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Executive Summary

Introduction

Cash Balance (CB) pension plans became popular in the late 1990s, when a large number

of final salary Defined Benefit (DB) pension plans converted to cash balance plans, taking

advantage of the opportunity to transition to a plan that, apparently, mirrored a Defined

Contribution (DC) arrangement, whilst staying in the defined benefit category for regula-

tory purposes. Plan sponsors expected the CB plans to offer the same stable, predictable

contribution rates as a DC plan, with the potential advantage of being cheaper than the

equivalent DC plan. In the words of the consulting firm Kwasha Lipton (Gold, 2001), “A

5% of pay plan might only cost 4% of pay”.

In this paper we have analyzed the CB pension and contributions using the methods

and principles of financial economics, to give a market consistent evaluation of the costs

of the CB liability. The market consistent valuation of the liabilities can be compared

with a market valuation of the assets to give an objective assessment of the surplus

or deficit of the plan. It gives a liability value that is appropriate for market consistent

financial reporting, with objective assumptions that are derived from the markets, without

requiring any subjective assessment of future interest rates or salary growth. We have

ignored exits other than retirement, and we assume the retirement date is fixed and

known. It is straightforward to adapt the results for demographic uncertainty.

Our analysis demonstrates that the early promises of stable contributions and discounted

benefits (compared with a similar DC plan) are not supported when the benefits are

analysed using the tools of modern financial theory.

Market Valuation of Projected Accrued Benefit

In Sections 2 and 3 of the paper, we develop valuation formulae for a cash balance benefit

for a hypothetical participant. We define the accrued benefit to be the projected value

at retirement of all past contributions, allowing fully for projected future interest credits,

but with no allowance for future compensation credits, as at the valuation date.

Market valuation of financial liabilities can be determined by finding (or constructing)

market instruments which replicate the liability. For the CB liability, this method can be
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applied in the case where the crediting interest rate is a fixed rate, such as 5% per year.

In this case, if the participant fund at the valuation date is F , and the retirement date is

assumed to be in, say, 20 years, then the projected benefit at retirement is B = F (1.05)20.

The market value of this is found by considering the price of a zero-coupon bond with

face value B, which matures in 20 years. Using the US government bond yield curve as at

1 April 2013, we find the market value of the CB liability is 1.59F . That is, the market

value of the participant’s fund is $1.59 for every $1 in the notional fund, and, further, the

market value of a contribution rate of, say, 6% of salary is 0.06× 1.59 = 9.5%.

For crediting rates based on market interest rates, such as the yield to maturity on a

30-year government bond, we must select a model for future interest rates that is risk

neutral, and that matches the market yield curve at the valuation date. In our analysis

in Section 3, we have used the Hull-White model, matched to US interest rates at 1 April

2013. We use the Hull-White model both to project the ultimate CB benefit, and to

discount the benefit. The market consistent valuation is the expected discounted value

of the projected benefit. Note that, even though we value the liabilities using expected

present values, the underlying theory is not really probabilistic, it is market-based.

Using a few simplifying assumptions, we derive an analytic form for the valuation formula

for a CB benefit. We also show that the results are reasonably robust to loosening the

assumptions, and available with far less complex computation. The important simplifying

assumptions are

• The crediting rate is based on spot rates (in practice par-yields would be used)

• Crediting is continuous (in practice, typically crediting is annual or semi-annual)

• Interest rates follow the single factor Hull-White model.

The key valuation equations are reproduced here. The valuation factor, V (0, T ) is defined

as the market value of the CB liability per $1 of participant account at the valuation date

(time 0), for a participant who will retire in T years. In equation (6) we show the valuation

factor in terms of the two random process, rc(t) is the crediting rate assumed (loosely) to

apply in the infinitesimal interval (t, t + dt); r(t) is the risk free rate of interest assumed

(again, loosely) to apply in the infinitesimal interval (t, t+ dt);

V (0, T ) = EQ
[
e
∫ T
0 (rc(t)−r(t))dt

]
.

Note that rc(t) and r(t) are correlated stochastic processes, in general.
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In the case where the crediting rate is fixed, at rc, say, then this equation simplifies to

V (0, T ) = eTr
c

EQ
[
e−

∫ T
0 r(t) dt

]
= eTr

c

p(0, T )

where p(0, T ) is the price at the valuation date of a T -year zero coupon bond with $1 face

value. This is the result used above for the fixed 5% example.

In the case where the crediting rate is equal to the instantaneous rate plus a fixed margin,

m, so that rc(t) = r(t) +m, the valuation formula simplifies to

V (0, T ) = EQ
[
e
∫ T
0 (r(t)+m−r(t))dt

]
= emT

In the most common case, where the crediting rate is based on, say, a k−year market

rate, we use the properties of the interest rate model, with parameters a and σ, to derive

the valuation formula

V (0, T ) = exp(mT ) exp

(∫ T

0

−A(t, t+ k)

k
dt

)
EQ

0

[
exp

{
−
∫ T

0

γ r(t) dt

}]
where A(t, t + k) is a deterministic function involving the interest rate parameters (a

and σ) and the spot rates from the initial yield curve. It can be integrated numerically.

The term EQ
0

[
exp

{
−
∫ T
0
γ r(t) dt

}]
is similar to the expression for valuing a zero coupon

bond under the interest rate model, but with the extra γ term (a function of k and a).

We have derived a closed form expression for the expectation (details in Appendix B)

enabling us to calculate valuation factors efficiently, with significant speed advantages

over simulation.

In Table 1, which is excerpted here for convenience, we show the resulting valuation factors

for a range of crediting interest rates, and assuming the time to retirement is 5, 10 or 20

years.

Crediting Rate Time T to exit

(Spot Rates) 5-Yrs 10-Yrs 20-Yrs

30-yr rate 1.168 1.235 1.380

5-yr rate +0.25% 1.073 1.091 1.177

1-yr rate +1% 1.062 1.120 1.250

5% fixed rate 1.229 1.340 1.562

Liability per $1 of account balance;

Excerpt from Table 1
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The table shows that all the valuation factors are above 1.0, and in some cases well above.

This indicates that the market value of the projected accrued liabilities of the CB plan

are substantially greater than the aggregate of the participant accounts.

In Figure 1 we show how these values have changed over the past 16 years, based on the

changing yield curves.

Funding Methods

The projected accrued benefit which we value in Sections 2 and 3 is not the only way

to specify the CB liability. In Section 4 we compare three different specifications of the

accrued benefit. The first is the projected accrued benefit; the second is an unprojected

accrued benefit, where the liability is defined to be the participant account at the valuation

date, with no allowance for future interest credits. The third approach is an approximation

to a method in current use, where the full benefit is projected to retirement, including

future compensation and interest credits. This benefit is assumed to accrue linearly, so

that the accrued benefit is the estimated final benefit, multiplied by the ratio of past to

projected total service.

Using three sample participants, with short, medium and long service, we illustrate how

the valuation factors and contribution rates are impacted by the participant’s salary,

notional fund and time to retirement. The simple examples illustrate that it is not possible

to have both stable contribution rates and low valuation factors.

Conclusions

The market risk associated with a CB plan is considerable, especially where crediting rates

are based on long bond rates, or are fixed. We have shown that using stable crediting rates

does not give stable valuation factors, because the valuation depends on the relationship

between crediting and short rates. From Figure 1 we see that the Normal Contribution

for a 30-year crediting rate, 20-year horizon increased by around 33% between 2000 and

2010. For a 10-year horizon, the cost increased by around 15% over the same period.

It is possible to achieve stable costs by using shorter rates for crediting. In Figures 1 to 3,

we show that the valuation factors based on 1-year and 6-month treasury rates are almost

flat over the 16 years covered. However, the additional margin makes these rates quite
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costly. With a 20-year horizon to retirement, and with a crediting rate equal to the 1-year

government rate plus a margin of 100 basis points, every $1 of notional contribution is

valued at $1.25.

The analysis in this paper indicates that some current valuation approaches (such as

Method 3 in Section 4) which generate valuation factors less than $1 of liability value per

$1 of participant account are particularly problematic. The implication of these methods

is that an apparently fully-funded plan could be reduced to a significantly underfunded

plan following a number of withdrawals, for example on restructuring of the firm. This

situation is unlikely to arise in a fully-funded traditional DB plan, where typically, the

value of a participant’s withdrawal benefit is less than the accrued value of their continuing

benefits, so that withdrawals do not inherently create deficits. In a CB plan, allowing

valuation factors of less than 1.0 leads to problems of solvency and security that may

be hidden behind the valuation method. It also generates unnecessary inequity between

(vested) leavers and stayers. Leavers receive 100% of account value, but reduce the

security of stayers who may not, ultimately, receive the full account value if the sponsor

is unable to meet the shortfall – a shortfall that is not apparent from the valuation.
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1 Introduction

Cash Balance (CB) pension plans play a significant role in US employer-sponsored pen-

sion provision. According to the US Department of Labor Employee Benefits Security

Administration (EBSA, 2012), in 2010 there were over 12 million participants in Cash

Balance pension plans, representing around 9% of the total number of participants in any

employer-sponsored plan. The Cash Balance design started to become popular in the US

during the late 1990s, when several large employers transferred their final salary Defined

Benefit (DB) plans to Cash Balance plans.

From the early promotional literature on CB plans (for example, Kwasha Lipton, 1985),

it is clear that the initial attraction of CB plans for employers was the apparent simi-

larity to Defined Contribution plans (DC). Both ostensibly involve the payment of em-

ployer/employee contributions into a fund for each member; the fund accumulates over

time to create a lump sum benefit at the member’s retirement. The benefit may be an-

nuitized, but the rates for conversion are determined at retirement. However, it is now

recognized that there are important differences between the CB and DC plans. The first

and most critical is that DC contributions are directly invested in assets, and the interest

on the assets is passed back to the employee. The DC fund is a medium for investment,

similar to a mutual fund. The participant’s assets are identifiable within the overall fund.

The total of the fund is equal to the total of the participants’ account values. In the CB

plan, the contributions (referred to as compensation credits) are notional; the amounts

paid into the pension plan asset portfolio need not match the notional contribution rate.

The interest rate credited to the (notional) funds is fixed in advance, either in absolute

terms, or in terms of a market rate applying at each crediting date. So, for example, the

employer may specify that all member accounts will earn 5% per year until retirement,

or that the interest rate applied at each year end will be the published yield on 5-year

government bonds, with an additional margin of, say, 0.25%. The interest credits are

notional, in the sense that the actual yield on the plan assets may be greater or less than

the specified crediting rate. Hence, the total pension plan assets may be more than or

less than the total of the participants’ notional funds. The assets are not allocated to

individual participants.

This specification of the CB pension results in a benefit that is classified under US regula-

tion as a Defined Benefit plan, not a Defined Contribution plan. This regulatory situation

has been a motivating factor in some transitions from traditional DB to CB, as the re-

quirements for changing from one type of DB plan to another are much less onerous, than

switching from DB to DC, with, apparently, similar benefits to the employer. Because CB
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plans combine features of DB and DC benefit design, they are often referred to as hybrid

plans, in the same category as floor-offset plans, which feature a guaranteed minimum

benefit within a DC plan.

Much has been written about CB plans, in the financial and accounting literature, and in

actuarial notes and monographs. In the 1990s and early 2000s, the literature focused on

the impact on employers and plan members of the decision to move from traditional DB

to CB. Kopp and Sher (1998) compared the benefits from traditional DB and CB plans,

and concluded that CB was more favorable to younger participants with shorter service,

while traditional DB provided better benefits for the older members. Clark and Munzen-

maier (2001) subsequently reported on a number of case studies of early traditional DB

to CB transitions. Coronado and Copeland (2003), who are very positive about the CB

design, reviewed the case for switching from traditional DB to CB or DC, and proposed

that the tax regulations would encourage overfunded plans to switch to CB, and under-

funded plans to switch to DC. However, there have been CB transitions from underfunded

plans, so this does not fully explain the phenomenon. Thomas and Williams (2009) review

the costs and benefits to plan members, with a critique of the accounting approach to

the pension decision, which, in their view, fails to recognize employees as stakeholders.

Clark and Schieber (2000) also review the ‘winners and losers’ in the transition to CB,

addressing some controversial techniques used for transferring benefits.

Gold (2001) considers the CB design from the perspective of maximizing shareholder

value. His conclusion, that the optimal design should be based on equity yields (and that

the optimal asset allocation should include no equities) is derived from a tax arbitrage

between the fund and the sponsor. Gold’s paper is not concerned with valuation or risk

management, although he does make some pertinent observations on valuation; notably,

that a vested compensation credit of 5% of pay cannot cost less than 5% of pay, although

it may appear to do so through the filter of a subjective valuation.

Actuarial valuation of CB plans is addressed by McMonagle (2001), Lowman (2001) and

Murphy (2001), with different conclusions. Both Murphy and McMonagle comment on

the problems arising from applying valuation techniques designed for traditional DB plans

to the CB design. Murphy, for example, shows that traditional actuarial methods generate

a loss on termination – that is, the account value, which is the termination benefit for

a vested participant, is generally greater than the actuarial valuation. This is consistent

with our analysis of current valuation techniques in Section 4. Lowman (in his Figure 2.1)

demonstrates that the actuarial value of the cash balance benefits would typically be less

than the total account balance before retirement, recognizing that this leads to a loss for
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each vested pre-retirement exit. From the perspective of financial risk management, this

situation is not supportable. In Section 5 we summarize the case for the assets to have

higher value than the aggregate participant’s funds. Brown et al. (2001) use a similar

approach to ours, coming from the perspective of financial analysis. Their results are less

dramatic than ours, as they considered the value based on the economic conditions of the

time, and did not look at the sensitivity to time varying factors in the economy, or at

funding implications.

Our approach will not take the corporate finance approach of Gold (2001), nor the tradi-

tional actuarial approach of McMonagle, Lowman and Murphy. We view the CB benefit

as a financial liability of the sponsoring employer. This benefit can be analyzed using

the models and paradigms of financial economics and risk management. In this context,

the valuation of the liability would be the same whether the plan sponsor retains the

assets/liabilities, or whether all payments are transferred to a third party, apart from

expenses and any difference in default risk. The result is therefore a market consistent

valuation of the CB liability. It is objective, in the sense that the parameters relating

to valuation and crediting interest rates are taken from market data, not from subjective

judgement. There is judgment involved in the choice of an interest rate model, but as long

as each model is fitted to the same market data, different market models produce very

similar results. Market consistent valuation is not, currently, consistent with the actuarial

valuation techniques in use, particularly for US public sector pension plans, where very

high valuation interest rates are commonly used but we contend that it is a better mea-

sure of cost and risk than traditional actuarial valuation, and pertinent with respect to

developments in market consistent accounting. It is also worth noting that actual buy-out

costs for CB liabilities, for example, on transfer to an insurance company, may differ from

the valuation in this paper. There are several possible practical reasons why the ‘market

values’ that we calculate are different to a buy-out valuation. For example, as there is not

a liquid market in the liabilities, the insurer may increase their profit load. Also, there

may be other complications, such as annuitization features, that we have not accounted

for. One contribution of this paper is to give a method for insurers to benchmark the

pricing of CB buy-outs.

Our approach is similar to Chen and Hardy (2009), where financial valuation principles

were applied to the valuation and funding of floor-offset hybrid plans.

10



2 Framework, Assumptions, Notation

2.1 The CB benefit

We develop valuation formulae, and illustrate the method with numerical results for a

simple but representative CB benefit. We value the pension obligation of a hypothetical

participant whose benefit is fully vested. We will ignore (for the moment) mortality and

other demographic considerations.

To value a contingent payment using a market consistent approach, we evaluate the

expected discounted value of the payment, using a market consistent, arbitrage-free model

for interest rates. The objective is a valuation that is equal to the cost of replicating the

payouts using market instruments. Even though we value the liabilities using expected

discounted values, the underlying theory is not really probabilistic, it is market-based. In

particular, the sponsor’s intention with respect to the investment of the plan assets is not

pertinent to a market-based valuation.

We take an accruals approach to the valuation liability, as follows. We define the accrued

benefit at t, assuming a retirement date at T > t, to be the benefit based on the par-

ticipant’s notional account value at t, with interest at the guaranteed crediting rate up

to T . We make no adjustment for future salary increases, as the benefit funded by past

contributions is not affected by future salary increases – that will only change the future

contributions, which are not yet part of the plan liabilities. In Section 4 we discuss this

assumption, and consider alternatives.

Let Ft denote the participant’s notional account value at t. The account value is the total

of the past contributions, accumulated to t at the appropriate credited interest rates.

The valuation date is t = 0, at which time the notional account value is F0.

Assuming, first, annual interest rate crediting, let ic(t) denote the credited interest rate

declared at t for the year t to t+ 1. The final lump sum benefit for the plan participant,

at her retirement date T , say, is

FT = F0

T−1∏
t=0

(1 + ic(t))
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Assuming continuous crediting, at a rate at t of rc(t) per year, compounded continuously,

we have

FT = F0 e
∫ T
0 rc(t)dt . (1)

The frequency of interest crediting varies between plans, with annual crediting being most

common (58% of plans, Hill et al. (2010)), and with monthly, quarterly and daily crediting

also commonly utilized. It is convenient for our illustrative calculations in the following

sections to work with continuous crediting, but it is straightforward to adapt the results

for less frequent updating. For the rest of this section, we use continuously compounded

rates for crediting and discount, unless specified otherwise.

The specification of the crediting rate varies in practice. According to Hill et al. (2010),

7% of CB plans offer a fixed crediting rate, with values of between 3% and 8% per year.

More typically, rct is a market dependent random variable. The most common design is

to use the quoted par yield on 30-year Treasury Bonds (used by 41% of CB plans, Hill et

al., 2010). The next most common is to set rc(t) at the 1-year treasury bond yield at t,

with an additional margin of (typically) 1% (used by 19% of CB plans). Treasury bond

yields at other durations, usually with additional margins, account for a further 20% of

CB plans. The remainder may use a CPI rate, or an equity-based rate, or a discretionary

rate. Most rates are based on the ‘safe harbor’ list from IRS Report 96-08. In this paper

we consider fixed and treasury-bond crediting rates.

2.2 The yield curve

We denote by r(t) the continuously compounded, risk-free short rate of interest at t,

(this could be interpreted as the annualized rate on overnight government securities) so

{r(t)}t>0 is a stochastic process. At the valuation date, time t = 0 we know r(0), and

we also observe a yield curve of spot rates for different durations. Let rk(t) denote the

k−year spot rate observed at t (continuously compounded). Then, from the initial yield

curve, we observe rk(0) for different durations k, up to the maximum period in the yield

curve, and r(0) = limk→0 rk(0).

We will also utilize zero coupon bond prices. Let p(t, T ) denote the price at t of $1 due

at T . These prices are observable at t, and are used to construct the yield curve. Recall

(see, for example, Dickson et al. (2013)) that for t ≤ T ,

p(t, t+ k) = e−k rk(t) .
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The zero coupon bond price, p(t, t + k) gives the market consistent discount factor at t

for a k-year investment. That is, the present value at t of $1 due at t+ k is p(t, t+ k).

We will assume an arbitrage free model for the future term structure of interest rates.

For any such model, the expected discounted value at time t = 0 of a fixed payment due

at t = T , say, must match the known market value of that payment. That is, from the

zero coupon bond rates, at time t = 0 we observe that the present value of $1 due at T

is p(0, T ) by replication – that is, an investment in the zero coupon bond of $p(0, T ) will

exactly meet the $1 due at T . By matching this to the expected discounted value of $1

due at T , allowing for the unknown path for the future force of interest r(s), we have

p(0, T ) = EQ
0

[
e−

∫ T
0 r(s)ds

]
. (2)

We use the Q superscript to indicate that this is a risk neutral valuation, and the 0

subscript to indicate that we are taking values at time 0, given all the information available

at that time.

Forward rates at t can be derived from the curve of zero coupon bond prices or the spot

rate curve. The continuously compounded instantaneous forward rate1 contracted at t

applying at time t+ k is f(t, t+ k), where

p(t, t+ k) = e−
∫ t+k
t f(t,s) ds (3)

⇒ f(t, t+ k) = − d

dk
log p(t, t+ k) = − 1

p(t, t+ k)

d

dk
p(t, t+ k). (4)

At any time t, the market yield curve is known, and may be expressed in terms of the

zero coupon bond prices, the spot rates or the forward rates. That is, at t, for all k > 0,

we observe any of p(t, t+ k), rk(t) and f(t, t+ k), and

p(t, t+ k) = e−k rk(t) = e−
∫ k
0 f(t,t+u)du = EQ

t

[
e−

∫ t+k
t r(s)ds

]
Note also that r(t) = f(t, t).

2.3 The valuation formula

The value at t = 0 of the (random) payoff of FT at T is

0V = EQ
[
FT e

−
∫ T
0 r(t)dt

]
.

1This is the ultra-short rate applying at t+ k.
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Both FT and r(t) are random variables in this expectation, and they are dependent, in

general. Assuming continuous interest crediting, using equation (1) we can write the

valuation formula as

0V = F0E
Q
[
e
∫ T
0 (rc(t)−r(t))dt

]
. (5)

This demonstrates that the key factor in the cost of the CB benefit is the relationship

between the crediting rate and the risk-free discount rate. In the general case we will

need a joint model for rc(t) and r(t) to determine the market consistent benefit value.

However, there are two cases where we are able to determine the value of the cash benefit

without specifying a model, and we consider these in the first part of Section 3.

In the numerical illustrations in the following sections we will report the valuation factors,

which we define as

V (0, T ) = EQ
[
e
∫ T
0 (rc(t)−r(t))dt

]
. (6)

The valuation factor V (u, u+ T ) is the market consistent value at u of a CB benefit due

at u+ T , expressed per $1 in the participant’s hypothetical account balance at u.

3 Valuation Results

3.1 Fixed crediting rate

Suppose that rc(t) is constant – for example, say rc(t) = 0.05 for all t, compounded

continuously, and that the retirement date for the participant whose benefit we are valuing

is in 20 years. Then F20 = F0e
20 (0.05) = 2.7183F0 is not a random variable, and from

equations (2) and (5),

0V = EQ
[
2.7183F0 e

−
∫ 20
0 r(t)dt

]
= 2.7183F0 p(0, 20) .

Recall that p(0, 20) is the price at the valuation date of a 20-year zero-coupon bond,

which is available from published market data. For illustration, suppose that the yield

on 20-year zero coupon bonds at the valuation date is, say, 2.5% per year compounded

continuously, then p(0, 20) = 0.5985, so that V (0, 20) = 2.7183 × 0.5985 = 1.63, which

means that the valuation liability is 163% of the participant’s account balance at the

valuation date.
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3.2 Crediting rate r(s) plus a margin

A second case which allows valuation without specifying a model for future interest rates

is where crediting is continuous (daily or weekly, in practical terms), and the crediting

rate each day, before adding a fixed margin, is the same short term treasury rate that is

used to discount the future cash flow. For example, suppose the crediting rate is

rc(t) = r(t) +m

where r(t), as defined above, is the instantaneous rate of interest on government bonds,

and m is the pre-specified margin – around 1.75% would be consistent with the range of

practice. In this case, the valuation formula (5) becomes

0V = EQ
[
F0 e

∫ T
0 r(t)+m−r(t)dt

]
= F0 e

mT

Assuming a 20-year horizon to retirement, and a margin of m = 1.75% for the crediting

rate over the government short-term rate, the valuation factor in this case is V (0, T ) =

emT = 1.41, which means that the value of the CB benefit in this case would be 141% of

the participant’s account balance at the valuation date.

In practice, this combination of daily crediting rates, based on daily government rates,

does not appear to be a common system for the CB benefit. However, the results will

be similar, for example, for quarterly crediting based on 3-month T-Bill rates, which is a

combination that is utilized by some plans, with a typical margin of around 1.75%.

3.3 Crediting rate based on k-year spot rates : one-factor Hull-

White model

In cases other than the two described above, we must specify a market consistent model

of the term structure of interest rates to value the benefit using equation (5). In this

section we use the one-factor Vasicek model for interest rates (Vasicek, 1977), as extended

by Hull and White (1990). This model is reasonably tractable, and using the Hull-

White extension, can be fitted to the term structure of interest rates at the valuation

date to ensure that the process for r(t) is consistent with the starting term structure,

and therefore with market values. This model has been used in a number of actuarial

applications, including those described in Boyle and Hardy (2003), Iyengar and Ma (2009)

and Jørgenson and Linneman (2012).
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We describe the one factor model briefly here. See, for example, Björk (2009) or Brigo

and Mercurio (2006) for more details. We assume the following stochastic process for the

future short term rates on government bonds, continuously compounded:

dr(t) = (θ(t)− a r(t)) dt+ σ dWt

where a > 0 and σ > 0 are model parameters, θ(t) is a deterministic function of t derived

from the starting yield curve; Wt is a standard Wiener process.

Under this model the price at t of a zero coupon bond maturing at t + k can be written

as

p(t, t+ k) = EQ
t

[
e−

∫ t+k
t r(s) ds

]
= eA(t,t+k)−B(t,t+k) r(t) (7)

where A(t, T ) and B(t, t+ k) are the following deterministic functions:

B(t, t+ k) =
1− e−a k

a

A(t, t+ k) = log
p(0, t+ k)

p(0, t)
+ f(0, t)B(t, t+ k)− σ2

4a
B(t, t+ k)2 (1− e−2at)

The values of p(0, t), p(0, t+ k) and f(0, t) are all taken from the yield curve information

at t = 0. Note that B(t, t+ k) does not depend on t.

Equation (7) shows that the log of the zero coupon bond price can be expressed as a

linear function of the short term rate. Models with this feature are called affine.

As we have demonstrated in equation (5), the value of the CB benefit depends on the

relationship between the crediting interest rate process rc(t) and the instantaneous market

rate process r(t). The most common crediting rate is the par yield on 30-year treasury

bonds, with no additional margin. Using stochastic simulation, we can simulate the joint

process for r(t) and for the 30-year par-yields, and we demonstrate this in Section 3.4

below. However, if the crediting rate is based on the k-year spot rate, rather than the

k-year par yield, we can exploit the affine models to derive analytic results for the benefit

valuation. This is valuable as an approximation to the par-yield case, and also as it offers

some insight into the valuation results.

The k year spot rate at t, rk(t), is related to the k-year zero-coupon bond price at t as

p(t, t+ k) = e−k rk(t)

⇒eA(t,t+k)−B(t,t+k)r(t) = e−k rk(t)

⇒rk(t) =
B(t, t+ k) r(t)− A(t, t+ k)

k
. (8)
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Now, suppose that the crediting rate is

rc(t) = rk(t) +m. (9)

Then equation (5) gives the valuation formula, per $1 of participant’s fund at t = 0,

V (0, T ) = EQ
0

[
exp

(∫ T

0

rk(t) +m− r(t) dt
)]

(10)

= EQ
0

[
exp

(∫ T

0

B(t, t+ k) r(t)− A(t, t+ k)

k
+m− r(t) dt

)]
(11)

The only random terms in the expectation are those involving r(t), so we can express the

valuation formula as

V (0, T ) = exp(mT ) exp

(∫ T

0

−A(t, t+ k)

k
dt

)
EQ

0

[
exp

{
−
∫ T

0

γ r(t) dt

}]
(12)

where

γ =

(
1− B(t, t+ k)

k

)
= 1−

(
1− e−ak

ak

)
(13)

which, conveniently, is not a function of t.

For the second term in equation (12) we need∫ T

0

A(t, t+ k)

k
dt =

∫ T

0

f(0, t)B(t, t+ k) dt+

∫ T

0

log
p(0, t+ k)

p(0, t)
dt

− σ2

4a

∫ T

0

B(t, t+ k)2
(
1− e−2at

)
dt .

Now B(t, t+ k) depends on k, but not on t, and∫ T

0

f(0, t) dt = − log p(0, T )

from equation (3). Also∫ T

0

log
p(0, t+ k)

p(0, t)
dt = −

∫ T

0

((t+ k)rt+k(0)− trt(0)) dt ,

and this can be evaluated using numerical integration, given the initial spot rate curve.

Finally,

σ2

4a

∫ T

0

B(t, t+ k)2
(
1− e−2at

)
dt =

σ2

4a
B(t, t+ k)2

(
T −

(
1− e−2aT

2a

))
.
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The third term in equation (12) is EQ
0

[
e−

∫ T
0 γ r(t) dt

]
, which can be determined by adapting

the derivation of the bond equation above. The result is

EQ
0

[
e−

∫ T
0 γ r(t) dt

]
=

p(0, T )γ exp

(
σ2γ

2a2

((
1− e−aT

a

)
(1− 2γ) +

(1− e−aT )2

2a
+
γ(1− e−2aT )

2a
− T (1− γ)

))
(14)

See Appendix B for a derivation of this result.

We use this model fitted to the market yield curve on US government bonds as at 1 April

2013. Where necessary, we have interpolated to give spot rates at monthly intervals.

We assume the spot rate curve is flat at durations greater than 30 years, which is the

maximum recorded duration in the data.

We assume parameters a = 0.02 and σ = 0.006 for the interest rate process. These

parameters indicate a long term, unconditional standard deviation for the short rate of

3% per year, and for the 30-year rate of around 2.3% per year. These are a little higher

than recent experience, but somewhat smaller than the volatility experienced over the

past 30-40 years.

We also consider three cases for the time horizon, T = 5 years, T = 10 years and T = 20

years to retirement. Exits are ignored.

We value the Cash Balance interest rate guarantee using the following crediting rates.

The margins (given in basis points (bp) below), are consistent with the safe harbor rec-

ommendations in IRS report 96-08.

• A crediting rate equal to the 30-year spot rate: rc(t) = r30(t).

• A crediting rate equal to the 20-year spot rate: rc(t) = r20(t).

• A crediting rate equal to the 10-year spot rate: rc(t) = r10(t).

• A crediting rate equal to the 5-year spot rate plus 25 bp: rc(t) = r5(t) + 0.0025.

• A crediting rate equal to the 1-year spot rate plus 100 bp: rc(t) = r1(t) + 0.01.

• A crediting rate equal to the 6-month spot rate plus 150 bp: rc(t) = r0.5(t) + 0.015.

• A fixed crediting rate of 5% per year compounded annually: rc(t) = log(1.05).
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Crediting Rate Time T to exit

(Spot Rates) 5-Yrs 10-Yrs 20-Yrs

30-yr rate 1.168 1.235 1.380

20-yr rate 1.130 1.189 1.361

10-yr rate 1.095 1.106 1.230

5-yr rate +0.25% 1.073 1.091 1.177

1-yr rate +1% 1.062 1.120 1.250

0.5-yr rate +1.5% 1.083 1.170 1.366

5% fixed rate 1.229 1.340 1.562

Table 1: Valuation factors, V (0, t) per $1 of account balance at 1 April 2013, using the

Hull-White model, a = 0.02, σ = 0.006.

The results are shown in Table 1. The values in the table represent a market-consistent

valuation of the interest rate guarantee, per $1 of each member’s account balance, as at

1 April 2013. One interpretation of these figures is that if the sponsor transferred the

liability, these values would represent a fair market value for the contract, based on the

yield curve at 1 April 2013 (but without any margin for profits or expenses).

Another perspective is to consider the difference between the hypothetical fund account

balance, and the value of the CB benefit with the guaranteed interest offered under the

CB pension. For example, consider a member with 10-years to termination, and with a

crediting rate based on 30-year yields. The valuation factor in Table 1 is $1.235 per $1 of

fund. That means that if the member and/or her employer contribute, say, $100 into the

hypothetical account at the valuation date, the value of the additional liability is $123.5.

The premium of $23.5 represents the cost of the interest guarantee.

The table shows that the interest rate guarantee has a significant market value under

our valuation assumptions, particularly for members with longer horizons to retirement.

We note that the most common crediting rate, the 30-year yield, generates the highest

values other than the fixed 5% assumption, for all horizons. We also note that none of

the crediting rates or time horizons give a valuation of less than 1.0, meaning that the

interest rate guarantee in the CB plan has a positive, and in most cases very significant

market value.

We could allow for exits. The common approach would be to apply deterministic exit

rates, ignoring any dependency between exits and the future, random interest rates. In

this case, the valuation would be a weighted average of the values for different T . For
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T = 0, that is, for immediate terminations, the liability is $1 for each $1 of member

account balance. So, even allowing for terminations cannot bring the valuation to or

below $1 per $1 of fund.

3.4 Crediting rate based on k-year par-yield rates

We have used spot rates in the previous section, because the calculations are then analytic,

with no sampling uncertainty. However, CB crediting rates are generally based on par-

yields (at least where k > 1). We use Monte Carlo simulation to generate the valuation

factors using par-yields, with the same model and assumptions as used in the section

above. This will give more realistic valuation, and will also demonstrate how accurate the

use of spot rates is as a proxy for par-yields.

Under this approach, we simulate the short rate of interest at the end of each month up

to the horizon T . Using the simulated short rate at t, we can calculate all the s-year zero

coupon bond prices at that time, p(t, t + s) using equation (7). We then solve for the

par-yield on a k-year bond, with 1
2
-yearly coupons, denoted yk(t), say, using the equation

of value:

1 =
1

2
yk(t)

{
p(t, t+ 1

2
) + p(t, t+ 1) + p(t, t+ 11

2
) + ...+ p(t, t+ k)

}
+ p(t, t+ k) (15)

The results are shown in Table 2, using the same parameters as for Table 1. As we might

expect, given a rising yield curve, using par-yields generates slightly smaller values (in

most cases) than the spot rates, particularly for larger values of k and T . However, the

results are quite close, within 1.5% accuracy even for the long rates and long horizons.

The standard errors for these estimates are small, at around 1.5× 10−6.

In a real-world application of market consistent valuation, the par-yield method could

be used, with Monte Carlo simulation, but the number of projections required could be

reduced by using the spot rate valuation as a control variate, as the values are very highly

correlated. For more information on control variates, see, eg Hardy (2003). In practice,

the results are sufficiently close that using the spot rates to approximate the par-yields

may be adequate for valuation purposes.
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Crediting Rate Time T to exit

(Par-Yields) 5-Yrs 10-Yrs 20-Yrs

30-yr rate 1.151 1.212 1.379

20-yr rate 1.124 1.177 1.354

10-yr rate 1.094 1.108 1.238

5-yr rate +0.25% 1.073 1.095 1.192

Table 2: Valuation factors V (0, T ) at 1 April 2013, using the Hull-White model with

par-yields; 10,000 simulations

3.5 Impact of the initial yield curve

A feature of arbitrage-free interest rate models, such as the Hull-White model, is that the

model is fitted to the initial yield curve at the valuation date, and the shape and level of

that curve can have a significant impact on the valuation. We see from Tables 1 and 2

that the cost of the CB pension liability is very significant, in market consistent terms,

based on the yield curve at 1 April 2013. It is interesting to repeat the valuation using

yield curves from past dates, to evaluate the sensitivity of the results to the interest rate

curves, and also to see how the valuation factors have evolved through the period since

CB plans first became popular.

We have calculated valuation factors (that is, the market value at various dates per $1

balance in the member’s account) applying yield curves as at 1 November for each calendar

year from 1998 to 2012, and for 1 April 2013 (these are the numbers from Table 1 above).

The parameters for the Hull-White model are unchanged at a = 0.02 and σ = 0.006. The

results are summarized in Figures 1, 2 and 3. The rates used are spot rates, but we find

very similar results using par-yields. To illustrate the impact of the time horizon, each

graph is shown using the same scale.

We note several features from these figures.

First, the valuation factors can be very sensitive to the initial yield curve, but the impact

is much more significant for the fixed rate guarantee, for longer horizons, T , and for longer

duration of crediting rates k.

Consider Figure 1. It is very noticeable that the volatility for the 5% fixed rate is substan-

tially greater than for any of the market based crediting rates. The curves derived from

market rates (that is, excluding the 5% p.y. fixed rate curve) are decreasing in volatility
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Figure 1: Valuation Factors for T = 20-year horizon, as at Nov 1998 to April 2013.
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Figure 2: Valuation Factors for T = 10-year horizon, as at Nov 1998 to April 2013.
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Figure 3: Valuation Factors for T = 5-year horizon, as at Nov 1998 to April 2013.

as k decreases, with the highest volatility arising from the 30-year and 20-year crediting

rates (which are very close in value) which both have quite volatile valuation factors. At

the other end, the valuation factors for the 6-month and 1-year crediting rates are almost

flat across the different years. Recall that in Section 3.2 we showed that using a crediting

rate equal to the short rate plus a fixed margin gives a fixed valuation, independent of

the yield curve or any other market factors at the valuation date. In these graphs we see

that the effect of using shorter rates is similar, in that the impact of the different yield

curves is small.

Initially, these results are counterintuitive. The most volatile results are generated by the

least volatile crediting rates – the 5% rate is fixed; the 30-year rate is much less volatile

than the 6-month rate. One might expect the crediting rates that are less variable to

generate valuations that are less variable. However, the absolute level of the crediting

rate is not the major factor in the valuation; it is the variability in the difference between

the crediting rate and the short rate, which generates variability in the valuation results.

There is more volatility in the spread between 30-year yields and very short rates (say,

overnight yields) than between 6-month yields and very short rates.
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The second point is that there is no evidence that the cost of the CB benefit is generally

increasing over time. With the exception of the 5% fixed rate, this is not a situation where

a benefit which was initially affordable became unaffordable as markets moved. Costs for

all the market-related crediting rates were high in several early years, then fell and rose

again after 2008. If we look at the 30-year crediting rate, a common design choice, we see

that the valuation factors were highest in 2002 and in 2010. In 1999, long term rates were

high, with 30-year rates hitting 6.3%, but since short rates were also high, at around 5%,

the valuation factors are considerably lower than in 2010, when long rates were around

4%, but short rates were close to 0%.

The fixed rate guarantee is quite different. The valuation in this case depends only on

the spot rates corresponding to the T -year horizon. The cost will be low when market

rates are high, and when risk free rates are low, as in recent years, the cost of funding a

5% guarantee is high.

We note also that the guaranteed rate is the only case where the valuation factor ever

falls below 1.0. In 1999, the yield curve exceeded 5% for all durations, indicating that a

5% guarantee could be funded with an investment of less than $1 per unit of participants’

funds. In all other cases, where rates are related to market (plus margin as appropriate),

the valuation factor is greater than 1.0, and often very significantly greater.

3.6 Parameter sensitivity

The Hull-White one-factor model implicitly sets the expected values for future spot rates

equal to the time 0 values of the corresponding forward rates. The two parameters of the

model, a and σ control the variability around those values, and the speed of the mean

regression. In fact, a wide range of values for a and σ give similar results for the valuation

factors. The most sensitive factors are for higher values of k and T . To illustrate this, in

Table 3, we show the valuation factors for a 20-year term to retirement, using the April

2013 yield curve, for the following sets of a and σ parameters.

A: a = 0.02, σ = 0.006 as used in the previous sections.

B: a = 0.022, σ = 0.009, calibrated to US swap rates at 1 November 20122

2Retrieved from http:quant.stackexchange.comquestions4708reasonable-hull-white-parameters, July

2013.
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C: a = 0.05, σ = 0.007 calibrated by matching the model standard deviation for r(t)

and for r30(t) to the sample standard deviations from the 16 years of yield curve

data, used in Section 3.5.

D: a = 0.1,σ = 0.01 from Letian Wang’s analysis of LIBOR rates, 2011 (Wang, 2011)

E: a = 0.15, σ = 0.029, from Bolder (2001), using Canadian bond data.

F: a = 0.15,σ = 0.01, from Brown et al (2001).

Recall that the valuation factors for the fixed 5% crediting rates are not model dependent,

so here we consider results only for the market based crediting rates.

We see that there is little impact on the valuation factors for crediting rates based on

shorter market rates. There is more variability for the longest crediting rates, with highest

values coming from the swap rate calibration, and with lower values coming from the

values calibrated in the early 2000’s. Nevertheless, the values are sufficiently close that

the results and conclusions based on the parameter set used in the previous sections

may be considered reasonably reliable, even for long term crediting rates and for long

retirement horizons.

Crediting Rate Model Parameters

(Spot Rates) A B C D E F

30-yr rate 1.380 1.440 1.343 1.328 1.323 1.324

20-yr rate 1.361 1.411 1.336 1.323 1.322 1.318

10-yr rate 1.230 1.258 1.220 1.213 1.221 1.208

5-yr +0.25% 1.177 1.192 1.173 1.170 1.183 1.166

1-yr +1% 1.250 1.253 1.249 1.249 1.256 1.248

0.5-yr +1.5% 1.366 1.367 1.365 1.365 1.368 1.365

Table 3: Valuation factors, V (0, 20) per $1 of account balance at 1 April 2013, using the

Hull-White model various parameter sets.

3.7 Crediting rate based on k-year spot rates : two-factor Hull-

White model

The formula (8) above shows that at any time t, under the one-factor model, the k-year

spot rate, rk(t) is a simple linear function of the short rate at that time, r(t). The
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correlation between these variables is therefore constrained by the model to be 1.0 at all

times (because any two random variables X, Y , which are related as X = a + bY for

constants a and b > 0 have correlation 1.0). Equation (5) illustrates that the relationship

between the short rate and the crediting rate is a key factor in the benefit valuation.

The spread risk, that is, the risk that the crediting rate and short rate spread changes

over time, appears a potentially significant factor. We have therefore extended the model

to allow for more stochastic variation in the relationship. To do this, we introduce a

second stochastic process, which gives the two-factor version of the Hull-White model.

The parameterization we use is the G2++ model from Brigo and Mercurio (2006), which

is equivalent to the model proposed by Hull and White (1994). Again, we describe the

model briefly, and then present some formulae and results.

We now assume that the short rate process r(t) combines two correlated stochastic pro-

cesses, x(t) and y(t) as follows.

r(t) = x(t) + y(t) + ϕ(t) (16)

dx(t) = −a1x(t)dt+ σ1dW1(t), x(0) = 0 (17)

dy(t) = −a2y(t)dt+ σ2dW2(t), y(0) = 0 (18)

where (W1, W2) is a two-dimensional Brownian motion with instantaneous correlation ρ.

The parameters a1, a2, σ1, σ2 are all positive constants, and −1 ≤ ρ ≤ 1. The starting

value r(0) is taken from the starting yield curve, and the deterministic function ϕ(t) is

determined by fitting the model to the starting yield curve.

Assuming, again, a crediting rate of rc(t) = rk(t) + m, continuously compounded for T

years, the valuation factor per $1 of fund value at t = 0 is

V (0, T ) = exp

{∫ T

0

−A(t, t+ k)

k
dt

}
exp{Tm} exp{A∗(0, T )} (19)

(20)

where

A(t, t+ k) = log
p(0, t+ k)

p(0, t)
+

1

2
(ν(k) + ν(t)− ν(t+ k)) (21)

A∗(t, t+ k) = log
p(0, t+ k)

p(0, t)
+

1

2
(ν∗(k) + ν(t)− ν(t+ k)) (22)

and where ν and ν∗ are deterministic functions of the parameters, as follows. Let
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Bk(α) = 1−e−αk
α

, then

ν(k) =
σ2
1

a21

(
k − 2Bk(a1) +Bk(2a1)

)
+
σ2
2

a22

(
k − 2Bk(a2) +Bk(2a2)

)
+

2ρσ1σ2
a1a2

(
k −Bk(a1)−Bk(a2) +Bk(a1 + a2)

)
(23)

and similarly, let γj = 1−Bk(aj)/k, for j = 1, 2, then

ν∗(k) =
γ21σ

2
1

a21

(
k − 2Bk(a1) +Bk(2a1)

)
+
γ22σ

2
2

a22

(
k − 2Bk(a2) +Bk(2a2)

)
+

2ργ1γ2σ1σ2
a1a2

(
k −Bk(a1)−Bk(a2) +Bk(a1 + a2)

)
(24)

See the Appendix for the derivation of this formula.

Clearly, this is a more complex model, but the results, though not very elegant, are

relatively simple to implement. We use parameters for the G2++ model which match the

long term standard deviation of the short rate and of the 5-year, 10-year and 30-year spot

rates from the one-factor model, with a = 0.02 and σ = 0.006, which are the parameters

used for Table 1 and Figures 1, 2 and 3. We also generate a correlation of around 60%

between the short rates and the 30-year rates, which is similar to the sample correlation

from the past 15 years data. The parameter values are

a1 = 0.055 a2 = 0.108 σ1 = 0.032 σ2 = 0.044 ρ = −0.9999

Note that the σ and ρ parameters do not refer to the Hull-White model parameterization,

they are from the G2++ version of the model, as described in equations (16)-(18). The

Hull-White model parameters can be calculated from the G2++ parameters; see Brigo

and Mercurio (2006) for details.

The results are shown in Table 4. Comparison with Table 1 shows that the impact of the

additional factor is relatively small, at around 1.5% for the longer horizons and longer

crediting rates, and rather less for shorter horizons and shorter crediting rates.
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Crediting Rate Time T to exit

(Spot Rates) 5-Yrs 10-Yrs 20-Yrs

30-yr rate 1.166 1.237 1.405

20-yr rate 1.128 1.186 1.376

10-yr rate 1.093 1.100 1.225

5-yr rate +0.25% 1.072 1.087 1.169

1-yr rate +1% 1.062 1.119 1.247

0.5-yr rate +1.5% 1.083 1.169 1.364

Table 4: Valuation factors per $1 of account balance at 1 April 2013, using the Hull-White

two-factor model.

4 Funding Methods for CB Plans

4.1 Defining the accrued benefit

The cash balance pension design is categorized as a defined benefit plan under US regula-

tion. There is a range of acceptable funding methods for DB pensions, and in this section

we will consider alternatives to the definition of the accrued liability which we have used

so far in the paper, and derive the associated formulas for the Actuarial Liability, AL,

and the Normal Contribution (or Normal Cost), NC, using different approaches to the

accrued benefit. The Normal Contribution rate is the ratio of the Normal Contribution

to the participant’s salary. It is (generally) different from the notional contribution rate,

which is the stated percent of salary notionally invested in participant funds.

Accruals-based valuation methods for traditional DB value the liability which relates to

past service only. The two most common approaches for traditional final salary related

benefits under the accruals method are

• Traditional unit credit (TUC), where the actuarial liability does not allow for future

service or for indexation of past service benefits from future salary growth. The

Normal Contributions fund the increase in the past service benefits arising from

salary growth, and also fund the additional benefit arising from additional service

during the contribution period.

• Projected unit credit (PUC), where the future benefit increases from salary growth

are included (at least approximately) in the liability valuation. The Normal Con-
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tributions fund the additional benefit arising from additional service during the

contribution period.

In principle, if experience exactly matches the assumptions, the Normal Contributions

together with the liability valuation will exactly meet the future benefit. Additional

contributions will be paid in the case that experience is adverse, compared with the

assumptions.

In practice, the PUC approach is most common amongst the accruals based methods for

traditional final salary pensions. Enderle et al. (2006) make an economic case for the

TUC approach. Part of their case is based on the fact that the employer that sponsors

the pension plan has the ability to control the salary growth which indexes the pensions.

There are different ways to interpret the unit credit principles in the CB context. In

this section, we describe the actuarial liability, ALt, under each of three methods, two

which are analogous to the TUC and PUC methods, and one which is, arguably, not

an accruals-based method, but which is commonly applied in practice. We also briefly

outline the associated Normal Contributions. As the PUC/TUC language is ambiguous

here, we will use different descriptors.

Let Ft denote the notional amount of a participant’s fund at the valuation date t, ex-

cluding any contribution paid at t; St denotes the salary at t and c denotes the notional

contribution rate into the participant’s fund, as a proportion of salary.

Where necessary, we assume a valuation interest rate such that vi(k) is the valuation

discount factor from k back to the valuation date. For traditional valuation this will be vki
for a valuation interest rate i, but to compare the three approaches using market consistent

assumptions, it is appropriate to discount using the prevailing yield curve. In this case

vi(k) is the price of a k-year unit zero coupon bond, or, equivalently, vi(k) = e−kr(k),

where r(k) is the k-year spot rate at t, continuously compounded.

The Normal Contribution at t is denoted NCt, and is set to be the contribution required

such that NCt + ALt accumulates to ALt+1 at t + 1 under the valuation assumptions.

We assume, for simplicity, that Normal Contributions are paid in full at the start of each

year, and we ignore exits before T . Then, loosely,

ALt +NCt = vi(1)Et[ALt+1]

for each of the methods described below. The expectation will be under Q-measure for

market-consistent valuation. For Methods 2 and 3 we assume annual crediting, at rate
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ic(t), in the AL and NC formulas, slightly different to the assumption of Method 1, which

is the approach from the previous sections, where we used continuous crediting to derive

the analytic valuation formulas.

Method 1. Past service, with credited interest to retirement

This is the liability which has been valued in the previous sections of this paper. Under

this approach, the actuarial liability at t is the value of the member’s fund at t, with

allowance for interest at the specified crediting rate to retirement, discounted back to the

valuation date.

If the valuation uses market consistent assumptions and methods, the actuarial liability

represents (broadly) the cost at the valuation date of securing the retirement benefit

through the capital markets. Using the notation of the previous sections, recalling that

V (t, T ) is the value at t of the CB benefit due at T , per $1 of notional fund at t, it follows

that the actuarial liability at t for a participant with T − t years to retirement is

ALt = FtV (t, T )

The associated Normal Contribution is the cost of the new notional contribution in the

participant’s account, which is

NCt = cSt V (t, T ).

Method 2. Past service, no future credited interest

Under this approach the actuarial liability at t is

ALt = Ft.

This is the wind-up liability at t, assuming benefits are vested.

The associated Normal Contribution is in two parts. The first part funds the increase in

Ft from the new notional contribution. The second part funds the increase in Ft and the

new contribution from the credited interest in the year t to t+ 1

NCt = cSt + (Ft + cSt)
(
(1 + ic(t))vi(1)− 1

)
Method 3. Full service, credited interest to retirement, accrued pro-rata to

service

Under this approach the full final benefit is projected using a model for future salaries
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and a deterministic assumption for future crediting rates. The projected final benefit is

assumed to accrue linearly over the period of service of the plan participant.

That is, suppose the participant is projected to retire at T , and has n years service at

the valuation date, t. The participant’s account at t is Ft. Let ĩct+k denote the assumed

crediting rate in year t+ k. Then the projected final benefit is

F̃ (T ) = Ft(1 + ĩct)(1 + ĩct+1)(1 + ĩct+2) · · · (1 + ĩcT−1)

+
T−1∑
k=0

cSt+k(1 + ĩct+k)(1 + ĩct+k+1) · · · (1 + ĩcT−1)

The actuarial liability is

ALt =
n

n+ T − t
F̃ (T ) vi(T − t)

and the Normal Contribution is

NCt =
1

n+ T − t
F̃ (T ) vi(T − t)

In the first approach, as explained in previous sections, the AL values the benefit from

past contributions as a financial liability with a T − t year horizon, and the NC values

the new (notional) contribution, also as a financial liability with a T − t year horizon.

In the second approach, if applied with market rates and models, the AL and NC jointly

value the liability under the plan over a 1-year horizon. It may be reasonable to take the

second approach, which does not assume existence of the plan and benefits beyond the

one-year horizon.

As the first method projects the benefit accumulation to retirement, and the second

method only projects to the next valuation date, the first method is analogous to the

PUC approach, and the second to the TUC approach, in the traditional DB setting. This

is because the credited interest rate in a CB context takes on the role that salary growth

has in the traditional DB valuation, in that it acts as the indexation process for the

benefit while the participant is an active plan member. However, unlike the traditional

DB situation, where the indexation variable is controllable by the sponsor, in the CB plan

the indexation variable is exogenous.

The third approach is harder to explain, and requires many more assumptions. It ex-

plicitly incorporates future notional contributions, which are dependent on future service,

which means that it is not, technically, an accruals based method. It has developed as a

somewhat ad hoc adjustment of traditional final salary DB valuation. It is often referred

to in practice as a projected unit method, because of the use of projected salaries.
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Member Past Future Salary at Fund at

Service Service Valuation Valuation

A 1 19 $50 000 $3000

B 10 10 $60 000 $55 000

C 19 1 $75 000 $100 000

Table 5: Sample plan participant information.

4.2 Examples

We illustrate the three funding methods described, using three sample plan participants.

We use some simplifying assumptions for clarity. We assume a notional contribution rate

of 6% of salary, and that all participants remain in the plan for 20 years. The crediting

rate used is the 30-year spot rate, with no additional margin. Benefits are assumed vested

immediately. The pertinent information for the sample plan members is given in Table 5.

We assume, first, a market consistent valuation, using the yield curve at 1 April 2013 (as

used in Tables 1, 2 and 3 above). We set t = 0 at the valuation date.

Method 1

The Actuarial Liability allows for full credited interest to retirement on past contributions,

but with no allowance for future contributions.

Participant A

Actuarial Liability AL0 = 3000V (0, 19) = 3000× 1.365 = 4095

Normal Contribution NC0 = 0.06(50000)× V (0, 19) = 3000× 1.365 = 4095

Participant B

Actuarial Liability AL0 = 55 000V (0, 10) = 55 000× 1.235 = 67925

Normal Contribution NC0 = 0.06(60000)× V (0, 10) = 3600× 1.235 = 4446

Participant C

Actuarial Liability ALt = 100 000V (0, 1) = 100 000× 1.035 = 103 500

Normal Contribution NCt = 0.06(75000)× V (0, 1) = 4500× 1.035 = 4658
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Method 2

The Actuarial Liability allows for no future credited interest or future contributions. We

need the crediting rate and the 1-year discount factor for the Normal Contributions. Using

the 1 April 2013 yield curve for US government securities, we have ic(0) = 3.62% (the

30-year spot rate) and vi(1) = 0.99854 (the 1-year zero-coupon bond price).

Participant A

ALt = 3000

NCt = 3000 + (3000 + 3000)((1.0362)(0.99854)− 1) = 3208

Participant B

ALt = 55 000

NCt = 3600 + (55000 + 3600)((1.0362)(0.99854)− 1) = 5633

Participant C

ALt = 100 000

NCt = 4500 + (100000 + 4500)((1.0362)(0.99854)− 1) = 8125

Method 3

The Actuarial Liability allows for full service and full credited interest to retirement,

accrued pro-rata to service. For projecting the final benefit, we assume future crediting

rates constant at 3.62% per year, with salary growth assumed constant at 3% per year.

The market discount factors are vi(1) = 0.99854, vi(10) = 0.82163 and vi(19) = 0.61203.

Participant A

Estimated final benefit F̃ (19) = (3000)(1.0362)19 + 3000

(
(1.0362)19 − (1.03)19

1− (1.03)/(1.0362)

)
= 112121

ALt =
1

20
112121 vi(19) = 3430

NCt =
1

20
112121 vi(19) = 3430
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Participant B

Estimated final benefit F̃ (10) = 55000(1.0362)10 + 3600

(
(1.0362)10 − (1.03)10

1− (1.03)/(1.0362)

)
= 128499

ALt =
10

20
128499 vi(10) = 52789

NCt =
1

20
128499 vi(10) = 5279

Participant C

Estimated final benefit F̃ (1) = 100000(1.0362) + 4500(1.0362) = 108283

ALt =
19

20
108283 vi(1) = 102 719

NCt =
1

20
108283 vi(1) = 5 406

To assess the differences between these approaches, we consider the valuation factors,

defined as the ratio of the actuarial liability, ALt to the notional participant fund, Ft,

immediately before payment of the contribution at t, and also the contribution rates,

defined as the ratio of the Normal Contribution, NCt to the participant’s salary, St. In

Table 6 we show the valuation factors and the Normal Contribution rates for each method,

for each participant, at the valuation date.

The valuation factors for Method 1 correspond to the V (0, T ) factors calculated in Section

3. We see, as before, that the factors are higher at earlier ages. Intuitively, V (0, T )

represents the cost of pre-paying for the difference between the crediting rate and the risk

free discounting rate up to time T . As the crediting rate is greater than the short rate

most of the time, the cost of this pre-payment is higher for longer periods to retirement.

The valuation factors will be greater than 1.00, unless the crediting rate is systematically

lower than the risk free rate through the time to retirement. In order to build up the

larger fund at early durations, the Normal Contribution rates for Method 1 are also

higher for members further from retirement. It would be possible to allow for early exits

in the method 1 valuation, where the valuation factors from different exit dates would be

weighted by the exit probabilities. For immediate exits, V (0, 0) = 1.0, so the result would

be a weighted average of valuation factors from V (0, 0) = 1.0 up to V (0, Tmax).
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Participant Valuation Factors Normal Cont Rates

Method 1 Method 2 Method 3 Method 1 Method 2 Method 3

A 1.365 1.00 1.143 0.082 0.064 0.069

B 1.235 1.00 0.960 0.074 0.094 0.088

C 1.035 1.00 1.083 0.062 0.108 0.072

Table 6: Valuation factors, ALt/Ft, and Normal Contribution rates, NCt/St for three

funding methods, for short, medium and long service participants.

For Method 2 the valuation factors are 1.00 by construction. This method therefore values

the termination liability. The Normal Contributions pay for the increase in the fund Ft
from the notional 6% of salary contributions, and also funds the cost of applying the

crediting rate to the existing fund and the new notional contribution. Clearly, this cost

will increase with service, as the fund grows. We see this in the Method 2 contribution

rates, which are close to the notional contribution rate of 6% at early durations, but

become much greater, at over 10% of salary, closer to retirement. This is analogous to the

TUC funding method for traditional DB benefits. It has the advantage that the actuarial

liability makes no assumption that the pension plan continues indefinitely into the future,

and also gives costs that are low for new participants, reducing the pension costs of

recruiting new employees, but if the demographic profile of the plan ages, the increasing

contribution rates could be a problem. It is possible that the crediting rate could be less

than the valuation rate of interest, that is, when long rates are lower than short rates,

for example, in which case the second part of the Normal Contribution formula would

be negative, as the balance will be funded from the excess of the one-year rate over the

crediting rate. More often, the crediting rate will be greater than the one-year rate, as in

the example shown here, in which case the second term can be substantial.

For Method 3 the valuation factors depend on the actuarial assumptions about salaries,

and about future crediting rates. The results are difficult to interpret. There is no

predictable pattern for longer and shorter durations to retirement. For participants with

a long horizon to retirement, the results are very sensitive to the salary and crediting

rate assumptions. As the assumptions are subjective, the results are less reliable for

comparison of funding security between schemes, or for assessment of risk, for example

for PBGC premium calculations. There is no mechanism that ensures that the valuation

is greater than the termination liability. In the example, for participant B the valuation

factor is 0.960, which means that the actuarial liability is 4% less than the participant’s

immediate termination benefit. The contribution rates are also difficult to interpret. The

Normal Contribution rate is a function of the ratio of the fund value to salary, and of
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Participant Valuation Factors Normal Cont Rates

Method 1 Method 2 Method 3 Method 1 Method 2 Method 3

A 1.135 1.00 0.954 0.068 0.064 0.057

B 1.142 1.00 0.888 0.068 0.094 0.081

C 1.035 1.00 1.027 0.062 0.108 0.072

Table 7: Valuation factors and Normal Contribution rates, after adjustment for AA cor-

porate bond discounting

the assumptions about crediting rates and salary growth, and of the past and potential

future service.

In the preceding results we have assumed that the funding valuation uses risk-free rates

for discounting, consistent with the financial principles used in Section 3. However, it is

more common for pension liabilities to be discounted at corporate bond rates. We can

make some simple adjustments to the results for the three methods. Corporate Bonds

with a rating of AA or similar tend to have spreads over risk free rates that run from

around 25 basis points for short durations, to around 100 bps at longer durations. For

Method 2 (Normal Contributions), and for Participant C (all methods), the liabilities are

discounted for 1 year only, so the difference between the market valuation and a bond

valuation is small. For Methods 1 and 3, the change from market to corporate bond

rates would decrease the Actuarial Liability and the Normal Contribution by a factor of

around 7.5% for Participant B with 10-years to retirement (assuming 80bp spread) and

by around 17% for Participant A, with 19 years to retirement (assuming 100bp spread).

The effect on Participant C is less than 1%. The approximate valuation factors using

corporate bond discounting are given in Table 7. Using corporate bond rates, we still get

valuation factors greater than 1.0 for Method 1, because the crediting rates, on average,

exceed the corporate bond rates, based on the model and yield curve at the valuation

date. For Method 3, we see that the valuation factors for participants A and B are now

significantly below 1.0.

5 Conclusions

The Cash Balance plan was designed to capture the advantages of the DC design, within

a DB legal framework. It is likely that many participants believe that the CB and DC

plans are essentially the same, or, at most, that the only difference is that in the CB plan
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the interest rate is specified in advance, without the need for the participant to select

asset funds or risk asset values declining. Plan sponsors also assume that CB plans will

be similar to DC plans, in particular, in respect to predictable contributions and minimal

investment risk. These assumptions are neatly summarized in the explanatory materials

provided by Kwasha Lipton, an actuarial firm that was instrumental in promoting CB

plans. In Kwasha Lipton (1985) (cited in Gold (2001)), it is claimed that in the CB plan

“ The company’s contribution is clear-cut and easily understood”, that “A 5% of pay plan

might require a contribution of only 4% of pay, after a realistic investment differential is

taken into account”, and that (in Gold’s precis) “tangible, comprehensive benefits mirror

Defined Contribution plans”.

In fact, all of these assumptions are wrong, in important ways.

The investment risk associated with a CB plan is considerable, especially where crediting

rates are based on long bond rates, or are fixed. We have shown that using stable crediting

rates does not give stable valuations, because the valuation depends on the relationship

between crediting and short rates. From Figure 1 we see that the Normal Contribution

for a 30-year crediting rate, 20-year horizon increased by around 33% between 2000 and

2010. For a 10-year horizon, the cost increased by around 15% over the same period.

It is possible to achieve stable costs, by using shorter rates for crediting. In Figures

1 to 3, we see that the valuation factors based on 1-year and 6-month treasury rates

are almost flat over the 16 years covered. However, the additional margin makes these

rates quite costly. With a 20-year horizon, using a crediting rate equal to the 1-year

government rate plus a margin of 100 basis points, every $1 of notional contribution costs

the employer $1.25. If the participants pay a portion of the notional contribution, then

there is a leveraging effect on the employer. That is, suppose the notional contribution

is 6% of salary, then the required Normal Contribution is 7.5% of salary. Assuming the

employees’ part is fixed at 3%, the employer must pay 4.5% to cover the balance of cost,

considerably more than the notional 3% employer rate.

The statement that the plan might cost less than the notional contribution relies on a

valuation which uses a high rate for discounting benefits. It is not true, as we have demon-

strated, on a market value basis, nor even using corporate bond rates for discounting, if

the accrued benefit is defined as the cost generated by accumulated past contributions. In

the 1990’s (and later), the belief was that equity investment would inevitably outperform

the crediting rate instrument, and the equity premium could be anticipated to reduce

costs. More recent understanding of financial economics and financial markets (as well as

more recent experience of equity under-performance) has led actuaries and regulators to
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move away from this ‘financial illusion’ (Gold, 2001), which claims, in essence, that $1 of

stock has more actuarial value than $1 of bonds.

From the participant perspective, there is a significant difference between the CB and DC

plans, arising from the fact that in the CB plan their fund is only notional. Consistent

with the views in Lowman (2001), it appears to be common practice to hold less in assets

than the total of the participant funds, usually because of a non-accruals based valuation

method (such as Method 3 above), together with high discount rates. This significantly

impacts the security of the benefit promise. A DC fund is, by construction, always 100%

funded, which means that the participant accounts are equal to the fund assets. A CB

plan, using the more arcane actuarial funding approach of Method 3, could be ‘100%

actuarially funded’, and yet only hold assets equal to, perhaps 85% of the participants’

funds. Even worse, as a DB plan, the CB plan could be underfunded for periods, without

significant consequence, resulting in a plan where the assets comprised, perhaps, only

75% of the participants’ funds. The justification is that not all participants will exit at

the same time – but, in fact, a large proportion may do so, if a substantial part of the

business is restructured, for example, resulting in potentially catastrophic underfunding of

the remaining participants’ benefits. If each exiting participant reduces the funding level

of an ‘actuarially fully-funded’ plan, then either the actuarial liability, or the valuation

assumptions, or both, are flawed. Funding less than the participants’ accounts leads to in-

adequate assessment of premiums and risks with respect to the Pension Benefit Guaranty

Corporation. It is assumed in the PBGC calculation that a fully funded plan can afford

termination benefits for all members (at least, before allowing for termination expenses).

Using Method 3 to determine the funding level is inconsistent with this principle. Inglis

and Macdonald (2011) propose that the objective of CB pension valuation is to find a

method that gives a valuation equal to the total account balance. In fact, Method 2 does

this directly, by defining the actuarial liability to be the account balance, but the fact is

that Cash Balance plans offer guarantees that can be costly. Using Method 2, the AL does

not account for the future interest credits, which means that they must be funded from

the Normal Contribution, and, as the examples above demonstrate, that will generally

lead to contributions that increase steeply with the participant’s service, to values that

are significantly above the notional contribution rate. The Normal Contribution rates

will also be very sensitive to the emerging crediting rates, and therefore very volatile –

exactly the pattern of contributions that the plan sponsors seek to avoid when moving to

CB from traditional DB.

The analysis in this paper leads us to the strong conviction that Method 3 should be

reviewed as it is not suited to the CB design, in particular with respect to the nature
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of the withdrawal liability. It should not be acceptable for a fully funded plan to hold

less than the aggregate vested participants’ account balances. Method 2 may lead to

volatile contributions, but it is transparent, and avoids pre-funding many years of interest

credit. Method 1 is transparent, and consistent with the principles of projected unit

credit funding, and in our view, provides a better approach to valuation and funding,

with a long-term perspective. It might be appropriate to adapt Method 1 to be partially-

projected, for example by setting a maximum horizon of 5-years. This would determine the

capital required to continue crediting the participant’s funds for up to 5-years, implicitly

acknowledging the sponsor’s right to discontinue the plan in the future.

We have not discussed how the plan sponsor can mitigate the investment risks described.

For crediting rates based on long bonds, this is a complex question. It is much simpler

for short bonds as the employer can match the assets and liabilities by investing in the

crediting rate assets. See Inglis and Sparling (2011) for more discussion of this from a

consultant perspective. In future work we hope to explore effective risk management

strategies for the long crediting rate plans.
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Appendices

A Step through calculation of the valuation factors

using spot rates

We illustrate the calculation assuming the retirement horizon is T = 20 years, the crediting

rate is based on the 5-year spot rate, r5(t), so k = 5, with an additional margin of

m = 0.0025.

The instantaneous spot rate, r(t) may be interpreted as the very short risk-free rate earned

on cash deposits. This is a stochastic process, which we model in this paper using the

Hull-White model. The interpretation is that $1 invested at the risk free short rate from

t = 0 to T , say, will accumulate to the random amount e
∫ T
0 r(t)dt.

We use the inverse of this, e−
∫ T
0 r(t)dt as a stochastic discount factor in the following

equations.

The Hull-White parameters are a = 0.02, σ = 0.006.

We assume that the yield curve is available in the form of spot rates at (say) monthly

intervals, so that we have rn(0) for n = 0, 1
12
, 2

12
, ...30. These rates are available from

market data providers, but may need interpolation for monthly values. The rates are

compounded continuously. From these spot rates we can calculate the price of a k−year

zero coupon bond, p(0, k), as

p(0, k) = e−krk(0).

We can also calculate k−year forward rates, compounded continuously, fixed at time 0

and applying from t to t+ k,

f(0, t, t+ k) =
(t+ k)rt+k(0)− trt(0)

k

The valuation formula, from equation (12), is

V (0, T ) = exp(mT ) exp

(∫ T

0

−A(t, t+ k)

k
dt

)
EQ

0

[
exp

{
−
∫ T

0

γ r(t) dt

}]
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where

B(t, t+ k) =
1− e−a k

a

A(t, t+ k) = log
p(0, t+ k)

p(0, t)
+ f(0, t)B(t, t+ k)− σ2

4a
B(t, t+ k)2 (1− e−2at)

γ =

(
1− B(t, t+ k)

k

)

Consider the three terms of V (0, T ), separately, that is, let

V (0, T ) = C1× C2× C3

where

C1 = emT = e0.0025×20 = 1.0513

C2 = exp

(∫ T

0

−A(t, t+ k)

k
dt

)
,

and∫ T

0

−A(t, t+ k)

k
dt

=

∫ T

0

− log
p(0, t+ k)

p(0, t)
− f(0, t)B(t, t+ k) +

σ2

4a
B(t, t+ k)2 (1− e−2at)dt

=

∫ T

0

− log
p(0, t+ k)

p(0, t)
dt−

∫ T

0

f(0, t)B(t, t+ k)dt+

∫ T

0

σ2

4a
B(t, t+ k)2 (1− e−2at)dt

which we write as

D1 +D2 +D3 .

D1 =

∫ T

0

− log
p(0, t+ k)

p(0, t)
dt =

∫ T

0

− log
(
e(−(t+k)rt+k(0))−(−trt(0))

)
dt

=

∫ T

0

((t+ k)rt+k(0)− trt(0)) dt .

The integrand here is k times the continuously compounded k-year forward rate at time

0, from t to t+ k, which we denote f(0, t, t+ k).
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We integrate this numerically, using repeated Simpson’s rule (see Dickson et al, 2013) with

monthly steps. Simpson’s rule is a numerical integration method similar to the trapezium

rule, but instead of fitting a straight line between two consecutive points of a curve,

Simpson’s rule fits a quadratic through three consecutive points. It is a far more efficient

method than the trapezium rule. The repeated Simpson’s method applies Simpson’s rule

to consecutive sets of three points, with the resulting general equation for a function f(t),

using n steps of length h,∫ hn

0

f(t)dt ≈ h

3

(
f(0) + 4f(h) + 2f(2h) + 4f(3h) + · · ·+ 4f((n− 1)h) + f(nh)

)
so integrating the forward rates, with k = 5, T = 20, h = 1/12, using repeated Simpson’s

rule gives∫ 20

0

k f(0, t, t+ k)dt =

∫ 20

0

5 f(0, t, t+ 5)dt

≈ 5

(
1/12

3

)(
f(0, 0, 5) + 4f(0, 1

12
, 5 1

12
) + 2f(0, 2

12
, 5 2

12
) + 4f(0, 3

12
, 5 3

12
) + · · ·

+ 4f(0, 1911
12

) + f(0, 20)
)

Based on the spot rates from the April 2013 yield curve, we find

D1 = 3.1568 .

Next,

D2 = −
∫ T

0

f(0, t)B(t, t+ k)dt

Now B(t, t+ k) does not depend on t, and for k = 5

B(t, t+ 5) =
1− e−a k

a
=

1− e−(0.02)(5)

0.02
= 4.7581 .

Also

exp

(
−
∫ T

0

f(0, t)dt

)
= p(0, T )⇒

∫ T

0

f(0, t)dt = − log p(0, T ) = T rT (0) .

For T = 20 we use the 20-year spot rate from the initial yield curve, r20(0) = 0.026476 so

we have

D2 = −4.7581× 20× 0.026476 = −2.5195 .
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Finally,

D3 =
σ2

4a

∫ T

0

B(t, t+ k)2
(
1− e−2at

)
dt

=
σ2

4a
B(t, t+ k)2

(
T −

(
1− e−2aT

2a

))
.

Substituting B(t, t+ 5) = 4.7581, T = 20,a = 0.02, σ = 0.006, we find

D3 = 0.0635 .

Then

C2 = exp

(∫ T

0

−A(t, t+ k)

k
dt

)
= exp

(
3.1568− 2.5195 + 0.0635

5

)
= 1.15044 .

Next, we use equation (14), which is derived in Appendix B

C3 = EQ
0

[
e−

∫ T
0 γ r(t) dt

]
= p(0, T )γ exp

(
σ2γ

2a2

((
1− e−aT

a

)
(1− 2γ) +

(1− e−aT )2

2a
+
γ(1− e−2aT )

2a
− T (1− γ)

))
And in the case k = 5, T = 20, we have

γ = 1− 4.7581
5

= .04837 p(0, 20) = e−20r20(0) = 0.588888

⇒ C3 = 0.97310

So

V (0, 20) = 1.0513× 1.15044× 0.97310 = 1.177

which corresponds to the value in Table 1 for T = 20, k = 5.
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B Hull-White and G2++ Results

B.1 Hull-White Model Derivation

Let Z =
∫ T
0
r(t) dt. According to Brigo and Mercurio, (page 75) Z is normally distributed

with a mean µ (which will not concern us), and variance:

s2 =
σ2

a2

(
T +

2

a
e−aT − 1

2a
e−2aT − 3

2a

)
Now, using the notation Mλ(Z) = exp(µλ+ λ2σ2

2
) for the moment generating function we

have:

EQ
0

[
e−

∫ T
0 γr(t) dt

]
p(0, T )γ

=
M−γ(Z)

(M−1(Z))γ
= eγ(γ−1)

s2

2

A straightforward calculation then yields:

eγ(γ−1)
s2

2 = exp

(
γ(γ − 1)

σ2

2a2

(
T − 1− e−aT

a
− (1− e−aT )2

2a

))
= exp

(
σ2γ

2a2

((
1− e−aT

a

)
(1− 2γ) +

(1− e−aT )2

2a
+
γ(1− e−2aT )

2a
− T (1− γ)

))
That is

EQ
0

[
e−

∫ T
0 γ r(t) dt

]
= p(0, T )γ exp

(
σ2γ

2a2

((
1− e−aT

a

)
(1− 2γ) +

(1− e−aT )2

2a
+
γ(1− e−2aT )

2a
− T (1− γ)

))
as required.

B.2 G2++ Model Derivation

We have that:

V (0, T ) = EQ
0

[
exp

(∫ T

0

rc(t)− r(t) dt
)]

= emT
[
exp

(∫ T

0

rk(t)− r(t) dt
)]

Now rk(t) = k−1 log(P (t, t+ k)), so Brigo and Mercurio, in their equation (4.11) give:

rk(t) = k−1
(∫ t+k

t

ϕ(u) du+Bk(a1)x(t) +Bk(a2)y(t)− 1
2
ν(k)

)
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Substituting this into the expression for V (0, T ) above, using the definition of r(t) and

some straightforward manipulations then yields:

V (0, T ) = emT exp

(
−
∫ T

0

A(t, t+ k)

k
dt

)
exp

(
−
∫ T

0

ϕ(t), dt

)
EQ

0

[
exp

(
−
∫ T

0

γ1x(t) + γ2y(t) dt

)]
Since we are matching the current term structure, (Brigo and Mercurio, page 146, 4.13)

gives that

exp

(
−
∫ T

0

ϕ(t) dt

)
= exp(A∗(0, T )) exp(−1

2
ν∗(k))

So we are done if we can show that:

EQ
0

[
exp

(
−
∫ T

0

γ1x(t) + γ2y(t) dt

)]
= exp(1

2
ν∗(k))

Define

x̃(t) = γ1x(t) and ỹ(t) = γ2y(t)

so that

dx̃(t) = −a1x̃(t)dt+ γ1σ1dW1(t)

dỹ(t) = −a2ỹ(t)dt+ γ2σ2dW2(t)

x̃(t) = ỹ(t) = 0.

Then, using Brigo and Mercurio’s Lemma 4.21, we have that

Z̃ =

∫ T

0

x̃(t) + ỹ(t) dt ∼ N(0, ν∗(k))

from whence the result follows since the expectation is just M−1(Z̃).
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