2023 Society of Actuaries Research Institute

𝑟𝑟𝑡𝑡+𝑠𝑠 = �̅�𝑟 + (𝑟𝑟𝑡𝑡 − �̅�𝑟)𝑒𝑒−𝛾𝛾𝑠𝑠 �
𝜎𝜎2

2𝛾𝛾
(1 − 𝑒𝑒−2𝛾𝛾𝑠𝑠)�

1
2

𝑍𝑍

where Z is a standard normal random number. By writing:

We can obtain:

𝑟𝑟(𝑖𝑖) = 𝛼𝛼∗ + 𝛽𝛽∗𝑟𝑟(𝑖𝑖 − 1) + 𝜖𝜖𝑖𝑖 , 𝑖𝑖 = 1, 2, …,

where:

with 𝜖𝜖𝑖𝑖 's that are i.i.d. normal with mean 0 and standard deviation 𝜎𝜎∗∗. The R function “Vasicek.Trans.sim”
in the “InterestCalibration” library implements this method. The following code snippet demonstrates use
of “Vasicek.Trans.sim.”

#example3
rm(list=ls()) # clear the workspace and functions
set.seed(123)
X =Vasicek.Trans.sim(Delta=1/252,M=10)
matplot(X,type="l",main="Simulated Vasicek paths (Transition Density Method)",
ylab="Short rate",xlab="Time Step in days")

 15

Copyright © 2023 Society of Actuaries Research Institute

2.2 COX-INGERSOLL-ROSS (CIR) MODEL
The SDE describing the CIR model is as follows:

𝑑𝑑𝑟𝑟𝑡𝑡 = 𝛾𝛾(�̅�𝑟 − 𝑟𝑟𝑡𝑡)𝑑𝑑𝑑𝑑 + �𝛼𝛼𝑟𝑟𝑡𝑡𝑑𝑑𝑋𝑋𝑡𝑡 (4)

This model is also a mean reverting model and the parameters 𝛾𝛾 and �̅�𝑟 have the same interpretation as in
the Vasicek model. One advantage of this model over the Vasicek model is that when 𝛾𝛾�̅�𝑟 > 𝛼𝛼

2
 the rates are

always non-negative. This model was introduced in [13] and [10] used it for modelling interest rates.

With some difficult mathematics one can show that the transition density function of 𝑟𝑟𝑡𝑡+𝑠𝑠 conditioned on
𝑟𝑟𝑡𝑡 is given by:

𝑓𝑓(𝑟𝑟𝑡𝑡+𝑠𝑠|𝑟𝑟𝑡𝑡) = 𝑐𝑐𝑠𝑠𝜒𝜒2(𝑐𝑐𝑠𝑠𝑟𝑟𝑡𝑡+𝑠𝑠, 𝜈𝜈, 𝜆𝜆𝑡𝑡+𝑠𝑠) (5)

where 𝜒𝜒2(. , 𝜈𝜈, 𝜆𝜆𝑡𝑡+𝑠𝑠) is a non-central 𝜒𝜒2 density function with 𝜈𝜈 degrees of freedom and non-centrality
parameter 𝜆𝜆𝑡𝑡+𝑠𝑠 , with:

A relatively easy way to visualize a characterization of the non-central 𝜒𝜒2 random variable with an integer-
valued degrees of freedom parameter (i.e. 𝜈𝜈 is an integer) is that it can be obtained by summing up squares
of 𝜈𝜈 independent normal random variables with non-zero means and unit variances. However, in our case
𝜈𝜈 may not be an integer.

Another characterization of the non-central 𝜒𝜒2 distributions is that they can be represented as a mixture of
Poisson and central 𝜒𝜒2 distributions. As given on page 436 in [18], we can write the cdf, 𝐹𝐹(𝑥𝑥; 𝜈𝜈, 𝜆𝜆), of a
non-central 𝜒𝜒2 with degrees of freedom 𝜈𝜈 and non-central parameter 𝜆𝜆 as:

Although the above expression involves an infinite sum, it leads to easy generation of random numbers
from a non-central 𝜒𝜒2. It involves first generating a random number 𝐽𝐽 from a Poisson distribution with
mean 𝜆𝜆 2⁄ and then generating a random number from a central 𝜒𝜒2 with degrees of freedom 𝜈𝜈 + 2𝐽𝐽; this
random number will be from the non-central 𝜒𝜒2.

2.2.1 SIMULATING PATHS OF THE CIR MODEL: EULER-MARUYAMA DISCRETIZATION
As in the Vasicek case we can discretize the SDE in the following manner:

 𝑑𝑑𝑟𝑟𝑡𝑡 = 𝛾𝛾(�̅�𝑟 − 𝑟𝑟𝑡𝑡)𝑑𝑑𝑑𝑑 + �𝛼𝛼𝑟𝑟𝑡𝑡𝑑𝑑𝑋𝑋𝑡𝑡

𝑟𝑟𝑡𝑡+∆ − 𝑟𝑟𝑡𝑡 = 𝛾𝛾(�̅�𝑟 − 𝑟𝑟𝑡𝑡)∆ + �𝑟𝑟𝑡𝑡𝜖𝜖𝑡𝑡+∆

where 𝜖𝜖𝑡𝑡+∆ is a normal random variable with mean 0 and variance 𝛼𝛼∆.

 16

Copyright © 2023 Society of Actuaries Research Institute

As in the Vasicek model we can further simplify and obtain:

𝑟𝑟(𝑖𝑖) = 𝛼𝛼1 + 𝛽𝛽1𝑟𝑟(𝑖𝑖 − 1) + �𝑟𝑟(𝑖𝑖 − 1)𝜖𝜖𝑖𝑖, 𝑖𝑖 = 1, 2, …,

where:

with 𝜖𝜖𝑖𝑖’s that are i.i.d. normal with mean 0 and standard deviation σ. The R function “CIR.Euler.sim” in the
“InterestCalibration” library implements this method. The following R-code snippet illustrates the usage of
“CIR.Euler.sim.”

As we can see from the graph, the Euler-Maruyama discretization method leads to negative values for 𝑟𝑟𝑡𝑡
which is theoretically impossible. Note that we can calculate the probability of 𝑟𝑟(𝑖𝑖) becoming negative
conditioned on 𝑟𝑟(𝑖𝑖 − 1) for 𝑖𝑖 = 1, 2, … as given below:

#example4
rm(list=ls()) # clear the workspace and functions
set.seed(123)
X =CIR.Euler.sim(Delta=1/500,M=10)
matplot(X,type="l",main="Simulated CIR paths (Euler Method)",

ylab="Short rate",xlab="Time Step in days")
abline(0,0)

 17

Copyright © 2023 Society of Actuaries Research Institute

Under the Euler-Maryuma scheme the conditional distribution of 𝑟𝑟(𝑖𝑖) conditioned on 𝑟𝑟(𝑖𝑖 − 1) is normal
with mean 𝐸𝐸[𝑟𝑟(𝑖𝑖)|𝑟𝑟(𝑖𝑖 − 1)] and variance 𝑉𝑉𝑎𝑎𝑟𝑟[𝑟𝑟(𝑖𝑖)|𝑟𝑟(𝑖𝑖 − 1)], the probability of 𝑟𝑟(𝑖𝑖) becoming negative
conditioned on 𝑟𝑟(𝑖𝑖 − 1) is:

For example, the set of values (𝑟𝑟(𝑖𝑖) = 0.2%, �̅�𝑟 = 7%, 𝛾𝛾 = 0.3262,𝛼𝛼 = 0.0221,∆ = 1/252) will yield
𝑃𝑃[𝑟𝑟(𝑖𝑖) < 0|𝑟𝑟(𝑖𝑖 − 1)] = 0.00108. Therefore, the Euler-Maruyama method should be used with caution,
though it does have the appeal of simplicity.

2.2.2 SIMULATING PATHS OF THE CIR MODEL: TRANSITION DENSITY METHOD

From the discussion above the conditional distribution of 𝑟𝑟𝑡𝑡+𝑠𝑠
𝑐𝑐𝑠𝑠

, conditioned on 𝑟𝑟𝑠𝑠, is distributed as a non-

central 𝜒𝜒2 with degrees of freedom 𝜈𝜈 = 4𝛾𝛾
𝛼𝛼
�̅�𝑟 and non-centrality parameter 𝜆𝜆𝑡𝑡+𝑠𝑠 = 𝑐𝑐𝑠𝑠𝑟𝑟𝑡𝑡𝑒𝑒𝑥𝑥𝑒𝑒(−𝛾𝛾𝑠𝑠). The

algorithm uses 𝑟𝑟𝑡𝑡 's value to generate 𝑟𝑟𝑡𝑡+𝑠𝑠. Since we use 𝑠𝑠 = Δ, a constant value, at each step the non-
centrality parameter 𝜆𝜆𝑖𝑖Δ = 𝑐𝑐Δ𝑟𝑟𝑖𝑖Δ𝑒𝑒𝑥𝑥𝑒𝑒(−Δ) has to be evaluated using 𝑟𝑟(𝑖𝑖−1)Δ before calculating 𝑟𝑟iΔ for 𝑖𝑖 =
1, 2, … .

The R function “CIR.Trans.sim” in the “InterestCalibration” library implements this method. The following R-
code snippet illustrates the usage of “CIR.Trans.sim.”

#example5
rm(list=ls()) # clear the workspace and functions
set.seed(123)
X =CIR.Trans.sim(Delta=1/252,M=10)
matplot(X,type="l",main="Simulated CIR paths (Transition Density Method)",

ylab="Short rate",xlab="Time Step in days")
abline(0,0)

 18

Copyright © 2023 Society of Actuaries Research Institute

In the implementation we assumed that the non-central 𝜒𝜒2 random number generation function “rchisq”
works perfectly. However, “rchisq” uses the mixture of Poisson and central 𝜒𝜒2 characterization given in (6)
to generate random numbers. The method is simple and straightforward but “Simulation of Square-root
Processes” in [9] lists many drawbacks of this method and for practical applications one may use a method
given in [12] and [2] to simulate non-central 𝜒𝜒2 random numbers.

2.3 THE TWO-FACTOR VASICEK MODEL WITH CORRELATED FACTORS
This model can be written as the short rate process as of the sum of two factors, a short rate factor and a
long rate factor:

𝑟𝑟𝑡𝑡 = 𝜙𝜙1,𝑡𝑡 + 𝜙𝜙2,𝑡𝑡

Where each factor follows the following SDEs:

With a few lines of algebra we can obtain the solution of these SDEs as follows:

The conditional means and variance of these two factors are given by:

Where the second to last equation follows from Itô's isometry. The conditional covariance between 𝜙𝜙1,𝑡𝑡+𝑠𝑠
and 𝜙𝜙2,𝑡𝑡+𝑠𝑠 conditioned on 𝜙𝜙𝑖𝑖,𝑡𝑡, 𝑖𝑖 = 1, 2 is given by:

The conditional correlation coefficient between 𝜙𝜙1,𝑡𝑡+𝑠𝑠 and 𝜙𝜙2,𝑡𝑡+𝑠𝑠, which can be denoted as 𝜌𝜌(𝑠𝑠), is given
by:

 19

Copyright © 2023 Society of Actuaries Research Institute

2.3.1 SIMULATING PATHS OF THE TWO-FACTOR VASICEK MODEL: TRANSITION DENSITY METHOD
When simulating paths we need to simulate each factor separately and add them together. We can use the
transition density method for each factor. It works as follows:

• Choose initial short term rate 𝑟𝑟0 and initial long term rate 𝑟𝑟0(𝜏𝜏) for a suitable value of 𝜏𝜏.
• Solve the following two equations for 𝜙𝜙1,0 and 𝜙𝜙2,0:

The above two equations can be solved to obtain the following:

• Simulate standard bivariate normal random number (𝑍𝑍1,𝑍𝑍2) with correlation coefficient 𝜌𝜌(𝑠𝑠).

Note that this can be achieved by simulating two independent random numbers, 𝑥𝑥1 and 𝑥𝑥2, from
a standard normal distribution and then setting:

• Set:

The R function “Two.factor.Vasicek.Trans.sim” in the “InterestCalibration” library implements this method.
The following code snippet demonstrates use of “Two.factor.Vasicek.Trans.sim”.

#example6
rm(list=ls()) # clear the workspace and functions
set.seed(123)
X =Two.factor.Vasicek.Trans.sim(Delta=1/252,M=10)
matplot(X,type="l",main="Simulated two factor Vasicek paths",

ylab="Short rate",xlab="Time Step in days")

 20

Copyright © 2023 Society of Actuaries Research Institute

3 Calibration Techniques
In this section we provide calibrations of the Vasicek models and the CIR model. We look at real-world
calibration for the Vasicek model and CIR model followed by risk-neutral calibration for the Vasicek model,
the CIR model and for the two-factor Vasicek model. For real-world calibration the maximum likelihood
estimation (MLE) technique is frequently used. MLE solves for parameters that maximize a likelihood
function. This function is the probability distribution function of the parameters. MLE finds the parameters
with the highest likelihood of generating the observed data from a statistical distribution assumed to fit the
underlying data. However, as we shall see the parameter estimates have some bias.

Since the MLE parameters are estimates of the underlying data distribution's parameters, the parameters
found by MLE are random variables with distributions and moments such as a mean. This means the
accuracy of the estimated parameters may be estimated and evaluated for goodness of fit.

The MLE method has several drawbacks that limit its usefulness for interest rate models. First, it fits
parameters to a data sample from a statistical distribution chosen by the modeler but provides no
information on whether that model is a reasonable fit to the “true” underlying distribution. This means the
assumed statistical distribution may be statistically biased, with a mean significantly different than the
underlying “true” distribution of the data. MLE relies on asymptotic properties of large datasets which may
not hold for interest rate models. A small sample of short rates may not produce convergent parameters,
while extending the data farther back in time brings in interest rates from different economic and policy
environments (say, pre-global financial crisis) that may not be applicable for models projecting into the
future. MLE assumes the data is stationary. Short rates may appear stationary for a period of time due to
government monetary policy, but may exhibit a drift or jump when such policies change. This drift could be
due to a set of complex macroeconomic interactions of economic cycles, fiscal and monetary policy, or
shocks due to extreme weather, climate, pandemic, or demographic changes.

3.1 THE VASICEK MODEL: REAL-WORLD CALIBRATION
In this section we look at calibrating a Vasicek model with real-world (equilibrium model) data. We assume
that a random sample of short rate data 𝑟𝑟0, 𝑟𝑟Δ, 𝑟𝑟2Δ, . . . , 𝑟𝑟𝑛𝑛Δ, perhaps overnight rates observed over five
years, is available to us. For simplicity we have assumed rates are observed at consecutive times with

 21

Copyright © 2023 Society of Actuaries Research Institute

equidistant periods. In this section we discuss two calibration techniques for the Vasicek model: maximum
likelihood estimates and long-term quantile method.

3.1.1 MAXIMUM LIKELIHOOD ESTIMATOR METHOD
We have shown that the transition density function 𝑓𝑓(𝑟𝑟𝑡𝑡+𝑠𝑠|𝑟𝑟𝑡𝑡) is normal with the following means and
variances:

For notational simplicity let us define the following variables as defined in the introductory section:

Then we can write:

The density function, 𝑓𝑓�𝑟𝑟𝑖𝑖Δ|𝑟𝑟(𝑖𝑖−1)Δ�, of the conditional random variable 𝑟𝑟𝑖𝑖Δ|𝑟𝑟(𝑖𝑖−1)Δ for 𝑖𝑖 = 1, 2, … ,𝑛𝑛 can be
written as:

Now it remains to specify the density function of the random variable 𝑟𝑟0. The literature is not quite clear
about how to specify it, therefore we denote it as 𝑓𝑓0(𝑟𝑟0|𝛼𝛼∗,𝛽𝛽∗,𝜎𝜎∗) without specifying its functional form.
With this notation we can write the joint likelihood function of the random sample 𝑟𝑟0, 𝑟𝑟Δ, 𝑟𝑟2Δ, . . . , 𝑟𝑟𝑛𝑛Δ as:

Then the log-likelihood function becomes:

 (7)

 22

Copyright © 2023 Society of Actuaries Research Institute

Before we maximize 𝑙𝑙𝑛𝑛(ℒ), we need to specify the function 𝑓𝑓0(𝑟𝑟0|𝛼𝛼∗,𝛽𝛽∗,𝜎𝜎∗). If n is sufficiently large we
could ignore the contribution of 𝑓𝑓0(𝑟𝑟0|𝛼𝛼∗,𝛽𝛽∗,𝜎𝜎∗) into the 𝑙𝑙𝑛𝑛(ℒ) and proceed. This method is called the
quasi-maximum likelihood method. In this situation maximization is straightforward and we can obtain the
following explicit expressions for estimates:

Note that 𝜎𝜎�∗2 is the unbiased estimator for 𝜎𝜎∗2, not the MLE. Once we have these estimates we solve for
𝛾𝛾, �̅�𝑟 and 𝜎𝜎 using the following formulas:

The implementation of this in R is straightforward as we can use R function “lm” for estimation. We
illustrate the MLE calculation using the data in chapter 14, exercise Q5 of [24], as discussed in Section 5.2
and 5.3 below.

The MLE’s of 𝛾𝛾, �̅�𝑟 and 𝜎𝜎 are 3.64532, 0.30769 and 1.81376, respectively. The ANOVA table related to this
calibration is:

#example7
Exercises Q5 Chapter 14 of Veronesi
#clear the workspace and functions
rm(list=ls())
rt =VeronesiTable14p7q5$rt
Delta = 1/252
N = length(rt)
y = rt[2:N]
x = rt[1:(N-1)]
model = lm(y~x)
mle.gamma= -log(as.numeric(model$coefficients)[2])/Delta
mle.rbar = as.numeric(model$coefficients)[1]/

(1-as.numeric(model$coefficients)[2])
mle.sigma = sigma(model)*(2*mle.gamma/

(1-as.numeric(model$coefficients)[2]^2))^.5
tb = anova(model)

 23

Copyright © 2023 Society of Actuaries Research Institute

To examine the performance of the MLE we carry out a simulation study using the R code snippet given
below.

#example8
clear the workspace and functions
rm(list=ls())
t0=0
T=10
r0=0.03
gamma=0.3
rbar=0.05
sigma=0.0221
paras = c(gamma,rbar,sigma)
Initialize # of paths number of points in each path
Delta = 1/252
N = ceiling((T-t0)/Delta)
set.seed(123)
X=Vasicek.Trans.sim(t0,T,Delta,r0,gamma,rbar,sigma,M=1000)
M = ncol(X)
mle= matrix(0,3,M)
for (i in 1:M){
 y = X[2:(N+1),i]
 x = X[1:N,i]
 model=lm(y~x)
 mle.gamma= -log(as.numeric(model$coefficients)[2])/Delta
 mle.rbar = as.numeric(model$coefficients)[1]/

(1-as.numeric(model$coefficients)[2])
 mle.sigma = sigma(model)*(2*mle.gamma/

(1-as.numeric(model$coefficients)[2]^2))^.5
 mle[,i]=c(mle.gamma,mle.rbar,mle.sigma)
}
Simulation performance criteria
bias =rowMeans(mle-paras)
Sd = rowSds(mle)
rmse = rowMeans((mle-paras)^2)^0.5

 24

Copyright © 2023 Society of Actuaries Research Institute

From the table we observe that MLE of 𝜎𝜎 performs very well, �̅�𝑟 performs somewhat better, and 𝛾𝛾 performs
poorly. This is consistent with the results of [21] and readers are encouraged to explore this by changing
the simulation specifications.

Instead of dropping the term 𝑓𝑓0(𝑟𝑟0|𝛼𝛼∗,𝛽𝛽∗,𝜎𝜎∗) from the likelihood function, we could assume that 𝑟𝑟0 is
normally distributed with:

This choice seems reasonable and since 𝛾𝛾 > 0, 𝛽𝛽∗ < 1 the pdf in this case becomes:

Substituting this in (7) we obtain the following as the log-likelihood function:

 (8)

When we compare this log-likelihood function with the log-likelihood function given in equation (5.2.9) on
page 119 in [15], we see that (8) is in fact the log-likelihood function of an AR(1) model. Now it should
become clear to the reader why this pdf for 𝑟𝑟0 was chosen. For parameter estimation we could use R
function ARIMA as illustrated in the code below.

#example9
clear the workspace and functions
rm(list=ls())
t0=0
T=10
r0=0.03
gamma=0.3
rbar=0.05
sigma=0.0221

 25

Copyright © 2023 Society of Actuaries Research Institute

We observe that the performance of MLEs are quite similar to that of MLEs based on a quasi-likelihood
function.

3.1.2 LONG TERM QUANTILE METHOD
This method is proposed in [5]. The major underlying assumption in this method is that sample quantiles are
representative of the future observed quantiles. The second mathematically justifiable assumption is that
theoretical quantiles are calculated based on the process behaviour when 𝑑𝑑 → ∞. The calculation of the long-
term mean and variance of 𝑟𝑟𝑡𝑡 is as follows:

paras = c(gamma,rbar,sigma)
Initialize # of paths number of points in each path
Delta = 1/252
N = ceiling((T-t0)/Delta)

set.seed(123)
X=Vasicek.Trans.sim(t0,T,Delta,r0,gamma,rbar,sigma,M=1000)

M = ncol(X)
mle= matrix(0,3,M)
for (i in 1:M){
 y = X[2:(N+1),i]
 x = X[1:N,i]

 model2 = arima(X[1:(N+1),i],order=c(1,0,0),include.mean = TRUE,
 method="ML")
 mle.gamma1= -log(as.numeric(model2$coef)[1])/Delta
 mle.rbar1 = as.numeric(model2$coef)[2]
 mle.sigma1= (model2$sigma2*2*mle.gamma1/
 (1-as.numeric(model2$coef)[1]^2))^.5
 mle[,i]=c(mle.gamma1,mle.rbar1,mle.sigma1)
}
Simulation performance criteria
bias =rowMeans(mle-paras)
sd = rowSds(mle)
rmse = rowMeans((mle-paras)^2)^0.5

 26

Copyright © 2023 Society of Actuaries Research Institute

As 𝑟𝑟𝑡𝑡 's are normally distributed random variables the 95% confidence interval for 𝑙𝑙𝑖𝑖𝑙𝑙𝑡𝑡→∞𝑟𝑟𝑡𝑡 is given by:

Let us denote 𝑞𝑞�0.025 and 𝑞𝑞�0.975 as the 2.5th and the 97.5th percentiles respectively, based on a sample of 𝑟𝑟𝑡𝑡
where preferably 𝑑𝑑 > 10. Then we have the following two equations:

𝑞𝑞�0.025 = �̅�𝑟 −
1.96𝜎𝜎

�2𝛾𝛾

𝑞𝑞�0.975 = �̅�𝑟 +
1.96𝜎𝜎

�2𝛾𝛾

We can solve these two equations to obtain the following expressions for 𝛾𝛾 and �̅�𝑟:

𝛾𝛾 = 2 �
1.96𝜎𝜎

𝑞𝑞�0.975 − 𝑞𝑞�0.025
�
2

�̅�𝑟 =
𝑞𝑞�0.025 + 𝑞𝑞�0.975

2

This procedure is easy to implement as given in the R code snippet below, but the drawback is obtaining a
sample of 𝑟𝑟𝑡𝑡 for a large value of 𝑑𝑑.

#example10
clear the workspace and functions
rm(list=ls())
t0=0
T=20
r0=0.03
gamma=0.3
rbar=0.05
sigma=0.02
Initialize # of paths number of points in each path
Delta = 1/252
N = ceiling((T-t0)/Delta)
set.seed(123)
simulate M sample paths and retain the last row only.
X=Vasicek.Trans.sim(t0,T,Delta,r0,gamma,rbar,sigma,M=100)[N+1,]
qs = quantile(X,c(0.025,0.975))
est.gamma = 2*((1.96*sigma)/(as.numeric(qs[2])-as.numeric(qs[1])))^2
est.rbar = (as.numeric(qs[2])+as.numeric(qs[1]))/2

 27

Copyright © 2023 Society of Actuaries Research Institute

The resulting estimates of 𝛾𝛾 and �̅�𝑟 are 0.28199 and 0.05267 respectively.

3.2 THE VASICEK MODEL: RISK-NEUTRAL CALIBRATION
In this section we present calibration of a Vasicek model when we have a set of zero-coupon bond prices or
a set of discount factors. The underlying assumption is that the real-world interest rate follows a Vasicek
model and hence we can use a drift-adjusted Vasicek model that leads to the following closed-form
formula for zero coupon bond prices.

Note that we are using parameters 𝛾𝛾∗ and �̅�𝑟∗ to indicate the drift of the SDE for 𝑟𝑟𝑡𝑡, 𝛾𝛾∗(�̅�𝑟∗ − 𝑟𝑟𝑡𝑡) in the risk-
neutral world, as opposed to parameters 𝛾𝛾 and �̅�𝑟 with a drift of 𝛾𝛾(�̅�𝑟 − 𝑟𝑟𝑡𝑡) in the real-world.

The calibration process involves minimizing the following quantity:

We can use either the “nlm” function or the “optim” function for this purpose. The following example first
calculates a bond price vector for given maturities with known parameter values and then calculates
parameters using the minimization. It is used as a verification of our code for the minimization.

Readers are encouraged to try various values for parameters 𝛾𝛾∗ and �̅�𝑟∗ and various reasonable guesses for
initial values of those parameters to test the accuracy of the “nlm” and the “optim” routines.

#example11
clear the workspace and functions
rm(list=ls())
bond.maturities = seq(0.5,10,0.5) #Time_to_maturity
bond.prices = Vasicek.zcbp(r0=0.02,t=0,T=bond.maturities,
 gamma=0.5,rbar=0.07,sigma=0.02)
model = nlm(f=Vasicek.J,p=c(0.4,0.01),r0=0.02,sigma=0.02,
 bond.prices=bond.prices,bond.maturities=bond.maturities)
model1 = optim(c(0.4,0.01),Vasicek.J,method=("BFGS")
 ,r0=0.02,sigma=0.02,bond.prices=bond.prices,
 bond.maturities=bond.maturities)

 28

Copyright © 2023 Society of Actuaries Research Institute

Another option we may consider is if we do not have a reliable estimate for 𝜎𝜎 we could also estimate it
from observed bond price data as described in the following code snippets.

After trying out a few different initial values and increasing the maximum number of iterations in “nlm” we
see that “nlm” produces values close to the actual values, but values produced by “optim” are not very
close. This led to examination of other optimization methods available in R. Instead of writing our own
function to minimize we can use the “nls” package for non-linear least squares minimization. Readers who
may want to know more about non-linear regression with R may consult [22].

We realized using “nls” for yield rates instead of bond prices yields better results. The following code
snippet illustrates usage of “nls” with bond yields.

#example12
clear the workspace and functions
rm(list=ls())
bond.maturities = seq(0.5,10,0.5) #Time_to_maturity
bond.prices = Vasicek.zcbp(r0=0.02,t=0,T=bond.maturities,
 gamma=0.5,rbar=0.07,sigma=0.02)
model = nlm(f=Vasicek.J,p=c(0.4,0.02,0.04),r0=0.02,iterlim=1000,
 bond.prices=bond.prices,bond.maturities=bond.maturities)
model1 = optim(c(0.4,0.02,0.04),lower=c(0,0,0),Vasicek.J,
 method=("L-BFGS-B"),r0=0.02,
 bond.prices=bond.prices,
 bond.maturities=bond.maturities)

#example13
rm(list=ls())
bond.maturities = seq(0.5,10,0.5) #Time_to_maturity
bond.yields = Vasicek.yield(r0=0.02,t=0,T=bond.maturities,
 gamma=0.5,rbar=0.07,sigma=0.02)
bonddata = data.frame(cbind(bond.maturities,bond.yields))

Vasicek.fit =
 nls(bond.yields~Vasicek.yield(r0=0.02,t=0,T=bond.maturities,
 gamma,rbar,sigma),
 start=list(gamma=0.2,rbar=0.02,sigma=0.01),
 data=bonddata,algorithm = "port",
 lower=list(gamma=0.1,rbar=0.01,sigma=0.005),
 upper =list(gamma=3,rbar=1,sigma=1),
 nls.control(maxiter = 100, tol = 1e-3, minFactor = 1/1024,
 printEval = FALSE, warnOnly = FALSE,
 scaleOffset = 0, nDcentral = FALSE))
sum_mod= summary(Vasicek.fit)

 29

Copyright © 2023 Society of Actuaries Research Institute

The “nls” algorithm converged in 9 iterations and summary statistics are:

We can also try to estimate 𝜎𝜎 using bond yield data with “nls” as given below:

The “nls” algorithm converged in 35 iterations and summary statistics are:

We can also add a random error to simulated bond yields to evaluate the performance.

#example14
rm(list=ls())
bond.maturities = seq(0.5,10,0.5) #Time_to_maturity
bond.yields = Vasicek.yield(r0=0.02,t=0,T=bond.maturities,
 gamma=0.5,rbar=0.07,sigma=0.02)
bonddata = data.frame(cbind(bond.maturities,bond.yields))
Vasicek.fit =
 nls(bond.yields~Vasicek.yield(r0=0.02,t=0,T=bond.maturities,
 gamma,rbar,sigma),
 start=list(gamma=0.2,rbar=0.02,sigma=0.01),
 data=bonddata,algorithm = "port",
 lower=list(gamma=0.1,rbar=0.01,sigma=0.005),
 upper =list(gamma=3,rbar=1,sigma=1),
 nls.control(maxiter = 100, tol = 1e-3, minFactor = 1/1024,
 printEval = FALSE, warnOnly = FALSE,
 scaleOffset = 0, nDcentral = FALSE))
sum_mod= summary(Vasicek.fit)

#example15
rm(list=ls())
bond.maturities = seq(0.5,10,0.5) #Time_to_maturity
bond.yields = Vasicek.yield(r0=0.02,t=0,T=bond.maturities,
 gamma=0.5,rbar=0.07,sigma=0.02)+
 rnorm(length(bond.maturities),0.00,0.001)
bonddata = data.frame(cbind(bond.maturities,bond.yields))
Vasicek.fit =
 nls(bond.yields~Vasicek.yield(r0=0.02,t=0,T=bond.maturities,
 gamma,rbar,sigma=0.02),
 start=list(gamma=0.2,rbar=0.02),
 data=bonddata,algorithm = "port",

 30

Copyright © 2023 Society of Actuaries Research Institute

The “nls” algorithm converged in 10 iterations and summary statistics are:

We can try estimating 𝜎𝜎 from the same data set with a random error added to the yields:

The “nls” algorithm converged in 44 iterations and summary statistics are:

We see that when there is a random error, the estimate of 𝜎𝜎 is not close to the actual value. Irrespective of
what the results are, it is not a good practice to estimate 𝜎𝜎 from the same data set; it has to be estimated
from short rate volatility under a real life scenario.

We encourage readers to try different parameters and different initial values for all three methods using
”optim”, “nlm” and “nls”. Based on our limited testing presented here for real applications, we recommend

#example16
rm(list=ls())
bond.maturities = seq(0.5,10,0.5) #Time_to_maturity
bond.yields = Vasicek.yield(r0=0.02,t=0,T=bond.maturities,
 gamma=0.5,rbar=0.07,sigma=0.02)+
 rnorm(length(bond.maturities),0.00,0.001)
bonddata = data.frame(cbind(bond.maturities,bond.yields))
Vasicek.fit =
 nls(bond.yields~Vasicek.yield(r0=0.02,t=0,T=bond.maturities,
 gamma,rbar,sigma),
 start=list(gamma=0.2,rbar=0.02,sigma=0.01),
 data=bonddata,algorithm = "port",
 lower=list(gamma=0.1,rbar=0.01,sigma=0.005),
 upper =list(gamma=3,rbar=1,sigma=1),
 nls.control(maxiter = 100, tol = 1e-3, minFactor = 1/1024,
 printEval = FALSE, warnOnly = FALSE,
 scaleOffset = 0, nDcentral = FALSE))
sum_mod= summary(Vasicek.fit)

 lower=list(gamma=0.1,rbar=0.01),
 upper =list(gamma=3,rbar=1),
 nls.control(maxiter = 100, tol = 1e-3, minFactor = 1/1024,
 printEval = FALSE, warnOnly = FALSE,
 scaleOffset = 0, nDcentral = FALSE))
sum_mod= summary(Vasicek.fit)

 31

Copyright © 2023 Society of Actuaries Research Institute

using “nls” and trying out many different initial values and increasing number of iterations, before settling
into one solution.

In the following code chunk we use data in Table 15.1 of [24].

We see that values produced by “nlm” are close to the values given in Example 15.1 of [24]. The following
is a summary statistics of the “nls” method, which converged after 7 iterations.

To understand which optimization routine performs better we plot the fitted data along with market data
and textbook estimates:

#example17
clear the workspace and functions
rm(list=ls())

bond.prices = VeronesiTable15p1$Strips/100
bond.maturities = VeronesiTable15p1$’Time to Maturity’
bond.yields = -log(bond.prices)/bond.maturities
bonddata = data.frame(cbind(bond.maturities,bond.yields))
model = nlm(f=Vasicek.J,p=c(0.4,0.06),r0=0.0168,sigma=0.0221,
 bond.prices=bond.prices,bond.maturities=bond.maturities)
model1 = optim(c(0.4,0.06),Vasicek.J,method=("CG"),sigma=0.0221
 ,bond.prices=bond.prices,bond.maturities=bond.maturities)
Vasicek.fit =
 nls(bond.yields~Vasicek.yield(r0=0.0168,t=0,T=bond.maturities,
 gamma,rbar,sigma=0.0221),
 start=list(gamma=0.4,rbar=0.06),
 data=bonddata,algorithm = "port",
 lower=list(gamma=0.1,rbar=0.01),
 upper =list(gamma=10,rbar=10),
 nls.control(maxiter = 1000, tol = 1e-3, minFactor = 1/1024,
 printEval = FALSE, warnOnly = FALSE,
 scaleOffset = 0, nDcentral = FALSE))
sum_mod= summary(Vasicek.fit)

 32

Copyright © 2023 Society of Actuaries Research Institute

#example18
optim.yield =Vasicek.yield(r0=0.0168,t=0,T=bond.maturities,
 gamma=model$estimate[1],rbar=model$estimate[2],
 sigma=0.0222)
nlm.yield =Vasicek.yield(r0=0.0168,t=0,T=bond.maturities,
 gamma=model1$par[1],rbar=model1$par[2],
 sigma=0.0222)
text.yield = Vasicek.yield(r0=0.0168,t=0,T=bond.maturities,
 gamma=0.4653,rbar=0.0634,sigma=0.0222)
plot(bond.maturities,bond.yields*100,xlab="Maturities",ylab="Yield(%)",
 type="b",pch=10,lty="solid",col="red1")
lines(bond.maturities,fitted(Vasicek.fit)*100,type="b",pch=20,lty="solid",
 col="rosybrown")
lines(bond.maturities,optim.yield*100,type="b",pch=12,col="green4")
lines(bond.maturities,nlm.yield*100,type="b",pch=8,col="royalblue")
lines(bond.maturities,text.yield*100,type="b",pch=13,col="magenta")
legend("bottomright",legend=c("Market Yield(%)","nls Yield(%)",
 "optim Yield(%)","nlm Yield(%)","Text Yield(%)"),
 col=c("red1","rosybrown","green4","royalblue","magenta"),
 lty=c(1,1,1),pch=c(10,20,12,8,13))

 33

Copyright © 2023 Society of Actuaries Research Institute

3.3 THE CIR MODEL: REAL-WORLD CALIBRATION
In this section we consider three calibration methods: the Euler method, exact likelihood estimates and the
generalized method of moments (GMM). The Euler discretization method leads to explicit expressions for
estimates, while the exact maximum likelihood estimate method and GMM require using numerical
routines to obtain solutions.

3.3.1 EULER METHOD
As we saw earlier the Euler discretization of the CIR model leads to:

with 𝜖𝜖𝑖𝑖 's that are i.i.d. normal with mean 0 standard deviation 𝜎𝜎. We can rearrange this to get a linear
regression as below:

Now write:

To obtain MLEs of 𝛼𝛼1 and 𝛽𝛽1 we can use the “lm” function in R. Once we obtain least square estimates (or
MLE) of 𝛼𝛼1 and 𝛽𝛽1 we can obtain 𝛾𝛾, �̅�𝑟 and 𝛼𝛼 using:

The following R code snippet illustrates this point along with a simple study of bias and mean square error
of this estimate.

#example19
The following code snippets calculate the bias of simulated parameters
#CIR Calibration
rm(list=ls()) # clear the workspace and functions
graphics.off() # clear the plots
CIR Euler estimate
Initialize parameters
library(matrixStats)

 34

Copyright © 2023 Society of Actuaries Research Institute

3.3.2 MAXIMUM LIKELIHOOD ESTIMATE
As we saw earlier a short rate sample can be stated as 𝑟𝑟(0), 𝑟𝑟(1), … , 𝑟𝑟(𝑛𝑛). Using (5) we can write the
following expression for the full likelihood function:

t0=0
T=10
r0=0.02
gamma=0.3807
rbar=0.072
alpha=0.0548
paras = c(gamma,rbar,alpha)
Initialize # of paths number of points in each path
Delta = 1/252
N = ceiling((T-t0)/Delta)

set.seed(123)
X=CIR.Trans.sim(t0=0,T=10,Delta=1/252,r0=0.02,
 gamma=0.3807,rbar=0.072,alpha=0.0548,M=1000)

M = ncol(X)
euler.est= matrix(NA,3,M)
for (i in 1:M){
 x1 = X[1:N,i]^(-0.5)
 x2 = X[1:N,i]^(0.5)
 y = X[2:(N+1),i]*x1
 model=lm(y~0+x1+x2)
 euler.est[1,i]= (1-as.numeric(model$coefficients)[2])/Delta
 euler.est[2,i] = as.numeric(model$coefficients)[1]/
 (1-as.numeric(model$coefficients)[2])
 euler.est[3,i] = sigma(model)^2/Delta
}

bias=rowMeans(euler.est-paras)
sd =rowSds(euler.est)
rmse =(rowMeans((euler.est-paras)^2))^0.5

 35

Copyright © 2023 Society of Actuaries Research Institute

where 𝑓𝑓(𝑟𝑟(0)|𝛾𝛾, �̅�𝑟,𝛼𝛼) is a pdf of 𝑟𝑟(0), 𝑓𝑓(𝑟𝑟(0)|𝛾𝛾, �̅�𝑟,𝛼𝛼) are the conditional pdfs of 𝑟𝑟(𝑖𝑖 + 1)|𝑟𝑟(𝑖𝑖) for 𝑖𝑖 =
0, 1, 2, … , 𝑐𝑐∆, 𝜗𝜗 and 𝜆𝜆𝑖𝑖 are as given below:

Since 𝑓𝑓(𝑟𝑟(𝑖𝑖 + 1)|𝑟𝑟(𝑖𝑖), 𝛾𝛾, �̅�𝑟,𝛼𝛼) is a function of a non-central 𝜒𝜒2 pdf, we will have the full likelihood function
if we specify the pdf, 𝑓𝑓(𝑟𝑟(0)|𝛾𝛾, �̅�𝑟,𝛼𝛼). However, in CIR calibration using MLE both [19] and [20] ignore the
contribution of 𝑓𝑓(𝑟𝑟(0)|𝛾𝛾, �̅�𝑟,𝛼𝛼) and call them as MLEs, even though it is actually based on quasi-likelihood
functions.

The maximization of the quasi-likelihood function can be easily implemented in R as given below; however
numerical solutions mostly depend on the initial guess. There are some concerns with this method, which
uses R function “dchisq” as it is based on evaluation of a truncated form of the infinite sum in (6).

#example20
The following code snippets calculate the bias of simulated parameters
CIR Calibration
rm(list=ls()) # clear the workspace and functions
graphics.off() # clear the plots
CIR Euler estimate
Initialize parameters
library(matrixStats)
t0=0
T=10
r0=0.02
gamma=0.3807
rbar=0.072
alpha=0.0548
paras = c(gamma,rbar,alpha)
Initialize # of paths number of points in each path
Delta = 1/252
N = ceiling((T-t0)/Delta)

set.seed(123)
X=CIR.Trans.sim(t0=0,T=10,Delta=1/252,r0=0.02,
 gamma=0.3807,rbar=0.072,alpha=0.0548,M=100)

M = ncol(X)
euler.est= matrix(NA,3,M)
mle.est = matrix(NA,3,M)

 36

Copyright © 2023 Society of Actuaries Research Institute

As you see in each of the sample calculations, the estimate of 𝛼𝛼 has relatively smaller bias and the
estimates of 𝛾𝛾 and �̅�𝑟 have a larger bias.

3.4 THE GENERALIZED METHOD OF MOMENTS
The idea of the generalized method of moments (GMM) first appeared in [16]. This method compares
sample moments with their theoretical values. The parameters are estimated by minimizing the distance
between sample moments and their theoretical values. Chan, Karolyi, Longstaff and Sanders (CKLS) [7]
illustrate how to use GMM for the CKLS short rate model given by the following SDE:

𝑑𝑑𝑟𝑟𝑡𝑡 = 𝛾𝛾(�̅�𝑟 − 𝑟𝑟𝑡𝑡)𝑑𝑑𝑑𝑑 + (𝛼𝛼)1/2𝑟𝑟𝑡𝑡𝜏𝜏𝑑𝑑𝑋𝑋𝑡𝑡

Wsample = NULL
for (i in 1:M){
 x1 = X[1:N,i]^(-0.5)
 x2 = X[1:N,i]^(0.5)
 y = X[2:(N+1),i]*x1
 model=lm(y~0+x1+x2)
 euler.est[1,i]= (1-as.numeric(model$coefficients)[2])/Delta
 euler.est[2,i] = as.numeric(model$coefficients)[1]/
 (1-as.numeric(model$coefficients)[2])
 euler.est[3,i] = sigma(model)^2/Delta
 model1 = optim(euler.est[,i],CIR.log.lik,NULL,X[,i],method="BFGS")
 mle.est[,i]= model1$par
 if (!is.null(model1$message))
 Wsample = append(Wsample,i)
}

bias.euler= rowMeans(euler.est-paras)
sd.euler= rowSds(euler.est)
rmse.euler =(rowMeans((euler.est-paras)^2))^0.5
bias.mle =rowMeans(mle.est-paras)
sd.mle= rowSds(mle.est)
rmse.mle = (rowMeans((mle.est-paras)^2))^0.5

 37

Copyright © 2023 Society of Actuaries Research Institute

Note that the above is a generalization of both the Vasicek and the CIR models as 𝛼𝛼 = 𝜎𝜎2, 𝜏𝜏 = 0 and 𝜏𝜏 =
1/2 yields the Vasicek and the CIR models respectively. As CIR contains only three parameters we can
adopt GMM as follows:

First define:

We choose 𝛼𝛼1,𝛽𝛽1 and 𝜎𝜎 to set 𝑓𝑓1, 𝑓𝑓2 and 𝑓𝑓3 to zero, for instance by minimizing:

𝐽𝐽(𝛼𝛼1,𝛽𝛽1,𝜎𝜎) = 𝑓𝑓12 + 𝑓𝑓22 + 𝑓𝑓32

The above equations are implemented in the code chunk:

Once we obtain GMM estimates for 𝛼𝛼1,𝛽𝛽1 and 𝜎𝜎 we obtain estimates for 𝛾𝛾, �̅�𝑟 and 𝛼𝛼 using the following as
in the Euler method:

The following R-code snippets implement this method:

CIR.gmm = function(param,X){
 alpha1 = param[1]
 beta1= param[2]
 sigma = param[3]
 N = length(X)
 f1=0
 f2=0
 f3=0
 for (i in (2:N))
 {
 f1 = f1 + X[i]-alpha1-beta1*X[i-1]
 f2 = f2 + (X[i]-alpha1-beta1*X[i-1])^2 - X[i-1]*sigma^2
 f3 = f3 + (X[i]-alpha1-beta1*X[i-1]) * X[i-1]
 }
 return(1/(N-1)*(f1^2+f2^2+f3^2))
}

 38

Copyright © 2023 Society of Actuaries Research Institute

#example21
rm(list=ls()) # clear the workspace and functions
graphics.off() # clear the plots
CIR Euler estimate
Initialize parameters
library(matrixStats)

t0=0
T=10
r0=0.02
gamma=0.3807
rbar=0.072
alpha=0.0548
paras = c(gamma,rbar,alpha)
Initialize # of paths number of points in each path
Delta = 1/252
N = ceiling((T-t0)/Delta)

set.seed(123)
X=CIR.Trans.sim(t0=0,T=10,Delta=1/252,r0=0.02,
 gamma=0.3807,rbar=0.072,alpha=0.0548,M=10)

M = ncol(X)
euler.est= matrix(NA,3,M)
gmm.est = matrix(NA,3,M)
Wsample = NULL
for (i in 1:M){
 x1 = X[1:N,i]^(-0.5)
 x2 = X[1:N,i]^(0.5)
 y = X[2:(N+1),i]*x1
 model=lm(y~0+x1+x2)
 euler.est[1,i] = (1-as.numeric(model$coefficients)[2])/Delta
 euler.est[2,i] = as.numeric(model$coefficients)[1]/
 (1-as.numeric(model$coefficients)[2])
 euler.est[3,i] = sigma(model)^2/Delta
 model2 = optim(c(as.numeric(model$coefficients)[1],
 as.numeric(model$coefficients)[2],sigma(model))
 ,CIR.gmm,NULL,X[,i],method="L-BFGS-B")
 gmm.est[1,i] = (1- model2$par[2])/Delta
 gmm.est[2,i] = model2$par[1]/(1-model2$par[2])
 gmm.est[3,i] = model2$par[3]^2/Delta
}
performance measurements
bias.euler = rowMeans(euler.est-paras)
sd.euler = rowSds(euler.est)
rmse.euler = (rowMeans((euler.est-paras)^2))^0.5
bias.gmm = rowMeans(gmm.est-paras)
sd.gmm = rowSds(gmm.est)
rmse.gmm = (rowMeans((gmm.est-paras)^2))^0.5

 39

Copyright © 2023 Society of Actuaries Research Institute

Simulation Performance Based
On 10 Sample Paths

As we can see from the results, the difference between the Euler method and this method is minor.
Mathematically, we can prove that the Euler method and GMM would produce identical estimates in the
CIR model.

3.5 THE CIR MODEL: RISK-NEUTRAL CALIBRATION
This section is very similar to the Section 3.2 “Vasicek model: risk-neutral calibration”. The main difference
is, in this section we use CIR model zero coupon bond pricing formulas (15.70) to (15.72) of [24] which are
listed below, instead of the formulas in Section 3.2.

The calibration process involves minimizing the following quantity for a given value of 𝛼𝛼:

𝐽𝐽(𝛾𝛾∗, �̅�𝑟∗) = ��𝑍𝑍𝐶𝐶𝐶𝐶𝐶𝐶(𝑟𝑟0, 0;𝑇𝑇𝑖𝑖) − 𝑍𝑍𝐷𝐷𝐷𝐷𝑡𝑡𝐷𝐷(0,𝑇𝑇𝑖𝑖)�
2

𝑛𝑛

𝑖𝑖=1

We can use either “nlm” or “optim” for this purpose as before. The following example first calculates a
bond price vector for given maturities with known parameter values and then calculates parameters using
the minimization. It is used as a verification of our code for the minimization as in the Vasicek case.

#example22
rm(list=ls()) # clear the workspace and functions
bond.maturities = seq(0.5,10,0.5)
bond.prices = CIR.zcbp(r0=0.02,t=0,T=bond.maturities,gamma=0.5,
 rbar=0.07,alpha=0.05)
model = nlm(f=CIR.J,p=c(0.4,0.05),r0=0.02,alpha=0.05,
 bond.prices=bond.prices,
 bond.maturities=bond.maturities)
model1 = optim(c(0.4,0.05),CIR.J,method=("BFGS")
 ,r0=0.02,alpha=0.05,
 bond.prices=bond.prices,
 bond.maturities=bond.maturities)

 40

Copyright © 2023 Society of Actuaries Research Institute

CIR Risk-Neutral Parameter Estimates With 𝜶𝜶 = 𝟎𝟎.𝟎𝟎𝟎𝟎

As in the Vasicek case we could try to estimate all three parameters from bond pricing data.

After a few initial guesses, we see that the results given in the table below are not satisfactory.

CIR Risk-neutral Parameter Estimates

Therefore, we do not recommend using bond prices to estimate 𝛼𝛼.

As in the Vasicek case, instead of writing our own function to minimize we can use the “nls” package for
non-linear least squares minimization. The following code snippet illustrates usage of “nls” with bond
yields.

#example23
rm(list=ls()) # clear the workspace and functions
bond.maturities = seq(0.5,10,0.5)
bond.prices = CIR.zcbp(r0=0.02,t=0,T=bond.maturities,gamma=0.5,
 rbar=0.07,alpha=0.05)
model = nlm(f=CIR.J,p=c(0.3,0.05,0.02),r0=0.02,
 bond.prices=bond.prices,
 bond.maturities=bond.maturities)
model1 = optim(c(0.3,0.05,0.02),lower = c(0,0,0),CIR.J,method=("L-BFGS-B")
 ,r0=0.02,bond.prices=bond.prices,
 bond.maturities=bond.maturities)

#example24
rm(list=ls())
CIR.yield = function(r0=0.02,t=0,T=1,gamma=0.3807,rbar=0.072,alpha=0.0548){
 psi1 = (gamma^2+2*alpha)^0.5
 Denom = (gamma+psi1)*(exp(psi1*(T-t))-1)+ 2*psi1
 B = 2*(exp(psi1*(T-t))-1)/Denom
 A = 2*rbar*gamma/alpha* log((2*psi1*exp((psi1+gamma)*(T-t)/2))/Denom)
 return((-A+B*r0)/(T-t))
}
bond.maturities = seq(0.5,10,0.5) #Time_to_maturity
bond.yields = CIR.yield(r0=0.02,t=0,T=bond.maturities,
 gamma=0.5,rbar=0.07,alpha=0.05)
bonddata = data.frame(cbind(bond.maturities,bond.yields))

 41

Copyright © 2023 Society of Actuaries Research Institute

The “nls” algorithm converged in 9 iterations and summary statistics are:

The Vasicek Fit (Simulated Data): Summary Statistics

This illustrates that as in the Vasicek case “nls” performs better than both “optim” and “nlm” when the
underlying distribution is CIR. As in the Vasicek case we may try to estimate the standard deviation
parameter from the bond yield data as illustrated below:

The “nls” algorithm converged in 26 iterations and summary statistics are:

#example25
rm(list=ls())
CIR.yield = function(r0=0.02,t=0,T=1,gamma=0.3807,rbar=0.072,alpha=0.0548){
 psi1 = (gamma^2+2*alpha)^0.5
 Denom = (gamma+psi1)*(exp(psi1*(T-t))-1)+ 2*psi1
 B = 2*(exp(psi1*(T-t))-1)/Denom
 A = 2*rbar*gamma/alpha* log((2*psi1*exp((psi1+gamma)*(T-t)/2))/Denom)
 return((-A+B*r0)/(T-t))
}
bond.maturities = seq(0.5,10,0.5) #Time_to_maturity
bond.yields = CIR.yield(r0=0.02,t=0,T=bond.maturities,
 gamma=0.5,rbar=0.07,alpha=0.05)
bonddata = data.frame(cbind(bond.maturities,bond.yields))
CIR.fit =
 nls(bond.yields~CIR.yield(r0=0.02,t=0,T=bond.maturities,
 gamma,rbar,alpha),
 start=list(gamma=0.2,rbar=0.02,alpha=0.02),
 data=bonddata,algorithm = "port",
 lower=list(gamma=0.1,rbar=0.01,alpha=0.02),
 upper=list(gamma=3,rbar=1,alpha=1),
 nls.control(maxiter = 1000, tol = 1e-3, minFactor = 1/1024,
 printEval = FALSE, warnOnly = FALSE,
 scaleOffset = 0, nDcentral = FALSE))

CIR.fit =
 nls(bond.yields~CIR.yield(r0=0.02,t=0,T=bond.maturities,
 gamma,rbar,alpha=0.05),
 start=list(gamma=0.2,rbar=0.02),
 data=bonddata,algorithm = "port",
 lower=list(gamma=0.1,rbar=0.01),
 upper=list(gamma=3,rbar=1),
 nls.control(maxiter = 100, tol = 1e-3, minFactor = 1/1024,
 printEval = FALSE, warnOnly = FALSE,
 scaleOffset = 0, nDcentral = FALSE))
sum_mod=summary(CIR.fit)

 42

Copyright © 2023 Society of Actuaries Research Institute

The Vasicek Fit (Simulated Data): Summary Statistics

For a practical example we could try using data from Table 15.1 of [24]:

CIR Risk-Neutral Parameter Estimates With 𝜶𝜶 = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎

#example26
rm(list=ls()) # clear the workspace and functions
CIR.yield = function(r0=0.02,t=0,T=1,gamma=0.3807,rbar=0.072,alpha=0.0548){
 psi1 = (gamma^2+2*alpha)^0.5
 Denom = (gamma+psi1)*(exp(psi1*(T-t))-1)+ 2*psi1
 B = 2*(exp(psi1*(T-t))-1)/Denom
 A = 2*rbar*gamma/alpha* log((2*psi1*exp((psi1+gamma)*(T-t)/2))/Denom)
 return((-A+B*r0)/(T-t))
}
bond.maturities = VeronesiTable15p1$’Time to Maturity’
bond.prices=VeronesiTable15p1$Strips/100
bond.yields = -log(bond.prices)/bond.maturities
bonddata = data.frame(cbind(bond.maturities,bond.yields))
model = nlm(f=CIR.J,p=c(0.4,0.05),r0=0.0168,alpha=0.0548,
 bond.prices=bond.prices,
 bond.maturities=bond.maturities)
model1 = optim(c(0.4,0.05),CIR.J,method=("BFGS")
 ,r0=0.0168,alpha=0.0548,bond.prices=bond.prices,
 bond.maturities=bond.maturities)
CIR.fit =
 nls(bond.yields~CIR.yield(r0=0.0168,t=0,T=bond.maturities,
 gamma,rbar,alpha=0.0548),
 start=list(gamma=0.4,rbar=0.06),
 data=bonddata,algorithm = "port",
 lower=list(gamma=0.1,rbar=0.01),
 upper=list(gamma=10,rbar=10),
 nls.control(maxiter = 1000, tol = 1e-3, minFactor = 1/1024,
 printEval = FALSE, warnOnly = FALSE,
 scaleOffset = 0, nDcentral = FALSE))
sum_mod= summary(CIR.fit)

 43

Copyright © 2023 Society of Actuaries Research Institute

We see that “optim” produced values that are close to the estimates of 𝛾𝛾∗ = 0.3807 and �̅�𝑟∗ = 7.2% in
footnote 10 of page 552 of [24]. However, the resulting estimates do not satisfy the required constraint of
𝛾𝛾 × �̅�𝑟 > 𝛼𝛼/2.

The following are summary statistics of the “nls” method, which converged after 11 iterations:

The CIR Fit (Simulated Data): Summary Statistics

If 𝛼𝛼 is also unknown, we need to modify the code as given below:

#example27
rm(list=ls()) # clear the workspace and functions
CIR.yield = function(r0=0.02,t=0,T=1,gamma=0.3807,rbar=0.072,alpha=0.0548){
 psi1 = (gamma^2+2*alpha)^0.5
 Denom = (gamma+psi1)*(exp(psi1*(T-t))-1)+ 2*psi1
 B = 2*(exp(psi1*(T-t))-1)/Denom
 A = 2*rbar*gamma/alpha* log((2*psi1*exp((psi1+gamma)*(T-t)/2))/Denom)
 return((-A+B*r0)/(T-t))
}
bond.maturities = VeronesiTable15p1$’Time to Maturity’
bond.prices = VeronesiTable15p1$Strips/100
bond.yields = -log(bond.prices)/bond.maturities
bonddata = data.frame(cbind(bond.maturities,bond.yields))
model = nlm(f=CIR.J,p=c(0.4,0.05,0.03),r0=0.0168,
 bond.prices=bond.prices,iterlim=2000,
 bond.maturities=bond.maturities)
model1 = optim(c(0.4,0.05,0.03),CIR.J,method=("BFGS")
 ,r0=0.0168,bond.prices=bond.prices,
 bond.maturities=bond.maturities)
CIR.fit =
 nls(bond.yields~CIR.yield(r0=0.0168,t=0,T=bond.maturities,
 gamma,rbar,alpha),
 start=list(gamma=0.4,rbar=0.06,alpha=0.03),
 data=bonddata,algorithm = "port",
 lower=list(gamma=0.1,rbar=0.01,alpha=0.03),
 upper=list(gamma=10,rbar=10,alpha=1),
 nls.control(maxiter = 1000, tol = 1e-3, minFactor = 1/1024,
 printEval = FALSE, warnOnly = FALSE,
 scaleOffset = 0, nDcentral = FALSE))
sum_mod= summary(CIR.fit)

 44

Copyright © 2023 Society of Actuaries Research Institute

CIR Risk-Neutral Parameter Estimates

We see that only “optim” produces acceptable estimates but the resulting 𝛼𝛼 value is not close to 0.0548.
The following is a summary statistics of “nls” method which converged after 55 iterations:

The CIR Fit (Simulated Data): Summary Statistics

Based on the summary statistics we can conclude that CIR is not suitable model for the data set. To
evaluate this issue further we can look at the fit of the model with the Vasicek model.

#example28
rm(list=ls()) # clear the workspace and functions
CIR.yield = function(r0=0.02,t=0,T=1,gamma=0.3807,rbar=0.072,alpha=0.0548){
 psi1 = (gamma^2+2*alpha)^0.5
 Denom = (gamma+psi1)*(exp(psi1*(T-t))-1)+ 2*psi1
 B = 2*(exp(psi1*(T-t))-1)/Denom
 A = 2*rbar*gamma/alpha* log((2*psi1*exp((psi1+gamma)*(T-t)/2))/Denom)
 return((-A+B*r0)/(T-t))
}
bond.maturities = VeronesiTable15p1$’Time to Maturity’
bond.prices = VeronesiTable15p1$Strips/100
bond.yields = -log(bond.prices)/bond.maturities
bonddata = data.frame(cbind(bond.maturities,bond.yields))
Vasicek.fit =
 nls(bond.yields~Vasicek.yield(r0=0.0168,t=0,T=bond.maturities,
 gamma,rbar,sigma=0.0221),
 start=list(gamma=0.4,rbar=0.06),
 data=bonddata,algorithm = "port",
 lower=list(gamma=0.1,rbar=0.01),
 upper=list(gamma=10,rbar=10),
 nls.control(maxiter = 1000, tol = 1e-3, minFactor = 1/1024,
 printEval = FALSE, warnOnly = FALSE,
 scaleOffset = 0, nDcentral = FALSE))

 45

Copyright © 2023 Society of Actuaries Research Institute

From the plot we see that the CIR fit is marginally better than the Vasicek fit but the CIR fitted values may
lead to negative interest rates; therefore we recommend using the Vasicek model for the given data.

CIR.fit =
 nls(bond.yields~CIR.yield(r0=0.0168,t=0,T=bond.maturities,
 gamma,rbar,alpha),
 start=list(gamma=0.4,rbar=0.06,alpha=0.03),
 data=bonddata,algorithm = "port",
 lower=list(gamma=0.1,rbar=0.01,alpha=0.03),
 upper =list(gamma=10,rbar=10,alpha=1),
 nls.control(maxiter = 1000, tol = 1e-3, minFactor = 1/1024,
 printEval = FALSE, warnOnly = FALSE,
 scaleOffset = 0, nDcentral = FALSE))
plot(bond.maturities,bond.yields*100,xlab="Maturities",ylab="Yield(%)",
 type="b",pch=10,lty="solid",col="red1")
lines(bond.maturities,fitted(Vasicek.fit)*100,type="b",pch=20,lty="solid",
 col="green3")
lines(bond.maturities,fitted(CIR.fit)*100,type="b",pch=12,col="blue")
legend("bottomright",legend=c("Market Yield(%)","Vasicek fitted yield(%)",
 "CIR fitted yield(%)"),col=c("red1","green3","blue"),
 lty=c(1,1,1),pch=c(10,20,12))

 46

Copyright © 2023 Society of Actuaries Research Institute

3.6 THE TWO-FACTOR VASICEK MODEL CALIBRATION
The literature on real-world calibration of the two-factor Vasicek model is non-existent. Even the seminal
text on interest rate models by Brigo (2009) focuses on calibrating in the risk-neutral environment. The
difficulty in calibrating in the real world lies in selecting short term rates and then long term rates.
However, short and long term rates are extracted from bond prices which in turn use the risk-neutral world
to model and calculate yields. Essentially, to calibrate in the real world we need the observed values of
𝜙𝜙1,𝑡𝑡 and 𝜙𝜙2,𝑡𝑡 individually but the market data (say overnight rates) are 𝑟𝑟𝑡𝑡 values. Therefore we have to use
statistical mixture models to calibrate to real time data, but that is beyond the scope of this paper. As the
appendix shows, zero-coupon bond prices under the two-factor Vasicek model are given by:

𝑍𝑍�𝜙𝜙1,𝑡𝑡 ,𝜙𝜙2,𝑡𝑡 , 𝑑𝑑;𝑇𝑇� = 𝑒𝑒𝑥𝑥𝑒𝑒 �𝐴𝐴(𝑑𝑑;𝑇𝑇) − 𝜙𝜙1,𝑡𝑡𝐵𝐵1(𝑑𝑑;𝑇𝑇) − 𝜙𝜙2,𝑡𝑡𝐵𝐵2(𝑑𝑑;𝑇𝑇)� (9)

where:

and

𝐵𝐵𝑖𝑖(𝑑𝑑;𝑇𝑇) = � 𝑒𝑒𝑥𝑥𝑒𝑒(−𝛾𝛾𝑖𝑖𝑠𝑠)
𝑇𝑇−𝑡𝑡

0
𝑑𝑑𝑠𝑠, 𝑖𝑖 = 1,2,3

With 𝛾𝛾3 = 𝛾𝛾1 + 𝛾𝛾2. We write 𝐵𝐵𝑖𝑖(𝑑𝑑;𝑇𝑇) in an integral form as it is easy to evaluate it for 𝛾𝛾𝑖𝑖 = 0 and 𝛾𝛾𝑖𝑖 ≠ 0.
The calibration process involves minimizing the following quantity:

𝐽𝐽(𝛾𝛾∗, �̅�𝑟∗) = ∑ �𝑍𝑍𝑇𝑇𝑇𝑇𝑇𝑇−𝑓𝑓𝐷𝐷𝑐𝑐𝑡𝑡𝑇𝑇𝑟𝑟−𝑉𝑉𝐷𝐷𝑠𝑠𝑖𝑖𝑐𝑐𝑉𝑉𝑉𝑉(𝑟𝑟0, 0;𝑇𝑇𝑖𝑖) − 𝑍𝑍𝐷𝐷𝐷𝐷𝑡𝑡𝐷𝐷(0,𝑇𝑇𝑖𝑖)�
2

𝑛𝑛
𝑖𝑖=1 (10)

where 𝑍𝑍𝑇𝑇𝑇𝑇𝑇𝑇−𝑓𝑓𝐷𝐷𝑐𝑐𝑡𝑡𝑇𝑇𝑟𝑟−𝑉𝑉𝐷𝐷𝑠𝑠𝑖𝑖𝑐𝑐𝑉𝑉𝑉𝑉(𝑟𝑟0, 0;𝑇𝑇𝑖𝑖) is as given in (9). As we need to estimate three parameters, we use a
nonlinear least square minimization algorithm for this task. The R package “nls” is suitable for this task. In
some cases 𝛾𝛾1 or 𝛾𝛾2 may turn out to be negative and in iterative computations the parameter values may
go through zero; therefore it is important to know the behavior of 𝐴𝐴(𝑑𝑑;𝑇𝑇) and 𝐵𝐵(𝑑𝑑;𝑇𝑇) in the neighborhood
of zero. As the appendix points out we can write:

• When 𝛾𝛾1 = 0, 𝛾𝛾2 ≠ 0

• When 𝛾𝛾1 ≠ 0, 𝛾𝛾2 = 0

 47

Copyright © 2023 Society of Actuaries Research Institute

• When 𝛾𝛾1 = 𝛾𝛾2 = 0

The R function “Two.factor.Vasicek.A” implements these formulas. For the calibration we assume we have
the following data after choosing a possible long-term rate (for example 5 years or 10 years):

• Volatility of short-term rate 𝑑𝑑𝑟𝑟𝑡𝑡 ,𝜎𝜎𝜏𝜏
• Volatility of long-term rate 𝑑𝑑𝑟𝑟𝑡𝑡(𝜏𝜏),𝜎𝜎(𝜏𝜏)
• Correlation between short-term rate 𝑑𝑑𝑟𝑟𝑡𝑡 and long-term rate 𝑑𝑑𝑟𝑟𝑡𝑡(𝜏𝜏),𝜌𝜌(0, 𝜏𝜏)
• Series of zero-coupon strip prices.

For each set of given values of 𝛾𝛾1∗, 𝛾𝛾2∗,𝜙𝜙�⃗ 1∗ and 𝜙𝜙�⃗ 2∗ we solve following three simultaneous equations for 𝜎𝜎1,
𝜎𝜎2 and 𝜌𝜌:

Although the above three equations appear to be non-linear, they can be converted into linear equations
of 𝜎𝜎1, 𝜎𝜎2 and cova, where cova is defined as 𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎 = 𝜌𝜌𝜎𝜎1𝜎𝜎2. The R function “Two.factor.Vasicek.Vols”
given below implements this.

Two.factor.Vasicek.Vols = function(phi1=-0.0413,phi2=0,gamma1=0.8269,
 gamma2=-0.0288,Tau=5,short.term.vol=0.0221,
 long.term.vol=0.0125,correlation=0.4713){
B1Tau = Vasicek.B(gamma=gamma1,T=Tau)/Tau
B2Tau = Vasicek.B(gamma=gamma2,T=Tau)/Tau
if (correlation==0) {
 A = matrix(c(1,1,B1Tau^2,B2Tau^2),nrow=2,ncol=2,byrow=TRUE)
 B = matrix(c(short.term.vol^2,long.term.vol^2),nrow=2,ncol=1)
 est= solve(A,B)
 paras = c(est[1]^0.5,est[2]^0.5)
 return(paras)
}
else {
 cova = short.term.vol*long.term.vol*correlation

 48

Copyright © 2023 Society of Actuaries Research Institute

Use these values of 𝜎𝜎1, 𝜎𝜎2 and 𝜌𝜌 in (9) along with strip prices to minimize (10) with respect to 𝛾𝛾1∗, 𝛾𝛾2∗,𝜙𝜙�⃗ 1∗
and 𝜙𝜙�⃗ 2∗. In an iterative scheme with each set of new values of 𝛾𝛾1∗, 𝛾𝛾2∗,𝜙𝜙�⃗ 1∗ and 𝜙𝜙�⃗ 2∗, the parameters 𝜎𝜎1, 𝜎𝜎2
and 𝜌𝜌 have to be calculated. Therefore, to feed to non-linear regression analysis we use the following
routine for log bond yield calculation under the two-factor Vasicek model.

The final call for the minimization is carried out as given below:

#example29
Two factor Vasicek risk-neutral calibration with simulated data example
rm(list=ls()) # clear the workspace and functions
bond.maturities =seq(0.5,20,0.5)
set.seed(12345)

 A = matrix(c(1,1,2,B1Tau^2,B2Tau^2,2*B1Tau*B2Tau,B1Tau,B2Tau,
 (B1Tau+B2Tau)),nrow=3,ncol=3,byrow=TRUE)
 B = matrix(c(short.term.vol^2,long.term.vol^2,cova),nrow=3,ncol=1)
 est= solve(A,B)
 paras = c(est[1]^0.5,est[2]^0.5,est[3]/(est[1]*est[2])^0.5)
 return(paras)
 }
}

 49

Copyright © 2023 Society of Actuaries Research Institute

The “nls” algorithm converged in 74 iterations and summary statistics are:

The Two-Factor Vasicek Fit (Simulated Data): Summary Statistics

The following values are obtained using the estimated values of 𝜙𝜙�⃗ 1∗, 𝛾𝛾1∗ and 𝛾𝛾2∗:

 start=list(phi1=-0.1,gamma1=0.08,gamma2=-0.1),
 data=bonddata,algorithm = "port",
 lower=list(phi1=-1,gamma1=0,gamma2=-0.5),
 upper =list(phi1=1,gamma1=0.999,gamma2=-0.01),
 nls.control(maxiter = 100, tol = 1e-3, minFactor = 1/1024,
 printEval = FALSE, warnOnly = FALSE,
 scaleOffset = 0, nDcentral = FALSE))
sum_mod = summary(Two.factor.Vasicek.fit)
est.nls=
Two.factor.Vasicek.Vols(phi1=as.numeric(coef(Two.factor.Vasicek.fit))[1],
 phi2=0,
 gamma1=as.numeric(coef(Two.factor.Vasicek.fit))[2],
 gamma2=as.numeric(coef(Two.factor.Vasicek.fit))[3],
 Tau=5,short.term.vol=0.0221,
 long.term.vol=0.0125,correlation=0.4713)

bond.prices = Two.factor.Vasicek.zcbpv2(t=0,T=bond.maturities,Tau=5,
 rt=0.0168,rlTau=0.0452,
 phi1=-0.0413,phi2=0,
 gamma1=0.8269,gamma2=-0.0288,
 short.term.vol = 0.0221,
 long.term.vol = 0.0125,
 correlation = 0.4713)
bonddata = data.frame(cbind(bond.maturities,bond.prices))

Two.factor.Vasicek.fit =
 nls(bond.prices~Two.factor.Vasicek.zcbpv2(t=0,T=bond.maturities,
 Tau=5,rt=0.0168,
 rlTau=0.0452,
 phi1,phi2=0,
 gamma1,gamma2,
 short.term.vol = 0.0221,
 long.term.vol = 0.0125,

 50

Copyright © 2023 Society of Actuaries Research Institute

From the summary statistics we see that the “nls” function converges to its true value quite easily. Now we
can test the fit using an actual data set. For this purpose we use Table 15.1 of [24].

The “nls” algorithm converged in 12 iterations and summary statistics are:

The Two-Factor Vasicek Fit: Summary Statistics

The following values are obtained using the estimated values of 𝜙𝜙�⃗ 1∗, 𝛾𝛾1∗ and 𝛾𝛾2∗:

#example30
rm(list=ls()) # clear the workspace and functions
bond.maturities = VeronesiTable15p1$’Time to Maturity’
bond.yields = -log(VeronesiTable15p1$Strips/100)/bond.maturities
bonddata = data.frame(cbind(bond.maturities,bond.yields))
Two.factor.Vasicek.fit =
 nls(bond.yields~Two.factor.Vasicek.yield(t=0,T=bond.maturities,
 Tau=5,rt=0.0168,rlTau=0.0452,
 phi1,phi2=0,gamma1,gamma2,
 short.term.vol = 0.0221,
 long.term.vol = 0.0125,
 correlation = 0.4713),
 start=list(phi1=-0.08,gamma1=0.7,gamma2=-0.04),
 data=bonddata,algorithm = "port",
 lower=list(phi1=-0.9,gamma1=-2,gamma2=-2),
 upper=list(phi1=0.9,gamma1=2,gamma2=2),
 nls.control(maxiter = 10000, tol = 1e-8,
 minFactor = 1/10240,
 printEval = FALSE,
 warnOnly = TRUE, scaleOffset = 0,
 nDcentral = FALSE),trace=FALSE)

Warning in nls(bond.yields ~ Two.factor.Vasicek.yield(t = 0, T = bond.maturities,
: Convergence failure: false convergence (8)

sum_mod = summary(Two.factor.Vasicek.fit)
est.nls = Two.factor.Vasicek.Vols(
 gamma1 = as.numeric(coef(Two.factor.Vasicek.fit))[2],
 gamma2 = as.numeric(coef(Two.factor.Vasicek.fit))[3],
 Tau=5,short.term.vol=0.0221,long.term.vol=0.0125,correlation=0.4713)

 51

Copyright © 2023 Society of Actuaries Research Institute

We tried many possible starting values but it converged only to these values. However the convergence
was always accompanied a warning message “false convergence(8)”. It may mean the yield rate function
may not be continuous in the neighborhood of converging values. One may refer to [14] complete list of
return codes2.

The summary statistics suggests that the model is not appropriate. To examine further we plot the fitted
value based on the two-factor Vasicek model along with the Vasicek model:

2 return code 8: false convergence: the gradient ∇𝑓𝑓(𝑥𝑥) may be computed incorrectly, the other stopping tolerances may be too tight, or either
𝑓𝑓 or ∇𝑓𝑓 may be discontinuous near the current iterate 𝑥𝑥.

 52

Copyright © 2023 Society of Actuaries Research Institute

The diagnostic p-values indicate that the two-factor Vasicek model is not an appropriate model for this
data set. This agrees with the conclusion drawn in [24].

4 No-Arbitrage Models
When we fit risk-neutral versions of Vasicek and CIR models to a term structure extracted from Treasury
bond prices we see that the resulting models are not exact fits, they just minimize the total error between
market values and model values. To eliminate this mismatch, Hull-White (1990, 1993) extend Vasicek
models by including a time dependent drift parameter. The two-factor Hull-White model and the LIBOR
Market models are two more examples of no arbitrage models.

4.1 HULL-WHITE MODELS
In this section we describe the single factor Hull-White model and the two factor Hull-White model. In
theory arbitrage-free models reproduce the yield curve and prices for a set of interest rate derivatives such
as caps, floors or swaptions. In the calibration process that we outline, we see that they do not precisely
reproduce the yield curve and derivative prices, but the error is minimal.

4.1.1 ONE FACTOR HULL-WHITE MODEL
The one factor Hull-White model is an extension of the Vasicek model with a time-varying drift coefficient
given below:

𝑑𝑑𝑟𝑟𝑡𝑡 = (𝜃𝜃𝑡𝑡 − 𝛾𝛾∗𝑟𝑟𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝜎𝜎𝑑𝑑𝑋𝑋𝑡𝑡

 53

Copyright © 2023 Society of Actuaries Research Institute

The solution of this is:

As the Hull-White model is a Gaussian model (Ornstein-Uhlenbeck process3) the zero-coupon bond prices
take the form:

When the Hull-White model is calibrated to be arbitrage-free, market discount factors should match the
model price. We can solve for function 𝜃𝜃𝑡𝑡 as illustrated below:

But

Differentiating both sides with respect to 𝑇𝑇 we can obtain an expression for 𝜃𝜃𝑇𝑇

3 An Ornstein-Uhlenbeck process is a Weiner process (random walk) modified so that it mean-reverts.

 54

Copyright © 2023 Society of Actuaries Research Institute

We notice that to evaluate 𝐸𝐸[𝑟𝑟𝑠𝑠+𝑡𝑡|𝑟𝑟𝑡𝑡], we need ∫ 𝜃𝜃𝛾𝛾𝑒𝑒𝑥𝑥𝑒𝑒(𝛾𝛾∗𝑑𝑑)𝑠𝑠+𝑡𝑡
𝑡𝑡 𝑑𝑑𝑑𝑑. However, this integral can be

simplified as illustrated below.

We already have the following from the derivation of 𝜃𝜃𝑡𝑡:

From this we see:

Therefore, we have the following expression for 𝐸𝐸[𝑟𝑟𝑠𝑠+𝑡𝑡|𝑟𝑟𝑡𝑡]:

This expression along with the expression for the 𝑉𝑉𝑎𝑎𝑟𝑟[𝑟𝑟𝑠𝑠+𝑡𝑡|𝑟𝑟𝑡𝑡] can be used to simulate interest rate paths
from the Hull-White model.

4.1.2 THE TWO-FACTOR HULL-WHITE MODEL
The two-factor Hull-White model is a generalization of the two-factor Vasicek model. As in the two-factor
Vasicek model, short rates are the sum of two factors,

𝑟𝑟𝑡𝑡 = 𝜙𝜙1,𝑡𝑡 + 𝜙𝜙2,𝑡𝑡 ,

Where each factor follows the following SDEs:

 55

Copyright © 2023 Society of Actuaries Research Institute

As given in ([24]) this is in fact the two-factor Vasicek model with 𝛾𝛾1∗𝜙𝜙�⃗ 1∗ replaced by a time-varying function
𝜃𝜃𝑡𝑡 and setting 𝜙𝜙�⃗ 2 = 0. As in the two-factor Vasicek model, the SDE for each factor can be solved to obtain
the following:

Hence we can obtain the following expressions for conditional expectations, variances and covariance:

As we worked out for the one-factor Hull-White model we can obtain expressions for 𝜃𝜃𝑡𝑡 in terms of
instantaneous forward rates, 𝑓𝑓(0, 𝑑𝑑), and 𝛾𝛾1∗, 𝛾𝛾2∗,𝜎𝜎1∗ and 𝜎𝜎2∗ and hence an expression for 𝐸𝐸[𝑟𝑟𝑠𝑠+𝑡𝑡|𝑟𝑟𝑡𝑡] but it is a
quite long and involved expression, so we avoid reproducing it here.

4.1.3 HULL-WHITE MODEL CALIBRATION
Both one-factor and two-factor Hull-White model calibrations involve two steps. In the first step the yield
curve will be interpolated to obtain values for chosen derivative cash flow timings. Then the time
independent parameters of the Hull-White model are estimated using the interpolated yield curve,
derivative prices, and non-linear least square methods. Least square methods can be used as long as the
number of parameters is smaller than the available derivative prices. Then, using these estimated
parameters, the time dependent parameter 𝜃𝜃𝑡𝑡 will be calculated.

The yield curve interpolation stage is the same for both one-factor and two-factor Hull-White models. For
the yield curve interpolation one may use cubic splines, higher degree (degree of six or ten) polynomial fit,
or Nelson-Siegel curve.

As it is difficult to cover all the possible option prices that can be used for calibration of time independent
parameters in implementation, we concentrate on using cap prices. In the yield curve interpolation stage
both one-factor and two-factor model use the following steps:

1. Obtain rates 𝑟𝑟(0, 𝑑𝑑𝑖𝑖) using the discount factors 𝑍𝑍(𝑟𝑟, 𝑑𝑑𝑖𝑖) from 𝑟𝑟(0, 𝑑𝑑𝑖𝑖) = − 1
𝑡𝑡𝑖𝑖
𝑙𝑙𝑛𝑛�𝑍𝑍(0, 𝑑𝑑𝑖𝑖)�, 𝑖𝑖 =

1,2, … ,𝑛𝑛.
2. Fit a curve, �̂�𝑟(0, 𝑑𝑑𝑖𝑖), for the points �𝑑𝑑𝑖𝑖 , 𝑟𝑟(0, 𝑑𝑑𝑖𝑖)�, 𝑖𝑖 = 1,2, … ,𝑛𝑛.

3. Use the fitted curve to get an estimate 𝑓𝑓(0, 𝑑𝑑) for 𝑓𝑓(0, 𝑑𝑑) using 𝑓𝑓(0, 𝑑𝑑) = − 𝜕𝜕
𝜕𝜕𝑡𝑡

[𝑑𝑑�̂�𝑟(0, 𝑑𝑑)]

 56

Copyright © 2023 Society of Actuaries Research Institute

4.2 YIELD CURVE INTERPOLATION: ONE-FACTOR MODEL
In fitting a curve for 𝑟𝑟(0, 𝑑𝑑) we found that cubic-spline interpolation works poorly as the resulting 𝑓𝑓(0, 𝑑𝑑)
was an oscillating function. [24] suggests using a polynomial of degree 6 or degree 10 for 𝑟𝑟(0, 𝑑𝑑). As an
alternative we can fit using a Nelson-Siegel curve.

Cubic Spline Fit

#example 32
Hull-White model
TM = VeronesiTable15p1$’Time to Maturity’
Yield = VeronesiTable15p1$’Yield %’*100
sigma=0.0196
gamma=0.19
xvals = seq(0,10,0.01)
rates= model1(xvals)
ratesdash = model1(xvals,1)
rates2dash = model1(xvals,2)
f0t = rates+ratesdash*xvals
thetat = 2*ratesdash/100+xvals*rates2dash/100+sigma^2*xvals+
 gamma*f0t/100+sigma^2/
 (2*gamma)*(1-exp(-2*gamma*xvals))
plot(xvals,f0t,type="l",lty=2,col="blue",main="Cubic Spline fit",
 xlab="Maturity",ylab="Rates(%)")
points(TM,Yield,type="b",lty=1,col="red")
points(xvals,rates,type="l",lty=1,col="green")
legend("bottomright",legend=c("Forward curve","Current yield",
 "Fitted Yield"),
 col=c("blue","red","green"),lty=c(2,1,1))

 57

Copyright © 2023 Society of Actuaries Research Institute

The function θ (With Cubic Splines)

4.2.1 FITTING AN 𝒏𝒏 DEGREE POLYNOMIAL FOR 𝒓𝒓(𝟎𝟎, 𝒕𝒕)
R’s “poly” function fits the polynomial model:

plot(xvals,thetat,type="l",
 main=expression(paste("The function ",
 theta," (With Cubic Splines)")),
 xlab="Time",ylab="Theta")

#example33
TM = VeronesiTable15p1$’Time to Maturity’
Yield = VeronesiTable15p1$’Yield %’*100
model1 = splinefun(TM,Yield,method="natural")
sigma=0.0196
gamma=0.19
model2 = lm(Yield~poly(TM,6,raw=TRUE))
coefs = as.numeric(coef(model2))

 58

Copyright © 2023 Society of Actuaries Research Institute

6th Degree Polynomial Fit

plot(xvals,thetat,type="l",
 main=expression(paste("The function ",
 theta," (With 6 Degree Polynomial)")),
 xlab="Time",ylab="Theta")

xvals = seq(0,10,0.25)
rates = sapply(xvals,polyfit,coeffs=coefs)
ratesdash = sapply(xvals,polyfit,coeffs=coefs,deriv=1)
rates2dash = sapply(xvals,polyfit,coeffs=coefs,deriv=2)
f0t = rates+ratesdash*xvals
thetat = 2*ratesdash/100+xvals*rates2dash/100+sigma^2*xvals+
 gamma*f0t/100+sigma^2/(2*gamma)*(1-exp(-2*gamma*xvals))
plot(xvals,f0t,type="l",lty=2,col="blue",
 main="6th degree polynomial fit",xlab="Maturity",ylab="Rates(%)")
points(TM,Yield,type="b",lty=1,col="red")
points(xvals,rates,type="l",lty=1,col="green")
legend("bottomright",legend=c("Forward curve","Current yield",
 "Fitted Yield"),
 col=c("blue","red","green"),lty=c(2,1,1))

 59

Copyright © 2023 Society of Actuaries Research Institute

The function θ (With 6th Degree Polynomial)

4.2.2 FITTING A NELSON-SIEGEL CURVE TO 𝒓𝒓(𝟎𝟎, 𝒕𝒕)
The Nelson-Siegel model specifies 𝑓𝑓(0, 𝑑𝑑) in the following form:

𝑓𝑓(0, 𝑑𝑑) = 𝛽𝛽0 + 𝛽𝛽1𝑒𝑒𝑥𝑥𝑒𝑒 �−
𝑑𝑑
𝜏𝜏
� +

𝛽𝛽2𝑑𝑑
𝜏𝜏
𝑒𝑒𝑥𝑥𝑒𝑒 �−

𝑑𝑑
𝜏𝜏
�

However since we are fitting market yields we will get an expression for 𝑟𝑟(0, 𝑑𝑑):

Also we need:

𝜕𝜕
𝜕𝜕𝑑𝑑
𝑓𝑓(0, 𝑑𝑑) = −

𝛽𝛽1
𝜏𝜏
𝑒𝑒𝑥𝑥𝑒𝑒 �−

𝑑𝑑
𝜏𝜏
� +

𝛽𝛽2
𝜏𝜏
𝑒𝑒𝑥𝑥𝑒𝑒 �−

𝑑𝑑
𝜏𝜏
� −

𝛽𝛽2𝑑𝑑
𝜏𝜏2

𝑒𝑒𝑥𝑥𝑒𝑒 �−
𝑑𝑑
𝜏𝜏
�

#example 34
This example uses function “YieldCurve” package
first it must be installed and loaded, before running this example.

TM = VeronesiTable15p1$’Time to Maturity’
Yield =-log(VeronesiTable15p1$Strips/100)/TM*100
xvals = seq(0,10,0.01)

 60

Copyright © 2023 Society of Actuaries Research Institute

Nelson-Siegel Fit

plot(xvals,thetat,type="l",
 main=expression(paste("The function ",
 theta," (with Nelson-Siegel)")),
 xlab="Time",ylab="Theta")

The function “Nelson.Siegel” is from the Yield curve package.
NSP = Nelson.Siegel(Yield,TM)
The following three functions are developed with this paper.
rates = NSRates(as.numeric(NSP),xvals)
f0t = NSForwards(as.numeric(NSP),xvals)
thetat = Theta(as.numeric(NSP),sigma=0.0221,gamma=0.19, xvals)

plot(xvals,f0t,type="l",lty=2,col="blue",main="Nelson-Siegel Fit",
 xlab="Maturity",ylab="Rates(%)")
points(TM,Yield,type="b",lty=1,col="red")
points(xvals,rates,type="l",lty=1,col="green")
legend("bottomright",legend=c("Forward curve","Current yield",
 "Fitted Yield"),col=c("blue","red","green"),lty=c(2,1,1))

 61

Copyright © 2023 Society of Actuaries Research Institute

The Function 𝜽𝜽 (with Nelson-Siegel)

4.3 CALIBRATION OF THE ONE-FACTOR HULL-WHITE MODEL
For both one-factor and two-factor Hull-White model calibration we assume that we have a data set similar
to Table 19.4:

Swap Rates and Cap Prices on November 3, 2008

Cap# Maturity (T) Swap Rate Price (x100) Discount Factors

1 0.25 0.028588 0 0.9929037

2 0.50 0.026486 0.0528 0.9868908

3 0.75 0.024929 0.1313 0.9815442

4 1.00 0.024320 0.2401 0.9760606

5 1.25 0.024491 0.3826 0.9699535

6 1.50 0.024938 0.5405 0.9633988

7 1.75 0.025561 0.7106 0.9563730

8 2.00 0.026260 0.8932 0.9489501

9 2.25 0.027252 1.1095 0.9406132

 62

Copyright © 2023 Society of Actuaries Research Institute

Cap# Maturity (T) Swap Rate Price (x100) Discount Factors

10 2.50 0.028630 1.3729 0.9309471

11 2.75 0.030108 1.6636 0.9204540

12 3.00 0.031400 1.9502 0.9098978

13 3.25 0.032471 2.2235 0.8995225

14 3.50 0.033474 2.4973 0.8889794

15 3.75 0.034408 2.7711 0.8783263

16 4.00 0.035270 3.0451 0.8676278

17 4.25 0.036076 3.3208 0.8568746

18 4.50 0.036835 3.5968 0.8460722

19 4.75 0.037531 3.8700 0.8353260

20 5.00 0.038150 4.1370 0.8247441

The above table contains one additional column, discount factors, which is derived from the Swap Rate
column ([24]) of Table 19.4. The data set gives cap prices for 20 caps, each cap is quarterly spaced and the
cap rate for each cap is the associated swap rate. For example, cap 12 is a 3-year cap with four payments
per year and the cap rate is 3.14% with the first payment occurring at 0.5 years, if the observed rate is
above the cap rate of 3.14%. The value of a caplet is given by the following formulas from [24]:

while 𝐵𝐵(𝑑𝑑;𝑇𝑇) remains as:

𝐵𝐵(𝑑𝑑;𝑇𝑇) =
1
𝛾𝛾∗
�1 − 𝑒𝑒−𝛾𝛾∗(𝑇𝑇−𝑡𝑡)�

A careful observation reveals that this is the put option formula under the Vasicek model with modeled
bond prices replaced by market observed bond prices. The cap prices are obtained by adding all the prices
of corresponding caplets together. We first implement a caplet formula in the code block given below.

 63

Copyright © 2023 Society of Actuaries Research Institute

Note that the R function Vasicek.B is implemented as:

Once the caplet prices are calculated the cap price is calculated as the sum of these caplets as given below:

#Text (19.45)
Hull.White.caplet = function(rK= 0.03815,T=5,Delta=0.25,
 ZT1=0.835326,ZT2=0.8247441,
 gamma=0.054523,sigma=0.0149)
{
 BTOTB = Vasicek.B(gamma,Delta)
 SZ = (BTOTB^2*sigma^2*Vasicek.B((2*gamma),(T-Delta)))^0.5
 K = 1/(1+rK*Delta)
 d1 = 1/SZ*log(ZT2/(K*ZT1))+ SZ/2
 d2 = d1-SZ
 return(ZT1*pnorm(-d2)-ZT2/K*pnorm(-d1))
}

Vasicek bond pricing formula B
Vasicek.B = function(gamma,T){
 if (gamma==0) {
 return(T)
 }
 else {
 return((1-exp(-gamma*T))/gamma)
 }
}

Hull.White.cap = function(rK=0.05,TK=5,Delta=0.25,discount_factors,
 gamma,sigma)
{
 no.caplets = TK/Delta -1
 sum(Hull.White.caplet(rK=rK,T=seq(2*Delta,TK,Delta),Delta=Delta,
 ZT1=discount_factors[1:no.caplets],
 ZT2=discount_factors[2:(no.caplets+1)],gamma,
 sigma))
}

 64

Copyright © 2023 Society of Actuaries Research Institute

Now to calculate a cap price vector as given in Table 19.4 of ([24]) we can use the following R function:

Now we can estimate 𝛾𝛾∗ and 𝜎𝜎∗ using the non-linear least squares function “nls” which can be downloaded
from R's CRAN archive. To verify the nls function we first use a simulated data set assuming the prices are
from a Hull-White model.

The “nls” algorithm converged in 4 iterations and summary statistics are:

The Hull-White Model Fit: Summary Statistics

#example35
Hull-White fit with simulated data example
Testdata2 = VeronesiTable19p4
Testdata2$’Cap Price (x100)’ =
 Hull.White.cap.price.vector(
 Maturity=VeronesiTable19p4$Maturity,
 cap_rates=VeronesiTable19p4$’Swap Rate’,
 discount_factors=VeronesiTable19p4$discount_factors,
 gamma=1,sigma=0.015)+rnorm(20,0,0.0001)

Hull.White.fit =
 nls(‘Cap Price (x100)’~
 Hull.White.cap.price.vector(Maturity=Testdata2$Maturity,
 cap_rates=Testdata2$’Swap Rate’,
 discount_factors=Testdata2$discount_factors,
 gamma=gamma,sigma=sigma),
 data= Testdata2,start=list(gamma=.1,sigma=0.01),
 nls.control(maxiter = 100, tol = 1e-05, minFactor = 1/1024,
 printEval = FALSE, warnOnly = FALSE, scaleOffset = 0,
 nDcentral = FALSE))
sum_mod = summary(Hull.White.fit)

Hull.White.cap.price.vector = function(cap_rates,Maturity,Delta=0.25,
 discount_factors,gamma,sigma)
{
 n = length(Maturity)-1
 caps =rep(0,n+1)
 for (i in 2:(n+1)){
 caps[i] = Hull.White.cap(rK=cap_rates[i],TK=Maturity[i],
 Delta=Delta,discount_factors =discount_factors,
 gamma=gamma,sigma=sigma)
 }
 return(caps)
}

 65

Copyright © 2023 Society of Actuaries Research Institute

From the output it is clear that “nls” function estimates are very close to the actual values. Now we can do
the analysis for the data in Table 19.4 of [24]. The code snippet for the analysis is:

The “nls” algorithm converged in 5 iterations and summary statistics are:

The Hull-White Model Fit: Summary Statistics

From the summary statistics we see that the fit is very good. As further evidence of the appropriateness of
the fit we consider some graphical analysis with code snippets:

#example36
Data_set =VeronesiTable19p4
Data_set$’Cap Price (x100)’ = VeronesiTable19p4$’Cap Price (x100)’/100
Data_set$’Cap Price (x100)’[1]=0
Hull.White.fit =
nls(Data_set$’Cap Price (x100)’~ Hull.White.cap.price.vector(
 Maturity=Data_set$Maturity,
 cap_rates=Data_set$’Swap Rate’,
 discount_factors=
 Data_set$discount_factors,
 gamma=gamma,
 sigma=sigma),

 data=Data_set ,start=list(gamma=.1,sigma=0.1),
 nls.control(maxiter = 100, tol = 1e-05,
 minFactor = 1/10240,
 printEval = FALSE, warnOnly = FALSE,
 scaleOffset = 0,nDcentral = FALSE))
sum_mod = summary(Hull.White.fit)

#example37
Hull-White fit graphical illustration
plot(‘Cap Price (x100)’~ ‘Swap Rate’, data =Data_set,
 xlab = "Swap Rate", ylab = "Cap Price")
lines(Data_set$’Swap Rate’, fitted(Hull.White.fit))

 66

Copyright © 2023 Society of Actuaries Research Institute

 plot(fitted(Hull.White.fit),residuals(Hull.White.fit),xlab="Fitted Values",
 ylab="Residuals")
abline(a=0,b=0)

plot(‘Cap Price (x100)’~ ‘Maturity’, data =Data_set,
 xlab = "Maturity", ylab = "Cap Price")
lines(Data_set$’Maturity’, fitted(Hull.White.fit))

 67

Copyright © 2023 Society of Actuaries Research Institute

As the graphs indicate the fitted model is an ideal one.

4.4 CALIBRATION OF THE TWO-FACTOR HULL-WHITE MODEL
The calibration of time-independent parameters will work as follows:

• First calculate the value of a caplet using the following formulas:

In the above formula bond prices are market or interpolated bond prices. The above formulas are
implemented in the following code chunk:

 68

Copyright © 2023 Society of Actuaries Research Institute

• In the R functions for cap price, the cap price vector is similar to functions in the one-factor
Vasicek model.

The following example illustrates calibration using a simulated data set.

#example 38
Hull-White fit with simulated data example
Testdata2 = VeronesiTable19p4
Testdata2$’Cap Price (x100)’ =
 Two.factor.Hull.White.cap.price.vector(cap_rates=VeronesiTable19p4$’Swap Rate’,
 Maturity=VeronesiTable19p4$Maturity,
 discount_factors=VeronesiTable19p4$discount_factors,
 gamma1=0.1,gamma2=-0.2,sigma1=0.2,sigma2=0.3,rho=0.5)

Testdata2$’Cap Price (x100)’[1]=0

Two.factor.Hull.White.fit =nls(‘Cap Price (x100)’~
 Two.factor.Hull.White.cap.price.vector(cap_rates=Testdata2$’Swap Rate’,
 Maturity=Testdata2$Maturity,
 discount_factors=Testdata2$discount_factors,
 gamma1=gamma1,gamma2=gamma2,sigma1=sigma1,sigma2=sigma2,rho=rho),
 data= Testdata2,
 start=list(gamma1=.3,gamma2=-0.3,sigma1=0.1,sigma2=0.4,rho=0.6),
 nls.control(maxiter = 100, tol = 1e-05, minFactor = 1/1024,
 printEval = FALSE, warnOnly = FALSE, scaleOffset = 0,
 nDcentral = FALSE))

Two.factor.Hull.White.caplet = function(rK,T,Delta=0.25,ZTO,ZTB,
 gamma1,gamma2,sigma1,sigma2,rho){
 TB =T
 TO = T-Delta
 K = 1/(1+rK*Delta)
 B1TOTB = Vasicek.B(gamma=gamma1,T=(TB-TO))
 B2TOTB = Vasicek.B(gamma=gamma2,T=(TB-TO))
 SZTO2 = B1TOTB^2 * sigma1^2*Vasicek.B(gamma=2*gamma1,T=TO) +
 B2TOTB^2 * sigma2^2*Vasicek.B(gamma=2*gamma2,T=TO) +
 B1TOTB*B2TOTB* sigma1*sigma2*rho*
 Vasicek.B(gamma=(gamma1+gamma2),T=TO)
 SZTO = SZTO2^0.5
 d1 = 1/SZTO * log(ZTB/(K*ZTO))+SZTO/2
 d2 = d1 - SZTO
 V0 = -ZTB*pnorm(-d1)+K*ZTO*pnorm(-d2)
 return (V0)
}

 69

Copyright © 2023 Society of Actuaries Research Institute

After trying out several initial values we failed to find results. If we look at the cap price vector formula

closely we see that each element is a function similar to ∑ 𝑎𝑎𝑖𝑖𝑖𝑖 Φ �𝑥𝑥𝑖𝑖 , 𝜇𝜇𝑖𝑖,𝜎𝜎𝑖𝑖� where 𝑎𝑎𝑖𝑖 , 𝑖𝑖 = 1,2, … are known

constants and Φ�𝑥𝑥𝑖𝑖 , 𝜇𝜇𝑖𝑖 ,𝜎𝜎𝑖𝑖�, cdf of a normal distribution, is as given below:

Φ�𝑥𝑥𝑖𝑖 , 𝜇𝜇𝑖𝑖 ,𝜎𝜎𝑖𝑖� =
1

2𝜋𝜋𝜎𝜎𝑖𝑖
� 𝑒𝑒𝑥𝑥𝑒𝑒 �−

�𝑑𝑑 − 𝜇𝜇𝑖𝑖�
𝜎𝜎𝑖𝑖2

�
𝑥𝑥𝑖𝑖

−∞
𝑑𝑑𝑑𝑑,

In the above expression, 𝜇𝜇𝑖𝑖 and 𝜎𝜎𝑖𝑖 are functions of the five parameters 𝛾𝛾1, 𝛾𝛾2,𝜎𝜎1,𝜎𝜎2, and 𝜌𝜌. In the non-

linear least squares minimization, we minimize the distance between ∑ 𝑎𝑎𝑖𝑖𝑖𝑖 Φ �𝑥𝑥𝑖𝑖 ,𝜇𝜇𝑖𝑖 ,𝜎𝜎𝑖𝑖� and its observed

values. It may be very sensitive to initial guesses and it may also have local values that minimize the
objective function. So, we need an alternative method to compute parameters.

When we look at (22.57) of [24] carefully we see that caplet with a pay-off at time T is a function of
𝑆𝑆𝑍𝑍(𝑇𝑇 − Δ;𝑇𝑇), where it is given by:

The above formula can be coded as:

Error in nls(`Cap Price (x100)` ~ Two.factor.Hull.White.cap.price.vector(cap rates
= Testdata2$`Swap Rate`, : step factor 0.000488281 reduced below 'minFactor'
of 0.000976562

summary(Two.factor.Hull.White.fit)

Error in summary(Two.factor.Hull.White.fit): object 'Two.factor.Hull.White.fit'
not found

 70

Copyright © 2023 Society of Actuaries Research Institute

We see that 𝑆𝑆𝑧𝑧(𝑇𝑇 − Δ;𝑇𝑇) characterizes the particular caplet, independent of which caplet it belongs to. We
can exploit this fact first to obtain 𝑆𝑆𝑍𝑍((𝑖𝑖 − 1)Δ; 𝑖𝑖Δ) for 𝑖𝑖 = 1,2, … and then applying the nonlinear least
squares method to estimate parameters and σ2. Extracting 𝑆𝑆𝑍𝑍�(𝑖𝑖 − 1)Δ; 𝑖𝑖Δ� i = 1,2,... is similar
to extracting forward volatilities from flat volatilities as given in section 20.1.2 of [24]. It works as follows:

• Use the caplet with payment at time 0.5 to obtain 𝑆𝑆𝑧𝑧(0; 0.5) This is similar to computing Black
implied volatility.

• Calculate the price of a caplet with a payout at time 0.5 with cap rate applicable to a cap maturing
at time 0.75. Subtract this caplet value from the cap maturing at time 0.75 to obtain caplet with a
payoff at time 0.75. Use this to compute 𝑆𝑆𝑍𝑍(0.5; 0.75).

• Proceed similarly to calculate caplet prices and then compute 𝑆𝑆𝑍𝑍(0.25(𝑖𝑖 − 1), 0.25𝑖𝑖), 𝑖𝑖 = 4,5, …

Note that the above procedure of extracting 𝑆𝑆𝑍𝑍((𝑖𝑖 − 1)Δ; 𝑖𝑖Δ) for 𝑖𝑖 = 1,2, …values are identical for both
one factor and two factor Hull-White model, except for the one factor model 𝑆𝑆𝑍𝑍(𝑇𝑇 − Δ, ;𝑇𝑇) given as:

The above formula can be coded as:

We can implement the above algorithm as given below:

HW.forward.vol = function(Maturity,discount_factors, cap_rates,cap_prices)f
 Nsize = length(Maturity)
 sigma.forward = rep(0,Nsize)
 sigma.forward[2]=uniroot(HW.caplet.implied.vol,c(0,1),
 price=cap_prices[2],
 rK= cap_rates[2],
 T=Maturity[2],
 ZTO=discount_factors[1],
 ZTB=discount_factors[2])$root
 for (i in (3:Nsize)){
 price.caplet = cap_prices[i]-
 Hull.White.capv2(rK= cap_rates[i],
 TK= Maturity[i-1],
 discount_factors = discount_factors[1:i],
 sigmaf = sigma.forward[2:(i-1)])

 71

Copyright © 2023 Society of Actuaries Research Institute

The auxiliary functions needed for the above functions are given below:

Hull.White.cap.price.vectorv2 = function(cap_rates,Maturity,Delta=0.25,
 discount_factors,sigma){
 n = length(Maturity)-1
 caps =rep(0,n+1)
 for (i in 2:(n+1)){
 caps[i] = Hull.White.capv2(rK=cap_rates[i],TK=Maturity[i],
 Delta=Delta,
 discount_factors =discount_factors,
 sigmaf=sigma[i])
 }
 return(caps)
}

Hull.White.capletv2 = function(rK,T,Delta=0.25,ZTO,ZTB,SZTO)f
 TB =T
 TO = T-Delta
 K = 1/(1+rK*Delta)
 d1 = 1/SZTO * log(ZTB/(K*ZTO))+SZTO/2
 d2 = d1 - SZTO
 V0 = ZTO*pnorm(-d2)-ZTB/K*pnorm(-d1)
 return (V0)
}

Hull.White.capv2 = function(rK=0.05,TK=5,Delta=0.25,discount_factors,sigmaf){
 no.caplets = TK/Delta -1
 sum(Hull.White.capletv2(rK=rK,T=seq(2*Delta,TK,Delta),Delta=Delta,
 ZTO=discount_factors[1:no.caplets],
 ZTB=discount_factors[2:(no.caplets+1)],SZTO=sigmaf))
}

 sigma.forward[i] =
 uniroot(HW.caplet.implied.vol,c(0,1),
 price=price.caplet,
 rK= cap_rates[i],
 T=Maturity[i],
 ZTO=discount_factors[i-1],
 ZTB=discount_factors[i])$root
 }
 return(sigma.forward)
}

 72

Copyright © 2023 Society of Actuaries Research Institute

 Even though the Hull-White model performance with cap prices and “nls” was excellent, we can try it with
the method proposed in this section. The following code block illustrates this method with a simulated data
set.

#example39
simulate a data set as in example 36
Hull-White fit with simulated data example
rm(list=ls()) # clear the workspace and functions
Testdata =subset(VeronesiTable19p4,select=-c(‘Cap Price (x100)’))
Testdata$’Cap Prices’ =
 Hull.White.cap.price.vector(
 Maturity=Testdata$Maturity,
 cap_rates=Testdata$’Swap Rate’,
 discount_factors=Testdata$discount_factors,
 gamma=.1,sigma=0.015)+rnorm(length(Testdata$Maturity),0,0.00001)
Testdata$’Cap Prices’[1]=0
fvol.dat = HW.forward.vol(Maturity=Testdata$Maturity,
 discount_factors =Testdata$discount_factors,
 cap_rates=Testdata$’Swap Rate’,
 cap_prices =Testdata$’Cap Prices’)
Hull.White.fit =nls(‘Forward Vol.’~ Vasicek.SZ(
 TB=Maturity,
 TO = Maturity-0.25,
 gamma=gamma,sigma=sigma),
 data= fvol.dat,
 start=list(gamma=.3,sigma=0.1),
 algorithm = "port",
 upper=list(gamma=5,sigma=1),
 lower=list(gamma=-5,sigma=0.001),
 nls.control(maxiter = 1000000,
 tol = 1e-05,
 minFactor = 1/10240,
 printEval = FALSE,
 warnOnly = FALSE,
 scaleOffset = 0,
 nDcentral = FALSE))
sum_mod = summary(Hull.White.fit)

HW.caplet.implied.vol = function(sigmaf, price=0.0786/100,
 rK= 0.02442,T=0.75,Delta=0.25,
 ZTO=0.988510,ZTB=0.981899){
 TB =T
 TO = T-Delta
 K = 1/(1+rK*Delta)
 d1 = 1/sigmaf * log(ZTB/(K*ZTO))+sigmaf/2
 d2 = d1 - sigmaf
 V0 = ZTO*pnorm(-d2)-ZTB/K*pnorm(-d1)-price
 return(V0)
}

 73

Copyright © 2023 Society of Actuaries Research Institute

We see that in this case also the “nls” algorithm converged in 6 iterations. Summary statistics are:

The Hull-White Model Fit: Summary Statistics

Now we can attempt the same analysis with the data set in Table 19.4 of [24]:

We see that in this case the “nls” algorithm converged in 7 iterations and summary statistics are:

The Hull-White Model Fit: Summary Statistics

From the summary statistics we see that the estimate of 𝛾𝛾∗ is a little different but the estimate of σ is quite
close to that in example 36.

Since we were successful with the new method in the Hull-White case, we try the calibration of the two-
factor Hull-White model with the new method:

#example40
rm(list=ls()) # clear the workspace and functions
fvol.dat = HW.forward.vol(Maturity=VeronesiTable19p4$Maturity,
 discount_factors =VeronesiTable19p4$discount_factors,
 cap_rates=VeronesiTable19p4$’Swap Rate’,
 cap_prices =VeronesiTable19p4$’Cap Price (x100)’/100)
Hull.White.fit =nls(‘Forward Vol.’~ Vasicek.SZ(TB=Maturity,
 TO = Maturity-0.25,
 gamma=gamma,
 sigma=sigma),
 data= fvol.dat,
 start=list(gamma=.3,sigma=0.1),
 algorithm = "port",
 upper=list(gamma=5,sigma=1),
 lower=list(gamma=-5,sigma=0.001),
 nls.control(maxiter = 1000000,
 tol = 1e-05,
 minFactor = 1/10240,
 printEval = FALSE,
 warnOnly = FALSE,
 scaleOffset = 0,
 nDcentral = FALSE))
sum_mod = summary(Hull.White.fit)

 74

Copyright © 2023 Society of Actuaries Research Institute

fvol.dat = HW.forward.vol(Maturity=Testdata$Maturity,
 discount_factors =Testdata$discount_factors,
 cap_rates=Testdata$’Swap Rate’,
 cap_prices =Testdata$’Cap Prices’)+
 rnorm(length(Testdata$Maturity),0,0.001)
sim.SZ = Two.factor.Vasicek.SZ(TB=fvol.dat$Maturity,
 TO = fvol.dat$Maturity-0.25,
 gamma1=0.1,gamma2=-0.2,
 sigma1=0.02,sigma2=0.03,
 rho=-0.4)
fvol.dat$sim.SZ = sim.SZ
Two.factor.Hull.White.fit =nls(‘Forward Vol.’~
 Two.factor.Vasicek.SZ(TB=Maturity,
 TO = Maturity-0.25,
 gamma1=gamma1,
 gamma2=gamma2,
 sigma1=sigma1,
 sigma2=sigma2,
 rho=rho),
 data= fvol.dat,
 start=list(gamma1=.3,gamma2=-0.3,sigma1=0.1,
 sigma2=0.4,rho=0.6),
 algorithm = "port",
 upper=list(gamma1=1,gamma2=1,sigma1=1,
 sigma2=1,rho=0.9),
 lower=list(gamma1=-1,gamma2=-1,sigma1=0.001,
 sigma2=0.001,rho=-0.9),
 nls.control(maxiter = 1000,
 tol = 1e-05,
 minFactor = 1/10240,
 printEval = FALSE,
 warnOnly = FALSE,
 scaleOffset = 0,
 nDcentral = FALSE))

example41
Two factor Hull-White fit with simulated data example
rm(list=ls()) # clear the workspace and functions
Testdata =subset(VeronesiTable19p4,select=-c(‘Cap Price (x100)’))
Testdata$’Cap Prices’ =
 Two.factor.Hull.White.cap.price.vector(cap_rates=Testdata$’Swap Rate’,
 Maturity=Testdata$Maturity,
 discount_factors=Testdata$discount_factors,
 gamma1=0.1,gamma2=-0.2,sigma1=0.02,sigma2=0.03,
 rho=-0.4)
Testdata$’Cap Prices’[1]=0

 75

Copyright © 2023 Society of Actuaries Research Institute

With many different initial values for the parameters, this method did not converge to a value close to the
true value. Therefore we decided to use a nonlinear least squares estimation package “nlrs” which has
been developed recently. In the package “nlrs” the function “nlfb” performs very well. However, the input
for “nlfb” is different from that of “nls”. We need to input the residual function and the gradient of the
residual function.

The following code chunk implements the residual function to be used with “nflb”:

We also developed a function that calculates the Jacobian of the residual function with respect to
parameters that need to be estimated; it is given in the following code chunk:

Two.factor.Vasicek.SZ.res = function(paras,forward_vol.dat){
 gamma1=paras[1]
 gamma2=paras[2]
 sigma1 = paras[3]
 sigma2 = paras[4]
 rho = paras[5]
 Delta = 0.25
 TO = forward_vol.dat$Maturity-0.25
 B1 = Vasicek.B(gamma=gamma1,T=Delta)
 B2 = Vasicek.B(gamma=gamma2,T=Delta)
 B1G1T = Vasicek.B(gamma=(2*gamma1),T=TO)
 B2G2T = Vasicek.B(gamma=(2*gamma2),T=TO)
 BG1G2T = Vasicek.B(gamma=(gamma1+gamma2),T=TO)
 Res = ((B1*sigma1)^2*B1G1T+(B2*sigma2)^2*B2G2T+
 B1*B2*BG1G2T*sigma1*sigma2*rho)/TO-
 forward_vol.dat$’Forward Vol.sq’
 return(Res)
}

Error in nls(`Forward Vol.` ~ Two.factor.Vasicek.SZ(TB = Maturity, TO = Maturity
- : Convergence failure: singular convergence (7)

sum_mod = summary(Two.factor.Hull.White.fit)

Error in eval(expr, envir, enclos): object 'Two.factor.Hull.White.fit' not found

 76

Copyright © 2023 Society of Actuaries Research Institute

The function “Two.factor.Vasicek.SZ.gradient” calls another function, “Vasicek.DB”, which calculates the
derivative of 𝐵𝐵(𝑑𝑑;𝑇𝑇) with respect to 𝛾𝛾 and it is:

Vasicek.DB = function(gamma,T){
 if (abs(gamma)<1e-8) {
 return(-(T^2)/2)
 }
 else {
 return(-(1-exp(-gamma*T))/gamma^2+T*exp(-gamma*T)/gamma)
 }
}

Two.factor.Vasicek.SZ.gradient = function(paras,forward_vol.dat){
 gamma1=paras[1]
 gamma2=paras[2]
 sigma1 = paras[3]
 sigma2 = paras[4]
 rho = paras[5]
 Delta = 0.25
 TO = forward_vol.dat$Maturity-0.25
 Nsize = length(fvol.dat$Maturity)
 B1 = Vasicek.B(gamma=gamma1,T=Delta)
 B2 = Vasicek.B(gamma=gamma2,T=Delta)
 B1G1T = Vasicek.B(gamma=(2*gamma1),T=TO)
 B2G2T = Vasicek.B(gamma=(2*gamma2),T=TO)
 BG1G2T = Vasicek.B(gamma=(gamma1+gamma2),T=TO)
 B1D = Vasicek.DB(gamma=gamma1,T=Delta)
 B2D = Vasicek.DB(gamma=gamma2,T=Delta)
 B1G1TD = Vasicek.DB(gamma=(2*gamma1),T=TO)*2
 B2G2TD = Vasicek.DB(gamma=(2*gamma2),T=TO)*2
 BG1G2TD = Vasicek.DB(gamma=(gamma1+gamma2),T=TO)
 Jacob = matrix(0.0,Nsize,5)
 Jacob[1:Nsize,1] = (2*B1*B1D*B1G1T + B1^2*B1G1TD)*sigma1^2+
 (B1D*B2*BG1G2T+B1*B2*BG1G2TD)*sigma1*sigma2*rho
 Jacob[1:Nsize,2] = (2*B2*B2D*B2G2T + B2^2*B2G2TD)*sigma2^2+
 (B2D*B1*BG1G2T+B1*B2*BG1G2TD)*sigma1*sigma2*rho
 Jacob[1:Nsize,3] = B1^2*B1G1T*2*sigma1+ B1*B2*BG1G2T*sigma2*rho
 Jacob[1:Nsize,4] = B2^2*B2G2T*2*sigma2+ B1*B2*BG1G2T*sigma1*rho
 Jacob[1:Nsize,5] = B1*B2*BG1G2T*sigma1*sigma2
 Jacob = Jacob/TO
 attr(Jacob,"gradient") =Jacob
 return(Jacob)
}

 77

Copyright © 2023 Society of Actuaries Research Institute

We illustrate the use of these functions in the following code chunk:

We see that in this case the “nlfb” algorithm converged in 22 iterations and summary statistics are:

The Hull-White Model Fit: Summary Statistics

We tried many different starting values and the values presented here were the best. We see that
estimates of 𝛾𝛾1∗, 𝛾𝛾2∗,𝜎𝜎1 and 𝜎𝜎2 are very close to the actual values and the estimate of 𝜌𝜌 is a little away from
the actual value. To evaluate the performance of the function “nlfb” for our situation, we need to carry out
an extensive Monte Carlo simulation study which is beyond the scope of this paper. We would like to
conclude this section by stating that non-linear least square minimization to estimate the five parameters
in the two-factor Hull White model is a challenging problem even with most recently developed R
functions.

#example42
rm(list=ls()) # clear the workspace and functions
first calculate cap price vector similar to Veronesi Table 19.4
Testdata =subset(VeronesiTable19p4,select=-c(‘Cap Price (x100)’))
Testdata$’Cap Prices’ =
 Two.factor.Hull.White.cap.price.vector(cap_rates=Testdata$’Swap Rate’,
 Maturity=Testdata$Maturity,
 discount_factors=Testdata$discount_factors,
 gamma1=0.1,gamma2=-0.2,sigma1=0.2,sigma2=0.3,rho=-0.2)

Testdata$’Cap Prices’[1]=0
Now calculate forward volatility from the cap prices.
fvol.dat = HW.forward.vol(Maturity=Testdata$Maturity,
 discount_factors =Testdata$discount_factors,
 cap_rates=Testdata$’Swap Rate’,
 cap_prices =Testdata$’Cap Prices’)

fvol.dat$’Forward Vol.sq’ = fvol.dat$’Forward Vol.’^2/(fvol.dat$Maturity-0.25)

st = c(gamma1=0.4,gamma2=0.4,sigma1=0.4,sigma2=0.5,rho=-0.1)
paras = st
Two.factor.Hull.White.fit=nlfb(start=st, resfn=Two.factor.Vasicek.SZ.res,
 jacfn=Two.factor.Vasicek.SZ.gradient,data=fvol.dat,
 trace=FALSE, control=list(prtlvl=1),forward_vol.dat=fvol.dat)
sum_mod = summary(Two.factor.Hull.White.fit)

 78

Copyright © 2023 Society of Actuaries Research Institute

5 Model Validation
At a high level, model validation is about the process around actual modeling work. It specifies the business
purposes for using the model and assesses and confirms whether:

• The model is “fit for purpose”
• The methods used are accepted practice and compliant with standards and regulation.

In the U.S. applicable guidance is in Actuarial Standard of Practice 56, Modeling, and American Academy of
Actuaries Model Governance Practice Note, April 2017, pages 11-14.

Canadian practice is evolving from CALM to IFRS. CALM guidance is in “Calibration of Stochastic Risk-Free
Interest Rate Models for Use in CALM Valuation”, from the Canadian Institute of Actuaries' Committee for
Life Insurance Financial Reporting (CIA, CLIFR), June 2021.

ASOP 56 Section 3.6 covers model risk, and outlines the process of model validation as a means of dealing
with model risk. Section 3.6 breaks model validation into model testing (3.6.1) and model output validation
(3.6.2).

The AAA practice note lays out review and model testing procedures. It begins with Design Use/Fit, about
the business uses for the model and whether it is appropriate to use the particular model in those
situations – whether it is “fit for purpose”. Next is Design Methods/Processing – whether the methods
used are accepted practice and compliant with standards and regulation. Explicitly stating the modeling
work's purposes – stress testing, or setting prices as of a specific date, or showing realistic balance sheets
and income statements into the future – will clarify certain design decisions. These issues were discussed in
Sections 1.4 and 1.5.

5.1 DATA AND ASSUMPTIONS
Whether input data is accurate, consistent, complete, and correctly loaded is a simple matter for the initial
yield curve. In contrast, the mean reversion strength and target are assumptions that must be developed.
There isn't one right answer; we will have to experiment, use judgement, and document our reasoning.

In Section 2.1.1 the Vasicek model was run. Opening the R function we see time and time step parameters
(daily), plus the starting value, mean reversion speed, long term mean reversion target, and instantaneous
volatility.

Above these were given, but in practice they must be estimated. This is done in section 3.1.1, where
Example 6 works [24] Chapter 14 Question 5:

Default values of r0, gamma, rbar, and alpha are the ones given
in Veronesi (2010) Table 15.3 real-world parameters.

Vasicek.Euler.sim= function(t0=0,T=10,Delta=1/252,
 r0=0.03,gamma=0.3262,rbar=0.0509,sigma=0.0221,M=10)
{}

 79

Copyright © 2023 Society of Actuaries Research Institute

Notice how the gamma, rbar, and sigma code directly implement the formulas immediately preceding
Example 6 in 3.1.1 above.

model = lm(y~x)
mle.gamma= -log(as.numeric(model$coefficients)[2])/Delta
mle.rbar = as.numeric(model$coefficients)[1]/
 (1-as.numeric(model$coefficients)[2])
mle.sigma = sigma(model)*(2*mle.gamma/
 (1-as.numeric(model$coefficients)[2]^2))^.5

rm(list=ls())
summary(VeronesiTable14p7q5)

DATE TCMNOMM1 c.c.
Min. :2008-01-02 00:00:00.00 Min. :0.0000 Min. :0.0000
1st Qu. :2008-07-16 18:00:00.00 1st Qu. :0.0575 1st Qu. :0.0575
Median :2009-02-02 12:00:00.00 Median :0.1400 Median :0.1400
Mean :2009-01-31 11:36:10.58 Mean :0.6446 Mean :0.6418
3rd Qu. :2009-08-17 06:00:00.00 3rd Qu. :1.4725 3rd Qu. :1.4671
Max. :2010-03-05 00:00:00.00 Max. :3.3700 Max. :3.3419
rt
Min. :0.0000
1st Qu. :0.0575
Median :0.1400
Mean :0.6466
3rd Qu. :1.4770
Max. :3.3419

rt = VeronesiTable14p7q5$rt
Delta = 1/252
N = length(rt)
y = rt[2:N]
x = rt[1:N-1]

Example6
Exercises Q5 Chapter 14 of Veronesi
clear the workspace and functions
rm(list=ls())
summary(VeronesiTable14p7q5)
rt = VeronesiTable14p7q5$rt
Delta = 1/252
N = length(rt)
y = rt[2:N]
x = rt[1:N-1]

 80

Copyright © 2023 Society of Actuaries Research Institute

The practice notes advise us that the values of these parameters need to be accurate, consistent, in line
with accepted practice and compliant with standards and regulation.

The short rate r0 will most likely be taken from the model start date's actual yield curve, with the same
tenor (time to maturity) as the short rate used in calibration. The data used here is the one-month U.S.
Treasury Bill rate.

The other parameters – short rate volatility (sigma), mean reversion strength (gamma), and long term
mean reversion target (rbar) – are typically estimated from historical data. Rbar is estimated at 0.31%
(rounded), which is low because the data is from the global financial crisis (GFC) period.

This model can be tested by using these values of gamma, rbar, and sigma to generate scenarios:

mle.sigma = sigma(model)*(2*mle.gamma/
 (1-as.numeric(model$coefficients)[2]^2))^.5
mle.sigma

[1] 1.8138

#example43
rm(list=ls())
t0=0
T=10
r0=0.03
gamma=3.645321
rbar = 0.3076885
sigma=1.813762
paras=c(gamma,rbar,sigma)
Initaliaaze # of paths number of points in each path
Delta = 1/252
N = ceiling((T-t0)/Delta)
set.seed(123)
X = Vasicek.Trans.sim(t0,T,Delta,r0,gamma,rbar,sigma,M=1000)
M = ncol(X)
mle = matrix(0,3,M)

model = lm(y~x)
mle.gamma= -log(as.numeric(model$coefficients)[2])/Delta
mle.gamma

[1] 3.6453

mle.rbar = as.numeric(model$coefficients)[1]/
 (1-as.numeric(model$coefficients)[2])
mle.rbar

[1] 0.30769

 81

Copyright © 2023 Society of Actuaries Research Institute

Simulation performance based on 1000 sample paths

In the code, the matrix “mle” is the gamma, rbar, and sigma of each scenario. “bias” is the difference
between the average gamma, rbar, and sigma, versus the gamma, rbar, and sigma estimated in Example 6,
meaning this set of scenarios is “off” by that much. A bias very close to zero is desired. rbar and sigma
appear to satisfy that, while gamma's bias is about 0.45. Is that tolerable?

To assess this we consider the root mean squared error (RMSE), which is the average residual, or the
average across all scenarios of how far the three parameters are from the line of best fit. If we found
another model or another calibration with a lower RMSE it would be a better fit to the underlying data.

The RMSE for gamma also looks large at 1.078. However, RMSE scales with the data so again it is hard to
know. Relative RMSE (RRMSE) normalizes RMSE against the actual value. An RRMSE above 30% is
considered a poor fit. The value for gamma is borderline, but now rbar is assessed as a very poor fit. We
need to adjust the model calibration.

5.2 INVESTIGATE THE DATA
The example being studied here is from Veronesi [24]. We see the data is a daily short rate series from
January 2, 2008 to March 5, 2010. This is through the beginning of the GFC. The series begins with the rate
drifting down from 3.09% to 1.56%. On March 14, 2008, the rate jumps to 1.20%, on March 18 to 0.71%,

Simulation performance criteria
bias =rowMeans(mle-paras)
Sd = rowSds(mle)
rmse = rowMeans((mle-paras)^2)^0.5
rrmse =((rowMeans((mle-paras)^2))/(paras^2))^0.5

for (i in 1:M){
 y = X[2:(N+1),i]
 x= X[1:N,i]
 model = lm(y~x)
 mle.gamma = -log(as.numeric(model$coefficients)[2])/Delta
 mle.gamma= -log(as.numeric(model$coefficients)[2])/Delta
 mle.rbar = as.numeric(model$coefficients)[1]/
 (1-as.numeric(model$coefficients)[2])
 mle.sigma = sigma(model)*(2*mle.gamma/
 (1-as.numeric(model$coefficients)[2]^2))^.5
 mle[,i]=c(mle.gamma,mle.rbar,mle.sigma)
}

 82

Copyright © 2023 Society of Actuaries Research Institute

and on March 19 to 0.26%. This is when Bear Stearns collapsed and was taken over by J.P. Morgan. On
March 25 the rate jumped +0.80% to 1.47%. Later, on September 15, 2008, the rate jumps down from
1.37% to 0.36% when Lehman Brothers collapsed.

The Vasicek model is not designed to handle jumps like this. We will need to try fitting a different model,
such as a regime switching model or a jump-diffusion version of CIR.

Continuing with this example and the Vasicek model for a moment, the data series ends on March 5, 2010,
with a short rate of 0.11%. The modeled interest rates are then projected forward from that point in time
(cell J9 references cell C552, the continuously compounded version of the observed “nominal” short rate in
B552). However, the data used to calibrate the model include 3%+ rates from before the two major
financial system shocks.

The modeler may make some design choices here. If a local model of very low rates is desired, the Vasicek
model could be recalibrated using data beginning September 15, 2008. However, this series is unlikely to
generate scenarios with rates in the 3% to 6% range that were the norm before the GFC.

Instead of daily data the modeler could choose to use monthly data from a much longer time span, say
1980 to present. This could be desirable if the model for which the scenarios are being generated will run
with a monthly time step. However, that time span had generally declining rates, so the long-run mean
reversion target �̅�𝑟 is unclear.

There is no one clear correct choice. This is the art of modeling.

5.3 RECALIBRATE
Download the rate data from the US Treasury Department’s website4. Open it in Excel. Filter the data to
eliminate rows with a blank or an ND in the one-month column. Convert semi-annual rates to effective
annual rates. Create a new tab and copy the date and one-month rate column for the dates needed into it.
Insert a simple header row, say Date and OneMonthTBill. Save as a .xlsx file.

In RStudio’s top right window, Environment tab, select Import Dataset. R may want to install an updated
readxl package. Browse for and select the downloaded rate data file. In Import Options (lower left), select
the new sheet. Import.

4Market yield on U.S. Treasury securities at 1-month constant maturity, quoted on investment basis, series H15/H15/RIFLGFCM01_N.B can be
selected from www.federalreserve.gov/DataDownload. Filtered data can be obtained directly at https://home.treasury.gov/resource-
center/data-chart-center/interest-rates/TextView?type=daily_treasury_yield_curve&field_tdr_date_value=all&data=yieldAll.

#example44
refit to CIR example13
The following code snippets calculate the bias of simulated parameters
CIR Calibration
rm(list=ls()) # clear the workspace and functions
graphics.off() # clear the plots
CIR Euler estimate
Initialize parameters

http://www.federalreserve.gov/DataDownload
https://home.treasury.gov/resource-center/data-chart-center/interest-rates/TextView?type=daily_treasury_yield_curve&field_tdr_date_value=all&data=yieldAll
https://home.treasury.gov/resource-center/data-chart-center/interest-rates/TextView?type=daily_treasury_yield_curve&field_tdr_date_value=all&data=yieldAll

 83

Copyright © 2023 Society of Actuaries Research Institute

We now have 1000 scenarios and want to evaluate whether they are a good fit relative to our calibrated
parameters. To do this we'll calculate the CIR parameters implied by each scenario, and see whether on
average they are close to our calibrated parameters. If so, then the set is valid and the calibration
“worked”.

gamma = (1-as.numeric(model$coefficients)[2])/Delta
rbar = as.numeric(model$coefficients)[1]/
 (1-as.numeric(model$coefficients)[2])
alpha= sigma(model)^2/Delta
gamma

[1] 4.4757

rbar

[1] 0.37285

alpha

[1] 7.6638

paras = c(gamma,rbar,alpha)

Now generate a scenario set with these parameters
Initialize # of paths and number of points on each path
t0=0
T=5
Delta = 1/252
M =1000
N = ceiling((T-t0)/Delta)
set.seed(123)
A version of CIR.Trans.Sim without locked parameters
scenarioSet = CIR.Trans.sim(t0,T,Delta,r0,gamma,rbar,alpha,M)

library(matrixStats)
rt = VeronesiTable14p7q5$rt
N = length(rt)
r0 =rt[N]
t0=0
Delta = 1/252
X=rt
euler.est= matrix(NA,3)
X[X<0.01]=0.01 # floor rates at 1 bp
x1 = X[1:N]^(-0.5)
x2 = X[1:N]^(0.5)
y = X[2:(N+1)]*x1
model=lm(y~0+x1+x2)

 84

Copyright © 2023 Society of Actuaries Research Institute

The code above was adapted from Example 13 code. We started with r0 set to 2.741129, the first value in
the data series, so we produce a set of scenarios “around” the historical data used for calibration. Across
the 1000 scenarios, the gamma, rbar, and alpha compare to the calibration gamma, rbar, and alpha as
follows:

Simulation performance based on 1000 sample paths

All three parameters show little bias, with rbar very close. The standard deviation across the 1000 scenarios
is broader, which also shows up in the RMSE and relative RMSE metrics. Indeed, gamma and rbar have
RRMSEs greater than 30%, indicating a poor fit. Looking at the scenarios produced,

#example44 continues
M = ncol(scenarioSet)
X = scenarioSet
X[X<0.01]=0.01
euler.est= matrix(NA,3,M)

for (i in 1:M){
 x1 = X[1:(N-1),i]^(-0.5)
 x2 = X[1:(N-1),i]^(0.5)
 y = X[2:N,i]*x1
 model=lm(y~0+x1+x2)
 euler.est[1,i]= (1-as.numeric(model$coefficients)[2])/Delta
 euler.est[2,i] = as.numeric(model$coefficients)[1]/
 (1-as.numeric(model$coefficients)[2])
 euler.est[3,i] = sigma(model)^2/Delta
}

bias=rowMeans(euler.est-paras)
sd =rowSds(euler.est)
rmse =(rowMeans((euler.est-paras)^2))^0.5
rrmse =((rowMeans((euler.est-paras)^2))/(paras))^0.5

example 44 continues
plot the first year of the 5%ile, 15%ile,.. 95n%ile scenarios sorted at the one year point
o = order(scenarioSet[252,])
matplot(scenarioSet[,c(1,o[-(M/20)+(M/10)*1:10],M)], type="l", main="CIR paths",
 ylab="Short Rate", xlab="days")

 85

Copyright © 2023 Society of Actuaries Research Institute

CIR paths

The scenarios show material dispersion during the first year, but they then settle down to extended low
rates clustered in the 0% to 1.5% range. This is roughly the pattern of the historical data used for
calibration, so the CIR model appears to produce scenarios in line with the calibration data, in this case.
Calibrating to a historical dataset with higher or more variable rates might produce more dispersion in the
scenario set. Alternatively, we notice the mean reversion strength gamma produced by our calibration is
greater than 1.0. Reviewing the CIR model in equation (4), this could amplify volatility, which could be
offset by the �𝛼𝛼𝑟𝑟𝑡𝑡 volatility term. This emphasizes the need for assessing the scenario set produced by the
model. Alternatively it is usable with the caveat that the scenario set only spans scenarios in a regime like
2017 to 2019 U.S. rates, but not scenarios from a different regime.

5.4 VALIDATE
Assuming that the scenario set is appropriate for the modeling work to be undertaken, we proceed to
complete the validation process.

The Practical Guide [1] Section 6.3 explores desirable properties for a set of economic scenarios. Focusing
on government yield curve projections, we assess the properties of our scenario set:

1. Yields for longer maturities are usually greater than yields for shorter maturities, i.e. the yield
curve is “upward sloping”.

2. The volatility of short maturity yields tends to be greater than long maturity yields – but not during
periods of central bank intervention.

3. Short and long maturity yields are highly correlated.
4. When short rates are low, long rates tend to be greater than short rates.
5. When short rates are high, long rates tend to be lower than short rates (i.e., the yield curve is said

to be “inverted”). The above properties are not applicable for a one-factor short rate model, and
point to the need to consider two-factor and other models.

 86

Copyright © 2023 Society of Actuaries Research Institute

6. Negative short rates are possible. The scenarios generated here do not span negative rates but
they do produce many scenarios with rates close to zero.

7. Higher rates occur but do not persist for long. The scenarios generated here do not probe higher
rates. The highest rate scenario at the one year point gets to about 6% and then reverts toward
the mean reversion target of 0.37%.

Further stylized facts can be considered for corporate bond yields or spreads, equity market scenarios, and
inflation and other economic variables. These are beyond the scope of models considered in this paper.

The following considerations may also apply:

1. Actual Results – is this model similar to others? We know that Vasicek and CIR scenario sets don't
model long rates, inverted yield curves, or very low or high rate paths.

2. Evaluate with benchmarking and replication (static validation, parallel testing, spreadsheet
replica). The Veronesi spreadsheet plots a zero-volatility trend developed in column J.

3. Evaluate with outcome analysis (dynamic replication, back-testing, out-of-sample testing). By
about day 80 of the historical data, actual short rates went to zero as the central bank responded
to the COVID-19 pandemic. The Vasicek scenarios did not encompass such an outcome, while the
CIR scenarios seem to do so.

4. Sound/Stable Results – are results sound and stable across a range of use and scenarios? The
scenarios are quite stable.

5. Stress, sensitivity, or extreme value testing. A test scenario set with gamma reduced or alpha
increased may conform better to stylized facts, and would be worth exploring.

6. Dependencies and correlations – how is inflation correlated with the short rate? Should the
inflation assumption in the broader model be linked to the interest rate scenario set, perhaps with
a lag?

5.5 MODEL GOVERNANCE
As of this writing, standard practice is to submit model assumptions and design choices to a Model
Governance Committee. The choices of model, data series, time steps, and the implications should be
listed and described in accordance with applicable standards of practice. They then are submitted to the
Model Governance Committee or the Principal sponsoring the work assignment for discussion and
acceptance or further investigation. This aligns with standards of practice that a) results should be
communicated in a useful and understandable way, and b) the model is appropriately documented and
governed. Generally the interest rate or economic scenario model would be run as part of a larger
modeling process, so documentation and review and acceptance may be part of the larger modeling effort.

A word of encouragement on documentation. We know we should do it, and standards of practice such as
ASOP 56 Modeling, section 3.7 in the U.S. recommend it. Yet as a new procedure is developed it is unclear
what to write, and as deadlines approach documentation falls by the wayside. Don't let the perfect be the
enemy of the good. As the work progresses write down the project objectives, then the data sources, then
the data transforms and loads, then the run procedure and results interpretation, then why the model is
plausible. Do this as work proceeds. You will have a solid start at documentation! Then the next time the
process is run, refine the documentation. Last, check back to the standards of practice and add an item or
two to ensure compliance.

 87

Copyright © 2023 Society of Actuaries Research Institute

6 Conclusion
Each model has issues which become apparent when fit to an actual historical data series or a specific yield
curve. In Section 5 we saw that the one-factor models have difficulty fitting historical data where
exogenous shocks caused discontinuities, or “jumps”, in the data series. Adding a random jump term can
be done, at the cost of additional complexity. The practitioner can also test the two-factor Vasicek model
with correlated factors and the two-factor Hull-White model, as explored in Section 4. Both of these
models are in the class of G2++ models, which can be explored further in [6] section 4.2. Ultimately the
choice of model and calibration data comes down to art and professional judgement. Real world data is
messy, with exogenous shocks from political shifts, central bank intervention, geopolitical events, and
more. There's no one right answer, but rather informed choices and trade-offs. That's what makes it
interesting. Best wishes.

https://soa.qualtrics.com/jfe/form/SV_0OIohMDL9PC5nTg

 88

Copyright © 2023 Society of Actuaries Research Institute

7 Acknowledgments
The researchers’ deepest gratitude goes to those without whose efforts this project could not have come
to fruition: the Project Oversight Group and others for their diligent work in reviewing and editing this
report for accuracy and relevance. Project Oversight Group members:

Ted Chang, FSA, MAAA, PhD

Gary Hatfield, FSA, MAAA, CFA, PhD

Jason Kehrberg, FSA, MAAA, PhD

Paul Ngai, FSA, FCIA

At the Society of Actuaries:

Doug Chandler, FSA FCIA

The volunteers who generously shared their wisdom, insights, advice, guidance, and arm’s-length review of
this study prior to publication. Any opinions expressed may not reflect their opinions nor those of their
employers. Any errors belong to the authors alone.

Steve Strommen, FSA, MAAA

 89

Copyright © 2023 Society of Actuaries Research Institute

References

[1] Economic Scenario Generators: A Practical Guide. Society of Actuaries, 2016.

[2] Leif BG Andersen. Efficient simulation of the Heston stochastic volatility model. Available at SSRN
946405, 2007.

[3] David F Babbel and Frank J Fabozzi. Investment management for insurers, volume 43. John Wiley &
Sons, 1999.

[4] Jean-François Bégin. Economic scenario generator and parameter uncertainty: A Bayesian approach.
ASTIN Bulletin: The Journal of the IAA, 49(2):335-372, 2019.

[5] Victor Bernal. Calibration of the Vasicek model: a step by step guide. 2016.

[6] Damiano Brigo and Fabio Mercurio. Interest rate models - theory and practice. Springer Finance.
Springer, Berlin, Germany, 2 edition, Aug 2007.

[7] Kalok C Chan, G Andrew Karolyi, Francis A Longstaff, and Anthony B Sanders. An empirical comparison
of alternative models of the short-term interest rate. The Journal of Finance, 47(3):1209-1227, 1992.

[8] Eric Chin, Sverrir Olafsson, and Dian Nel. Problems and Solutions in Mathematical Finance, Volume 1:
Stochastic Calculus. John Wiley & Sons, 2014.

[9] Rama Cont. Encyclopedia of quantitative finance. Wiley, 2010.

[10] John Cox, Jonathan Ingersoll, and Stephen Ross. A theory of the term structure of interest rates.
Econometrica, 53:385-407, 02 1985.

[11] J. L. Doob. The Brownian Movement and Stochastic Equations, volume 43. Annals of Mathematics,
1942.

[12] Daniel Dufresne, Felisa Vázquez-Abad, and Stephen Chin. Change of measure for the square-root
process. In Proceedings of the Winter Simulation Conference 2014, pages 465-475, 2014.

[13] William Feller. Two singular diffusion problems. Annals of Mathematics, 54(1):173-182, 1951.

[14] David M Gay. Usage summary for selected optimization routines. Computing Science Technical Report
153, AT&T Bell Laboratories, Murray Hill, NJ 07974, October 1990.

[15] James Douglas Hamilton. Time Series analysis. Princeton University Press, 1994.

[16] Lars Peter Hansen. Large sample properties of generalized method of moments estimators.
Econometrica: Journal of the econometric society, pages 1029-1054, 1982.

[17] Stefano M Iacus. Simulation and inference for stochastic differential equations: with R examples,
volume 486. Springer, 2008.

[18] Norman L Johnson, Samuel Kotz, and Narayanaswamy Balakrishnan. Continuous univariate
distributions, volume 2, volume 289. John Wiley & Sons, 1995.

 90

Copyright © 2023 Society of Actuaries Research Institute

[19] Giuseppe Orlando, Rosa Mininni, and Michele Bufalo. Interest rates calibration with a CIR model. The
Journal of Risk Finance, 20(4):370-387, 2019.

[20] Giuseppe Orlando, Rosa Maria Mininni, and Michele Bufalo. Forecasting interest rates through Vasicek
and CIR models: A partitioning approach. Journal of Forecasting, 39(4):569-579, July 2020.

[21] Hansen Pei. Mean-Reverting Spread Modeling: Caveats in Calibrating the OU Process. Hudson and
Thames Research, August 2021.

[22] Christian Ritz and Jens Carl Streibig. Nonlinear regression with R. Springer, 2008.

[23] Stephen J. Strommen. Understanding the Connection Between Real-World and Risk-Neutral Scenario
Generators. Society of Actuaries, 2022.

[24] Pietro Veronesi. Fixed income securities: Valuation, risk, and risk management. John Wiley & Sons,
2010.

 91

Copyright © 2023 Society of Actuaries Research Institute

Appendix A: Zero coupon bond prices under one-factor Vasicek model
Under one factor Vasicek model zero-coupon bond prices are given by:

Note that we are using parameters 𝛾𝛾∗ and �̅�𝑟∗ to indicate the drift of the SDE for 𝑟𝑟𝑡𝑡, 𝛾𝛾∗(�̅�𝑟∗ − 𝑟𝑟𝑡𝑡) in the risk-
neutral world, as opposed to parameters 𝛾𝛾 and �̅�𝑟 with the drift of 𝛾𝛾(�̅�𝑟 − 𝑟𝑟𝑡𝑡) in the real world.

When we fit these to market bond prices we need to use a numerical search algorithm. As [24] points out
in many places it is possible to get negative values for the parameter 𝛾𝛾∗ so we must look at the behaviour
of the bond price function in the neighbourhood of 𝛾𝛾∗ = 0. We see that 𝐵𝐵(𝑑𝑑;𝑇𝑇) is a continuous function
with the limit of 𝛾𝛾 → 0 being (𝑇𝑇 − 𝑑𝑑). However, we see that calculating the limiting value of 𝐴𝐴(𝑑𝑑;𝑇𝑇) as
𝛾𝛾∗ → 0 is zero is not an easy task based on [24] (15.30), but with some calculus we can prove that 𝐴𝐴(𝑑𝑑;𝑇𝑇) is
discontinuous at 𝛾𝛾∗ = 0. So if we do not address this properly in the implementation of numerical
optimizations, we may end up getting wrong values. To calculate the bond price formula when 𝛾𝛾∗ = 0
takes some effort. For this we can either use the fact that when 𝛾𝛾∗ = 0 the Vasicek model reduces to a
zero-drift Ho-Lee model and then using [24] (19.8)-(19.9), or we can use the following approach.

First notice that bond prices are given by:

𝑍𝑍(𝑟𝑟𝑡𝑡 , 𝑑𝑑;𝑇𝑇) = 𝐸𝐸ℚ �exp �−� 𝑟𝑟𝑠𝑠𝑑𝑑𝑠𝑠
𝑇𝑇

𝑡𝑡
� | 𝑟𝑟𝑡𝑡�

In the risk-neutral world the SDE of 𝑟𝑟𝑡𝑡 is given as:

𝑑𝑑𝑟𝑟𝑡𝑡 = 𝛾𝛾∗(�̅�𝑟∗ − 𝑟𝑟𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝜎𝜎𝑑𝑑𝑋𝑋𝑡𝑡

The solution of the above SDE takes the following form:

From this we can obtain:

Using Stochastic Fubini’s theorem,

 92

Copyright © 2023 Society of Actuaries Research Institute

Since ∫ 𝑟𝑟𝑠𝑠𝑑𝑑𝑠𝑠
𝑇𝑇
𝑡𝑡 | 𝑟𝑟𝑡𝑡 is a normal random variable the bond pricing formula reduces to:

 (12)

But:

where the first equation follows from the fact that expectation of the Itô integral is zero and the second
equation follows from Itô isometry. By comparing (12) with the [24] (15.28)-(15.30) we see that:

Readers are encouraged to verify that when 𝛾𝛾∗ ≠ 0 the above integrals simplify to [24] (15.29) and (15.30).
Now we can easily calculate values of 𝐵𝐵(𝑑𝑑;𝑇𝑇) and 𝐴𝐴(𝑑𝑑;𝑇𝑇) when 𝛾𝛾∗ = 0 by substituting 𝛾𝛾∗ = 0 in the
above:

Note that when 𝛾𝛾∗ = 0 the model is a Ho-Lee model with zero drift and our result agrees with [24] (19.9).

 93

Copyright © 2023 Society of Actuaries Research Institute

Appendix B: Zero coupon bond prices under the two-factor Vasicek model
This model can be written as the short rate process written as the sum of two factors, a short rate factor
and a long rate factor:

𝑟𝑟𝑡𝑡 = 𝜙𝜙1,𝑡𝑡 + 𝜙𝜙2,𝑡𝑡

where each factor follows the following SDEs:

𝑑𝑑𝜙𝜙𝑖𝑖,𝑡𝑡 = 𝛾𝛾𝑖𝑖�𝜙𝜙�⃗ 𝑖𝑖 − 𝜙𝜙𝑖𝑖,𝑡𝑡�𝑑𝑑𝑑𝑑 + 𝜎𝜎𝑖𝑖𝑑𝑑𝑋𝑋𝑖𝑖,𝑡𝑡 , 𝑖𝑖 = 1,2.

With a few lines of algebra we can obtain the solution to these SDEs as follows:

𝜙𝜙𝑖𝑖,𝑡𝑡+𝑠𝑠 = 𝜙𝜙𝑖𝑖,𝑡𝑡𝑒𝑒𝑥𝑥𝑒𝑒(−𝛾𝛾𝑖𝑖𝑠𝑠) + 𝜙𝜙�⃗ 𝑖𝑖�1 − 𝑒𝑒𝑥𝑥𝑒𝑒(−𝛾𝛾𝑖𝑖𝑠𝑠)� + 𝜎𝜎𝑖𝑖𝑒𝑒𝑥𝑥𝑒𝑒(−𝛾𝛾𝑖𝑖𝑠𝑠)� 𝑒𝑒𝑥𝑥𝑒𝑒(𝛾𝛾𝑖𝑖𝑐𝑐)
𝑠𝑠

0
𝑑𝑑𝑋𝑋𝑖𝑖,𝑣𝑣 , 𝑖𝑖 = 1,2.

The conditional means and variance of these two factors are given by:

where the second to last equation follows from the Itô isometry. The conditional covariance between
𝜙𝜙1,𝑡𝑡+𝑠𝑠 and 𝜙𝜙2,𝑡𝑡+𝑠𝑠 conditioned on 𝜙𝜙𝑖𝑖,𝑡𝑡 , 𝑖𝑖 = 1,2 is given by:

The conditional correlation coefficient between 𝜙𝜙1,𝑡𝑡+𝑠𝑠 and 𝜙𝜙2,𝑡𝑡+𝑠𝑠, which can be denoted as 𝜌𝜌(𝑠𝑠), is given
by:

The zero-coupon bond prices can be calculated by evaluating:

𝑍𝑍(𝑟𝑟𝑡𝑡 , 𝑑𝑑;𝑇𝑇) = 𝐸𝐸ℚ �exp �−� 𝑟𝑟𝑠𝑠𝑑𝑑𝑠𝑠
𝑇𝑇

𝑡𝑡
� | 𝑟𝑟𝑡𝑡�

Since 𝑟𝑟𝑡𝑡 = 𝜙𝜙1,𝑡𝑡 + 𝜙𝜙2,𝑡𝑡 let us look at obtaining ∫ 𝜙𝜙𝑖𝑖,𝛾𝛾𝑑𝑑𝑑𝑑
𝑠𝑠
𝑡𝑡 first:

 94

Copyright © 2023 Society of Actuaries Research Institute

Using the stochastic Fubini's lemma we can exchange the order of the last integral:

Now we see that all three integrals can be simplified when 𝛾𝛾𝑖𝑖 ≠ 0 and when 𝛾𝛾𝑖𝑖 = 0. However we leave
them as it is for now and observe the following. Each integral is a normally distributed random variable and
the means, variances and covariances are given as below:

When 𝛾𝛾𝑖𝑖 ≠ 0 the above integrals simplify to:

By defining 𝐵𝐵𝑖𝑖(𝑑𝑑;𝑇𝑇) as in [24],

𝐵𝐵𝑖𝑖(𝑑𝑑;𝑇𝑇) =
1
𝛾𝛾𝑖𝑖
�1 − 𝑒𝑒𝑥𝑥𝑒𝑒�−𝛾𝛾𝑖𝑖(𝑇𝑇 − 𝑑𝑑)�� , 𝑖𝑖 = 1,2

we can write:

Let us simplify the conditional covariance between ∫ 𝜙𝜙1,𝑠𝑠𝑑𝑑𝑠𝑠
𝑇𝑇
𝑡𝑡 and ∫ 𝜙𝜙2,𝑠𝑠𝑑𝑑𝑠𝑠

𝑇𝑇
𝑡𝑡 conditioned on 𝑟𝑟𝑡𝑡.

when 𝛾𝛾𝑖𝑖 ≠ 0 for 𝑖𝑖 = 1,2 the above integral can be evaluated as:

 95

Copyright © 2023 Society of Actuaries Research Institute

By writing:

𝐵𝐵3(𝑑𝑑;𝑇𝑇) =
1

𝛾𝛾1 + 𝛾𝛾2
�1 − 𝑒𝑒𝑥𝑥𝑒𝑒�−(𝛾𝛾1 + 𝛾𝛾2)(𝑇𝑇 − 𝑑𝑑)��

we can rewrite the above expression for covariance as below:

As [6] explains the

𝑍𝑍(𝑟𝑟𝑡𝑡 , 𝑑𝑑;𝑇𝑇) = 𝑒𝑒𝑥𝑥𝑒𝑒 �𝐸𝐸ℚ �−� 𝑟𝑟𝑠𝑠𝑑𝑑𝑠𝑠
𝑇𝑇

𝑡𝑡
| 𝑟𝑟𝑡𝑡� +

1
2
𝑉𝑉𝐴𝐴𝑉𝑉ℚ �−� 𝑟𝑟𝑠𝑠𝑑𝑑𝑠𝑠

𝑇𝑇

𝑡𝑡
| 𝑟𝑟𝑡𝑡��

But

Therefore:

 96

Copyright © 2023 Society of Actuaries Research Institute

However [24] writes zero-coupon bond prices as:

𝑍𝑍�𝜙𝜙1,𝑡𝑡 ,𝜙𝜙2,𝑡𝑡 , 𝑑𝑑;𝑇𝑇� = 𝑒𝑒𝑥𝑥𝑒𝑒 �𝐴𝐴(𝑑𝑑,𝑇𝑇) − 𝜙𝜙1,𝑡𝑡𝐵𝐵1(𝑑𝑑,𝑇𝑇) − 𝜙𝜙2,𝑡𝑡𝐵𝐵2(𝑑𝑑,𝑇𝑇)�

Therefore:

Since:

𝐵𝐵𝑖𝑖(𝑑𝑑;𝑇𝑇) = � 𝑒𝑒𝑥𝑥𝑒𝑒(−𝛾𝛾𝑖𝑖𝑠𝑠)
𝑇𝑇−𝑡𝑡

0
𝑑𝑑𝑠𝑠, 𝑖𝑖 = 1,2,3

it is obvious that 𝐵𝐵𝑖𝑖(𝑑𝑑;𝑇𝑇), 𝑖𝑖 = 1, 2, 3 are continuous in the neighbourhood of 𝛾𝛾𝑖𝑖 = 0 and its value at 𝛾𝛾𝑖𝑖 = 0
is 𝑇𝑇 − 𝑑𝑑. However, 𝐴𝐴(𝑑𝑑;𝑇𝑇) is not continuous around 𝛾𝛾𝑖𝑖 = 0 for 𝑖𝑖 = 1 or 𝑖𝑖 = 2 and the function has to be
evaluated using its integral expression.

Therefore if 𝛾𝛾1 = 0 and 𝛾𝛾2 ≠ 0 𝐴𝐴(𝑑𝑑;𝑇𝑇) becomes:

 97

Copyright © 2023 Society of Actuaries Research Institute

Upon simplification we obtain:

By symmetry when 𝛾𝛾1 ≠ 0 and 𝛾𝛾2 = 0, the expression for 𝐴𝐴(𝑑𝑑;𝑇𝑇) simplifies to:

When both 𝛾𝛾1 = 0 and 𝛾𝛾2 = 0 the integral for 𝐴𝐴(𝑑𝑑;𝑇𝑇) becomes:

Which simplifies to:

 98

Copyright © 2023 Society of Actuaries Research Institute

About The Society of Actuaries Research Institute
Serving as the research arm of the Society of Actuaries (SOA), the SOA Research Institute provides objective, data-
driven research bringing together tried and true practices and future-focused approaches to address societal
challenges and your business needs. The Institute provides trusted knowledge, extensive experience and new
technologies to help effectively identify, predict and manage risks.

Representing the thousands of actuaries who help conduct critical research, the SOA Research Institute provides
clarity and solutions on risks and societal challenges. The Institute connects actuaries, academics, employers, the
insurance industry, regulators, research partners, foundations and research institutions, sponsors and non-
governmental organizations, building an effective network which provides support, knowledge and expertise
regarding the management of risk to benefit the industry and the public.

Managed by experienced actuaries and research experts from a broad range of industries, the SOA Research
Institute creates, funds, develops and distributes research to elevate actuaries as leaders in measuring and
managing risk. These efforts include studies, essay collections, webcasts, research papers, survey reports, and
original research on topics impacting society.

Harnessing its peer-reviewed research, leading-edge technologies, new data tools and innovative practices, the
Institute seeks to understand the underlying causes of risk and the possible outcomes. The Institute develops
objective research spanning a variety of topics with its strategic research programs: aging and retirement; actuarial
innovation and technology; mortality and longevity; diversity, equity and inclusion; health care cost trends; and
catastrophe and climate risk. The Institute has a large volume of topical research available, including an expanding
collection of international and market-specific research, experience studies, models and timely research.

Society of Actuaries Research Institute
475 N. Martingale Road, Suite 600

Schaumburg, Illinois 60173
www.SOA.org

about:blank
about:blank
about:blank

	Executive Summary
	1 Introduction
	1.1 R Setup
	1.2 Introduction to Scenarios
	1.3 Interest Rate Markets
	1.4 Market-Consistent Models
	1.5 The Market Price of Risk
	1.6 Parameter Uncertainty

	2 Three Continuous-Time Interest Rate Models
	2.1 The Vasicek Model
	2.1.1 Simulating paths of the Vasicek model: Euler-Maruyama discretization
	2.1.2 Simulating paths of the Vasicek model: Transition Density Method

	2.2 Cox-Ingersoll-Ross (CIR) Model
	2.2.1 Simulating paths of the CIR Model: Euler-Maruyama discretization
	2.2.2 Simulating paths of the CIR model: Transition density method

	2.3 The Two-Factor Vasicek model with correlated factors
	2.3.1 Simulating paths of the two-factor Vasicek model: Transition density method

	3 Calibration Techniques
	3.1 The Vasicek model: real-world calibration
	3.1.1 Maximum Likelihood Estimator Method
	3.1.2 Long Term Quantile Method

	3.2 The Vasicek model: risk-neutral calibration
	3.3 The CIR model: real-world calibration
	3.3.1 Euler method
	3.3.2 Maximum likelihood estimate

	3.4 The generalized method of moments
	3.5 The CIR model: risk-neutral calibration
	3.6 The two-factor Vasicek model calibration

	4 No-Arbitrage Models
	4.1 Hull-white models
	4.1.1 One factor Hull-white model
	4.1.2 The two-factor Hull-white model
	4.1.3 Hull-white model calibration

	4.2 Yield curve interpolation: one-factor model
	4.2.1 Fitting an 𝒏 degree polynomial for 𝒓,𝟎,𝒕.
	4.2.2 Fitting a Nelson-Siegel Curve to 𝒓,𝟎,𝒕.

	4.3 Calibration of the One-Factor Hull-White Model
	4.4 Calibration of the Two-Factor Hull-White Model

	5 Model Validation
	5.1 Data and Assumptions
	5.2 Investigate the Data
	5.3 Recalibrate
	5.4 Validate
	5.5 Model Governance

	6 Conclusion
	7 Acknowledgments
	References
	Appendix A: Zero coupon bond prices under one-factor Vasicek model
	Appendix B: Zero coupon bond prices under the two-factor Vasicek model
	About The Society of Actuaries Research Institute

