Solution to 16.1

1. Premium $=11.80 \cdot 50=590.00$
2. Premium $=9.90 \cdot 150=1,485.00$
3. Premium $=8.50 \cdot 750=6,375.00$

Solution to Exercise 16.2

Using the premiums in Table 16.5, 925,000 of insurance would cost Ryan:

Premium $=8.25 \cdot 925=7,631.25$

He would be able to purchase this amount as there is no higher band with a lower premium.

However, let's consider the situation where Ryan wanted to purchase 475,000 of death benefit. In this case, the insurance would cost him:

Premium $=9.00 \cdot 475=4,275.00$

But, he could purchase 500,000 of insurance for a premium of
Premium $=8.25 \cdot 500=4,125.00$

So he would not purchase 475,000 as he could get more $(500,000)$ for a lower premium.

Solution to 16.3

1. Premium $=9.80 \cdot 50+125=615.00$
2. Premium $=8.90 \cdot 150+125=1,460.00$
3. Premium $=8.25 \cdot 750+125=6,312.50$

Solution to Exercise 16.4

Using the premiums in Table 16.6 with a policy fee of 125, Ryan could purchase 925,000 of insurance for Premium $=8.00 \cdot 925+125=7525.00$

Solution to Exercise 16.6

$$
\begin{aligned}
& \text { Prem }_{t}=\left(9.80+\frac{125.00}{200}\right)(0.525)=5.47 \text { for semi-annual premium mode. } \\
& \text { Prem }_{t}=\left(9.80+\frac{125.00}{200}\right)(0.265)=2.76 \text { for quarterly premium mode. }
\end{aligned}
$$

Prem $_{t}=\left(9.80+\frac{125.00}{200}\right)(0.090)=0.94$ for semi-annual premium mode.

Solution to Exercise 16.7

Prem $_{t}=\left(10.05+\frac{0.00}{600}\right)(0.525)=5.28$ for semi-annual premium mode.
Prem $_{t}=\left(10.05+\frac{0.00}{600}\right)(0.265)=2.66$ for quarterly premium mode.
Prem $_{t}=\left(10.05+\frac{0.00}{600}\right)(0.090)=0.90$ for semi-annual premium mode.

Solution to Exercise 16.8

Start with the Book Profit formula from Section 16.4 which was

$$
\begin{aligned}
B P_{t}=\left(_{t-1} V\right. & \left.+R S_{t-1}+P_{t-1}\right)(1+i)-D B_{t} \cdot q_{t}(1+i)^{0.5}-C V_{t} \cdot w_{t}-\operatorname{Div}_{t}\left(1-q_{t}\right) \\
& -E_{t}^{B O P}(1+i)-E_{t}^{M O P}(1+i)^{0.5}-E_{t}^{E O P}-\left({ }_{t} V+R S_{t}\right)\left(1-q_{t}-w_{t}\right)
\end{aligned}
$$

Now rewrite the book profit formula by adding and subtracting ${ }_{t} V$ in the last line.

$$
\begin{aligned}
B P_{t}=\left(_{t-1} V\right. & \left.+R S_{t-1}+P_{t-1}\right)(1+i)-D B_{t}(1+i)^{0.5} \cdot q_{t}-C V_{t} \cdot w_{t}-D i v_{t}\left(1-q_{t}\right) \\
& -E_{t}^{B O P}(1+i)-E_{t}^{M O P}(1+i)^{0.5}-E_{t}^{E O P}-\left({ }_{t} V+R S_{t}\right)\left(1-q_{t}-w_{t}\right) \\
& +{ }_{t} V-\left\{\left(_{t-1} V+{ }^{V} P_{t-1}\right)\left(1+i^{G}\right)-q_{t}^{G}\left[D B_{t}\left(1+i^{G}\right)^{0.5}{ }_{t} V\right]-w^{G}\left(C V_{t}-{ }_{t} V\right)\right\}
\end{aligned}
$$

Now rearrange the book profit formula to get

$$
\begin{aligned}
B P_{t} & =\left({ }^{V} P_{t-1}+{ }_{t-1} V\right)\left(i-i^{G}\right) \\
& +q_{t}^{G}\left(D B_{t}\left(1+i^{G}\right)^{0.5}-{ }_{t} V\right)-q_{t}\left(D B_{t}(1+i)^{0.5}-{ }_{t} V\right) \\
& +\left(P_{t-1}-{ }^{V} P_{t-1}\right)(1+i)-E_{t}^{B O P}(1+i)-E_{t}^{M O P}(1+i)^{0.5}-E_{t}^{E O P} \\
& +\left(w_{t}-w_{t}^{G}\right)\left({ }_{t} V-C V_{t}\right) \\
& +R S_{t-1}(1+i)-R S_{t}\left(1-q_{t}-w_{t}\right) \\
& -D i v_{t}\left(1-q_{t}\right)
\end{aligned}
$$

