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1.  Consider a European call option and a European put option on a nondividend-paying 

stock.  You are given: 

 

(i) The current price of the stock is 60. 

(ii) The call option currently sells for 0.15 more than the put option. 

(iii) Both the call option and put option will expire in 4 years. 

(iv) Both the call option and put option have a strike price of 70. 

 

 Calculate the continuously compounded risk-free interest rate. 

 

(A) 0.039 

(B) 0.049 

(C) 0.059 

(D) 0.069 

(E) 0.079 
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Solution to (1)    Answer: (A) 
      

The put-call parity formula (for a European call and a European put on a stock with the 
same strike price and maturity date) is 

 C  P    0, ( )P
TF K  

    PV0,T (K) 

    KerT 

=  S0  KerT, 

because the stock pays no dividends 

 

We are given that C  P  0.15, S0  60, K  70 and T  4.  Then, r  0.039. 

 
 
Remark 1:  If the stock pays n dividends of fixed amounts D1, D2,…, Dn at fixed times t1, 
t2,…, tn prior to the option maturity date, T, then the put-call parity formula for European 
put and call options is  

 C  P    KerT 

      S0  PV0,T(Div)  KerT,  

where PV0,T(Div) 



n

i

irt

ieD
1

is the present value of all dividends up to time T.  The 

difference, S0  PV0,T(Div), is the prepaid forward price )(,0 SF P
T . 

 
 
Remark 2:  The put-call parity formula above does not hold for American put and call 
options.  For the American case, the parity relationship becomes 
 

S0  PV0,T(Div)  K ≤ C  P ≤ S0  KerT. 
 

This result is given in Appendix 9A of McDonald (2006) but is not required for Exam 
MFE/3F. Nevertheless, you may want to try proving the inequalities as follows: 
For the first inequality, consider a portfolio consisting of a European call plus an amount 
of cash equal to PV0,T(Div) + K. 
For the second inequality, consider a portfolio of an American put option plus one share 
of the stock. 

0, ( )P
TF S

0, ( )P
TF S

0, ( )P
TF S

0, ( )P
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2.   Near market closing time on a given day, you lose access to stock prices, but some 

European call and put prices for a stock are available as follows: 

  

Strike Price Call Price Put Price 

$40                   $11                   $3 

$50                   $6                   $8 

$55                   $3                   $11 

 
 All six options have the same expiration date. 
 
 After reviewing the information above, John tells Mary and Peter that no arbitrage 

opportunities can arise from these prices.   

 
 Mary disagrees with John.  She argues that one could use the following portfolio to 

obtain arbitrage profit: Long one call option with strike price 40; short three call 

options with strike price 50; lend $1; and long some calls with strike price 55.  

 
 Peter also disagrees with John.  He claims that the following portfolio, which is 

different from Mary’s, can produce arbitrage profit: Long 2 calls and short 2 puts 

with strike price 55; long 1 call and short 1 put with strike price 40; lend $2; and 

short some calls and long the same number of puts with strike price 50.  

  
 Which of the following statements is true? 
 
 

(A)  Only John is correct. 
 
(B)  Only Mary is correct. 
 
(C)  Only Peter is correct. 
 
(D)  Both Mary and Peter are correct. 
 
(E)  None of them is correct. 
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Solution to (2)  Answer:  (D) 
 
The prices are not arbitrage-free.  To show that Mary’s portfolio yields arbitrage profit, 
we follow the analysis in Table 9.7 on page 302 of McDonald (2006).   
                           
 

Time 0 
Time T 

 ST  < 40 40≤ ST < 50 50≤ ST < 55 ST  55 
Buy 1 call 
Strike 40 

11 0 ST – 40 ST – 40 ST – 40 

Sell 3 calls 
Strike 50 

+ 18 0 0 3(ST – 50) 3(ST – 50) 

Lend $1 1 erT erT erT erT 
Buy 2 calls 
strike 55 

6 0 0 0 2(ST – 55) 

Total 0 erT > 0 erT + ST – 40  
> 0 

 erT + 2(55 ST) 
> 0 

erT > 0 

 
 
Peter’s portfolio makes arbitrage profit, because: 
                           

 Time-0 cash flow     Time-T cash flow 
Buy 2 calls & sells 2 puts 
Strike 55 

23 + 11) = 16 2(ST  55) 

Buy 1 call & sell 1 put 
Strike 40 

11 + 3 = 8 
 

ST 40 

Lend $2                           2 2erT 
Sell 3 calls & buy 3 puts 
Strike 50 

         3(6  8) = 6 3(50  ST) 

Total                           0  2erT 
 
Remarks:  Note that Mary’s portfolio has no put options.  The call option prices are not 
arbitrage-free; they do not satisfy the convexity condition (9.17) on page 300 of 
McDonald (2006).  The time-T cash flow column in Peter’s portfolio is due to the identity 
  max[0, S – K]    max[0, K – S]  =  S  K 
(see also page 44). 
 
In Loss Models, the textbook for Exam C/4, max[0, ] is denoted as +.  It appears in the 
context of stop-loss insurance, (S – d)+, with S being the claim random variable and d the 
deductible.  The identity above is a particular case of 
    x    x+    (x)+, 
which says that every number is the difference between its positive part and negative 
part. 
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3.  An insurance company sells single premium deferred annuity contracts with return 

linked to a stock index, the time-t value of one unit of which is denoted by S(t).  The 

contracts offer a minimum guarantee return rate of g%.  At time 0, a single premium 

of amount  is paid by the policyholder, and π  y% is deducted by the insurance 

company.  Thus, at the contract maturity date, T, the insurance company will pay the 

policyholder 

π  (1 y%)  Max[S(T)/S(0), (1 + g%)T]. 

  

 You are given the following information:    

(i) The contract will mature in one year. 

(ii) The minimum guarantee rate of return, g%, is 3%. 

(iii) Dividends are incorporated in the stock index.  That is, the stock index is 

constructed with all stock dividends reinvested. 

(iv) S(0)  100. 

(v) The price of a one-year European put option, with strike price of $103, on the 

stock index is $15.21. 

 

Determine y%, so that the insurance company does not make or lose money on this 
contract.  
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Solution to (3)  
 
The payoff at the contract maturity date is 
  π  (1 y%)Max[S(T)/S(0), (1 + g%)T] 
   =  π  (1 y%)Max[S(1)/S(0), (1 + g%)1]   because T = 1 

=  [/S(0)](1 y%)Max[S(1), S(0)(1 + g%)] 
=  (/100)(1 y%)Max[S(1), 103]    because g = 3 & S(0)=100 
=  (/100)(1 y%){S(1) + Max[0, 103 – S(1)]}. 

 
Now, Max[0, 103 – S(1)] is the payoff of a one-year European put option, with strike 
price $103, on the stock index; the time-0 price of this option is given to be is $15.21.  
Dividends are incorporated in the stock index (i.e.,  = 0); therefore, S(0) is the time-0 
price for a time-1 payoff of amount S(1).  Because of the no-arbitrage principle, the time-
0 price of the contract must be 
  (/100)(1 y%){S(0) + 15.21} 
  =  (/100)(1 y%)  115.21. 
 
Therefore, the “break-even” equation is 
  (/100)(1 y%)115.21, 
or 
  y%  =  100  (1   1/1.1521)%  =  13.202% 
 
 
 
 
 
 
Remarks:  
(i)  Many stock indexes, such as S&P500, do not incorporate dividend reinvestments.  

In such cases, the time-0 cost for receiving S(1) at time 1 is the prepaid forward 

price 0,1( )PF S , which is less than S(0). 

 
(ii) The identities 
  

   Max[S(T), K]    K  +  Max[S(T) K, 0]    K    (S(T) K)+ 
 

 and 
 

   Max[S(T), K]    S(T)    Max[0, K  S(T)]    S(T)  +  (K  S(T))+ 
 

can lead to a derivation of the put-call parity formula.  Such identities are useful for 
understanding Section 14.6 Exchange Options in McDonald (2006). 
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4.   For a two-period binomial model, you are given: 

 

(i) Each period is one year.   

(ii) The current price for a nondividend-paying stock is 20. 

(iii) u  1.2840, where u is one plus the rate of capital gain on the stock per period if 

the stock price goes up. 

(iv) d  0.8607, where d is one plus the rate of capital loss on the stock per period if 

the stock price goes down. 

(v)  The continuously compounded risk-free interest rate is 5%. 

 

 Calculate the price of an American call option on the stock with a strike price of 22. 

 

 

(A) 0 

(B) 1 

(C) 2 

(D) 3 

(E) 4 
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Solution to (4)   Answer: (C) 
 
First, we construct the two-period binomial tree for the stock price.  
 
 
 
 
 
 
 
 
 
 
 
 
The calculations for the stock prices at various nodes are as follows: 
 
Su  20  1.2840  25.680 
Sd  20  0.8607  17.214 
Suu  25.68  1.2840  32.9731 
Sud  Sdu  17.214  1.2840  22.1028 
Sdd  17.214  0.8607  14.8161 
 
The risk-neutral probability for the stock price to go up is 

4502.0
8607.02840.1

8607.0
*

05.0










e

du

de
p

rh
. 

Thus, the risk-neutral probability for the stock price to go down is 0.5498. 
 
If the option is exercised at time 2, the value of the call would be  
Cuu  (32.9731 – 22)+  10.9731 
Cud = (22.1028 – 22)+  0.1028   
Cdd = (14.8161 – 22)+  0   
 
If the option is European, then Cu  e0.05[0.4502Cuu  0.5498Cud]  4.7530 and  
Cd  e0.05[0.4502Cud  0.5498Cdd]  0.0440. 
But since the option is American, we should compare Cu and Cd with the value of the 
option if it is exercised at time 1, which is 3.68 and 0, respectively. Since 3.68 < 4.7530 
and 0 < 0.0440, it is not optimal to exercise the option at time 1 whether the stock is in 
the up or down state. Thus the value of the option at time 1 is either 4.7530 or 0.0440.  
 
Finally, the value of the call is  
C  e0.05[0.4502(4.7530)  0.5498(0.0440)]  2.0585. 

20 

17.214 

25.680 

22.1028 

32.9731 

Year 0 Year 1 Year 2 

14.8161 
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Remark:  Since the stock pays no dividends, the price of an American call is the same as 
that of a European call.  See pages 294-295 of McDonald (2006).  The European option 
price can be calculated using the binomial probability formula.  See formula (11.17) on 
page 358 and formula (19.1) on page 618 of McDonald (2006).  The option price is 
 

er(2h)[ uuCp 2*
2

2








 + udCpp *)1(*

1

2









 + ddCp 2*)1(

0

2








 ] 

=  e0.1 [(0.4502)210.9731  +  20.45020.54980.1028  +  0]   
=  2.0507 
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5.   Consider a 9-month dollar-denominated American put option on British pounds. 

You are given that: 

 

(i) The current exchange rate is 1.43 US dollars per pound.  

(ii) The strike price of the put is 1.56 US dollars per pound. 

(iii) The volatility of the exchange rate is   0.3.  

(iv) The US dollar continuously compounded risk-free interest rate is 8%. 

(v) The British pound continuously compounded risk-free interest rate is 9%. 

 

 Using a three-period binomial model, calculate the price of the put. 
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Solution to (5)  
 
Each period is of length h = 0.25. Using the first two formulas on page 332 of McDonald 
(2006):  

u  exp[–0.010.25  0.3 25.0 ]  exp(0.1475)  1.158933, 

d  exp[–0.010.25  0.3 25.0 ]  exp(0.1525)  0.858559. 
Using formula (10.13), the risk-neutral probability of an up move is  

4626.0
858559.0158933.1

858559.0
*

25.001.0






e

p .   

The risk-neutral probability of a down move is thus 0.5374. The 3-period binomial tree 
for the exchange rate is shown below. The numbers within parentheses are the payoffs of 
the put option if exercised.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The payoffs of the put at maturity (at time 3h) are  
Puuu  0, Puud  0, Pudd  0.3384 and Pddd  0.6550. 
 
Now we calculate values of the put at time 2h for various states of the exchange rate. 
 
If the put is European, then  
Puu = 0,  
Pud  e0.02[0.4626Puud  0.5374Pudd]  0.1783,  
Pdd  e0.02[0. 4626Pudd  0.5374Pddd]  0.4985.  
But since the option is American, we should compare Puu, Pud and Pdd with the values of 
the option if it is exercised at time 2h, which are 0, 0.1371 and 0.5059, respectively. 
Since 0.4985 < 0.5059, it is optimal to exercise the option at time 2h if the exchange rate 
has gone down two times before. Thus the values of the option at time 2h are Puu = 0,  
Pud = 0.1783 and Pdd = 0.5059.  
  

1.43 
(0.13) 

1.2277 
(0.3323) 

1.6573 
(0) 

1.4229 
(0.1371) 

1.2216 
(0.3384) 

1.9207 
(0) 

2.2259 
(0) 

Time 0 Time h Time 2h Time 3h 

1.6490 
(0)

1.0541 
(0.5059) 

0.9050 
(0.6550) 
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Now we calculate values of the put at time h for various states of the exchange rate. 
 
If the put is European, then  
Pu  e0.02[0.4626Puu  0.5374Pud]  0.0939,  
Pd  e0.02[0.4626Pud  0.5374Pdd]  0.3474.  
But since the option is American, we should compare Pu and Pd with the values of the 
option if it is exercised at time h, which are 0 and 0.3323, respectively. Since 0.3474 > 
0.3323, it is not optimal to exercise the option at time h. Thus the values of the option at 
time h are Pu = 0.0939 and Pd = 0.3474.  

Finally, discount and average Pu and Pd to get the time-0 price,  

  P  e0.02[0.4626Pu  0.5374Pd]  0.2256.  

Since it is greater than 0.13, it is not optimal to exercise the option at time 0 and hence 
the price of the put is 0.2256.  
 
 
 
 
 
 
 
 
Remarks:   

(i)  Because 
hhrhhr

hhrhr

ee

ee







)()(

)()(
 

hh

h

ee

e






1
  

he1

1
, we can also 

calculate the risk-neutral probability p* as follows: 

  p*    
he1

1
  

25.03.01

1

e
  

15.01

1

e
  0.46257. 

 

(ii)  1  p*   1  
he1

1
   

h

h

e

e




1
  

he 1

1
. 

 
(iii) Because   0, we have the inequalities   
 

p*  ½  1 – p*. 
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6.   You are considering the purchase of 100 units of a 3-month 25-strike European call 

option on a stock. 

 

 You are given: 

(i) The Black-Scholes framework holds. 

(ii) The stock is currently selling for 20. 

(iii) The stock’s volatility is 24%.   

(iv) The stock pays dividends continuously at a rate proportional to its price.  The 

dividend yield is 3%. 

(v) The continuously compounded risk-free interest rate is 5%. 

 

 Calculate the price of the block of 100 options. 

 

(A) 0.04 

(B) 1.93 

(C) 3.63 

(D) 4.22 

(E) 5.09 
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Solution  to (6)   Answer: (C) 
 
  

)()(),,,,,( 21 dNKedNSeTrKSC rTT        (12.1) 
with 

T

TrKS
d



 )
2

1
()/ln( 2

1


       (12.2a) 

Tdd  12         (12.2b) 
 
Because S = 20, K = 25,  = 0.24, r = 0.05, T = 3/12 = 0.25, and  = 0.03, we have 

 25.024.0

25.0)24.0
2

1
03.005.0()25/20ln( 2

1


d  =  1.75786 

and 
  d2  =  1.75786 25.024.0   =  1.87786 
 
Using the Cumulative Normal Distribution Calculator, we obtain N(1.75786) = 0.03939 
and N(1.87786) = 0.03020.   
 
Hence, formula (12.1) becomes 
 

(0.03)(0.25) (0.05)(0.25)20 (0.03939) 25 (0.03020) 0.036292362C e e     

Cost of the block of 100 options = 100 × 0.0363 = $3.63. 
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7.   Company A is a U.S. international company, and Company B is a Japanese local 

company.  Company A is negotiating with Company B to sell its operation in 

Tokyo to Company B.  The deal will be settled in Japanese yen.  To avoid a loss at 

the time when the deal is closed due to a sudden devaluation of yen relative to 

dollar, Company A has decided to buy at-the-money dollar-denominated yen put of 

the European type to hedge this risk.   

 

 You are given the following information: 

(i) The deal will be closed 3 months from now. 

(ii) The sale price of the Tokyo operation has been settled at 120 billion Japanese 

yen. 

(iii) The continuously compounded risk-free interest rate in the U.S. is 3.5%. 

(iv) The continuously compounded risk-free interest rate in Japan is 1.5%. 

(v) The current exchange rate is 1 U.S. dollar = 120 Japanese yen. 

(vi) The natural logarithm of the yen per dollar exchange rate is an arithmetic 

Brownian motion with daily volatility 0.261712%. 

(vii)  1 year = 365 days; 3 months = ¼ year. 

 

 Calculate Company A’s option cost.  
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Solution to (7) 
 
Let X(t) be the exchange rate of U.S. dollar per Japanese yen at time t.  That is, at time t, 
    ¥1  =  $X(t).   
We are given that X(0) = 1/120.   
 
At time ¼, Company A will receive ¥ 120 billion, which is exchanged to  
$[120 billion  X(¼)].  However, Company A would like to have 
   $ Max[1 billion,  120 billion  X(¼)], 
which can be decomposed as 

$120 billion  X(¼)  +  $ Max[1 billion  –  120 billion  X(¼), 0], 
or 

 $120 billion  {X(¼)  +  Max[1201 –  X(¼), 0]}. 
 
Thus, Company A purchases 120 billion units of a put option whose payoff three months 
from now is 

$ Max[1201 –  X(¼), 0]. 
 

The exchange rate can be viewed as the price, in US dollar, of a traded asset, which is the 
Japanese yen.  The continuously compounded risk-free interest rate in Japan can be 
interpreted as  the dividend yield of the asset.  See also page 381 of McDonald (2006) 
for the Garman-Kohlhagen model.  Then, we have 
  r = 0.035,  = 0.015, S = X(0) = 1/120, K = 1/120, T = ¼. 
 
Because the logarithm of the exchange rate of yen per dollar is an arithmetic Brownian 
motion, its negative, which is the logarithm of the exchange rate of dollar per yen, is also 
an arithmetic Brownian motion and has the SAME volatility.  Therefore, {X(t)} is a 
geometric Brownian motion, and the put option can be priced using the Black-Scholes 
formula for European put options.  It remains to determine the value of , which is given 
by the equation   

    
365

1
 =  0.261712 %. 

Hence, 
  =  0.05.  

Therefore, 

 d1  =  
T

Tr


 )2/( 2

  =  
4/105.0

4/)2/05.0015.0035.0( 2
  =  0.2125 

and 
  
 d2  =  d1    T  =  0.2125    =  0.1875. 
By (12.3) of McDonald (2006), the time-0 price of 120 billion units of the put option is 

$120 billion  [KerTN(d2)    X(0)eTN(d1)] 
=  $ [erTN(d2)    eTN(d1)] billion    because K = X(0) = 1/120 
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Using the Cumulative Normal Distribution Calculator, we obtain N(0.1875) = 0.42563 
and N(0.2125) = 0.41586. 
 
Thus, Company A’s option cost is 
  e×0.42563   e×0.41586   
  =  0.007618538 billion   
    7.62 million. 
 
 
Remarks:   
(i)  Suppose that the problem is to be solved using options on the exchange rate of 

Japanese yen per US dollar, i.e., using yen-denominated options.  Let  
$1  =  ¥U(t)  

 at time t, i.e., U(t) = 1/X(t).   
 

Because Company A is worried that the dollar may increase in value with respect to 
the yen, it buys 1 billion units of a 3-month yen-denominated European call option, 
with exercise price ¥120.  The payoff of the option at time ¼ is 

¥ Max[U(¼)    120, 0]. 
 

To apply the Black-Scholes call option formula (12.1) to determine the time-0 price 
in yen, use 

  r = 0.015,  = 0.035, S = U(0) = 120, K = 120, T = ¼, and   0.05. 
Then, divide this price by 120 to get the time-0 option price in dollars.  We get the 
same price as above, because d1 here is –d2 of above. 

 
 The above is a special case of formula (9.7) on page 292 of McDonald (2006). 
 
(ii)  There is a cheaper solution for Company A.  At time 0, borrow  
   ¥ 120exp(¼ r¥) billion, 

and immediately convert this amount to US dollars.  The loan is repaid with interest 
at time ¼ when the deal is closed. 
On the other hand, with the option purchase, Company A will benefit if the yen 
increases in value with respect to the dollar. 

 



 19 April 8, 2011  
 

8.   You are considering the purchase of a 3-month 41.5-strike American call option on 

a nondividend-paying stock.   

 

You are given: 

(i)   The Black-Scholes framework holds. 

(ii) The stock is currently selling for 40.  

(iii)  The stock’s volatility is 30%. 

(iv)   The current call option delta is 0.5.  

 

Determine the current price of the option. 

 

 

(A)  20 – 20.453  
15.0 2/ d

2
xe x  

(B)  20 – 16.138  
15.0 2/ d

2
xe x  

(C)  20 – 40.453  
15.0 2/ d

2
xe x  

(D)  453.20d138.16
15.0 2/2

 
 xe x  

(E)   
15.0 2/ d453.40

2
xe x – 20.453 
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Solution to (8)  Answer: (D) 
 
Since it is never optimal to exercise an American call option before maturity if the stock 
pays no dividends, we can price the call option using the European call option formula 

)()( 21 dNKedSNC rT ,    

where 
T

TrKS
d



 )
2

1
()/ln( 2

1


  and Tdd  12 . 

      
Because the call option delta is N(d1) and it is given to be 0.5, we have d1 = 0.   
Hence,  

d2 = – 25.03.0  = –0.15 . 
 
To find the continuously compounded risk-free interest rate, use the equation 

0
25.03.0

25.0)3.0
2

1
()5.41/40ln( 2

1 



r

d , 

which gives r = 0.1023.  
 
Thus, 
C = 40N(0) – 41.5e–0.1023 × 0.25N(–0.15) 
    = 20 – 40.453[1 – N(0.15)]  
    = 40.453N(0.15) – 20.453 

    =  




15.0 2/ d
2

453.40 2
xe x – 20.453 

    = 453.20d138.16
15.0 2/2

 
 xe x  
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9.   Consider the Black-Scholes framework.  A market-maker, who delta-hedges, sells a 

three-month at-the-money European call option on a nondividend-paying stock.   

 

 You are given: 

(i) The continuously compounded risk-free interest rate is 10%. 

(ii) The current stock price is 50.     

(iii) The current call option delta is 0.61791. 

(iv) There are 365 days in the year. 

 

If, after one day, the market-maker has zero profit or loss, determine the stock price 

move over the day. 

 

(A)  0.41 

(B)  0.52 

(C)  0.63 

(D)  0.75 

(E)  1.11 
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Solution to (9) 
 
According to the first paragraph on page 429 of McDonald (2006), such a stock price 
move is given by plus or minus of 
    S(0) h , 
where h  1/365 and S(0)  50.  It remains to find .   
 
Because the stock pays no dividends (i.e.,   0), it follows from the bottom of page 383 
that   N(d1).  Thus, 
         d1  N1()
   N1(0.61791) 
   =  0.3 
by using the Inverse CDF Calculator. 
 
Because S  K and   0, formula (12.2a) is 

    d1    
T

Tr


 )2/( 2

 

or 

    ½2  –  
T

d1   +  r    0. 

With d1  0.3, r  0.1, and T  1/4, the quadratic equation becomes 
    ½2  –  0.6  +  0.1    0,  
whose roots can be found by using the quadratic formula or by factorization,  
    ½(  1)(  0.2)  =  0. 
We reject  = 1 because such a volatility seems too large (and none of the five answers 
fit).  Hence, 

 S(0) h   =  0.2  50  0.052342    0.52. 
 

 
Remarks:   The Itô’s Lemma in Chapter 20 of McDonald (2006) can help us understand 
Section 13.4.  Let C(S, t) be the price of the call option at time t if the stock price is S at 
that time.  We use the following notation 

CS(S, t)  = ),( tSC
S


,  CSS(S, t)  =  ),(
2

2
tSC

S


,  Ct(S, t)  = ),( tSC

t


, 

t  =  CS(S(t), t),  t  =  CSS(S(t), t),  t  =  Ct(S(t), t). 
 
At time t, the so-called market-maker sells one call option, and he delta-hedges, i.e., he 
buys delta, t, shares of the stock.  At time t + dt, the stock price moves to S(t + dt), and 
option price becomes C(S(t + dt), t + dt).  The interest expense for his position is 
    [tS(t)    C(S(t), t)](rdt). 
Thus, his profit at time t + dt is 

t[S(t + dt)  S(t)]    [C(S(t + dt), t + dt)   C(S(t), t)]    [tS(t)    C(S(t), t)](rdt) 
 =  tdS(t)    dC(S(t), t)    [tS(t)    C(S(t), t)](rdt).   (*) 
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We learn from Section 20.6 that   
     dC(S(t), t) =  CS(S(t), t)dS(t)  +  ½CSS(S(t), t)[dS(t)]2  +  Ct(S(t), t)dt  (20.28) 
  =  tdS(t)  +  ½t [dS(t)]2  +  t dt.     (**) 
 
Because dS(t) = S(t)[ dt  +   dZ(t)], it follows from the multiplication rules (20.17) that 
   [dS(t)]2  =  [S(t)]2  2 dt,     (***) 
which should be compared with (13.8).  Substituting (***) in (**) yields 
  dC(S(t), t) =  t dS(t)  +  ½t [S(t)]2 2 dt  +  t dt, 
application of which to (*) shows that the market-maker’s profit at time t + dt is 
  {½t [S(t)]2 2 dt  +  t dt}    [tS(t)    C(S(t), t)](rdt) 
  =  {½t [S(t)]2 2  +  t    [tS(t)    C(S(t), t)]r}dt,  (****) 
which is the same as (13.9) if dt can be h.   
 
Now, at time t, the value of stock price, S(t), is known.  Hence, expression (****), the 
market-maker’s profit at time t+dt, is not stochastic.  If there are no riskless arbitrages, 
then quantity within the braces in (****) must be zero, 
  Ct(S, t)  +   ½2S2CSS(S, t)  +  rSCS(S, t)   rC(S, t)  =  0, 
which is the celebrated Black-Scholes equation (13.10) for the price of an option on a 
nondividend-paying stock.  Equation (21.11) in McDonald (2006) generalizes (13.10) to 
the case where the stock pays dividends continuously and proportional to its price. 
 
Let us consider the substitutions   

         dt   h 
  dS(t) = S(t + dt)  S(t)  S(t + h)  S(t), 

  dC(S(t), t) = C(S(t + dt), t + dt)   C(S(t), t)  C(S(t + h), t + h)  C(S(t), t).  
Then, equation (**) leads to the approximation formula 
  C(S(t + h), t + h)  C(S(t), t)    tS(t + h)  S(t)  +  ½t[S(t + h)  S(t)2  +  t h, 
which is given near the top of page 665.  Figure 13.3 on page 426 is an illustration of this 
approximation.  Note that in formula (13.6) on page 426, the equal sign, =, should be 
replaced by an approximately equal sign such as .   
 
Although (***) holds because {S(t)} is a geometric Brownian motion, the analogous 
equation, 
   [S(t + h)  S(t)2 =  [S(t)2h,  h > 0,    
which should be compared with (13.8) on page 429, almost never holds.  If it turns out 
that it holds, then the market maker’s profit is approximated by the right-hand side of 
(13.9).  The expression is zero because of the Black-Scholes partial differential equation. 
 



 24 April 8, 2011  
 

10.   Consider the Black-Scholes framework.  Let S(t) be the stock price at time t, t  0.  
Define X(t)  ln[S(t)].   

 
 You are given the following three statements concerning X(t).    
 

(i) {X(t), t  0} is an arithmetic Brownian motion. 

(ii) Var[X(t + h)  X(t)]    2 h,  t  0, h > 0. 

(iii) 



n

jn
nTjXnjTX

1

2)]/)1(()/([lim  =  2 T. 

(A)  Only (i) is true 

(B)  Only (ii) is true 

(C)  Only (i) and (ii) are true 

(D)  Only (i) and (iii) are true 

(E)  (i), (ii) and (iii) are true 
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 Solution to (10)   Answer: (E) 

 

(i) is true.  That {S(t)} is a geometric Brownian motion means exactly that its logarithm is 

an arithmetic Brownian motion.  (Also see the solution to problem (11).) 

 

(ii) is true.  Because {X(t)} is an arithmetic Brownian motion, the increment, X(t + h)  

X(t), is a normal random variable with variance 2 h.  This result can also be found at the 

bottom of page 605. 

 

(iii) is true.  Because X(t) = ln S(t), we have 

  X(t + h)  X(t)  =  h  +  [Z(t + h)  Z(t)], 

where {Z(t)} is a (standard) Brownian motion and  =  –  ½.  (Here, we assume 

the stock price follows (20.25), but the actual value of  is not important.)  Then,  

 [X(t + h)  X(t)]2    2h 2  +  2h[Z(t + h)  Z(t)]  +  [Z(t + h)  Z(t)]2. 

With h = T/n, 

    



n

j

nTjXnjTX
1

2)]/)1(()/([  

      2T 2 / n + 2T/n) [Z(T)  Z(0)] +  



n

j

nTjZnjTZ
1

2)]/)1(()/([ . 

As n  , the first two terms on the last line become 0, and the sum becomes T 

according to formula (20.6) on page 653. 

 

Remarks:  What is called “arithmetic Brownian motion” is the textbook is called 

“Brownian motion” by many other authors.  What is called “Brownian motion” is the 

textbook is called “standard Brownian motion” by others.   

Statement (iii) is a non-trivial result:  The limit of sums of stochastic terms turns 

out to be deterministic.  A consequence is that, if we can observe the prices of a stock 

over a time interval, no matter how short the interval is, we can determine the value of  

by evaluating the quadratic variation of the natural logarithm of the stock prices.  Of 

course, this is under the assumption that the stock price follows a geometric Brownian 
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motion.  This result is a reason why the true stock price process (20.25) and the risk-

neutral stock price process (20.26) must have the same .   A discussion on realized 

quadratic variation can be found on page 755 of McDonald (2006). 

A quick “proof” of the quadratic variation formula (20.6) can be obtained using 

the multiplication rule (20.17c).  The left-hand side of (20.6) can be seen as 
T

tZ
0

2)](d[ .  

Formula (20.17c) states that 2)](d[ tZ = dt.  Thus, 

   
T

tZ
0

2)](d[    
T

t
0

d    T. 
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11.   Consider the Black-Scholes framework.  You are given the following three 
statements on variances, conditional on knowing S(t), the stock price at time t.  

 
 

(i) Var[ln S(t + h) | S(t)]   2 h,  h  0. 

(ii) Var 







)(

)(

)(d
tS

tS

tS
   2 dt 

(iii)Var[S(t + dt) | S(t)]   S(t)2 2 dt 

 

(A) Only (i) is true 

(B)   Only (ii) is true 

 (C) Only (i) and (ii) are true 

 (D)  Only (ii) and (iii) are true 

(E)  (i), (ii) and (iii) are true 
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Here are some facts about geometric Brownian motion.  The solution of the stochastic 

differential equation 

  
)(

)(d

tS

tS
     dt  +  dZ(t)     (20.1) 

is 

  S(t)    S(0) exp[( – ½2)t  +   Z(t)].   (*) 

Formula (*), which can be verified to satisfy (20.1) by using Itô’s Lemma, is equivalent 

to formula (20.29), which is the solution of the stochastic differential equation (20.25).  It 

follows from (*) that 

 S(t + h)  =  S(t) exp[( – ½2)h   Zt + h)  Z(t)]],   h  0. (**) 

From page 650, we know that the random variable Zt + h)  Z(t)] has the same 

distribution as Z(h), i.e., it is normal with mean 0 and variance h.   

 

Solution to (11)    Answer: (E) 

(i) is true:  The logarithm of equation (**) shows that given the value of S(t), ln[S(t + h)] 

is a normal random variable with mean (ln[S(t)] + ( – ½2)h)  and variance 2h.  See 

also the top paragraph on page 650 of McDonald (2006). 

 

(ii) is true:         Var 







)(

)(

)(d
tS

tS

tS
 =  Var[dt + dZ(t)|S(t)] 

     =  Var[dt + dZ(t)|Z(t)], 

because it follows from (*) that knowing the value of S(t) is equivalent to knowing the 

value of Z(t).  Now,  

           Var[dt +  dZ(t)|Z(t)] =  Var[ dZ(t)|Z(t)]  

     =  Var[dZ(t)|Z(t)] 

     =  Var[dZ(t)]        independent increments 

=  2 dt.  

 

Remark:  The unconditional variance also has the same answer: Var 







)(

)(d

tS

tS
  2 dt. 
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(iii) is true because (ii) is the same as 

Var[dS(t) | S(t)]  =  S(t)2  2 dt, 

and 

           Var[dS(t) | S(t)] =  Var[S(t + dt) S(t) | S(t)]   

     =  Var[S(t + dt) | S(t)]. 

 

A direct derivation for (iii): 

     Var[S(t + dt) | S(t)] =  Var[S(t + dt) S(t) | S(t)] 

    =   Var[dS(t) | S(t)] 

    =   Var[S(t)dt + S(t)dZ(t) | S(t)] 

    =   Var[S(t) dZ(t) | S(t)] 

    =   [S(t)]2 Var[dZ(t) | S(t)] 

    =   [S(t)]2 Var[Z(t + dt) Z(t)  | S(t)] 

    =   [S(t)]2 Var[Z(dt)] 

    =   [S(t)]2 dt 

 

We can also show that (iii) is true by means of the formula for the variance of a 

lognormal random variable (McDonald 2006, eq. 18.14):  It follows from formula (**) on 

the last page that 

     Var[S(t + h) | S(t)] =  Var[S(t) exp[( – ½2)h  +  Zt + h)  Z(t)]] | S(t)] 

   =  [S(t)]2 exp[2( – ½2)h] Var[exp[Zt + h)  Z(t)]] | S(t)] 

=  [S(t)]2 exp[2( – ½2)h] Var[exp[Z(h)]] 

   =  [S(t)]2 exp[2( – ½2)h] 
2 2

( 1)h he e    

   =  [S(t)]2 exp[2( – ½ 2)h] 
2 2( )he h   . 

Thus,  

  Var[S(t + dt) | S(t)] =  [S(t)]2 × 1 × 1 × (dt ×  2), 

which is (iii). 
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12. Consider two nondividend-paying assets X and Y.  There is a single source of 

uncertainty which is captured by a standard Brownian motion {Z(t)}.  The prices of 

the assets satisfy the stochastic differential equations 

 
d ( )

( )

X t

X t
 = 0.07dt  0.12dZ(t) 

 and 
d ( )

( )

Y t

Y t
 = Adt + BdZ(t), 

 where A and B are constants.   
 
 You are also given: 
 

(i)   d[ln Y(t)]  μdt + 0.085dZ(t); 
 
(ii)  The continuously compounded risk-free interest rate is 4%. 

 
 

Determine A. 
 

 

(A)  0.0604 

(B)  0.0613 

(C)  0.0650 

(D)  0.0700 

(E)  0.0954 
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Solution to (12)  Answer: (B) 

 
If f(x) is a twice-differentiable function of one variable, then Itô’s Lemma (page 664) 

simplifies as 

  df(Y(t))    f ′(Y(t))dY(t)  +  ½ f ″(Y(t))[dY(t)]2, 

because )(xf
t


 = 0.   

 

If f(x)  ln x, then f ′(x)  1/x and f ″(x)  1/x2.  Hence, 

  d[ln Y(t)]  =  
)(

1

tY
dY(t)  2

2
)](d[

)]([

1

2

1
tY

tY 









 .   (1) 

We are given that 

   dY(t)  =  Y(t)[Adt + BdZ(t)].     (2) 

Thus, 

  [dY(t)]2  =  {Y(t)[Adt + BdZ(t)]}2  =  [Y(t)]2 B2 dt,   (3) 

by applying the multiplication rules (20.17) on pages 658 and 659.  Substituting (2) and 

(3) in (1) and simplifying yields  

d [ln Y(t)]  (A 
2

2B
)dt  BdZ(t).     

It thus follows from condition (i) that B = 0.085. 

 

It is pointed out in Section 20.4 that two perfectly positively correlated assets must have 

the same Sharpe ratio.  Thus, 

(0.07 – 0.04)/0.12 = (A – 0.04)/B = (A – 0.04)/0.085 

Therefore, A = 0.04 + 0.085(0.25) = 0.06125  0.0613 
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13.   Let {Z(t)} be a standard Brownian motion. You are given: 
 

(i) U(t)  2Z(t)  2 

(ii) V(t)  [Z(t)]2  t 

(iii) W(t)  t2 Z(t)  
t

sssZ
0

d)(2  

 
Which of the processes defined above has / have zero drift? 

 
(A)  {V(t)} only 
 
(B)  {W(t)} only 
 
(C)  {U(t)} and {V(t)} only 
 
(D)  {V(t)} and {W(t)} only 
 
(E)  All three processes have zero drift. 
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Solution to (13)   Answer: (E) 

 

Apply Itô’s Lemma. 
 
 
 (i) dU(t)  =  2dZ(t)  0  =  0dt  + 2dZ(t).   

Thus, the stochastic process {U(t)} has zero drift. 

 

(ii)  dV(t)  =  d[Z(t)]2    dt.   

          d[Z(t)]2  =  2Z(t)dZ(t)  +  
2

2
[dZ(t)]2 

  =  2Z(t)dZ(t)  +  dt 

by the multiplication rule (20.17c) on page 659.  Thus, 

dV(t)  =  2Z(t)dZ(t). 

The stochastic process {V(t)} has zero drift. 

 

(iii) dW(t) = d[t2 Z(t)]  2t Z(t)dt  

Because 

d[t2 Z(t)] = t2dZ(t) + 2tZ(t)dt, 

we have 

 dW(t) = t2dZ(t). 

The process {W(t)} has zero drift. 
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14.   You are using the Vasicek one-factor interest-rate model with the short-rate process 

calibrated as 

dr(t)    0.6[b  r(t)]dt   dZ(t). 

For t  T, let P(r, t, T) be the price at time t of a zero-coupon bond that pays $1 at 

time T, if the short-rate at time t is r.  The price of each zero-coupon bond in the 

Vasicek model follows an Itô process, 

d [ ( ), , ]

[ ( ), , ]

P r t t T

P r t t T
    [r(t), t, T] dt   q[r(t), t, T] dZ(t),  t  T. 

 You are given that (0.04, 0, 2) = 0.04139761. 

 Find (0.05, 1, 4).
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Solution to (14) 

 For t < T, (r, t, T) is the time-t continuously compounded expected rate of return 

on the zero-coupon bond that matures for 1 at time T, with the short-rate at time t being r. 

 Because all bond prices are driven by a single source of uncertainties, {Z(t)}, the 

no-arbitrage condition implies that the ratio, 
),,(

),,(

Ttrq

rTtr 
, does not depend on T.  See 

(24.16) on page 782 and (20.24) on page 660 of McDonald (2006).   

 In the Vasicek model, the ratio is set to be , a constant.  Thus, we have 

   
)2 ,0 ,04.0(

04.0)2 ,0 ,04.0(

)4 ,1 ,05.0(

05.0)4 ,1 ,05.0(

qq





.   (*) 

To finish the problem, we need to know q, which is the coefficient of −dZ(t) in 

],),([

],),([

TttrP

TttrdP
.  To evaluate the numerator, we apply Itô’s Lemma: 

       dP[r(t), t, T]    Pt[r(t), t, T]dt  Pr[r(t), t, T]dr(t)  ½Prr[r(t), t, T][dr(t)]2, 

which is a portion of (20.10).  Because dr(t)    a[b  r(t)]dt    dZ(t), we have  

[dr(t)]2 = 2dt, which has no dZ term.  Thus, we see that 

         q(r, t, T) =  Pr(r, t, T)/P(r, t, T)       which is a special case of (24.12) 

=  
r


lnP(r, t, T)]. 

 In the Vasicek model and in the Cox-Ingersoll-Ross model, the zero-coupon bond 

price is of the form 

   P(r, t, T)    A(t, T) eB(t, T)r; 

hence, 

   q(r, t, T)  =  
r


lnP(r, t, T)]  =  B(t, T). 

In fact, both A(t, T) and B(t, T) are functions of the time to maturity, T – t.  In the Vasicek 

model, B(t, T)    [1  ea(T t)]/a.  Thus, equation (*) becomes 

   
)02()14( 1

04.0)2 ,0 ,04.0(

1

05.0)4 ,1 ,05.0(
 







aa ee

. 

Because a = 0.6 and (0.04, 0, 2) = 0.04139761, we get (0.05, 1, 4) = 0.05167. 
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Remarks: 
  
(i)   The second equation in the problem is equation (24.1) [or (24.13)] of MacDonald 

(2006).  In its first printing, the minus sign on the right-hand side is a plus sign. 
 
(ii) Unfortunately, zero-coupon bond prices are denoted as P(r, t, T) and also as  
 P(t, T, r) in McDonald (2006). 
 
(iii)One can remember the formula, 

B(t, T)    [1  ea(T t)]/a, 

in the Vasicek model as 
|force of interest = T t a

a  , the present value of a continuous 

annuity-certain of rate 1, payable for T  t years, and evaluated at force of interest a, 

where a is the “speed of mean reversion” for the associated short-rate process.   

 
(iv) If the zero-coupon bond prices are of the so-called affine form, 
   P(r , t, T) A(t, T) eB(t, T)r , 
 where A(t, T) and B(t, T) are independent of r, then (24.12) becomes 

q(r, t, T)    σ(r)B(t, T). 
 Thus, (24.17) is 

(r, t)  
),,(

),,(

Ttrq

rTtr 
  =  

),()(

),,(

TtBr

rTtr




, 

 from which we obtain 
(r, t, T)  = r    (r, t)(r) B(t, T). 

 In the Vasicek model, σ(r) σ, (r, t)  ,  and 
(r, t, T)  =  r  +  σB(t, T). 

 In the CIR model, σ(r)  σ r , (r, t)  


 r
,  and  

(r, t, T)  =  r  +  ) ,( TtrB . 
 

In either model, A(t, T) and B(t, T) depend on the variables t and T by means of their 
difference T – t,  which is the time to maturity. 

 
(v) Formula (24.20) on page 783 of McDonald (2006) is   

   P(r, t, T)  =  E*[exp( 
T

t
sr )( ds) | r(t) = r], 

where the asterisk signifies that the expectation is taken with respect to the risk-

neutral probability measure.  Under the risk-neutral probability measure, the expected 

rate of return on each asset is the risk-free interest rate.  Now, (24.13) is 
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],),([

],),([

TttrP

TttrdP
   [r(t), t, T] dt   q[r(t), t, T] dZ(t) 

  r(t) dt   q[r(t), t, T] dZ(t)  +  {[r(t), t, T]  r(t)}dt 

  r(t) dt   q[r(t), t, T]{dZ(t)    
],),([

)(],),([

Tttrq

trTttr 
dt} 

  r(t) dt   q[r(t), t, T]{dZ(t)    [r(t), t]dt}. (**) 

 Let us define the stochastic process { ( )Z t } by 

   )(
~

tZ  =  Z(t)    
t

0
[r(s), s]ds. 

 Then, applying  

d ( )Z t  =  dZ(t)    [r(t), t]dt      (***) 

 to (**) yields 

  
],),([

],),([

TttrP

TttrdP
   r(t)dt   q[r(t), t, T]d )(

~
tZ , 

which is analogous to (20.26) on page 661.  The risk-neutral probability measure is 

such that { ( )Z t } is a standard Brownian motion. 

 Applying (***) to equation (24.2) yields  

  dr(t)    a[r(t)]dt  σ[r(t)]dZ(t) 

      a[r(t)]dt  σ[r(t)]{d )(
~

tZ    [r(t), t]dt} 

      {a[r(t)]    σ[r(t)][r(t), t]}dt   σ[r(t)]d )(
~

tZ , 

 which is (24.19) on page 783 of McDonald (2006). 
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15.   You are given the following incomplete Black-Derman-Toy interest rate tree model 

for the effective annual interest rates: 

 
 

 
   
 
 
 

Calculate the price of a year-4 caplet for the notional amount of $100.  The cap rate 

is 10.5%.   

 
  

9%

12.6%

9.3%

17.2%

13.5%

16.8%

11%
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Solution to (15) 
First, let us fill in the three missing interest rates in the B-D-T binomial tree.  In terms of 
the notation in Figure 24.4 of McDonald (2006), the missing interest rates are rd, rddd, and 
ruud.  We can find these interest rates, because in each period, the interest rates in 
different states are terms of a geometric progression. 
 

%6.10
135.0

172.0135.0
 dd

dd
r

r
 

%6.13
168.0

11.0
 uud

uud

uud r
r

r
 

%9.8
11.0

168.011.0
2









ddd

ddd
r

r
 

 
The payment of a year-4 caplet is made at year 4 (time 4), and we consider its discounted 
value at year 3 (time 3).  At year 3 (time 3), the binomial model has four nodes; at that 
time, a year-4 caplet has one of four values: 
 

,394.5
168.1

5.108.16



,729.2

136.1

5.106.13



 ,450.0

11.1

5.1011



and 0 because rddd  = 8.9% 

which is less than 10.5%.   
 
For the Black-Derman-Toy model, the risk-neutral probability for an up move is ½. 
We now calculate the caplet’s value in each of the three nodes at time 2: 
 

4654.3
172.1

2/)729.2394.5(



, 4004.1

135.1

2/)450.0729.2(



, 2034.0

106.1

2/)0450.0(



. 

 
Then, we calculate the caplet’s value in each of the two nodes at time 1: 
 

    1607.2
126.1

2/)4004.14654.3(



,        7337.0

093.1

2/)2034.040044.1(



. 

Finally, the time-0 price of the year-4 caplet is  3277.1
09.1

2/)7337.01607.2(



. 

 

Remarks:   

(i)  The discussion on caps and caplets on page 805 of McDonald (2006) involves a loan.  
This is not necessary.   

(ii)  If your copy of McDonald was printed before 2008, then you need to correct the 
typographical errors on page 805; see  
http://www.kellogg.northwestern.edu/faculty/mcdonald/htm/typos2e_01.html   

(iii)In the earlier version of this problem, we mistakenly used the term “year-3 caplet” for 
“year-4 caplet.” 
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Alternative Solution:   The payoff of the year-4 caplet is made at year 4 (at time 4).  In a 

binomial lattice, there are 16 paths from time 0 to time 4.   

For the uuuu path, the payoff is (16.8 – 10.5)+ 

For the uuud path, the payoff is also (16.8 – 10.5)+ 

For the uudu path, the payoff is (13.6 – 10.5)+ 

For the uudd path, the payoff is also (13.6 – 10.5)+ 

: 
: 
We discount these payoffs by the one-period interest rates (annual interest rates) along 

interest-rate paths, and then calculate their average with respect to the risk-neutral 

probabilities.  In the Black-Derman-Toy model, the risk-neutral probability for each 

interest-rate path is the same.  Thus, the time-0 price of the caplet is 

16

1 {
168.1172.1126.109.1

)5.108.16(


   + 

168.1172.1126.109.1

)5.108.16(


   

         + 
136.1172.1126.109.1

)5.106.13(


   + 

136.1172.1126.109.1

)5.106.13(


   + ……………… } 

= 
8

1 {
168.1172.1126.109.1

)5.108.16(


     

+ 
136.1172.1126.109.1

)5.106.13(


   +  

136.1135.1126.109.1

)5.106.13(


   + 

136.1135.1093.109.1

)5.106.13(


   

+ 
11.1135.1126.109.1

)5.1011(


   + 

11.1135.1093.109.1

)5.1011(


   + 

11.1106.1093.109.1

)5.1011(


   

+  
09.1106.1093.109.1

)5.109(


  }   =  1.326829. 

 
Remark:  In this problem, the payoffs are path-independent.  The “backward induction” 
method in the earlier solution is more efficient.  However, if the payoffs are path-
dependent, then the price will need to be calculated by the “path-by-path” method 
illustrated in this alternative solution. 
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16.   Assume that the Black-Scholes framework holds.  Let S(t) be the price of a 

nondividend-paying stock at time t, t ≥ 0.  The stock’s volatility is 20%, and the 

continuously compounded risk-free interest rate is 4%.   

 

You are interested in contingent claims with payoff being the stock price raised to 

some power.  For 0  t  T, consider the equation 

, [ ( ) ] ( )P x x
t TF S T S t , 

where the left-hand side is the prepaid forward price at time t of a contingent claim 

that pays ( )xS T  at time T.  A solution for the equation is x  1.   

 

 Determine another x that solves the equation. 

 
 

(A) 4 

(B) 2 

(C) 1 

(D) 2 

(E) 4 
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Solution to (16)    Answer (B) 
 
It follows from (20.30) in Proposition 20.3 that 

  P
TtF , [S(T)x]    S(t)x exp{[r + x(r ) + ½x(x – 1)2](T – t)}, 

which equals S(t)x if and only if 
   r + x(r ) + ½x(x – 1) 2    0. 
This is a quadratic equation of x.  With   0, the quadratic equation becomes 
          0   r + xr + ½x(x – 1)2 
    (x – 1)(½2x + r). 
Thus, the solutions are 1 and 2r/2  2(4%)/(20%)2  2, which is (B). 
 
Remarks:  
(i) McDonald (2006, Section 20.7) has provided three derivations for (20.30).  Here is 

another derivation.  Define Y = ln[S(T)/S(t)].  Then, 

       P
TtF , [S(T)x] = Et

 [er(Tt) S(T)x]      Prepaid forward price 

    = Et
 [er(Tt) (S(t)eY)x]     Definition of Y 

=  er(Tt) S(t)x Et
 [exY].   The value of S(t) is not    

        random at time t 

The problem is to find x such that er(Tt) Et
 [exY]  1.  To evaluate the expectation  

Et
 [exY], note that, under the risk-neutral probability measure, Y is a normal random 

variable with mean (r –  – ½2)(T – t) and variance  2(T – t).  Thus, by the 
moment-generating function formula for a normal random variable or by formula 
(18.13) in McDonald (2006), 

   Et
 [exY]    exp[x(r –  – ½2)(T – t)  +  ½x22(T – t)]. 

 Hence the equation er(Tt) Et
 [exY]  1 becomes 

   r(T – t) + x(r –  – ½2)(T – t) + ½x2 2(T – t)  =  0, 
 which yields the same quadratic equation of x as above. 

(ii) The two solutions of the quadratic equation, 
   ½2x2  +  (r –  – ½2)x  –  r    0, 

are x  h1 and x  h2 in Section 12.6 of McDonald (2006).  A reason for this 

“coincidence” is that h1 and h2 are the values of x for which the stochastic process  

{ert S(t)x} becomes a martingale.  Martingales are mentioned on page 651 of 

McDonald (2006). 

(iii) Before time T, the contingent claim does not pay anything.  Thus, the prepaid 

 forward price at time t is in fact the time-t price of the contingent claim. 
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17.  You are to estimate a nondividend-paying stock’s annualized volatility using its 

prices in the past nine months.  

   
Month Stock Price ($/share) 

1 80 
2 64 
3 80 
4 64 
5 80 
6 100 
7 80 
8 64 
9 80 

 
 
 Calculate the historical volatility for this stock over the period. 

 
 
 

(A)  83% 

(B)  77% 

(C)  24% 

(D)  22% 

(E)  20% 
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Solution to (17) Answer (A) 

This problem is based on Sections 11.3 and 11.4 of McDonald (2006), in particular, 
Table 11.1 on page 361.   
 
Let {rj} denote the continuously compounded monthly returns.  Thus, r1 = ln(80/64),  
r2 = ln(64/80), r3 = ln(80/64), r4 = ln(64/80), r5 = ln(80/100), r6 = ln(100/80),  
r7 = ln(80/64), and r8 = ln(64/80).  Note that four of them are ln(1.25) and the other four 
are –ln(1.25); in particular, their mean is zero. 
 
The (unbiased) sample variance of the non-annualized monthly returns is 

  





n

j
j rr

n 1

2)(
1

1
 = 




8

1

2)(
7

1

j
j rr = 



8

1

2)(
7

1

j
jr = 

7

8
[ln(1.25)]2. 

The annual standard deviation is related to the monthly standard deviation by formula 
(11.5), 

      =  
h
h , 

where h = 1/12.  Thus, the historical volatility is 

   12 
7

8
ln(1.25)  =  82.6%. 

 
 
Remarks: Further discussion is given in Section 23.2 of McDonald (2006).  Suppose that 
we observe n continuously compounded returns over the time period [,  + T].  Then,  
h = T/n, and the historical annual variance of returns is estimated as 

  
h

1 





n

j
j rr

n 1

2)(
1

1
 =  

T

1 





n

j
j rr

n

n

1

2)(
1

. 

Now,  

   r  = 


n

j
jr

n 1

1
 = 

n

1
)(

)(
ln




S

TS
, 

which is close to zero when n is large.  Thus, a simpler estimation formula is  

h

1 


n

j
jr

n 1

2)(
1

1
 which is formula (23.2) on page 744, or equivalently, 

T

1 


n

j
jr

n

n

1

2)(
1

which is the formula in footnote 9 on page 756.  The last formula is related to #10 in this 
set of sample problems:  With probability 1, 

  



n

jn
nTjSnjTS

1

2)]/)1((ln)/([lnlim     2T. 
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18.   A market-maker sells 1,000 1-year European gap call options, and delta-hedges the 

position with shares.   

 

 You are given: 

(i)  Each gap call option is written on 1 share of a nondividend-paying stock. 

(ii) The current price of the stock is 100. 

(iii) The stock’s volatility is 100%.  

(iv) Each gap call option has a strike price of 130. 

(v) Each gap call option has a payment trigger of 100.  

(vi) The risk-free interest rate is 0%. 

 

Under the Black-Scholes framework, determine the initial number of shares in the 

delta-hedge. 

 

(A) 586 

(B) 594 

(C) 684 

(D) 692 

(E) 797 
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Solution to (18)   Answer: (A)                  
 
Note that, in this problem, r  0 and δ  0. 
 
By formula (14.15) in McDonald (2006), the time-0 price of the gap option is 

Cgap = SN(d1)  130N(d2) = [SN(d1)  100N(d2)]  30N(d2) = C  30N(d2), 
where d1 and d2 are calculated with K = 100 (and r = δ = 0) and T = 1, and C denotes the 
time-0 price of the plain-vanilla call option with exercise price 100.  
 
In the Black-Scholes framework, delta of a derivative security of a stock is the partial 
derivative of the security price with respect to the stock price.  Thus, 

       Δgap  = 
S


Cgap = 
S


C  30
S


N(d2) = ΔC – 30N(d2)
S


d2 

= N(d1) – 30N(d2)
TS

1
, 

where N(x) = 
2

1 2/2xe  is the density function of the standard normal. 

 

Now, with S = K = 100, T = 1, and  = 1, 

d1 = [ln(S/K) +  2T/2]/( T ) = ( 2T/2)/( T ) = ½ T  = ½, 

and d2 = d1  T  = ½.  Hence, at time 0 

       Δgap = N(d1) – 30N(d2)
100

1
  

  = N(½) – 0.3N(½)  

  = N(½) – 0.3
1

2
2/)( 2

2
1e  

  = 0.69146 – 0.3
1/8

2

e





  

  = 0.58584. 
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19.  Consider a forward start option which, 1 year from today, will give its owner a  

 1-year European call option with a strike price equal to the stock price at that time. 

 

 You are given: 

(i) The European call option is on a stock that pays no dividends. 

(ii) The stock’s volatility is 30%.  

(iii) The forward price for delivery of 1 share of the stock 1 year from today is 

100. 

(iv) The continuously compounded risk-free interest rate is 8%. 

 

Under the Black-Scholes framework, determine the price today of the forward start 

option. 

 
 

(A) 11.90 
 
(B) 13.10 
 
(C) 14.50 
 
(D) 15.70 
 
(E) 16.80 
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Solution to (19)   Answer: (C)                 
 
This problem is based on Exercise 14.21 on page 465 of McDonald (2006). 
 
Let S1 denote the stock price at the end of one year.  Apply the Black-Scholes formula to 
calculate the price of the at-the-money call one year from today, conditioning on S1. 
 

d1  [ln (S1/S1) + (r + σ2/2)T]/( T )  (r +  2/2)/  0.41667, which turns out to be 
independent of S1. 
 

d2  d1  T   d1    0.11667 
 
The value of the forward start option at time 1 is 
  C(S1)  S1N(d1)  S1e

r N(d2) 
          S1[N(0.41667)   e0.08 N(0.11667)] 
  S1[0.66154    e-0.080.54644] 
            0.157112S1. 
(Note that, when viewed from time 0, S1 is a random variable.)   
 
Thus, the time-0 price of the forward start option must be 0.157112 multiplied by the 
time-0 price of a security that gives S1 as payoff at time 1, i.e., multiplied by the prepaid 

forward price )(1,0 SF P .  Hence, the time-0 price of the forward start option is 

     0.157112 )(1,0 SF P  = 0.157112e0.08 )(1,0 SF  = 0.157112e0.08100  14.5033 

 
 

 

Remark: A key to pricing the forward start option is that d1 and d2 turn out to be 

independent of the stock price.  This is the case if the strike price of the call option will 

be set as a fixed percentage of the stock price at the issue date of the call option.   
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20.  Assume the Black-Scholes framework.  Consider a stock, and a European call 

option and a European put option on the stock.  The current stock price, call price, 

and put price are 45.00, 4.45, and 1.90, respectively.   

 

 Investor A purchases two calls and one put.  Investor B purchases two calls and 

writes three puts. 
 

 

 The current elasticity of Investor A’s portfolio is 5.0.  The current delta of Investor  

 B’s portfolio is 3.4.   
 

 Calculate the current put-option elasticity. 

 
 
 

 (A)  –0.55  

 (B)  –1.15  

 (C)  –8.64   

 (D)  –13.03    

 (E)  –27.24 
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Solution to (20)    Answer: (D)   
Applying the formula   

    portfolio    
S


portfolio value    

to Investor B’s portfolio yields 
     3.4   2C – 3P.     (1) 
 
Applying the elasticity formula 

 portfolio    
Sln


ln[portfolio value]    

 valueportfolio

S


S


portfolio value 

to Investor A’s portfolio yields 

   5.0    
PC

S

2
(2C + P)  =  

9.19.8

45


(2C + P), 

or 
    
     1.2  =  2C + P.     (2) 
 
Now,    (2)  (1)          2.2  =  4P. 

Hence,  time-0 put option elasticity  =  P  =  
P

S P  =  
4

2.2

9.1

45
   =  13.03, which is 

(D). 
 
Remarks:   
(i)  If the stock pays no dividends, and if the European call and put options have the 

same expiration date and strike price, then C  P  =  1.  In this problem, the put 
and call do not have the same expiration date and strike price; so this relationship 
does not hold. 

 

(ii)  If your copy of McDonald (2006) was printed before 2008, then you need to replace 
the last paragraph of Section 12.3 on page 395 by 
http://www.kellogg.northwestern.edu/faculty/mcdonald/htm/erratum395.pdf 

 The ni in the new paragraph corresponds to the i on page 389. 
 

(iii)  The statement on page 395 in McDonald (2006) that “[t]he elasticity of a portfolio 
is the weighted average of the elasticities of the portfolio components” may remind 
students, who are familiar with fixed income mathematics, the concept of duration.  
Formula (3.5.8) on page 101 of Financial Economics: With Applications to 
Investments, Insurance and Pensions (edited by H.H. Panjer and published by The 
Actuarial Foundation in 1998) shows that the so-called Macaulay duration is an 
elasticity. 

 

(iv)  In the Black-Scholes framework, the hedge ratio or delta of a portfolio is the partial 
derivative of the portfolio price with respect to the stock price.  In other continuous-
time frameworks (which are not in the syllabus of Exam MFE/3F), the hedge ratio 
may not be given by a partial derivative; for an example, see formula (10.5.7) on 
page 478 of Financial Economics: With Applications to Investments, Insurance and 
Pensions. 
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21.  The Cox-Ingersoll-Ross (CIR) interest-rate model has the short-rate process: 

 d ( ) [ ( )]d ( ) d ( )r t a b r t t r t Z t   , 

 where {Z(t)} is a standard Brownian motion. 
 

For t  T, let ( , , )P r t T  be the price at time t of a zero-coupon bond that pays $1 at 

time T, if the short-rate at time t is r.  The price of each zero-coupon bond in the 

CIR model follows an Itô process: 

 

d [ ( ), , ]
[ ( ), , ]d [ ( ), , ]d ( )

[ ( ), , ]

P r t t T
r t t T t q r t t T Z t

P r t t T
  , .t T  

 

 You are given (0.05, 7, 9)  0.06.  
 
 Calculate (0.04, 11, 13). 
 
 

(A) 0.042 
 

(B) 0.045 
 

(C) 0.048 
 

(D) 0.050 
 

(E) 0.052 
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Solution to (21)  Answer: (C) 
 
As pointed out on pages 782 and 783 of McDonald (2006), the condition of no riskless 
arbitrages implies that the Sharpe ratio does not depend on T, 

( , , )
( , ).

( , , )

r t T r
r t

q r t T

 
       (24.17) 

(Also see Section 20.4.)  This result may not seem applicable because we are given an  
for t = 7 while asked to find an  for t = 11. 
 
Now, equation (24.12) in McDonald (2006) is 

 ( , , ) ( ) ( , , ) / ( , , ) ( ) ln[ ( , , )],rq r t T r P r t T P r t T r P r t T
r

  
   


 

the substitution of which in (24.17) yields 

 ( , , ) ( , ) ( ) ln[ ( , , )]r t T r r t r P r t T
r

   
  


. 

In the CIR model (McDonald 2006, p. 787),  ( )r r  , ( , )r t r



  with   being 

a constant, and  ln[ ( , , )] ( , ).P r t T B t T
r


 


  Thus, 

 ( , , )r t T r   =  ( , ) ( ) ln[ ( , , )]r t r P r t T
r

  



 

   =  r



 × r ×[ ( , )]B t T  

   =  ( , )rB t T , 
or  

( , , )
1 ( , )

r t T
B t T

r

   . 

Because ( , )B t T  depends on t and T through the difference ,T t  we have, for 

1 1 2 2 ,T t T t    

  1 1 1 2 2 2

1 2

( , , ) ( , , )
.

r t T r t T

r r

 
  

Hence, 

 
0.04

(0.04,11,13) (0.05, 7, 9) 0.8 0.06 0.048.
0.05

      

 
Remarks:  (i) In earlier printings of McDonald (2006), the minus sign in (24.1) was 
given as a plus sign.  Hence, there was no minus sign in (24.12) and   would be a 
negative constant.  However, these changes would not affect the answer to this question. 
(ii) What McDonald calls Brownian motion is usually called standard Brownian motion 
by other authors.
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22.  You are given: 
 

(i) The true stochastic process of the short-rate is given by 

  d ( ) 0.09 0.5 ( ) d 0.3d ( )r t r t t Z t   , 

where {Z(t)} is a standard Brownian motion under the true probability 
measure.   
 

(ii) The risk-neutral process of the short-rate is given by 

 d ( ) 0.15 0.5 ( ) d ( ( ))d ( )r t r t t r t Z t    , 

where )}(
~

{ tZ is a standard Brownian motion under the risk-neutral 

probability measure. 
 

(iii) g(r, t) denotes the price of an interest-rate derivative at time t, if the short-
rate at that time is r.  The interest-rate derivative does not pay any 
dividend or interest.   
 

(iv) g(r(t), t) satisfies 

dg(r(t), t)  (r(t), g(r(t), t))dt  0.4g(r(t), t)dZ(t). 
 

Determine (r, g). 
 
 

(A) (r  0.09)g 
 

(B) (r  0.08)g 
 

(C) (r  0.03)g 
 

(D) (r + 0.08)g 
 

(E) (r + 0.09)g 
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Solution to (22)   Answer: (D) 
 
Rewrite the equation in (iv) as 

  
d ( ( ), ) μ( ( ), ( ( ), ))

d 0.4d ( )
( ( ), ) ( ( ), )

g r t t r t g r t t
t Z t

g r t t g r t t
  . 

Comparing it with (24.13), we see that 

   
4.0
),(

)),(,(
r

trg

trgr




 

must be (r, t), the Sharpe ratio given in equation (24.17) of McDonald (2006).   
 
Formula (24.2) in McDonald (2006) is 

  dr(t)  a(r(t))dt  (r(t)) dZ(t). 
Because 

  d ( ) d ( ) ( ( ), )dZ t Z t r t t t  , 

we have 

   
which is formula (24.19).  By comparing (24.2) with the formula in (i), we obtain 
  a(r)  =  0.09 – 0.5r 
and  

  (r)  =  0.3.  
By comparing (24.19) with the formula in (ii), we see that 

      0.15 – 0.5r =  a(r)r)(r, t)    

=  [0.09 – 0.5r](r, t), 
or 

   (r, t) = 0.2. 
 
Finally, 

  
( , ( , ))

0.4 0.2 0.08
( , )

r g r t
r

g r t


    , 

which means (D) is the answer. 

 
 Remark:  Upon comparing the formula d ( ) d ( ) ( ( ), )dZ t Z t r t t t   with  

    d ( ) d ( ) d d ( ) d
r

Z t Z t t Z t t
 

    


 , 

 
which can be found on page 662 of McDonald (2006), you will note that the signs in 
front of the Sharpe ratios are different.  The minus sign in front of (r(t), t)) is due the 
minus sign in front of q(r(t), t)) in (24.1).  [If your copy of McDonald (2006) has a plus 
sign in (24.1), then you have an earlier printing of the book.] 

 d ( ) ( ( )) ( ( )) ( ( ), ) d ( ( ))d ( )r t a r t r t r t t t r t Z t     
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23.  Consider a European call option on a nondividend-paying stock with exercise date 

T, T  0.   Let S(t) be the price of one share of the stock at time t, t  0.  For 0 ,t T   let 

C(s, t) be the price of one unit of the call option at time t, if the stock price is s at that 
time.  You are given: 
 

(i) 
d ( )

0.1d d ( )
( )

S t
t Z t

S t
  , where  is a positive constant and {Z(t)} is a 

Brownian motion. 
 

(ii)  

 
(iii) C(S(0), 0)  6. 

 
(iv) At time t  0, the cost of shares required to delta-hedge one unit of the call 

option is 9. 
 

(v) The continuously compounded risk-free interest rate is 4%. 
 

 
Determine (S(0), 0). 

 
 

(A) 0.10 
 

(B) 0.12 
 

(C) 0.13 
 

(D) 0.15 
 

(E) 0.16 
 

d ( ( ), )
( ( ), )d ( ( ), )d ( ),        0

( ( ), ) C
C S t t

S t t t S t t Z t t T
C S t t

    
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Solution to (23)  Answer: (C) 
 
Equation (21.22) of McDonald (2006) is 

  option ( )SSV
r r

V
    , 

which, for this problem, translates to  

  
( ) ( ( ), )

( ( ), ) 0.04 (0.1 0.04).
( ( ), )

S t S t t
S t t

C S t t
 

     

 
Because 

  
(0) ( (0),0) 9

1.5
( (0),0) 6

S S

C S


  , 

we have 
  (S(0), 0)  0.04 + 1.5 × (0.1  0.04)  0.13 

(which is the time-0 continuously compounded expected rate of return on the option). 

 

 
 

Remark:  Equation (21.20) on page 687 of McDonald (2006) should be the same as 
(12.9) on page 393, 

   option  =  || × , 
and (21.21) should be changed to 

  

 r

  =  sign() ×
option

option



 r
. 

Note that , option, and option are functions of t.
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24.   Consider the stochastic differential equation: 

dX(t)  =  [ – X(t)]dt dZ(t), t ≥ 0, 

where  and  are positive constants, and {Z(t)} is a standard Brownian motion.  

The value of X(0) is known. 

 

 Find a solution. 

 
 
 
 (A)  X(t)    X(0) et    (1 – et)   

 (B) X(t)    X(0)  +   
t

s
0

d      
t

sZ
0

)(d
 

 (C) X(t)    X(0)  +   
t

ssX
0

d)(     
t

sZsX
0

)(d)(  

 (D) X(t)    X(0)  (et
  – 1)   )(d 

0
sZe

t s   

(E) X(t)    X(0) et    (1 – et)    
t st sZe
0

)( )(d  
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Solution to (24)    Answer: (E) 

The given stochastic differential equation is (20.9) in McDonald (2006). 

Rewrite the equation as 

dX(t)   X(t)dt  =  dt dZ(t).    

If this were an ordinary differential equation, we would solve it by the method of 

integrating factors.  (Students of life contingencies have seen the method of integrating 

factors in Exercise 4.22 on page 129 and Exercise 5.5 on page 158 of Actuarial 

Mathematics, 2nd edition.)  Let us give this a try.  Multiply the equation by the integrating 

factor et, we have 

 et dX(t)  +  etX(t)dt  etdt  et dZ(t). (*) 

We hope that the left-hand side is exactly d[etX(t)].  To check this, consider f(x, t) = etx, 

whose relevant derivatives are fx(x, t) = et,  fxx(x, t) = 0, and ft(x, t) = etx.  By Itô’s 

Lemma, 

       df(X(t), t)    et dX(t)  +  0  +  et X(t)dt, 

which is indeed the left-hand side of (*).  Now, (*) can be written as 

           d[esX(s)]  esds esdZ(s). 

Integrating both sides from s = 0 to s = t, we have 

)(d )1()(d d )0()(
000

0 sZeesZeseXetXe
t stt st st    , 

or  

etX(t)  X(0)  (et
  – 1)   )(d 

0
sZe

t s  . 

Multiplying both sides by et and rearranging yields 

    X(t)   X(0)et (1 – et)    )(d 
0

sZee
t st    

  X(0)et (1 – et)   )(d 
0

)( sZe
t st  , 

which is (E).  
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Remarks:  This question is the same as Exercise 20.9 on page 674.  In the above, the 

solution is derived by solving the stochastic differential equation, while in Exercise 20.9, 

you are asked to use Itô’s Lemma to verify that (E) satisfies the stochastic differential 

equation. 

 

If t  0, then the right-hand side of (E) is X(0).  

 

If t > 0, we differentiate (E).  The first and second terms on the right-hand side are not 

random and have derivatives X(0)et and et, respectively.  To differentiate the 

stochastic integral in (E), we write 

  )(d 
0

)( sZe
t st   =  )(d 

0
sZee

t st   , 

which is a product of a deterministic factor and a stochastic factor.  Then, 

).(dd )(d                                 

)](d[)(d )d(                                

)(d d)(d )d()(d d

0

0

000

tZtsZee

tZeesZee

sZeesZeesZee

t st

ttt st

t stt stt st































 

Thus, 

),(dd])([

)(ddd)]1()([

)(ddd)(d )0(

)(dd )(d dd)0()(d

0

0

tZttX

tZtetetX

tZtetsZeeeX

tZtsZeeteteXtX

tt

tt stt

t sttt





















 


















 

which is the same as the given stochastic differential equation. 
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25.   Consider a chooser option (also known as an as-you-like-it option) on a 

nondividend-paying stock.  At time 1, its holder will choose whether it becomes a 

European call option or a European put option, each of which will expire at time 3 

with a strike price of $100.   

 
The chooser option price is $20 at time t  0. 
 

 The stock price is $95 at time t = 0.  Let C(T) denote the price of a European call 

option at time t = 0 on the stock expiring at time T, T  0, with a strike price of 

$100.   

 
You are given: 

 
(i) The risk-free interest rate is 0. 
 
(ii) C(1)  $4. 
 
 
Determine C(3). 

 
 

(A) $  9 
 
(B) $11 
 
(C) $13 
 
(D) $15 
 
(E) $17 
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Solution to (25)  Answer: (B) 
 
Let C(S(t), t, T) denote the price at time-t of a European call option on the stock, with 

exercise date T and exercise price K  100.  So, 

 C(T)  C(95, 0, T).  
Similarly, let P(S(t), t, T) denote the time-t put option price. 
 

At the choice date t  1, the value of the chooser option is 
 Max[C(S(1), 1, 3), P(S(1),1, 3)], 
which can expressed as 

 C(S(1), 1, 3)  Max[0, P(S(1),1, 3)  C(S(1), 1, 3)].   (1) 
Because the stock pays no dividends and the interest rate is zero, 

      P(S(1),1, 3)  C(S(1), 1, 3)  K  S(1) 
by put-call parity.  Thus, the second term of (1) simplifies as  

  Max[0, K  S(1)], 
which is the payoff of a European put option.  As the time-1 value of the chooser option 
is 

  C(S(1), 1, 3) Max[0, K  S(1)], 
its time-0 price must be  

  C(S(0), 0, 3)  P(S(0), 0, 1),  
which, by put-call parity, is 

  

 
Thus, 
 C(3)  20  (4 + 5)  11. 

 
Remark:  The problem is a modification of Exercise 14.20.b. 

  

( (0), 0, 3) [ ( (0), 0,1) (0)]

(3) [ (1) 100 95] (3) (1) 5.

C S C S K S

C C C C

  
      
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26. Consider European and American options on a nondividend-paying stock.   

 You are given: 
 

(i) All options have the same strike price of 100. 
 

(ii) All options expire in six months.  
 

(iii) The continuously compounded risk-free interest rate is 10%. 
 

You are interested in the graph for the price of an option as a function of the current 

stock price.  In each of the following four charts IIV, the horizontal axis, S, 

represents the current stock price, and the vertical axis, ,  represents the price of an 

option.   

  
I. II. 

 
 
III. 

 
IV. 

 
 
 

Match the option with the shaded region in which its graph lies.  If there are two or 
more possibilities, choose the chart with the smallest shaded region.



 63 April 8, 2011  
 

26. Continued 
 
 
 

 European Call American Call European Put American Put 
 

(A) 
 

I 
 

I 
 

III 
 

III 
 

(B) 
 

II 
 

I 
 

IV 
 

III 
 

(C) 
 

II 
 

I 
 

III 
 

III 
 

(D) 
 

II 
 

II 
 

IV 
 

III 
 

(E) 
 

II 
 

II 
 

IV 
 

IV 
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Solution to (26)    Answer: (D) 
 

 

 
By (9.9) on page 293 of McDonald (2006), we have 

S(0)  CAm  CEu  Max[0, )(,0 SF P
T   PV0,T(K)]. 

 

Because the stock pays no dividends, the above becomes 
 

  S(0)  CAm  CEu  Max[0, S(0)  PV0,T(K)]. 
 
Thus, the shaded region in II contains CAm and CEu.  (The shaded region in I also does, 
but it is a larger region.) 
 
By (9.10) on page 294 of McDonald (2006), we have 

0, 0,Max[0,PV ( ) ( )]P
Am Eu T TK P P K F S     

           0,Max[0, PV ( ) (0)]T K S   

because the stock pays no dividends.  However, the region bounded above by   K and 
bounded below by   Max[0, PV0,T(K)  S] is not given by III or IV. 
 
Because an American option can be exercised immediately, we have a tighter lower 
bound for an American put, 
  PAm  Max[0, K  S(0)]. 

Thus, 
  K  PAm  Max[0, K  S(0)], 

showing that the shaded region in III contains PAm. 
 
For a European put, we can use put-call parity and the inequality S(0)  CEu to get a 
tighter upper bound, 
   PV0,T(K)  PEu. 
Thus, 
  PV0,T(K)  PEu  Max[0, PV0,T(K)  S(0)], 
 
showing that the shaded region in IV contains PEu. 
 

0.1/ 2 0.051
2 0,; PV ( ) 100 100 95.1229 95.12.rT

TT K Ke e e       



 65 April 8, 2011  
 

Remarks:   
 
(i)  It turns out that II and IV can be found on page 156 of Capiński and Zastawniak 

(2003) Mathematics for Finance: An Introduction to Financial Engineering, 
Springer Undergraduate Mathematics Series.   

 
(ii)   The last inequality in (9.9) can be derived as follows.  By put-call parity, 
         CEu   PEu  )(,0 SF P

T  erTK
 
 

   )(,0 SF P
T  erTK   because PEu  0. 

 We also have  
       CEu   0. 
 Thus, 
       CEu  Max[0, )(,0 SF P

T  erTK]. 

 
(iii)  An alternative derivation of the inequality above is to use Jensen’s Inequality (see, 

in particular, page 883). 

          CEu E* Max(0, ( ) )rTe S T K     

 Max(0, E* ( ) )rTe S T K   because of Jensen’s Inequality 

                Max(0, E* ( ) )rT rTe S T e K      

              0,Max(0, ( ) )P rT
TF S e K  . 

 Here, E* signifies risk-neutral expectation. 
 
(iv)  That CEu  CAm for nondividend-paying stocks can be shown by Jensen’s Inequality. 
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27.   You are given the following information about a securities market: 
 

(i) There are two nondividend-paying stocks, X and Y. 
 

(ii) The current prices for X and Y are both $100.  
 

(iii) The continuously compounded risk-free interest rate is 10%. 
 

(iv) There are three possible outcomes for the prices of X and Y one year from 
now: 

 
Outcome X Y 

1 $200 $0 
2 $50 $0 
3 $0 $300 

 
 

Let XC  be the price of a European call option on X, and YP  be the price of a 

European put option on Y.  Both options expire in one year and have a strike price 
of $95. 
 
 
Calculate Y XP C . 

 
 
(A) $4.30 
 
(B) $4.45 
 
(C) $4.59 
 
(D) $4.75 
 
(E) $4.94  
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Solution to (27)  Answer: (A) 
 
We are given the price information for three securities: 
 
    1 
 
B:        e.1  1 
 
    1  
 
    200 
 
X:        100  50  
 
    0  
 
    0 
 
Y:        100  0  
 
    300  
 
The problem is to find the price of the following security 
    10 
 

         ??  95  
 
    0  
The time-1 payoffs come from: 
(95 – 0)+  (200 – 95)+ = 95 – 105 = 10 
(95 – 0)+  (50 – 95)+ = 95 – 0 = 95 
(95 – 300)+  (0 – 95)+ = 0 – 0 = 0 
 
 
So, this is a linear algebra problem.  We can take advantage of the 0’s in the time-1 
payoffs.  By considering linear combinations of securities B and Y, we have 
 
      1 
        

0.1 1
3:                     

300

Y
B e    1 

 
      0 
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We now consider linear combinations of this security, ,
300

Y
B   and X.  For replicating 

the payoff of the put-minus-call security, the number of units of X and the number of 

units of 
300

Y
B   are given by 

   
1

200 1 10

50 1 95

    
   
   

. 

Thus, the time-0 price of the put-minus-call security is 
1

0.1 1
3

200 1 10
(100, )

50 1 95
e


    

    
   

. 

Applying the 2-by-2 matrix inversion formula 

  
1

1a b d b

c d c aad bc

    
      

 

to the above, we have  

0.1 1
3

1 1 101
(100, )

50 200 95200 50
e     

        
 1051

(100, 0.571504085)
19500150

 
  

 
 

= 4.295531   4.30.  
 

Remarks:   
(i)  We have priced the security without knowledge of the real probabilities.  This is 

analogous to pricing options in the Black-Scholes framework without the need to 

know , the continuously compounded expected return on the stock. 
(ii)   Matrix calculations can also be used to derive some of the results in Chapter 10 of 

McDonald (2006).  The price of a security that pays Cu when the stock price goes 
up and pays Cd when the stock price goes down is 

 

1

( 1)
h rh

u

h rh
d

CuSe e
S

CdSe e






   
   

  
 

 

( ) ( )

1
( 1)

rh rh
u

r h r h h h
d

Ce e
S

CuSe dSe dSe uSe    

   
       

 

 
( )

1
( )

( )
urh h h rh

r h
d

C
e de ue e

Cu d e
 

 

 
      

 

 
( ) ( )

( )
r h r h

urh

d

Ce d u e
e

Cu d u d

  
   

     
 

 ( * 1 *) urh

d

C
e p p

C
  

   
 

. 
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(iii)  The concept of state prices is introduced on page 370 of McDonald (2006).  A state 
price is the price of a security that pays 1 only when a particular state occurs.  Let 
us denote the three states at time 1 as H, M and L, and the corresponding state prices 
as QH, QM and QL. 

 
     
 

         QH  0  
 
    0  
 
     
 

         QM  1  
 
    0 
 
     
 

         QL  0  
 
    1 
 
 
 Then, the answer to the problem is 
    10QH  +  95QM  +  0QL . 
 
 To find the state prices, observe that  

0.1

200 50 0 100

0 0 300 100

H M L

H M L

H M L

Q Q Q e

Q Q Q

Q Q Q

   


  
   

 

 Hence, 
1

0.1

1 200 0

( ) ( 100 100) 1 50 0 (0.4761 0.0953 0.3333)

1 0 300
H M LQ Q Q e





 
   
 
 

.
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28. Assume the Black-Scholes framework.  You are given: 
 

(i) S(t) is the price of a nondividend-paying stock at time t.  
 
(ii) S(0)  10 

 
(iii) The stock’s volatility is 20%.  

 
(iv) The continuously compounded risk-free interest rate is 2%.  

 
 

At time t  0, you write a one-year European option that pays 100 if [S(1)]2  is 
greater than 100 and pays nothing otherwise. 

 
 You delta-hedge your commitment.   
 
 
 Calculate the number of shares of the stock for your hedging program at time t  0. 
 
 

(A) 20 
 
(B) 30 
 
(C) 40 
 
(D) 50 
 
(E) 60 
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Solution to (28)    Answer: (A) 
  

Note that [S(1)]2  100 is equivalent to S(1)  10.  Thus, the option is a cash-or-nothing 
option with strike price 10.  The time-0 price of the option is  

100 × erT N(d2).   
 
To find the number of shares in the hedging program, we differentiate the price formula 
with respect to S, 

  2100 ( )rTe N d
S




 

  =  2
2100 ( )rT d

e N d
S

 


 =  2

1
100 ( )rTe N d

S T
  . 

 

With T  1, r 0.02,   0,   0.2, S  S(0)  10, K  K2  10, we have d2  0 and 

 2

1
100 ( )rTe N d

S T
   0.02 1

100 (0)
2

e N 

 
    

20 / 2
0.02 1

100
22

e
e






 
    

0.0250

2

e





  

    19.55.  
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29.   The following is a Black-Derman-Toy binomial tree for effective annual interest 
rates. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Compute the “volatility in year 1” of the 3-year zero-coupon bond generated by the 
tree. 

 
 
 (A) 14% 
 
 (B) 18% 
 
 (C) 22% 
 
 (D) 26% 
 
 (E) 30% 
 

5%  

3% 

       r0 rud 

2% 

6% 

     Year 0     Year 1        Year 2 
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Solution to (29)  Answer: (D) 
 
According to formula (24.48) on page 800 in McDonald (2006), the “volatility in year 1” 
of an n-year zero-coupon bond in a Black-Derman-Toy model is the number  such that  
   y(1, n, ru)  =  y(1, n, rd) e

2, 
where y, the yield to maturity, is defined by 

   P(1, n, r)  =  
1

1

1 (1, , )

n

y n r


 
  

. 

Here, n = 3 [and hence  is given by the right-hand side of (24.53)].  To find P(1, 3, ru) 
and P(1, 3, rd), we use the method of backward induction.  
   
 
 
 
 
 
 
 
 
 

P(2, 3, ruu)  = 
1 1

1 1.06uur



,   

P(2, 3, rdd)  = 
1 1

1 1.02ddr



, 

P(2, 3, rdu)  = 
1 1 1

1 1.034641ud uu dd
r r r

 
  

, 

P(1, 3, ru)  =  
1

1 ur
[½ P(2, 3, ruu)  +  ½ P(2, 3, rud)] = 0.909483, 

P(1, 3, rd)  =  
1

1 dr
[½ P(2, 3, rud)  +  ½ P(2, 3, rdd)] = 0.945102. 

Hence, 

 e  =  
(1,3, )

(1,3, )
u

d

y r

y r
 = 

1/ 2

1/ 2

[ (1,3, )] 1

[ (1,3, )] 1
u

d

P r

P r








 = 
0.048583

0.028633
, 

resulting in   =  0.264348    26%. 
 
Remarks:  (i) The term “year n” can be ambiguous.  In the Exam MLC/3L textbook 
Actuarial Mathematics, it usually means the n-th year, depicting a period of time.  
However, in many places in McDonald (2006), it means time n, depicting a particular 
instant in time.  (ii) It is stated on page 799 of McDonald (2006) that “volatility in year 1” 
is the standard deviation of the natural log of the yield for the bond 1 year hence.  This 
statement is vague.  The concrete interpretation of “volatility in year 1” is the right-hand 
side of (24.48) on page 800, with h = 1. 

P(1, 3, ru)

P(1, 3, rd)

   P(0, 3)  P(2, 3, rud) 

P(2, 3, rdd)  

P(2, 3, ruu) 
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30. You are given the following market data for zero-coupon bonds with a maturity 
payoff of $100.   

 
Maturity (years) Bond Price ($) Volatility in Year 1 

1 94.34 N/A 
2 88.50 10% 

 
 A 2-period Black-Derman-Toy interest tree is calibrated using the data from above: 
 
 
 
 
 
 
 
 
 
 Calculate rd, the effective annual rate in year 1 in the “down” state. 
 
 

(A)  5.94% 
 
(B)  6.60% 
 
(C)  7.00%  
 
(D)  7.27%  

 
(E)  7.33% 

ru  

rd  

r0  

Year 0          Year 1 
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Solution to (30)  Answer: (A) 
 
 
 
 
 
 
 
 
 
In a BDT interest rate model, the risk-neutral probability of each “up” move is ½. 
 
Because the “volatility in year 1” of the 2-year zero-coupon bond is 10%, we have  
 

 1  10%. 
 

This can be seen from simplifying the right-hand side of (24.51).   
 
 
We are given P(0, 1)  0.9434 and P(0, 2)  0.8850, and they are related as follows: 
 
 P(0, 2)   P(0, 1)[½P(1, 2, ru)  +  ½P(1, 2, rd)] 

    P(0, 1)
1 1 1 1

2 1 2 1u dr r

 
   

 

    P(0, 1) 0.2

1 1 1 1

2 1 2 1d dr e r

 
   

. 

Thus, 

 0.2

1 1

1 1d dr e r


 
   

2 0.8850

0.9434


    1.8762, 

or 

  0.2 0.2 2 0.22 (1 ) 1.8762[1 (1 ) ],d d dr e r e r e       

which is equivalent to 

  0.2 2 0.21.8762 0.8762(1 ) 0.1238 0.d de r e r     

The solution set of the quadratic equation is {0.0594,  0.9088}.  Hence, 
 

   rd    5.94%. 
 

 

rd  

r0  

Year 0     Year 1 
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31.   You compute the current delta for a 50-60 bull spread with the following 
information: 
 

(i) The continuously compounded risk-free rate is 5%. 
 
(ii)  The underlying stock pays no dividends. 
 
(iii)  The current stock price is $50 per share. 
 
(iv)  The stock’s volatility is 20%. 
 
(v) The time to expiration is 3 months. 

 
 

How much does delta change after 1 month, if the stock price does not change? 
 
 
 
(A)  increases by 0.04 
 
(B)  increases by 0.02 
 
(C)  does not change, within rounding to 0.01 
 
(D)  decreases by 0.02 
 
(E)  decreases by 0.04 
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Solution to (31)  Answer: (B) 
 
Assume that the bull spread is constructed by buying a 50-strike call and selling a 60-
strike call. (You may also assume that the spread is constructed by buying a 50-strike put 
and selling a 60-strike put.) 
 
Delta for the bull spread is equal to  
 

(delta for the 50-strike call)  –  (delta for the 60-strike call). 
 
(You get the same delta value, if put options are used instead of call options.) 
 

Call option delta  N(d1), where 
T

TrKS
d



 )
2

1
()/ln( 2

1


  

 
50-strike call: 

175.0
12/32.0

)12/3)(2.0
2

1
05.0()50/50ln( 2

1 


d ,     N(0.175)  0.56946 

 
60-strike call: 

2

1

1
ln(50 / 60) (0.05 0.2 )(3/12)

2 1.64822
0.2 3/12

d
  

   ,   N(1.64882) 0.04965

Delta of the bull spread  0.56946 – 0.04965  0.51981. 
 
 
After one month, 50-strike call: 

2

1

1
ln(50 / 50) (0.05 0.2 )(2 /12)

2
0.2 2 /12

d
  

   0.1428869 N(0.14289)  0.55681 

 
60-strike call: 

2

1

1
ln(50 / 60) (0.05 0.2 )(2 /12)

2
0.2 2 /12

d
  

   2.090087  N(–2.0901)  0.01830 

 
Delta of the bull spread after one month  0.55681 – 0.01830  0.53851. 
 
 
The change in delta  0.53851  0.51981  0.0187  0.02. 
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32.  At time t  0, Jane invests the amount of W(0) in a mutual fund.  The mutual fund 

employs a proportional investment strategy:   There is a fixed real number , such 

that, at every point of time, 100% of the fund’s assets are invested in a 

nondividend paying stock and 100% in a risk-free asset.   

 

 You are given: 

(i) The continuously compounded rate of return on the risk-free asset is r. 

(ii) The price of the stock, S(t), follows a geometric Brownian motion,  

   
d ( )

( )

S t

S t
     dt  + dZ(t),  t  0, 

  where {Z(t)} is a standard Brownian motion. 

 
 Let W(t) denote the Jane’s fund value at time t, t  0. 
 
 
 Which of the following equations is true? 
 
 
 

(A) 
 

d ( )

( )

W t

W t   
=  [  +  (1 – )r]dt  + dZ(t) 

(B)  W(t)  =  W(0)exp{[  +  (1 – )r]t  +  Z(t)} 

(C)  W(t)  =  W(0)exp{[  +  (1 – )r  –  ½2]t  +  Z(t)} 

(D)  W(t)  =  W(0)[S(t)/S(0)] e(1 – )rt 

(E)  W(t)  =  W(0)[S(t)/S(0)] exp[(1 – )(r  +  ½2)t]  
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Solution to (32)    Answer: (E) 
 
A proportional investment strategy means that the mutual fund’s portfolio is continuously 
re-balanced.  There is an implicit assumption that there are no transaction costs. 
 
For t ≥ 0, the rate of return over the time interval from t to t + dt is 

           
d ( )

( )

W t

W t  
=  

d ( )

( )

S t

S t
  +  (1 – )rdt 

   =  [dt  + dZ(t)]  +  (1 – )rdt 
   =  [  +  (1 – )r]dt  + dZ(t).    (1) 
 
We know 
  S(t)  =  S(0)exp[( – ½2)t  +  Z(t)].     (2) 
The solution to (1) is similar, 
  W(t)  =  W(0)exp{[  +  (1 – )r  –  ½(2]t  +  Z(t)}.  (3) 
 
Raising equation (2) to power  and applying it to (3) yields 
    W(t) =  W(0)[S(t)/S(0)] exp{[(1 – )r  –  ½(2 +  ½2]t} 

=  W(0)[S(t)/S(0)] exp[(1 – )(r    ½2)t],   (4) 
which is (E). 
 
 
 
Remarks:  
(i)  There is no restriction that the proportionality constant  is to be between 0 and 1.  If 

0, the mutual fund shorts the stock; if  > 1, the mutual fund borrows money to 
buy more shares of the stock.   

 
(ii)  If the stock pays dividends continuously, with amount S(t)dt between time t and time 

t+dt, then we have equation (20.25) of McDonald (2006),  
d ( )

( )

S t

S t
  =  (dt  + dZ(t),  

 whose solution is 
   S(t)  =  S(0)exp[( ½2)t  +  Z(t)].   (5) 
 Since 

           

d ( )

( )

W t

W t
 =  

d ( )
δd

( )

S t
t

S t

 
 

 
  +  (1 – )rdt   

  =  (dt  + dZ(t)  +  dt]  +  (1 – )rdt   
=  [  +  (1 – )r]dt  + dZ(t), 

formula (3) remains valid.  Raising equation (5) to power  and applying it to (3) 
yields 

    W(t) =  W(0)[S(t)/S(0)] exp{[(1 – )r  –  ½(2  +    ½2)]t} 
=  W(0)[S(t)/S(0)] exp{[(1 – )(r    ½2)]t}.  (6) 
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Note that as in (4), Z(t) and  do not appear explicitly in (6).  As a check for the 
validity of (6), let us verify that  

   0,
P
tF [W(t)]  =  W(0).      (7) 

 Since 

 0,
P
tF [W(t)]  =  W(0)S(0)exp{[(1 – )(r    ½2)]t} 0,

P
tF [S(t)], 

 equation (7) immediately follows from (20.30) of McDonald (2006). 
 
(iii)It follows from (6) that  

W(t)  =  W(0)[S(t)/S(0)]  
 if and only if  is a solution of the quadratic equation 
   (1 – )(r    ½2)  =  0.    (8) 

The solutions of (8) are  = h1 > 1 and  = h2 < 0 as defined in Section 12.6.  Section 
12.6 is not currently in the syllabus of Exam MFE/3F. 

 
(iv) Another way to write (6) is 

W(t)  =  W(0)[etS(t)/S(0)] [ert] exp[½(1 – )2t]. 
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33.   You own one share of a nondividend-paying stock.  Because you worry that its 

price may drop over the next year, you decide to employ a rolling insurance 

strategy, which entails obtaining one 3-month European put option on the stock 

every three months, with the first one being bought immediately. 

 

 You are given: 

(i)  The continuously compounded risk-free interest rate is 8%. 

(ii)  The stock’s volatility is 30%. 

(iii)  The current stock price is 45. 

(iv)  The strike price for each option is 90% of the then-current stock price.    

 
Your broker will sell you the four options but will charge you for their total cost 
now.   

 
 
 Under the Black-Scholes framework, how much do you now pay your broker? 
                     

 
 
(A) 1.59 
 
(B) 2.24 
 
(C) 2.86 
 
(D) 3.48 
 
(E) 3.61 
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Solution to (33)  Answer: (C) 
 
The problem is a variation of Exercise 14.22, whose solution uses the concept of the 
forward start option in Exercise 14.21.  
 
Let us first calculate the current price of a 3-month European put with strike price being 
90% of the current stock price S.   

With K = 0.9×S, r = 0.08,  = 0.3, and T = ¼, we have 

d1 = 
2ln( / 0.9 ) ( ½ ) ln(0.9) (0.08 ½ 0.09) ¼

0.3 ¼

S S r T

T

       
 

  
0.91073677 

 

d2 = d1 – T  d1 – 0.3 ¼  0.76074 

N(–d1) = N(–0.91074)  0.18122 
N(–d2) = N(–0.76074) = 0.22341 
 

Put price = Ke–rTN(–d2) – SN(–d1)  0.9Se–0.08 ×0.25×0.22341 – S×0.18122  0.015868S 
 
 
For the rolling insurance strategy, four put options are needed.  Their costs are 
0.015868S(0) at time 0, 0.015868S(¼) at time ¼, 0.015868S(½) at time ½, and 
0.015868S(¾) at time ¾.  Their total price at time 0 is the sum of their prepaid forward 
prices. 
 
Since the stock pays no dividends, we have 

   ,  for all T  0. 

Hence, the sum of the four prepaid forward prices is  

     0.015868S(0) × 4  0.015868 × 45 × 4  2.85624 ≈ 2.86. 
  

0, ( ( )) (0)P
TF S T S
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34.  The cubic variation of the standard Brownian motion for the time interval [0, T] is 

defined analogously to the quadratic variation as  

3

1

lim { [ ] [( 1) ]}
n

n j

Z jh Z j h
 

  , 

 where h  T/n.   
 
 What is the distribution of the cubic variation? 
 

(A) N(0, 0) 

(B) N(0, T 1/2) 

(C) N(0, T) 

(D) N(0, T 3/2) 

(E) N( / 2T , T) 
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Solution to (34)  Answer: (A)   

 
It is stated on page 653 of McDonald (2006) that “higher-order [than quadratic] 
variations are zero.”   
 
Let us change the last formula on page 652 by using an exponent of 3:   

    

Taking absolute value, we have 

 

Thus, 

 

 
Alternative argument: 

. 

Now,            3[d ( )]Z t   2[d ( )]Z t × dZ(t)    

  dt × dZ(t)      (20.17c) 
  0       (20.17a) 

Hence, 

               3

0 0
[d ( )] 0 0.

T T
Z t     

 
 
 
 

  

3

1

3

1

3/ 2 3

1

3/ 2 3

1

lim { [ ] [( 1) ]}

lim ( )

lim

lim ( / ) ( 1) .

n

n j

n

jh
n j

n

jh
n j

n

n j

Z jh Z j h

hY

h Y

T n

 

 

 

 

 





 









3/ 2
3/ 2 3 3/ 2 3 3/ 2

1/ 2
1 1 1

( / ) ( 1) ( / ) ( 1) ( / ) .
n n n

j j j

T
T n T n T n

n  

      

3

1

lim { [ ] [( 1) ]} 0.
n

n j

Z jh Z j h
 

  

3 3

0
1

lim { [ ] [( 1) ]} [d ( )]
n T

n j

Z jh Z j h Z t
 

   
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35.  The stochastic process {R(t)} is given by 

 

 where {Z(t)} is a standard Brownian motion.   

 

 
 Define X(t)  [R(t)]2. 
 
 
 Find dX(t). 
 
 
 

(A)  
3

40.1 ( ) 2 ( ) d 0.2 ( ) d ( )X t X t t X t Z t     

 

(B)  
3

40.11 ( ) 2 ( ) d 0.2 ( ) d ( )X t X t t X t Z t     

 

(C)  
3

40.12 ( ) 2 ( ) d 0.2 ( ) d ( )X t X t t X t X t     

 

(D)   3
40.01 [0.1 2 (0)] ( )d 0.2[ ( )] d ( )tR e X t t X t Z t    

 

(E)  
3

40.1 2 (0) ( )d 0.2[ ( )] d ( )tR e X t t X t Z t   

 
 
 
 
 
 

 
  

0
( ) (0) 0.05(1 ) 0.1 ( )d ( ),

tt t s tR t R e e e R s Z s      
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Solution to (35)  Answer: (B) 
 
By Itô’s lemma, dX(t)  2R(t)dR(t)  [dR(t)]2.  
 

To find dR(t), write the integral 
0

( )d ( )
t s te R s Z s  as .   

 
Then, 

 

(The above shows that R(t) can be interpreted as a C-I-R short-rate.) 
 
Thus, 

 [dR(t)]2  2])(1.0[ tR dt = 0.01R(t)dt,  

and 

2 3/ 2

3/ 4

d ( ) 2 ( ){[0.05 ( )]d 0.1 ( )d ( )} 0.01 ( )d

{0.11 ( ) 2[ ( )] }d 0.2[ ( )] d ( )

0.11 ( ) 2 ( ) d 0.2[ ( )] d ( ).

X t R t R t t R t Z t R t t

R t R t t R t Z t

X t X t t X t Z t

   

  

    

 

 
  Answer is (B). 
 
 
 
 
Remark:  This question is a version of Exercise 20.9 (McDonald 2006, p. 675).  

0
( )d ( )

tt se e R s Z s 

0
d ( ) (0) d 0.05 d 0.1 d ( )d ( ) 0.1 ( )d ( )

(0) d 0.05 d [ ( ) (0) 0.05(1 )]d 0.1 ( )d ( )

[0.05 ( )]d 0.1 ( )d ( ).

tt t t s t t

t t t t

R t R e t e t e t e R s Z s e e R t Z t

R e t e t R t R e e t R t Z t

R t t R t Z t

   

   

    

       

  


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36.  Assume the Black-Scholes framework.  Consider a derivative security of a stock.  

You are given: 

 
  (i)  The continuously compounded risk-free interest rate is 0.04. 
 
  (ii) The volatility of the stock is . 
 
  (iii)  The stock does not pay dividends. 
 
  (iv) The derivative security also does not pay dividends. 
 
  (v) S(t) denotes the time-t price of the stock. 
 

  (iv)  The time-t price of the derivative security is 

2/)]([ ktS  , where k is a positive 
constant. 

 
  
 Find k. 
 
 
 (A)  0.04 

 (B)  0.05 

 (C)  0.06 

 (D) 0.07 

 (E) 0.08 
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Solution to (36)    Answer: (E) 

This problem is a special case of Exercise 21.2 where  = 0,  = 0, and a = k/ 2.  Also, 
it is a variation of #16 in this set of Sample Questions and Solutions.
 
First Solution: We are given that the time-t price of the derivative security is 

   V(S(t), t)    [S(t)]a, 
where a is a negative constant.  The function V(s, t) must satisfy the Black-Scholes partial 
differential equation (21.11) 

2
2 2

2

1
( δ)

2

V V V
r s s rV

t s s
  

   
  

 

(where   0 because the stock does not pay dividends).  Since V(s, t)  as , we have  

Vt  0, Vs  1aas  , and Vss  2( 1) aa a s  . Thus, the B-S PDE becomes 

   1 2 2 21
0 ( ) ( 1)

2
a a ar s as s a a s rs       , 

or 

    21
( ) ( 1)

2
r a a a r     , 

which is a quadratic equation of a.  With   0, one obvious solution is a  1 (which is 

not negative).  The other solutions is a = −2r/.  Consequently, k  2r  2×0.04  0.08. 
 
Second Solution:  
Let V[S(t), t] denote the time-t price of a derivative security that does not pay dividends.  
Then, for t ≤ T,  

   V[S(t), t]    , ( [ ( ), ])P
t TF V S T T . 

In particular, 

   V[S(0), 0]    0, ( [ ( ), ])P
TF V S T T . 

Because in this problem are given that V[S(t), t]   [ ( )]aS t , where ak2, the equation 

above is  

                        [ (0)]aS   0, ([ ( )] )P a
TF S T   

      erT[ (0)]aS exp{[a(r – ) + ½a(a – 1) 2]T} 

by (20.30).  Hence we have the quadratic equation 

   0  =  r  +  a(r – ) + ½a(a – 1)2, 
which is the same as the one above. 
 
Third Solution:  
For simplicity, write k/ 2 as a and [S(t)]a as Sa(t).  Differentiating Sa(t) by means of 
Itô’s Lemma yields 
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         dSa(t)  aSa1(t)dS(t)  2 21
2 ( 1) ( )[d ( )]aa a S t S t  +  0dt 

 aSa1(t)[(  )S(t)dt  S(t)dZ(t)]  2 2 21
2 ( 1) ( ) ( )daa a S t S t t  

 1
2( ) ( 1) ( )d ( )d ( )a aa a a S t t a S t Z t        . 

Hence, 

  21
2

d ( )
( ) ( 1) d d ( )

( )

a

a

S t
a a a t a Z t

S t
          , 

which is (20.32) in McDonald (2006).  Because Sa(t) is the price of a (tradable) security, 
the no-arbitrage argument in Section 20.4 “The Sharpe Ratio” shows that  

   

21
2( ) ( 1)a a a r r

a

   
 

        , 

which gives the same quadratic equation of a as above.   
 
Remarks:  

(i)  The denominator in the LHS of the last equation is a, not its absolute value. 

(ii) If  0, the solutions of the quadratic equation are a  h1  1 and a  h2  0 as 
defined in Section 12.6 of McDonald (2006).  Section 12.6 is not currently in the 
syllabus of Exam MFE/3F. 

(iii)  For those who know martingale theory, the second solution is equivalent to seeking 
a such that, under the risk-neutral probability measure, the stochastic process 

{ert[S(t)]a; t ≥ 0} is a martingale.  There are two such martingales. 
(iv) The second solution requires formula (20.30) or (20.31).  To derive (20.31), we can 

use the fact 0, ( )a
TF S  = E*[Sa(T)].  Now, 

  S(t) = S(0)exp[( − −½2)t  + ( )Z t ] = S(0)exp[(r − −½2)t  + ( )Z t  ], 

 where ( ) ( ) [( ) / ]Z t Z t r t    .  Under the risk-neutral probability measure, 

{ ( )}Z t  is a standard Brownian motion.  Thus, 

   E*[Sa(T)]  =  Sa(0)exp[a(r − −½2)T  + ½(a2T], 
 yielding (20.31).  The last equation is the same as (20.35) in McDonald (2006). 
(v) If the derivative security pays dividends, then its price, V, does not satisfy the 

partial differential equation (21.11).   If the dividend payment between time t and 

time t  dt is (t)dt, then the Black-Scholes equation (21.31) will need to be 
modified as 

   Et
 [dV + (t)dt]    V × (rdt). 

 See also Exercise 21.10 on page 700. 
  



 90 April 8, 2011  
 

37.   The price of a stock is governed by the stochastic differential equation: 

 

 where {Z(t)} is a standard Brownian motion.  Consider the geometric average 

. 
 
 Find the variance of ln[G]. 
 
 
 

(A) 0.03 

(B) 0.04 

(C) 0.05 

(D) 0.06 

(E) 0.07 

 

 
 
 
  

d ( )
0.03d 0.2d ( ),

( )

S t
t Z t

S t
 

3/1)]3()2()1([ SSSG 
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Solution to (37)  Answer: (D) 
 
We are to find the variance of 

  ln G   
1

3
[ln S(1)    ln S(2)    ln S(3)]. 

If  

  t ≥ 0, 

then it follows from equation (20.29) (with   0) that 

ln S(t)    ln S(0)  2( ½ )t     Z(t),  t ≥ 0. 
Hence,         

      Var[ln G]   
2

1

3
Var[ln S(1)    ln S(2)    ln S(3)] 

     
2

9


Var[Z(1)    Z(2)    Z(3)]. 

Although Z(1), Z(2), and Z(3) are not uncorrelated random variables, the increments,  
Z(1)  Z(0), Z(2)  Z(1), and Z(3)  Z(2), are independent N(0, 1) random variables 
(McDonald 2006, page 650).  Put 
 Z1    Z(1)  Z(0)    Z(1) because Z(0)  0, 
 Z2    Z(2)  Z(1),   
and   

Z3    Z(3)  Z(2). 
Then, 
 Z(1)  +  Z(2)  +  Z(3)    3Z1 +  2Z2  +  1Z3. 
Thus, 

       Var[ln G]   
2

9


[Var(3Z1)  +  Var(2Z2)  +  Var(Z3)] 

     ]123[
9

222
2




    0.06. 

 
 
Remarks:   
(i) Consider the more general geometric average which uses N equally spaced stock 

prices from 0 to T, with the first price observation at time T/N, 

 G = 
1/

1
( / )

NN

j
S jT N


 
  . 

 Then, 

       Var[ln G]  = 
2

2
1 1

1
Var ln ( / ) Var ( / )

N N

j j

S jT N Z jT N
N N


 

   
   

   
  . 

 
 With the definition  

Zj    Z(jT/N)  Z((j1)T/N),  j  1, 2, ... , N,  
 we have 

d ( )
d d ( ),

( )

S t
t Z t

S t
  

2 214 14 (0.2)
0.06222

9 9


 


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1 1

( / ) ( 1 ) .
N N

j
j j

Z jT N N j Z
 

     

 Because {Zj} are independent N(0, T/N) random variables, we obtain 

   Var[ln G] 
2

2
2

1

( 1 ) Var[ ]
N

j
j

N j Z
N




    

   

2
2

2
1

2

2

2

2

( 1 )

( 1)(2 1)

6

( 1)(2 1)
,

6

N

j

T
N j

N N

N N N T

N N

N N T

N









   

 


 




 

 which can be checked using formula (14.19) on page 466. 
 

(ii)  Since 
1

1
ln ln ( / )

N

j

G S jT N
N 

   is a normal random variable, the random variable G is 

a lognormal random variable.  The mean of ln G can be similarly derived.  In fact, 
McDonald (2006, page 466) wrote: “Deriving these results is easier than you might 
guess.” 

 
(iii)As N tends to infinity, G becomes 

   
0

1
exp ln ( ) d

T
S

T
     . 

The integral of a Brownian motion, called an integrated Brownian motion, is treated 
in textbooks on stochastic processes. 

 
(iv) The determination of the distribution of an arithmetic average (the above is about the 

distribution of a geometric average) is a very difficult problem.  See footnote 3 on 
page 446 of McDonald (2006) and also #56 in this set of sample questions. 
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38.  For t  T, let P(t, T, r ) be the price at time t of a zero-coupon bond that pays $1 at 
time T, if the short-rate at time t is r.  

 
 You are given: 
 
  (i)  P(t, T, r)    A(t, T)×exp[–B(t, T)r] for some functions A(t, T) and B(t, T). 
 
  (ii)  B(0, 3)   2. 
 
 
 Based on P(0, 3, 0.05), you use the delta-gamma approximation to estimate  
 P(0, 3, 0.03), and denote the value as PEst(0, 3, 0.03) 
 

 Find 
(0,3,0.03)

(0,3,0.05)
EstP

P
. 

 
 
 
 (A)  1.0240 

 (B) 1.0408 

 (C) 1.0416 

 (D)  1.0480 

 (E)  1.0560 
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Solution to (38)    Answer: (B) 
 
The term “delta-gamma approximations for bonds” can be found on page 784 of 

McDonald (2006). 

 

By Taylor series, 

P(t, T, r0 + )    P(t, T, r0)  +  
1

1!
Pr(t, T, r0)  +  

1

2!
Prr(t, T, r0)2  +  … , 

where 

Pr(t, T, r)  –A(t, T)B(t, T)e–B(t, T)r  –B(t, T)P(t, T, r) 

and 

 Prr(t, T, r)  –B(t, T)Pr(t, T, r)  =  [B(t, T)]2P(t, T, r). 

Thus, 

 0

0

( , , )

( , , )

P t T r

P t T r


   1  –  B(t, T)  +  ½[B(t, T)]2  +  … 

and 

          
(0,3,0.03)

(0,3,0.05)
EstP

P
 =  1  –  (2 × –0.02)  +  ½(2 × –0.02)2 

   =  1.0408 
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39.   A discrete-time model is used to model both the price of a nondividend-paying 

stock and the short-term (risk-free) interest rate.  Each period is one year.   

 

At time 0, the stock price is S0  100 and the effective annual interest rate is  

r0  5%.   

 

At time 1, there are only two states of the world, denoted by u and d.  The stock 

prices are Su  110 and Sd  95.  The effective annual interest rates are ru  6% and 

rd  4%. 

 

 Let C(K) be the price of a 2-year K-strike European call option on the stock.   

 Let P(K) be the price of a 2-year K-strike European put option on the stock.   

 

 Determine  P(108) – C(108). 

 

 

(A) 2.85 

(B) 2.34 

(C) 2.11 

(D) 1.95 

(E) 1.08 
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Solution to (39)    Answer: (B) 
 
We are given that the securities model is a discrete-time model, with each period being 
one year.  Even though there are only two states of the world at time 1, we cannot assume 
that the model is binomial after time 1.  However, the difference, P(K)  –  C(K), suggests 
put-call parity. 
 
From the identity 
   x+    (x)+    x, 
we have 
  [K – S(T)]+    [S(T) – K]+    K – S(T), 
which yields 

  P(K)  –  C(K)  0,2 ( )PF K   0,2 ( )PF S  

       PV0,2(K)   S(0) 
       K×P(0, 2)  S(0). 
 
Thus, the problem is to find P(0, 2), the price of the 2-year zero-coupon bond: 

           P(0, 2)   
0

1

1 r
 * (1, 2, ) (1 *) (1, 2, )p P u p P d      

0

1 * 1 *
=  

1 1 1u d

p p

r r r

 
    

. 

 
To find the risk-neutral probability p*, we use  

 S0    
0

1

1 r
 

or 

 100    
1

1.05
 * 110 (1 *) 95p p    . 

This yields  p*  , with which we obtain 

 P(0, 2)  
1 2 / 3 1/ 3

=  
1.05 1.06 1.04

   
    0.904232. 

Hence, 
 P(108) – C(108)    108 × 0.904232  100    2.34294. 
  

 * (1 *)u dp S p S   

105 95 2

110 95 3





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40.   The following four charts are profit diagrams for four option strategies:  Bull 

Spread, Collar, Straddle, and Strangle.  Each strategy is constructed with the 

purchase or sale of two 1-year European options. 
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 Match the charts with the option strategies. 

                        
        Bull Spread       Straddle      Strangle         Collar 
    (A) I II III IV 
    (B)  I III II IV 
    (C) III IV I II 
    (D) IV II III I 
    (E) IV III II I 
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Solution to (40)     Answer: (D) 
 
Profit diagrams are discussed Section 12.4 of McDonald (2006).  Definitions of the 
option strategies can be found in the Glossary near the end of the textbook.  See also 
Figure 3.17 on page 87. 
 
The payoff function of a straddle is 

  (s)  =  (K – s)+  +  (s – K)+  =  |s – K| . 
 
The payoff function of a strangle is 

(s)  =  (K1 – s)+  +  (s – K2)+ 
where K1 < K2. 
 
The payoff function of a collar is 

(s)  =  (K1 – s)+    (s – K2)+ 
where K1 < K2. 
 
The payoff function of a bull spread is 

(s)  =  (s – K1)+    (s – K2)+ 

where K1 < K2.  Because x+  =  (x)+  +  x, we have 

(s)  =  (K1 – s)+    (K2 – s)+  +   K2 – K1 . 
 
The payoff function of a bear spread is 

(s)  =  (s – K2)+    (s – K1)+ 

where K1  K2. 
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41.   Assume the Black-Scholes framework.  Consider a 1-year European contingent 
claim on a stock. 

 
 You are given: 
 

 (i)  The time-0 stock price is 45. 
 

 (ii)  The stock’s volatility is 25%. 
 

 (iii)  The stock pays dividends continuously at a rate proportional to its price.  The  
  dividend yield is 3%. 
 

 (iv) The continuously compounded risk-free interest rate is 7%. 
 
 (v)   The time-1 payoff of the contingent claim is as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Calculate the time-0 contingent-claim elasticity. 
 
 
 
 (A)  0.24  
 
 (B)  0.29  
 
 (C)  0.34   
 
 (D)  0.39    
 
 (E)  0.44 

S(1) 
42

payoff 

42 
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Solution to (41) Answer: (C) 
 
The payoff function of the contingent claim is  

 (s)    min(42, s)    42  min(0, s – 42)  42  max(0, 42 – s)    42  (42 – s)+ 
 
The time-0 price of the contingent claim is  

     V(0)  0,1[ ( (1))]PF S   

      PV(42)    0,1[(42 (1)) ]PF S   

      42e0.07    P(45, 42, 0.25, 0.07, 1, 0.03). 
 

We have d1 
2ln(45 / 42) (0.07 0.03 ½(0.25) 1)

0.560971486
0.25 1

   
     

and d2 = 0.310971486.  From the Cumulative Normal Distribution Calculator, 
N(d1) = N(0.56097) = 0.28741 and N(d2) = N(0.31097) = 0.37791.  
 
Hence, the time-0 put price is 

 P(45, 42, 0.25, 0.07, 1, 0.03)  42e0.07(0.37791)  45e0.03(0.28741) = 2.247951, 
which implies 
  V(0)  42e0.07  2.247951 = 36.91259. 
 

                  Elasticity = 
ln

ln

V

S




 

 
 

  = 
V S

S V





 

    = V
S

V
    

    = Put
S

V
  . 

 

     Time-0 elasticity = 1
(0)

( )
(0)

T S
e N d

V
    

    = 0.03 45
0.28741

36.91259
e    

   =  0.340025. 
 

Remark:  We can also work with (s)  s – (s – 42)+; then 

  V(0)  45e0.03  C(45, 42, 0.25, 0.07, 1, 0.03) 
and 

  call 1 1( ) ( ).T T T TV
e e e N d e N d

S
   

     

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42.   Prices for 6-month 60-strike European up-and-out call options on a stock S are 
available.  Below is a table of option prices with respect to various H, the level of the 
barrier.  Here, S(0)  50. 
 

H Price of up-and-out call 

  
60 0 
70 0.1294 
80 0.7583 
90 1.6616 
 4.0861 

 
 
 
 

Consider a special 6-month 60-strike European “knock-in, partial knock-out” call 

option that knocks in at H1  70, and “partially” knocks out at H2  80.  The strike 

price of the option is 60. The following table summarizes the payoff at the exercise 

date: 

 

H1 Not Hit 
H1 Hit 

H2 Not Hit H2 Hit 
0 2  max[S(0.5) – 60, 0] max[S(0.5) – 60, 0] 

 
 
 
Calculate the price of the option. 

 
 
 (A)    0.6289 
 
 (B)    1.3872 
 
 (C) 2.1455 
 
 (D) 4.5856 
 
 (E)  It cannot be determined from the information given above. 
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Solution to (42)  Answer: (D) 
 
The “knock-in, knock-out” call can be thought of as a portfolio of  

– buying 2 ordinary up-and-in call with strike 60 and barrier H1, 
– writing 1 ordinary up-and-in call with strike 60 and barrier H2. 

 
Recall also that “up-and-in” call + “up-and-out” call = ordinary call. 
 
Let the price of the ordinary call with strike 60 be p (actually it is 4.0861),  
then the price of the UIC (H1 = 70) is p – 0.1294 
and the price of the UIC (H1 = 80) is p – 0.7583. 
 
The price of the “knock-in, knock out” call is 2(p – 0.1294) – (p – 0.7583)  4.5856 . 
 
 
 
Alternative Solution: 
Let M(T)  

0
max ( )

t T
S t

 
 be the running maximum of the stock price up to time T. 

Let I[.] denote the indicator function. 
 
For various H, the first table gives the time-0 price of payoff of the form  
    . 

 
The payoff described by the second table is 
 

  

 
Thus, the time-0 price of this payoff is 4.0861 2 0.1294 0.7583    4.5856 . 
 
 

[ (½)] [ (½) 60]I H M S   

 
  
 
 
 

[70 (½)] 2 [80 (½)] [80 (½)] [ (½) 60]

1 [70 (½)] 1 [80 (½)] [ (½) 60]

1 [70 (½)] [80 (½)] [70 (½)] [80 (½)] [ (½) 60]

1 2 [70 (½)] [80 (½)] [ (½) 60]

[ (½)] 2 [70 (½)] [80 (½)]

I M I M I M S

I M I M S

I M I M I M I M S

I M I M S

I M I M I M









    

     

        

     

       [ (½) 60]S 
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43.  Let x(t) be the dollar/euro exchange rate at time t.  That is, at time t, €1  =  $x(t).  

Let the constant r be the dollar-denominated continuously compounded risk-free 

interest rate.  Let the constant r€ be the euro-denominated continuously 

compounded risk-free interest rate.    

 

 You are given 

   
d ( )

( )

x t

x t
    (r – r€)dt    dZ(t),  

 where {Z(t)} is a standard Brownian motion and  is a constant. 

 

 Let y(t) be the euro/dollar exchange rate at time t.  Thus, y(t)  1/x(t).   

 

 Which of the following equation is true? 

 
 

 (A) 
d ( )

( )

y t

y t
    (r€  r)dt    dZ(t) 

 

 (B) 
d ( )

( )

y t

y t
    (r€  r)dt    dZ(t) 

 

 (C) 
d ( )

( )

y t

y t
    (r€  r    ½

2)dt    dZ(t) 

 

 (D) 
d ( )

( )

y t

y t
   (r€  r    ½

2)dt     dZ(t) 

 

 (E) 
d ( )

( )

y t

y t
   (r€  r  

2)dt  –   dZ(t) 
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Solution to (43)  Answer: (E) 
 
Consider the function f(x, t)  1/x.  Then, ft  0, fx  x2, fxx  2x3. 
 
By Itô’s Lemma, 

  dy(t)   df(x(t), t)   
  ftdt    fxdx(t)    ½fxx[dx(t)]2 
  0    [x(t)2]dx(t)    ½[2x(t)3][dx(t)]2 
  x(t)1[dx(t)/x(t)]    x(t)1[dx(t)/x(t)]2 
  y(t)[(r – r€)dt    dZ(t)]    y(t)[(r – r€)dt  +  dZ(t)]2 
  y(t)[(r – r€)dt    dZ(t)]    y(t)[

2dt], 
 

rearrangement of which yields 

  
d ( )

( )

y t

y t
   (r€  r + 

2)dt  –   dZ(t), 

which is (E). 
 
Alternative Solution   Here, we use the correspondence between  

    

and 
   W(t)    W(0)exp[( – ½)t  +  Z(t)]. 
Thus, the condition given is 
  x(t)    x(0)exp[(r  r€ – ½

2)t  +  Z(t)]. 
 
Because y(t)    1/x(t), we have 

     y(t)   y(0)exp{[(r  r€ – ½
2)t  +  Z(t)]} 

  y(0)exp[(r€  r + 
2 – ½()2)t  + (–)Z(t)], 

which is (E). 
 
Remarks:  
The equation 
 

d ( )

( )

x t

x t
    (r – r€)dt  +  dZ(t) 

 

can be understood in the following way.  Suppose that, at time t, an investor pays $x(t) to 
purchase €1.  Then, his instantaneous profit is the sum of two quantities:   

 

(1)  instantaneous change in the exchange rate, $[x(t+dt) – x(t)], or $ dx(t),  
 

(2)  € r€dt, which is the instantaneous interest on €1. 
 

Hence, in US dollars, his instantaneous profit is 
 

   dx(t)  +  r€dt × x(t+dt) 
       dx(t)  +  r€dt × [x(t) + dx(t)] 
       dx(t)  +  x(t)r€dt,   if dt × dx(t)  0.   
 

d ( )
d d ( )

( )

W t
t Z t

W t
   
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 Under the risk-neutral probability measure, the expectation of the instantaneous rate 
of return is the risk-free interest rate.  Hence, 

 

E[dx(t)    x(t)r€dt | x(t)]    x(t) × (rdt), 
 

from which we obtain 

 r€)dt. 

 Furthermore, we now see that {Z(t)} is a (standard) Brownian motion under the 
dollar-investor’s risk-neutral probability measure.   
 
 By similar reasoning, we would expect 
  

d ( )

( )

y t

y t
   (r€  r)dt  +  ωdZ€(t), 

 

where {Z€(t)} is a (standard) Brownian motion under the euro-investor’s risk-neutral 
probability measure and  is a constant.  It follows from (E) that ω   and  

 

Z€(t)    Z(t)  t. 
 

Let W be a contingent claim in dollars payable at time t.  Then, its time-0 price in 
dollars is 

 

E[ert W], 
 

where the expectation is taken with respect to the dollar-investor’s risk-neutral 
probability measure.  Alternatively, let us calculate the price by the following four steps:   
 

Step 1: We convert the time-t payoff to euros, 
 

   y(t)W. 
 

Step 2: We discount the amount back to time 0 using the euro-denominated risk-free 
interest rate, 

   exp(r€t) y(t)W. 
 

Step 3: We take expectation with respect to the euro-investor’s risk-neutral probability 
measure to obtain the contingent claim’s time-0 price in euros, 

 

   E€[exp(r€t) y(t)W]. 
 

Here, E€ signifies that the expectation is taken with respect to the euro-
investor’s risk-neutral probability measure.   

 

Step 4: We convert the price in euros to a price in dollars using the time-0 exchange 
rate x(0). 

 

We now verify that both methods give the same price, i.e., we check that the 
following formula holds: 

 

x(0)E€[exp(r€t) y(t)W]    E[ert W]. 
 

This we do by using Girsanov’s Theorem (McDonald 2006, p. 662).  It follows 
from Z€(t)    Z(t) t and footnote 9 on page 662 that 

 

E€[y(t)W]    E[(t)y(t)W], 

d ( )
E ( ) (

( )

x t
x t r

x t

 
  

 
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where  
 

(t)    exp[)Z(t) – ½()2t]    exp[Z(t) – ½
2t]. 

  

Because 
y(t)    y(0)exp[(r€  r + ½

2)t  –  Z(t)], 
 

we see that 
 

exp(r€t)y(t)(t)   y(0)exp(rt). 
 

Since x(0)y(0)  1, we indeed have the identity 
 

x(0)E€[exp(r€t) y(t)W]    E[ert W]. 
 

  

If W is the payoff of a call option on euros,  
 

W    [x(t) – K]+, 
then 
  

x(0)E€[exp(r€t) y(t)W]    E[ert W] 
 

is a special case of identity (9.7) on page 292.  A derivation of (9.7) is as follows.  It is 
not necessary to assume that the exchange rate follows a geometric Brownian motion.  
Also, both risk-free interest rates can be stochastic. 
 
 The payoff of a t-year K-strike dollar-dominated call option on euros is 
 

   $[x(t) – K]+  
     [$x(t) – $K]+ 
     [€1    $K]+ 
     [€1    €y(t)K]+ 
     K × €[1/K    y(t)]+, 
 

which is K times the payoff of a t-year (1/K)-strike euro-dominated put option on dollars. 
Let C$(x(0), K, t) denote the time-0 price of a t-year K-strike dollar-dominated call option 
on euros, and let P€(y(0), H, t) denote the time-0 price of a t-year H-strike euro-
dominated put option on dollars.  It follows from the time-t identity 
     $[x(t) – K]+    K × €[1/K    y(t)]+ 
that we have the time-0 identity 
 

              $ C$(x(0), K, t)    K × € P€(y(0), 1/K, t) 
       $ x(0) × K × P€(y(0), 1/K, t) 
       $ x(0) × K × P€(1/x(0), 1/K, t), 
 

which is formula (9.7) on page 292.  
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For Questions 44 and 45, consider the following three-period binomial tree model for a 
stock that pays dividends continuously at a rate proportional to its price.  The length of 
each period is 1 year, the continuously compounded risk-free interest rate is 10%, and the 
continuous dividend yield on the stock is 6.5%.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44.  Calculate the price of a 3-year at-the-money American put option on the stock. 
  
 

(A)  15.86   
 
(B)  27.40  
 
(C)  32.60   
 
(D)  39.73   
 
(E)  57.49  

 
 
45.  Approximate the value of gamma at time 0 for the 3-year at-the-money American 

put on the stock using the method in Appendix 13.B of McDonald (2006). 
 
 

(A)  0.0038   
 
(B)  0.0041   
 
(C)  0.0044   
 
(D)  0.0047   
 
(E)  0.0050   

   300 

375 
 
 
 
210 

468.75 
 
 
 
262.5 
 
 
 
147 

585.9375 
 
 
 
328.125 
 
 
 
183.75 
 
 
 
102.9 
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Solution to (44)   Answer: (D) 
 
By formula (10.5), the risk-neutral probability of an up move is 

. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Remark 
 

If the put option is European, not American, then the simplest method is to use the 
binomial formula [p. 358, (11.17); p. 618, (19.1)]: 

 er(3h)


























00)75.183300(*)1(*

2

3
)9.102300(*)1(

3

3 23 ppp  

 =  er(3h)(1  p*)2[(1  p*) × 197.1  +  3 × p* × 116.25)]    
 =  er(3h)(1  p*)2(197.1  +  151.65p*)       
 =  e0.1 × 3 × 0.389782 × 289.63951  = 32.5997 
 
Solution to (45)   Answer: (C) 

Formula (13.16) is  
du

du

SS 


 . By formula (13.15) (or (10.1)), .
)(

δ

duS

CC
e duh




    

908670.0
1475.262

1530002.41

186279.0
5.26275.468

0002.410

1065.0δ

1065.0δ


























e
SS

PP
e

e
SS

PP
e

ddud

ddudh
d

uduu

uduuh
u

 

Hence, 

004378.0
210375

908670.0186279.0





  

 
Remark:   This is an approximation, because we wish to know gamma at time 0, not at 

time 1, and at the stock price S0 = 300. 

61022.0
210375

210300
*

1)065.01.0()δ(
0

)δ(















 e

SS

SeS

du

de
p

du

d
hrhr

   300 
(39.7263) 

375 
(14.46034) 
 
 
210 
(76.5997) 
90 

468.75 
(0) 
 
 
262.5 
(41.0002) 
 
 
147 
(133.702) 
153

585.9375 
(0) 
 
 
328.125 
(0) 
 
 
183.75 
(116.25) 
 
 
102.9 
(197.1) 

Option prices in bold italic signify 
that exercise is optimal at that node. 
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46.   You are to price options on a futures contract.  The movements of the futures price 
are modeled by a binomial tree.  You are given: 

 

 (i) Each period is 6 months.   

 (ii) u/d = 4/3, where u is one plus the rate of gain on the futures price if it goes up, 

and d is one plus the rate of loss if it goes down.  

 (iii) The risk-neutral probability of an up move is 1/3. 

 (iv) The initial futures price is 80. 

 (v)  The continuously compounded risk-free interest rate is 5%. 

 

Let CI be the price of a 1-year 85-strike European call option on the futures 

contract, and CII be the price of an otherwise identical American call option. 

 

 Determine CII  CI. 

 

 (A) 0 

 (B) 0.022 

 (C) 0.044 

 (D) 0.066 

 (E) 0.088 
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Solution to (46)   Answer: (E) 
By formula (10.14), the risk-neutral probability of an up move is 

. 

Substituting p*  1/3 and u/d  4/3, we have 

. 

Hence,  and  . 
 
The two-period binomial tree for the futures price and prices of European and American 
options at t  0.5 and t  1 is given below.  The calculation of the European option prices 
at t  0.5 is given by 

455145.0*)]1(0*4.1[

72841.10*)]1(4.1*2.30[
5.005.0

5.005.0








ppe

ppe
 

 
 
  
 
 
 
 
 
 
 
 
 
Thus, CII  CI  e0.050.5  (11  10.72841)  p* = 0.088. 
 
Remarks: 

(i) .78378.3*)]1(455145.0*72841.10[5.005.0   ppeCI  

 .87207.3*)]1(455145.0*11[5.005.0   ppeCII  

(ii) A futures price can be treated like a stock with  = r.  With this observation, we can 
obtain (10.14) from (10.5), 

    .
1

*
)()(

du

d

du

de

du

de
p

hrrhr
















 

 Another application is the determination of the price sensitivity of a futures option 
with respect to a change in the futures price.  We learn from page 317 that the price 
sensitivity of a stock option with respect to a change in the stock price is 

( )
h u dC C

e
S u d

 


.  Changing  to r and S to F yields 
( )

rh u dC C
e

F u d
 


, which is the same 

as the expression rhe   given in footnote 7 on page 333. 

1/

1/11
*









du

d

du

d
p

13/4

1/1

3

1





d

9.0d (4 / 3) 1.2u d  

   80 

96 
(10.72841) 
11 
 
72 
(0.455145) 
 

115.2 
(30.2) 
 
 
86.4 
(1.4) 
 
 
64.8 
(0) 

An option price in bold italic signifies 
that exercise is optimal at that node. 
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47. Several months ago, an investor sold 100 units of a one-year European call option 
on a nondividend-paying stock.  She immediately delta-hedged the commitment 
with shares of the stock, but has not ever re-balanced her portfolio.  She now 
decides to close out all positions. 

 
 You are given the following information: 
 

(i) The risk-free interest rate is constant. 
 
(ii)  

 Several months ago Now 
 

Stock price $40.00 $50.00 
Call option price $  8.88 $14.42 
Put option price $  1.63 $  0.26 
Call option delta 0.794  

 
The put option in the table above is a European option on the same stock and 
with the same strike price and expiration date as the call option. 

 
 

Calculate her profit. 
 
 

(A)   $11 
 

(B)   $24 
 

(C) $126 
 

(D) $217 
 

(E) $240 
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Solution to (47)  Answer: (B) 
Let the date several months ago be 0.  Let the current date be t. 
 
Delta-hedging at time 0 means that the investor’s cash position at time 0 was 
  100[C(0)  C(0)S(0)]. 
After closing out all positions at time t, her profit is 
  100{[C(0)  C(0)S(0)]ert  –  [C(t)  C(0)S(t)]}. 
 
To find the accumulation factor ert, we can use put-call parity: 
 C(0) – P(0)  S(0) – KerT, 

C(t) – P(t)  S(t) – Ker(Tt),   
where T is the option expiration date.  Then, 

 ert  
( ) ( ) ( )

(0) (0) (0)

S t C t P t

S C P

 
 

 = 
50 14.42 0.26

40 8.88 1.63

 
 

 = 
35.84

32.75
 = 1.0943511. 

 
Thus, her profit is 
 100{[C(0)  C(0)S(0)]ert  –  [C(t)  C(0)S(t)]} 
   100{[8.88  0.794 × 40] × 1.09435 –  [14.42  0.794 × 50]} 
   24.13  24 
 
 
Alternative Solution:  Consider profit as the sum of (i) capital gain and (ii) interest: 

(i) capital gain  100{[C(0)  C(t)]   C(0)[S(0) – S(t)]} 
(ii) interest  100[C(0)  C(0)S(0)](ert – 1). 

Now, 
     capital gain  100{[C(0)  C(t)]   C(0)[S(0) – S(t)]} 
    100{[8.88  14.42]   [40 – 50]} 
    100{5.54 + 7.94}    240.00. 
To determine the amount of interest, we first calculate her cash position at time 0: 

          100[C(0)  C(0)S(0)]  100[8.88  400.794] 
 100[8.88  31.76]  =  2288.00. 

Hence, 
interest = 2288(1.09435 – 1)  =  215.87. 

Thus, the investor’s profit is 240.00 – 215.87 = 24.13  24. 
 
 
Third Solution:  Use the table format in Section 13.3 of McDonald (2006). 
 

Position Cost at time 0 Value at time t 
Short 100 calls 100  8.88 = –888 –100  14.42 = 1442 

100 shares of stock 100  0.794  40 = 3176 100  0.794  50 = 3970 
Borrowing 3176  888 = 2288 2288ert = 2503.8753 

Overall 0 24.13 
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Remark:  The problem can still be solved if the short-rate is deterministic (but not 

necessarily constant).  Then, the accumulation factor ert is replaced by 
0

exp[ ( )d ]
t
r s s , 

which can be determined using the put-call parity formulas 

  C(0) – P(0) = S(0) – K
0

exp[ ( )d ]
T

r s s , 

C(t) – P(t) = S(t) – K exp[ ( )d ]
T

t
r s s . 

If interest rates are stochastic, the problem as stated cannot be solved. 
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48. The prices of two nondividend-paying stocks are governed by the following 
stochastic differential equations: 

 

  1

1

d ( )
0.06d 0.02d ( ),

( )

S t
t Z t

S t
   

 

  2

2

d ( )
0.03d d ( ),

( )

S t
t k Z t

S t
   

 
 where Z(t) is a standard Brownian motion and k is a constant. 
 
 The current stock prices are 1(0) 100S   and 2(0) 50.S   

 
 The continuously compounded risk-free interest rate is 4%. 
 
 You now want to construct a zero-investment, risk-free portfolio with the two 

stocks and risk-free bonds.   
 
 If there is exactly one share of Stock 1 in the portfolio, determine the number of 

shares of Stock 2 that you are now to buy.  (A negative number means shorting 
Stock 2.) 

 
 

(A) – 4 
 

(B) – 2 
 

(C) – 1 
 

(D)    1 
 

(E)    4 
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Solution to (48)  Answer: (E) 
 
The problem is a variation of Exercise 20.12 where one asset is perfectly negatively 
correlated with another. 
 
The no-arbitrage argument in Section 20.4 “The Sharpe Ratio” shows that  

   
02.0

04.006.0 
  =  

k

04.003.0 
 

or k = 0.01, and that the current number of shares of Stock 2 in the hedged portfolio is 

   
)0(

)0(

2

11

Sk

S




  =  
50)01.0(

10002.0




 = 4, 

which means buying four shares of Stock 2. 
 
Alternative Solution:  Construct the zero-investment, risk-free portfolio by following 
formula (21.7) or formula (24.4): 
   I(t)    S1(t)    N(t)S2(t)    W(t), 
where N(t) is the number of shares of Stock 2 in the portfolio at time t and W(t) is the 
amount of short-term bonds so that I(t)  0, i.e., 
   W(t)    [S1(t)  +  N(t)S2(t)]. 
Our goal is to find N(0).  Now, the instantaneous change in the portfolio value is 
           dI(t)   dS1(t)  N(t)dS2(t)  W(t)rdt 
  S1(t)[0.06dt  + 0.02dZ(t)]  N(t)S2(t)[0.03dt  kdZ(t)]  0.04W(t)dt 
  (t)dt  (t)dZ(t), 
where 
             (t)   0.06S1(t)  0.03N(t)S2(t)  0.04[S1(t)    N(t)S2(t)] 
   0.02S1(t)  0.01N(t)S2(t), 
and 
(t)   0.02S1(t)   kN(t)S2(t). 
 
The portfolio is risk-free means that N(t) is such that (t) = 0.  Since I(t)  0, the no-
arbitrage condition and the risk-free condition mean that we must also have (t)  0, or 

  
)(01.0

)(02.0
)(

2

1

tS

tS
tN  . 

In particular, 

4
5.0

2

)0(01.0

)0(02.0
)0(

2

1 
S

S
N . 

 
Remark:  Equation (21.20) on page 687 of McDonald (2006) should be the same as 
(12.9) on page 393, 
   option    || × . 
Thus, (21.21) should be changed to 

      sign() ×
option

option



 r
. 


 r
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49.  You use the usual method in McDonald and the following information to construct 
a one-period binomial tree for modeling the price movements of a nondividend-
paying stock.  (The tree is sometimes called a forward tree). 

 
(i) The period is 3 months. 

 
(ii) The initial stock price is $100.  

 
(iii) The stock’s volatility is 30%. 

 
(iv) The continuously compounded risk-free interest rate is 4%. 

 
 

At the beginning of the period, an investor owns an American put option on the 
stock.  The option expires at the end of the period. 
 
 
Determine the smallest integer-valued strike price for which an investor will 
exercise the put option at the beginning of the period. 

 
 
 

(A) 114 
 
(B) 115 
 
(C) 116 
 
(D) 117 
 
(E) 118 
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Solution to (49)   Answer: (B) 
 

   1.173511 

   0.869358 
 S    initial stock price  100 
 
The problem is to find the smallest integer K satisfying 

K S    erh[p*  Max(K Su, 0) + (1 p*)  Max(K Sd, 0)].  (1) 
 

Because the RHS of (1) is nonnegative (the payoff of an option is nonnegative), we have 
the condition 
    K S   0.      (2) 
    
As d  1, it follows from condition (2) that 
     Max(K Sd, 0)    K Sd, 
and inequality (1) becomes 
  K S    erh[p*  Max(K Su, 0) + (1 p*)  (K Sd)].  (3) 
 
If K ≥Su, the right-hand side of (3) is 
  erh[p*  (K Su) + (1 p*)  (K Sd)] 
    erhK ehS 
    erhK S, 
because the stock pays no dividends.  Thus, if K ≥Su, inequality (3) always holds, and 
the put option is exercised early. 
 
We now investigate whether there is any K, S  K  Su, such that inequality (3) holds.  If 
Su  K, then Max(K Su, 0)  0 and inequality (3) simplifies as 
   K S    erh × (1 p*)  (K Sd), 
or 

   K    
)*1(1

)*1(1

pe

dpe
rh

rh







 S.     (4) 

 
 

The fraction 
)*1(1

)*1(1

pe

dpe
rh

rh







 can be simplified as follows, but this step is not 

necessary.  In McDonald’s forward-tree model, 

   1  p*    p*× he , 
from which we obtain 

   1  p*   
he 1

1
. 

( ) (0.04 / 4) (0.3/ 2) 0.16r h h rh hu e e e e        
( ) (0.04 / 4) (0.3 / 2) 0.14r h h rh hd e e e e         
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Hence,      
)*1(1

)*1(1

pe

dpe
rh

rh







   

rhh

rhh

ee

dee








1

1
 

       
rhh

hh

ee

ee








1

1
 because   0 

       
rhh ee  1

1
. 

Therefore, inequality (4) becomes 

         K   
rhh ee  1

1
 S 


01.015.01

1
  ee

S   1.148556×100    114.8556. 

Thus, the answer to the problem is  114.8556   115, which is (B). 
 
Alternative Solution:   

   1.173511 

   0.869358 
 S    initial stock price = 100 

p*  =  = 0.46257. 

Then, inequality (1) is 
   K 100    e0.01[0.4626 × (K 117.35)+  0.5374 × (K 86.94)+], (5) 
and we check three cases: K ≤ 86.94, K ≥ 117.35, and 86.94  K  117.35. 
 
For K ≤ 86.94, inequality (5) cannot hold, because its LHS  0 and its RHS  0. 
For K ≥ 117.35, (5) always holds, because its LHS  K 100 while  
its RHS  e0.01K 100.
For 86.94  K  117.35, inequality (5) becomes 
  K 100    e0.01 × 0.5374 × (K 86.94), 
or 

  K  
0.01

0.01

100 0.5374 86.94

1 0.5374

e

e




  
 

  114.85. 

 

Third Solution:  Use the method of trial and error.  For K  114, 115, … , check whether 
inequality (5) holds. 
 
Remark:  An American call option on a nondividend-paying stock is never exercised 
early.  This problem shows that the corresponding statement for American puts is not 
true. 

( ) (0.04 / 4) (0.3/ 2) 0.16r h h rh hu e e e e        
( ) (0.04 / 4) (0.3 / 2) 0.14r h h rh hd e e e e         

0.3/ 2 0.15

1 1 1 1

1+1.16181 11 h e ee
  

 
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50.   Assume the Black-Scholes framework. 
 

You are given the following information for a stock that pays dividends 
continuously at a rate proportional to its price.  

 
(i) The current stock price is 0.25. 
 
(ii) The stock’s volatility is 0.35. 
 
(iii) The continuously compounded expected rate of stock-price appreciation is 

15%. 
 

 
Calculate the upper limit of the 90% lognormal confidence interval for the price of 
the stock in 6 months. 

 
 

(A) 0.393 

(B) 0.425 

(C) 0.451 

(D) 0.486 

(E) 0.529 
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Solution to (50)    Answer: (A) 
 
This problem is a modification of #4 in the May 2007 Exam C. 

 

The conditions given are: 

(i)  S0 = 0.25, 

(ii)   = 0.35, 

(iii)   = 0.15. 

 

We are to seek the number 0.5
US  such that 0.5 0.5Pr( )US S   =  0.95.   

The random variable 0.5ln( / 0.25)S  is normally distributed with 

 
2mean (0.15 ½ 0.35 ) 0.5 0.044375,

standard deviation 0.35 0.5 0.24749.

    

  
 

 

Because N−1(0.95)  1.64485, we have 

  10.044375 0.24749 (0.95) 0.451458927N   . 

Thus, 

  0.5
US  =  0.451460.25 e  = 0.39265. 

. 

 

Remark The term “confidence interval” as used in Section 18.4 McDonald (2006) seems 
incorrect, because St is a random variable, not an unknown, but constant, parameter.  The 
expression 

   Pr( ) 1L U
t t tS S S p     

gives the probability that the random variable St is between L
tS  and U

tS , not the 

“confidence” for St to be between L
tS  and U

tS .  
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51.   Assume the Black-Scholes framework. 
 
  The price of a nondividend-paying stock in seven consecutive months is: 

 
Month Price 

1 54 
2 56 
3 48 
4 55 
5 60 
6 58 
7 62 

 
 
 Estimate the continuously compounded expected rate of return on the stock. 
 
 
 

(A) Less than 0.28  
 

(B) At least 0.28, but less than 0.29   
 

(C) At least 0.29, but less than 0.30  
 

(D) At least 0.30, but less than 0.31  
 

(E) At least 0.31   
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Solution to (51)    Answer: (E) 

This problem is a modification of #34 in the May 2007 Exam C.  Note that you are given 

monthly prices, but you are asked to find an annual rate. 

  

It is assumed that the stock price process is given by 

  
d ( )

( )

S t

S t
    dt    dZ(t),   t  0. 

We are to estimate , using observed values of S(jh), j  0, 1, 2, .. , n, where h  1/12 and 

n  6.  The solution to the stochastic differential equation is 

  S(t)    S(0)exp[(½t     Z(t)]. 

Thus, ln[S((j+1)h)/S(jh)],  j  0, 1, 2, …, are i.i.d. normal random variables with mean 

(½)h  and variance h.   

  

Let {rj} denote the observed continuously compounded monthly returns:  

  r1 = ln(56/54) = 0.03637,  

  r2 = ln(48/56) = 0.15415,  

r3 = ln(55/48) = 0.13613,  

  r4 = ln(60/55) = 0.08701,  

  r5 = ln(58/60) = 0.03390,  

  r6 = ln(62/58) = 0.06669. 

The sample mean is 

 r  = 


n

j
jr

n 1

1
 = 

n

1

0

( )
ln

( )
nhS t

S t
 =  

1

6

62
ln

54
 = 0.023025. 

The (unbiased) sample variance is 

 





n

j
j rr

n 1

2)(
1

1
 = 2 2

1

1
( )

1

n

j
j

r nr
n 

 
 

   
  = 

6
2 2

1

1
( ) 6

5 j
j

r r


 
 

  
  = 0.01071. 

 

Thus,   (½) + ½ is estimated by 

  (0.023025 + ½ × 0.01071) × 12    0.3405. 
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Remarks:  

(i)  Let T = nh.  Then the estimator of ½ is  

  
r

h
  =  

1

nh

( )
ln

(0)

S T

S
  =  

ln[ ( )] ln[ (0)]

0

S T S

T




. 

This is a special case of the result that the drift of an arithmetic Brownian motion is 

estimated by the slope of the straight line joining its first and last observed values.  

Observed values of the arithmetic Brownian motion in between are not used. 

 

(ii)  An (unbiased) estimator of 2 is 

        
h

1 2 2

1

1
( )

1

n

j
j

r nr
n 

 
 

   


 

=  
T

1
2

2

1

1 ( )
( ) ln

1 1 (0)

n

j
j

n S T
r

n n S

          
  

          ≈  
T

1

1

n

n
2

1

( )
n

j
j

r

   for large n (small h) 

          =  
T

1

1

n

n
2

1

{ln[ ( / ) / (( 1) / )]}
n

j

S jT n S j T n


 , 

which can be found in footnote 9 on page 756 of McDonald (2006).  It is equivalent 
to formula (23.2) on page 744 of McDonald (2006), which is 

    = 
1

h

1

1n
2

1

{ln[ ( / ) / (( 1) / )]}
n

j

S jT n S j T n


 . 

 
(iii)  An important result (McDonald 2006, p. 653, p. 755) is:  With probability 1, 

   lim
n

 2

1

{ln[ ( / ) / (( 1) / )]}
n

j

S jT n S j T n


  =   2T, 

showing that the exact value of  can be obtained by means of a single sample path 
of the stock price.  Here is an implication of this result.  Suppose that an actuary 
uses a so-called regime-switching model to model the price of a stock (or stock 
index), with each regime being characterized by a different .  In such a model, the 
current regime can be determined by this formula.   If the price of the stock can be 
observed over a time interval, no matter how short the time interval is, then  is 
revealed immediately by determining the quadratic variation of the logarithm of the 
stock price. 

 

2ˆ H
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 52.   The price of a stock is to be estimated using simulation.  It is known that: 
 

 (i) The time-t stock price, St, follows the lognormal distribution:    

  
0

ln tS

S

 
 
 

  N 2 2(( ½ ) , )t t    

 
 (ii) S0 = 50,  = 0.15, and   = 0.30. 
 
 
 The following are three uniform (0, 1) random numbers  
 

0.98300      0.03836      0.77935  
 
 Use each of these three numbers to simulate a time-2 stock price. 
 
 
 Calculate the mean of the three simulated prices. 
 
 
 

(A) Less than 75 
 

(B) At least 75, but less than 85  
 

(C) At least 85, but less than 95 
 

(D) At least 95, but less than 115 
 

(E) At least 115  
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Solution to (52)    Answer: (C) 
 
This problem is a modification of #19 in the May 2007 Exam C. 

 

U   Uniform (0, 1) 

 N1(U)  N(0, 1) 

 a + bN1(U)  N(a, b2) 

 

The random variable 2ln( /50)S  has a normal distribution with mean 

2(0.15 ½ 0.3 ) 2 0.21     and variance 0.32 × 2 = 0.18, and thus a standard deviation of 

0.4243. 

 

Using the Inverse CDF Calculator, we see that the three uniform (0, 1) random numbers 

correspond to the following three standard normal values:  2.12007, 1.77004, 0.77000.  

Upon multiplying each by the standard deviation of 0.4243 and adding the mean of 0.21, 

the resulting normal values are 1.109, 0.541, and 0.537.  The simulated stock prices are 

obtained by exponentiating these numbers and multiplying by 50.  This yields 151.57, 

29.11, and 85.54.  The average of these three numbers is 88.74. 
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53. Assume the Black-Scholes framework.  For a European put option and a European 
gap call option on a stock, you are given: 

  
 (i) The expiry date for both options is T. 
  
 (ii) The put option has a strike price of 40. 
  
 (iii) The gap call option has strike price 45 and payment trigger 40. 
  
 (iv) The time-0 gamma of the put option is 0.07. 
 
 (v) The time-0 gamma of the gap call option is 0.08. 
 
 

Consider a European cash-or-nothing call option that pays 1000 at time T if the 
stock price at that time is higher than 40. 

 
 
 Find the time-0 gamma of the cash-or-nothing call option. 
 
 
 (A)  5 
 
 (B)  2 
 
 (C)  2 
 
 (D)   5 
 
 (E) 8 
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Solution to (53)   Answer: (B) 
 
Let I[.] be the indicator function, i.e., I[A] = 1 if the event A is true, and I[A] = 0 if the 
event A is false.  Let K1 be the strike price and K2 be the payment trigger of the gap call 
option.  The payoff of the gap call option is 
 

[S(T) – K1] × I[S(T)  K2]    [S(T) – K2] × I[S(T)  K2]    (K2 – K1) × I[S(T)  K2]. 
   
 

    
          

 
 
Because differentiation is a linear operation, each Greek (except for omega or elasticity) 
of a portfolio is the sum of the corresponding Greeks for the components of the portfolio 
(McDonald 2006, page 395).  Thus,   
 

Gap call gamma    Call gamma    (K2 – K1)  Cash-or-nothing call gamma 
 
As pointed out on line 12 of page 384 of McDonald (2006), call gamma equals put 
gamma.  (To see this, differentiate the put-call parity formula twice with respect to S.) 
 
Because  K2  K1  40 – 45  –5,  call gamma  put gamma = 0.07, and 
gap call gamma  0.08, we have 

Cash-or-nothing call gamma  


5

07.008.0
 0.002 

 
Hence the answer is 1000  (–0.002)  2. 
 
 
Remark:  Another decomposition of the payoff of the gap call option is the following: 
 

[S(T) – K1] × I[S(T)  K2]          S(T) × I[S(T)  K2]               K1 × I[S(T)  K2]. 
   
 

    
          

 
 
See page 707 of McDonald (2006).  Such a decomposition, however, is not useful here. 

(K2 – K1) times the payoff of  
a cash-or-nothing call  

that pays $1 if S(T)  K2 

payoff of  
a K2-strike call  

K1 times the payoff of  
a cash-or-nothing call  

that pays $1 if S(T)  K2 

payoff of an  
asset-or-nothing call  
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54. Assume the Black-Scholes framework. Consider two nondividend-paying stocks 
whose time-t prices are denoted by S1(t) and S2(t), respectively. 

 
 You are given: 
  
 (i)  S1(0)  10 and S2(0)  20.  
 
 (ii) Stock 1’s volatility is 0.18. 
 
 (iii)  Stock 2’s volatility is 0.25. 
 
 (iv)  The correlation between the continuously compounded returns of the two 

stocks is –0.40.  
 
 (v) The continuously compounded risk-free interest rate is 5%. 
 
 (vi) A one-year European option with payoff max{min[2S1(1), S2(1)]  17, 0} has 

a current (time-0) price of 1.632.   
  
  
 Consider a European option that gives its holder the right to sell either two shares of 

Stock 1 or one share of Stock 2 at a price of 17 one year from now. 
 
 
 Calculate the current (time-0) price of this option. 
 
 
 (A)  0.67 
 
 (B) 1.12 
 
 (C)  1.49 
 
 (D)  5.18 
 
 (E)  7.86 
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Solution to (54)   Answer: (A) 
 
At the option-exercise date, the option holder will sell two shares of Stock 1 or one share 
of Stock 2, depending on which trade is of lower cost.  Thus, the time-1 payoff of the 
option is  

max{17  min[2S1(1), S2(1)], 0}, 
which is the payoff of a 17-strike put on min[2S1(1), S2(1)].  Define 

M(T)  min[2S1(T), S2(T)].  
 

Consider put-call parity with respect to M(T): 
 

    c(K, T)  p(K, T)  rTP
T KeMF )(,0 . 

 

Here, K = 17 and T = 1.  It is given in (vi) that c(17, 1)  1.632.  is the time-0 

price of the security with time-1 payoff 
 

M(1)  min[2S1(1), S2(1)]  2S1(1)  max[2S1(1)  S2(1), 0]. 
 
Since max[2S1(1)  S2(1), 0] is the payoff of an exchange option, its price can be obtained 
using (14.16) and (14.17):  
 

2 20.18 0.25 2( 0.4)(0.18)(0.25) 0.361801       

2
1 2

1
ln[2 (0) / (0)] ½

½ 0.18090
S S T

d T
T

 
   


, N(d1)  0.57178 

2 1 ½ 0.18090d d T T       , N(d2)  0.42822 
 

Price of the exchange option  2S1(0)N(d1)  S2(0)N(d2)  20N(d1)  20N(d2)  2.8712 
 
Thus, 

0,1 0,1 1( ) 2 ( ) 2.8712 2 10 2.8712 17.1288P PF M F S       

and  
p(17, 1)  1.632  17.1288  17e0.05  0.6741. 

 
  
Remarks:  (i)  The exchange option above is an “at-the-money” exchange option because 

2S1(0) = S2(0).  See also Example 14.3 of McDonald (2006). 

(ii)  Further discussion on exchange options can be found in Section 22.6, which is not 

part of the MFE/3F syllabus.  Q and S in Section 22.6 correspond to 2S1 and S2 in this 

problem.   

 

)(1,0 MF P
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55.  Assume the Black-Scholes framework.  Consider a 9-month at-the-money European 
put option on a futures contract.  You are given: 

 
 (i)  The continuously compounded risk-free interest rate is 10%. 
 
 (ii) The strike price of the option is 20.  
 
 (iii)  The price of the put option is 1.625.  
 

If three months later the futures price is 17.7, what is the price of the put option at 
that time? 

 
  
 (A)  2.09 
 
 (B) 2.25 
 
 (C)  2.45 
 
 (D)  2.66 
 
 (E)  2.83 
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Solution to (55)   Answer: (D) 

 

By (12.7), the price of the put option is 

)],()([ 12 dFNdKNeP rT    

where 
2

1
ln( / ) ½F K T

d
T

 



, and Tdd  12 .  

With F  K, we have ln(F / K)  0, 
2

1
½

½
T

d T
T


  


, 2 ½d T   , and  

[ (½ ) ( ½ )] [2 (½ ) 1]rT rTP Fe N T N T Fe N T         . 

 

Putting P = 1.6, r = 0.1, T = 0.75, and F = 20, we get  

0.1 0.751.625 20 [2 (½ 0.75) 1]

(½ 0.75) 0.54379

½ 0.75 0.10999

0.254011

e N

N

   

 

 
 

 

 

After 3 months, we have F = 17.7 and T = 0.5; hence 

2 2

1
ln( / ) ½ ln(17.7 / 20) ½ 0.254 0.5

0.59040
0.254 0.5

F K T
d

T

    
   

  

N(d1) = N(0.59040) = 0.72254
 

2 1 0.59040 0.254 0.5 0.77000d d T        

N(d2) = N(0.77000) = 0.77935 

 

The put price at that time is  

      P = erT [KN(d2)  FN(d1)] 

    e0.1  0.5 [20  0.77935  17.7  0.72254]  

                2.66158 
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Remarks:  

(i)  A somewhat related problem is #8 in the May 2007 MFE exam.  Also see the box 

on page 299 and the one on page 603 of McDonald (2006). 

(ii)  For European call and put options on a futures contract with the same exercise date, 

the call price and put price are the same if and only if both are at-the-money 

options.  The result follows from put-call parity.  See the first equation in Table 9.9 

on page 305 of McDonald (2006).  

(iii)  The point above can be generalized.  It follows from the identity 

   [S1(T)  S2(T)]+  +  S2(T)  =  [S2(T)  S1(T)]+  +  S1(T) 

 that 

       0, 1 2(( ) )P
TF S S   + 0, 2( )P

TF S  = 0, 2 1(( ) )P
TF S S   + 0, 1( )P

TF S . 

(See also formula 9.6 on page 287.)  Note that 0, 1 2(( ) )P
TF S S   and 

0, 2 1(( ) )P
TF S S   are time-0 prices of exchange options.  The two exchange options 

have the same price if and only if the two prepaid forward prices, 0, 1( )P
TF S  and 

0, 2( )P
TF S , are the same. 
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56.  Assume the Black-Scholes framework.  For a stock that pays dividends 
continuously at a rate proportional to its price, you are given: 

 
 (i) The current stock price is 5. 
  
 (ii)  The stock’s volatility is 0.2. 
  
 (iii)  The continuously compounded expected rate of stock-price appreciation is 

5%. 
 
 
 Consider a 2-year arithmetic average strike option. The strike price is  
 

)]2()1([
2

1
)2( SSA  . 

 
 

 Calculate Var[A(2)]. 
 
 
 
 (A)   1.51 
 
 (B)   5.57 
  
 (C)   10.29 
 
 (D)   22.29 
 
 (E)   30.57 
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Solution to (56)    Answer: (A) 
 

 Var[A(2)]  =  
21

2
 
 
 

{E[(S(1) + S(2))2]   (E[S(1) + S(2)])2}. 

 
The second expectation is easier to evaluate.  By (20.29) on page 665 of McDonald 
(2006),  

S(t)  S(0)exp[(   ½2)t  Z(t)]. 
Thus, 

E[S(t)]  S(0)exp[(   ½2)t]×E[eZ(t)] 

  S(0)exp[(  )t] 
by (18.13).  (See also formulas 18.21 and 18.22.)  Consequently,    

E[S(1)  S(2)] =  E[S(1)]   E[S(2)] 

=  5(e0.05  e0.1), 

because condition (iii) means that    
 
We now evaluate the first expectation, E[(S(1) + S(2))2].  Because  

2( 1)
exp{( δ ½ ) [ ( 1) ( )]}

( )

S t
Z t Z t

S t


         

and because {Z(t  1)  Z(t),  t  0, 1, 2, ...} are i.i.d. N(0, 1) random variables (the 
second and third points at the bottom of page 650), we see that 

( 1)
,  0,  1,  2,  

( )

S t
t

S t

 
 

 
  is a sequence of i.i.d. random variables.  Thus, 

         E[(S(1) + S(2))2] = 
2

2 (2)
E (1) 1

(1)

S
S

S

       
 

    =  
2 2

2 (1) (2)
(0) E E 1

(0) (1)

S S
S

S S

                       
 

    =  
2 2

2 (1) (1)
(0) E E 1

(0) (0)

S S
S

S S

                       
. 

 
By the last equation on page 667, we have 

  
( )

E
(0)

a
S t

S

       
  

2[ ( δ) ½ ( 1) ]a a a te     . 

(This formula can also be obtained from (18.18) and (18.13).  A formula equivalent to 
(18.13) will be provided to candidates writing Exam MFE/3F.  See the last formula in 
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http://www.beanactuary.org/exams/pdf/MFE3F_TableMar24.pdf)  With a  2 and t = 1, 
the formula becomes  




















2

)0(

)1(
E

S

S
  exp[2×0.05  0.22]  e0.14. 

Furthermore, 
 

2 2
0.05 0.14(1) (1) (1)

E 1   1 2E E   1 2
(0) (0) (0)

S S S
e e

S S S

                                
. 

 

Hence,  

E[(S(1) + S(2))2]   52 × e0.14 × (1  2e0.05  e0.14)  122.29757. 
 
 
Finally,  

Var[A(2)]  ¼×{122.29757  [5(e0.05  e0.1)]2}  1.51038. 
 
 
 
Alternative Solution: 
 

 Var[S(1)  S(2)]  =  Var[S(1)]  +  Var[S(2)]  +  2Cov[S(1), S(2)]. 

 

Because S(t) is a lognormal random variable, the two variances can be evaluated using 

the following formula, which is a consequence of (18.14) on page 595. 

        Var[S(t)] =  Var[S(0)exp[(   ½2)t  Z(t)] 

   =  S2(0)exp[2(   ½2)t]Var[eZ(t)] 

   =  S2(0)exp[2(   ½2)t]exp(2t)[exp(2t)    1] 

   =  S2(0) e2(  )t [exp(2t)    1]. 

(As a check, we can use the well-known formula for the square of the coefficient of 

variation of a lognormal random variable.  In this case, it takes the form 

   
2

Var[ ( )]

{E[ ( )]}

S t

S t
  =  

2te   1. 

This matches with the results above.  The coefficient of variation is in the syllabus of 

Exam C/4.) 
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To evaluate the covariance, we can use the formula 

  Cov(X, Y)  =  E[XY]    E[X]E[Y]. 

In this case, however, there is a better covariance formula: 

  Cov(X, Y)  =  Cov(X, E[Y | X]). 

Thus, 

          Cov[S(1), S(2)] =  Cov[S(1), E[S(2)|S(1)]]  

   =  Cov[S(1), S(1)E[S(2)/S(1)|S(1)]]  

   =  Cov[S(1), S(1)E[S(1)/S(0)]] 

   =  E[S(1)/S(0)]Cov[S(1), S(1)] 

   =  e   Var[S(1)]. 

Hence,  

        Var[S(1)  S(2)] =  (1 + 2e  )Var[S(1)]  +  Var[S(2)]   

=  [S(0)]2[(1 + 2e  )e2(  ) 2

(e   1)  +  e4(  ) 22(e    1)] 

=  25[(1 + 2e0.05)e0.1(e0.04 1)  +  e0.2(e0.08  1)] 

=  6.041516, 

and 

        Var[A(2)] =  Var[S(1)  S(2)]/4 

=  6.041516 / 4 

=  1.510379. 

 

Remark:  #37 in this set of sample questions is on determining the variance of a 

geometric average.  It is an easier problem.
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57.  Michael uses the following method to simulate 8 standard normal random variates: 

 
 Step 1:  Simulate 8 uniform (0, 1) random numbers U1, U2, ... , U8. 
 

 Step 2:  Apply the stratified sampling method to the random numbers so that Ui 
and Ui+4 are transformed to random numbers Vi and Vi+4 that are uniformly 
distributed over the interval ((i1)/4, i/4), i  1, 2, 3, 4.  In each of the four 
quartiles, a smaller value of U results in a smaller value of V. 

 
 Step 3:  Compute 8 standard normal random variates by Zi  N1(Vi), where N1 is 

the inverse of the cumulative standard normal distribution function. 
 

  Michael draws the following 8 uniform (0, 1) random numbers:  
 

i 1 2 3 4 5 6 7 8 
Ui 0.4880 0.7894 0.8628 0.4482 0.3172 0.8944 0.5013 0.3015

 
Find the difference between the largest and the smallest simulated normal random 
variates. 

 
 
 (A)  0.35 
  
 (B)  0.78 
  
 (C)  1.30 
  
 (D)  1.77 
  
 (E)  2.50 
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Solution to (57)    Answer: (E) 
 
The following transformation in McDonald (2006, page 632), 

  
1

100
ii u 

,  i  = 1, 2, 3, … , 100, 

is now changed to 

    or 41

4
i ii U  

,  i  = 1, 2, 3, 4. 

 

Since the smallest Z comes from the first quartile, it must come from U1 or U5.   

Since U5  U1, we use U5 to compute the smallest Z:   

   V5  
4

3172.011   0.0793, 

   Z5  N1(0.0793)  1.41. 

 

Since the largest Z comes from the fourth quartile, it must come from U4 and U8.  

Since U4  U8, we use U4 to compute the largest Z:    

   V4  
4

4482.014   0.86205, 

   Z4  N1(0.86205) = 1.08958  1.09. 

 

The difference between the largest and the smallest normal random variates is  

Z4  Z5 1.09  (1.41)    2.50. 

Remark: 

The simulated standard normal random variates are as follows: 
 

i 1 2 3 4 5 6 7 8 
Ui 0.4880 0.7894 0.8628 0.4482 0.3172 0.8944 0.5013 0.3015

no stratified 
sampling 

–0.030 0.804 1.093 –0.130 –0.476 1.250 0.003 –0.520

Vi 0.1220 0.4474 0.7157 0.8621 0.0793 0.4736 0.6253 0.8254
Zi –1.165 –0.132 0.570 1.090 –1.410 –0.066 0.319 0.936 

 

Observe that there is no U in the first quartile, 4 U’s in the second quartile, 1 U in the 
third quartile, and 3 U’s in the fourth quartile.  Hence, the V’s seem to be more uniform. 
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For Questions 58 and 59, you are to assume the Black-Scholes framework. 
 
Let ( )C K  denote the Black-Scholes price for a 3-month K-strike European call option on 
a nondividend-paying stock. 
 

Let ˆ ( )C K  denote the Monte Carlo price for a 3-month K-strike European call option on 
the stock, calculated by using 5 random 3-month stock prices simulated under the risk-
neutral probability measure. 
 
You are to estimate the price of a 3-month 42-strike European call option on the stock 
using the formula 

   C*(42)  ˆ (42)C  +  [C(40)    
ˆ (40)C ], 

where the coefficient  is such that the variance of C*(42) is minimized. 
 
You are given: 

(i) The continuously compounded risk-free interest rate is 8%. 
(ii) C(40)  =  2.7847. 

(iii) Both Monte Carlo prices, ˆ (40)C  and ˆ (42),C  are calculated using the 
following 5 random 3-month stock prices: 

33.29,    37.30,    40.35,    43.65,    48.90 
 
58. Based on the 5 simulated stock prices, estimate .  
 
 (A)   Less than 0.75 
 
 (B)   At least 0.75, but less than 0.8 
  
 (C)   At least 0.8, but less than 0.85 
  
 (D)   At least 0.85, but less than 0.9 
  
 (E)   At least 0.9 
 
 
59. Based on the 5 simulated stock prices, compute C*(42). 
 
 (A)   Less than 1.7 
 
 (B)   At least 1.7, but less than 1.9 
  
 (C)   At least 1.9, but less than 2.2 
  
 (D)   At least 2.2, but less than 2.6 
  
 (E)   At least 2.6 
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Solution to (58)    Answer: (B) 
 

Var[C*(42)]  =  Var[ ˆ (42)]C   +  2Var[ ˆ (40)]C     2Cov[ ˆ (42)C , ˆ (40)C ], 

which is a quadratic polynomial of .  (See also (19.11) in McDonald.)  The minimum of 
the polynomial is attained at  

  =  Cov[ ˆ (40)C , ˆ (42)C ]/Var[ ˆ (40)]C .   
 
For a pair of random variables X and Y, we estimate the ratio, Cov[X, Y]/Var[X], using the 
formula 

  1 1

2 2 2

1 1

( )( )

( )

n n

i i i i
i i

n n

i i
i i

X X Y Y X Y nXY

X X X nX

 

 

  



 

 

 
. 

We now treat the payoff of the 40-strike option (whose correct price, C(40), is known) as 
X, and the payoff of the 42-strike option as Y.  We do not need to discount the payoffs 
because the effect of discounting is canceled in the formula above.   
 

Simulated S(0.25) max(S(0.25)  40, 0) max(S(0.25)  42, 0) 
33.29 0 0 
37.30 0 0 
40.35 0.35 0 
43.65 3.65 1.65 
48.90 8.9 6.9 

 

 

We have ,58.2
5

9.865.335.0



X ,71.1

5

9.665.1



Y  

,655.929.865.335.0 222

1

2 


n

i
iX  and 4325.679.69.865.165.3

1




n

i
iiYX . 

 
So, the estimate for the minimum-variance coefficient  is 
 

2
67.4325 5 2.58 1.71

0.764211
92.655 5 2.58

  


 
. 

 
Remark:  The estimate for the minimum-variance coefficient  can be obtained by using 
the statistics mode of a scientific calculator very easily.  In the following we use TI–30X 
IIB as an illustration. 
 
Step 1:  Press [2nd][DATA] and select “2-VAR”. 
 
Step 2:  Enter the five data points by the following keystroke: 
 



 141 April 8, 2011  
 

[ENTER][DATA] 0  0  0  0  0.35  0  3.65  1.65  8.9  6.9 [Enter] 
 
Step 3:  Press [STATVAR] and look for the value of “a”.  
 
Step 4: Press [2nd][STATVAR] and select “Y” to exit the statistics mode. 

You can also find X , Y , 


n

i
iiYX

1

, 


n

i
iX

1

2  etc in [STATVAR] too.  

 
Below are keystrokes for TI30XS multiview 
 
Step 1:  Enter the five data points by the following keystrokes: 
 

[DATA] 0  0  0.35  3.65  8.9   0  0  0  1.65  6.9 [Enter] 
Step 2:  Press [2nd][STAT] and select “2-VAR”. 
 
Step 3:  Select L1 and L2 for x and y data. Then select Calc and [ENTER] 
 
Step 4:  Look for the value of  “a” by scrolling down. 
 
 
 
 
 
Solution to (59)    Answer: (B) 
 
The plain-vanilla Monte Carlo estimates of the two call option prices are:  
 

For K  40: e0.08 × 0.25 × 


5

9.865.335.0
2.528913  

For K  42: e0.08 × 0.25 × 

5

9.665.1
1.676140 

 
The minimum-variance control variate estimate is  

           C*(42) =  ˆ (42)C   +  [C(40)    ˆ (40)C ] 

=  1.6761    0.764211 × (2.7847    2.5289) 
  1.872. 
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60.   The short-rate process {r(t)} in a Cox-Ingersoll-Ross model follows 
  

    dr(t) = [0.011  0.1r(t)]dt + 0.08 dZ(t), 

 
  where {Z(t)} is a standard Brownian motion under the true probability measure.  
 

For t T , let ( , , )P r t T  denote the price at time t of a zero-coupon bond that pays 1 

at time T, if the short-rate at time t is r.   
 
 You are given: 

 (i) The Sharpe ratio takes the form  

 

 (ii)
  

 for each r  0.  

 
  
  Find the constant c. 
 
 
 (A)  0.02  

 (B)  0.07 

 (C)  0.12 

 (D)  0.18 

 (E)  0.24  

)(tr

.),( rctr 

1.0)] 0, ,(ln[
1

lim 


TrP
TT
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Solution to (60)    Answer: (E) 
 
 
From the stochastic differential equation, 
  a(b  r)  0.011 – 0.1r; 
hence, 

a  0.1 and b  0.11.  
Also,   0.08.  
 
Let y(r, 0, T) be the continuously compounded yield rate of P(r, 0, T), i.e., 
   ey(r, 0, T)T  =  P(r, 0, T). 
Then condition (ii) is 

 lim ( ,0, )
T

y r T


  
ln ( ,0, )

lim
T

P r T

T


  0.1. 

 
According to lines 10 to 12 on page 788 of McDonald (2006), 

           lim ( ,0, )
T

y r T


   
2

γ

ab

a  
 

      , 

where   is a positive constant such that the Sharpe ratio takes the form    

     
 
Hence, 

. 

We now solve for : 

 
Condition (i) is 

    
Thus, 

            c    /  

      0.01909 / 0.08  
 0.2386.  

 

2 2

2

( ) 2

ab

a a     

./),(  rtr 

22 )08.0(2)1.0(1.0

)11.0)(1.0(2
1.0







01909.0

0356.0)1.0(44.0

0128.0)1.0(0484.0)1.0(44.0)1.0(

22.0)08.0(2)1.0()1.0(
22

22
















.),( rctr 
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Remarks: (i) The answer can be obtained by trial-and-error.  There is no need to solve 
the quadratic equation.   
(ii) If your textbook is an earlier printing of the second edition, you will find the 
corrected formulas in  
http://www.kellogg.northwestern.edu/faculty/mcdonald/htm/p780-88.pdf 
(iii)  Let 

1
( , , ) ln ( , , )y r t T P r t T

T t
 


. 

We shall show that 

     . 

Under the CIR model, the zero-coupon bond price is of the “affine” form 

   P(r, t, T)  A(t, T)e–B(t, T)r. 
Hence, 

 
1

( , , ) ln ( , ) ( , )
r

y r t T A t T B t T
T t T t

  
 

.              (1) 

 
Observe that 







































tT

eaa

tT

ab

ea

e

tT

ab
TtA

tT

tT

tT

tTa

γ]2)1)(γln[(

2

γγ2ln2

γ2)1)(γ(

γ2
ln

)(

2
) ,(ln

1

)(γ

2

)(γ

2/))(γ(

2








 

where   0.  By applying l’Hôpital’s rule to the last term above, we get 
  

γ( ) γ( )

γ( )

γ( ) γ( )

ln[( γ)( 1) 2γ] γ( γ)
lim lim

( γ)( 1) 2γ

γ( γ)
lim

( γ)(1 ) 2γ

γ( γ)

( γ)(1 0) 2γ 0

γ.

T t T t

T tT T

T t T tT

a e a e

T t a e

a

a e e

a

a

 

 

   

     


    

 


   

 


    


 








 

 
So,  

  
22

γ)(
γ

2

γ
0

2
) ,(ln

1
lim






















aabaab
TtA

tTT
. 

 
We now consider the last term in (1).  Since  

lim ( , , )
T

y r t T
 2 2

2

( ) 2

ab

a a     
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,
γ2)1)(γ(

)1(2

γ2)1)(γ(

)1(2
) ,(

)(γ)(γ

)(γ

)(γ

)(γ

tTtT

tT

tT

tT

eea

e

ea

e
TtB 

















 

we have 

γ

2
),(lim




 a
TtB

T
 

and the limit of the second term in (1) is 0.  Gathering all the results above, 

2
( γ)

lim ( , , )
T

ab a
y r t T



 
 




, 

where 

   22 2)(γ   a .  

 
To obtain the expression in McDonald (2006), consider 

  
2 2

2 2
( γ) γ [( ) γ ] ( 2)

γ γ( γ)

ab a a ab a ab

a aa

      
  

    

  
   

. 

Thus we have 

    
2

γ

ab

a  
 

  . 

Note that this “long” term interest rate does not depend on r or on t.   

lim ( , , )
T

y r t T


2 2

2

( ) 2

ab

a a     
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61.  Assume the Black-Scholes framework. 
  

  You are given: 
  

 (i) S(t) is the price of a stock at time t. 
  

 (ii) The stock pays dividends continuously at a rate proportional to its price.  The 
dividend yield is 1%. 

 

  (iii) The stock-price process is given by  

      )(d25.0    d05.0    
)(

)(d
tZt

tS

tS
  

  where {Z(t)} is a standard Brownian motion under the true probability 
measure. 

 

          (iv)   Under the risk-neutral probability measure, the mean of Z(0.5) is 0.03. 
 

 
  Calculate the continuously compounded risk-free interest rate.  
 
   
 (A)  0.030  

 (B)  0.035 

 (C)  0.040 

 (D)  0.045 

 (E)  0.050  
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Solution to (61)    Answer: (D) 
 
Let , , and  be the stock’s expected rate of (total) return, dividend yield, and 
volatility, respectively.   

From (ii),   0.01. 

From (iii),     0.05; hence,   0.06.   

Also from (iii),   0.25. 
 
Thus, the Sharpe ratio is  

      
0.06

0.24 4
0.25

r r
r



 

    .    (1) 

 

According to Section 20.5 in McDonald (2006), the stochastic process { ( )}Z t  defined by 

     ( ) ( )Z t Z t t      (2) 

is a standard Brownian motion under the risk-neutral probability measure; see, in 
particular, the third paragraph on page 662.  Thus, 

     E* 0)](
~

[ tZ ,     (3) 

where the asterisk signifies that the expectation is taken with respect to the risk-neutral 
probability measure.   
 
The left-hand side of equation (3) is 

   E*[Z(t)]  t  =  E*[Z(t)]  (0.24 4 )r t    (4) 

by (1).  With t = 0.5 and applying condition (iii), we obtain from (3) and (4) that 

     0.03 + (0.24 – 4r)(0.5)  0, 

yielding r  0.045. 
 
 
Remark  In Section 24.1 of McDonald (2006), the Sharpe ratio is not a constant but 

depends on time t and the short-rate.  Equation (2) becomes 

    )(
~

tZ  =  Z(t)    
t

0
[r(s), s]ds.    (5) 

{Z(t)} is a standard Brownian motion under the true probability measure, and { ( )}Z t  is a 

standard Brownian motion under the risk-neutral probability measure.  Note that in (5) 
there is a minus sign, instead of a plus sign as in (2); this is due to the minus sign in 
(24.1). 
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62. Assume the Black-Scholes framework.   

 

 Let S(t) be the time-t price of a stock that pays dividends continuously at a rate 

proportional to its price.   

 

 You are given: 

 (i)   
d ( )

( )

S t

S t
  dt    0.4d ( )Z t ,

 where { ( )}Z t  is a standard Brownian motion under the risk-neutral probability 

measure. 

 (ii)  For 0  t  T, the time-t forward price for a forward contract that delivers the 

square of the stock price at time T is  
 

     Ft,T(S 
2)  S 

2(t)exp[0.18(T – t)]. 

 

Calculate the constant . 

 
 

 (A) 0.01  
 
 (B)  0.04 
 
 (C)  0.07 
 
 (D)  0.10 
 
 (E)  0.40 
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Solution to (62)    Answer: (A) 
 
By comparing the stochastic differential equation in (i) with equation (20.26) in 
McDonald (2006), we have 

    r 
and 

      =  0.4. 
 
The time-t prepaid forward price for the forward contract that delivers S2 at time T is  

)( 2
, SF P
Tt er(T  t)Ft,T(S 

2)  S 
2(t)exp[(0.18  r)(T – t)]. 

 
For a derivative security that does not pay dividends, the prepaid forward price is the 
price.  Thus, the prepaid forward price satisfies the Black-Scholes partial differential 
equation (21.11), 

rV
s

V
s

s

V
sr

t

V













2

2
22

2

1
)δ(  . 

The partial derivatives of V(s, t) = s2exp[(0.18  r)(T – t)], t ≤ T, for the partial 
differential equation are: 

Vt  (r  0.18)V(s, t), 

Vs  2s×exp[(0.18  r)(T – t)]  2 ( , )V s t

s
, 

Vss  2exp[(0.18  r)(T – t)] 
2

2 ( , )V s t

s
. 

Substituting these derivatives into the partial differential equation yields 

2 2
2

2 ( , ) 1 2 ( , )
( 0.18) ( , ) ( δ) ( , )

2

V s t V s t
r V s t r s s rV s t

s s
      

  ⟹		 2( 0.18) 2( δ)r r r      

  ⟹	 r  =  
20.18

2


 = 0.01. 

 
Alternative Solution: Compare the formula in condition (ii) (with t = 0) with 
McDonald’s formula (20.31) (with a = 2) to obtain the equation 

0.18 =  2(r – ) + ½×2(2 – 1)2, 
which again yields 

   r  =  
20.18

2


. 

 
 



 150 April 8, 2011  
 

Remarks:   
(i) An easy way to obtain (20.31) is to use the fact that, because the risk-free interest rate 
is constant, 

    F0,T(Sa)  =  E*[[ ( )] ]aS T , 
where the asterisk signifies that the expectation is taken with respect to the risk-neutral 
probability measure.  Under the risk-neutral probability measure, ln[S(T)/S(0)] is a 
normal random variable with mean (r –  – ½2)T and variance  2T.  Thus, by (18.13) 
or by the moment-generating function formula for a normal random variable, we have 

          F0,T(Sa) =  E*[[ ( )] ]aS T    2[ (0)]S exp[a(r –  – ½2)T  +  ½×a22T], 

which is (20.31). 
 
(ii) We can also use the partial differential equation (21.34) to solve the problem.  Any 
constant times exp(−rt) times any solution of (21.11) gives a solution for (21.34).  Thus, 
we can use 
    V(t, s) = s2exp[0.18(T – t)], 
which is the given formula for the forward price (or futures price).  Because T is a 
constant, we use 
    V(t, s) = s2e−0.18t; 
then (21.34) becomes 
   −0.18V  +  2V  +  (r – )2V  =  0. 
Equation (21.34) is not in the current syllabus of Exam MFE/3F. 
 
(iii) Another way to determine r −  is to use the fact that, for a security that does not pay 
dividends, its discounted price process is a martingale under the risk-neutral probability 

measure.  Thus, the stochastic process 2
,{ ( );0 }rt P

t Te F S t T  
 
is a martingale.  Because 

  2
, ( )rt P

t Te F S  =  2
, ( )rT

t Te F S  

    =  rTe [S (t)]2 exp[0.18(T – t)] 

    =  (0.18 ) 2 0.18[ ( )]r T te S t e  , 

the process 2 0.18{[ ( )] ;0 }tS t e t T    is also a martingale.  The martingale condition is  

        2 0[ (0)]S e  =  2 0.18E*[[ ( )] ]tS t e  

   =  0.18 2E*[[ ( )] ]te S t  

      0.18te 2[ (0)]S exp[2(r –  – ½2)t  +  ½×222t], 
or 

   0  =  −0.18t  +  2(r –  – ½2)t  +  ½×222t, 
which again leads to 

   r  =  
20.18

2


. 

This method is beyond the current syllabus of Exam MFE/3F. 
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63. Define 
 

(i) W(t)  t 2. 
 

(ii)  X(t)  [t], where [t] is the greatest integer part of t; for example, [3.14]  3, 
[9.99]  9, and [4]  4. 

 

(iii) Y(t)  2t 0.9Z(t), where {Z(t): t  0} is a standard Brownian motion. 
 
 

Let )(2 UVT  denote the quadratic variation of a process U over the time interval  
[0, T]. 
 
 

 Rank the quadratic variations of W, X and Y over the time interval [0, 2.4]. 
 
 
  
 (A) )(2

4.2 WV   )(2
4.2 YV   )(2

4.2 XV  

 
 (B) )(2

4.2 WV   )(2
4.2 XV   )(2

4.2 YV   

 
 (C) )(2

4.2 XV   )(2
4.2 WV   )(2

4.2 YV  

 
 (D) )(2

4.2 XV   )(2
4.2 YV   )(2

4.2 WV   
 
 (E) None of the above. 
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Solution to (63)    Answer: (A) 
 
For a process {U(t)}, the quadratic variation over [0, T], T  0, can be calculated as


T

tU
 

0 

2)](d[ . 

 
(i)  Since 

    dW(t)  2tdt, 
 we have 

    [dW(t)]2  4t2(dt)2 
 which is zero, because dt  dt  0 by (20.17b) on page 658 of McDonald (2006). 

 This means )(2
4.2 WV  = 0)](d[

4.2 

0 

2  tW . 

 
 

(ii)  X(t)  0 for 0  t < 1, X(t)  1 for 1  t < 2, X(t)  2 for 2  t < 3, etc.  
For t ≥ 0, dX(t) = 0 except for the points 1, 2, 3, … . At the points 1, 2, 3, … , the 

square of the increment is 12  1.  Thus, 

   2
2.4 ( )V X  = 1 + 1 = 2. 

 
 
(iii)  By Itô’s lemma,  

    dY(t)  2dt  0.9dZ(t). 
 By (20.17a, b, c) in McDonald (2006), 

    [dY(t)]2  0.92dt 
 Thus,  

   
 2.4  2.42 2
 0  0

[d ( )] 0.9 d 0.81 2.4 1.944Y t t     .
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64.  Let S(t) denote the time-t price of a stock.  Let Y(t)  [S (t)]2.  You are given 
 

d ( )

( )

Y t

Y t
  1.2dt − 0.5dZ(t),      Y(0)  64, 

 

 where {Z(t): t  0} is a standard Brownian motion.  
 

 
Let (L, U) be the 90% lognormal confidence interval for S(2). 
 
 
Find U. 

 
 
 (A)  27.97  
 
 (B)  33.38   
 
 (C)  41.93 
 
 (D)  46.87 
 
 (E) 53.35 
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Solution to (64)    Answer: (C) 
 
For a given value of V(0), the solution to the stochastic differential equation 

  
d ( )

( )

V t

V t
     dt  +  dZ(t),  t ≥ 0,     (1) 

is 

  V(t)    V(0) exp[( – ½2)t  +   Z(t)],  t ≥ 0.   (2) 

That formula (2) satisfies equation (1) is a consequence of Itô’s Lemma.  See also 
Example 20.1 on p. 665 in McDonald (2006) 
 
It follows from (2) that 

Y(t)  64exp[(1.2 – ½(−0.5)2t − 0.5Z(t)]  64exp[1.075t − 0.5Z(t)]. 
 

Since Y(t)  [S(t)]2, 
    S(t)  8exp[0.5375t − 0.25Z(t)].    (3) 

 
Because Z(2) ~ Normal(0, 2) and because N−1(0.95) = 1.64485, we have 

   Pr( 1.64485 2 (2) 1.64485 2Z   ) = 0.90. 

Hence, 
    Pr ( (2) )L S U   = 0.90,  
if 

   U  8 × exp(1.075 +  0.25 × 1.64485 2 )  41.92926  
and  

     L  8 × exp(1.075  0.25 × 1.64485 2 )  13.10376. 
 
 
Remarks:  (i) It is more correct to write the probability as a conditional probability,  
   Pr(13.10376 < S(2) < 41.92926 | S(0) = 8)  =  0.90. 
(ii) The term “confidence interval” as used in Section 18.4 seems incorrect, because S(2) 
is a random variable, not an unknown, but constant, parameter.  The expression 
    Pr ( (2) )L S U   = 0.90 

gives the probability that the random variable S(2) is between L and U, not the 
“confidence” for S(2) to be between L and U. 
(iii) By matching the right-hand side of (20.32) (with a = 2) with the right-hand side of 

the given stochastic differential equation, we have  = −0.25 and − = 0.56875.  It 
then follows from (20.29) that 

   S(t)  8 × exp[(0.56875 – ½(−0.25)2)t − 0.25Z(t)], 
which is (3) above. 
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65.   Assume the Black-Scholes framework.   
 
 You are given: 
 

(i) S(t) is the time-t price of a stock, t  0. 
 
(ii) The stock pays dividends continuously at a rate proportional to its price.   
 
(iii) Under the true probability measure, ln[S(2)/S(1)] is a normal random 

variable with mean 0.10. 
 

(iv) Under the risk-neutral probability measure, ln[S(5)/S(3)] is a normal 
random variable with mean 0.06. 
 

(v) The continuously compounded risk-free interest rate is 4%. 
 
(vi) The time-0 price of a European put option on the stock is 10. 
 
(vii) For delta-hedging at time 0 one unit of the put option with shares of the 

stock, the cost of stock shares is 20. 
 
 

Calculate the absolute value of the time-0 continuously compounded expected 
rate of return on the put option. 

 
 

(A)   4% 
 
(B)   5% 
 
(C) 10% 
 
(D) 11% 
 
(E) 18% 
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Solution to (65)    Answer: (C) 
 
 
Equation (21.22) on page 687 of McDonald (2006) is 

  option ( )SSV
r r

V
    . 

 

Statement (iii) means that 2( ½ ) (2 1)       0.10. 

Statement (iv) means that 2( ½ ) (5 3)r       0.06. 

Hence,  – r  0.10 – (0.06/2) = 0.07. 

 

Statement (vii) means that SVS  20  (There is a minus sign because VS = −e−TN(−d1), a 

negative quantity.)  Thus, 

 option ( )SSV
r r

V
      )07.0(

10

20
04.0


  10%. 

 
 
Remark: In Chapter 12, equation (21.22) is written as (12.10).  As stated on page 687, 

(21.22) states an equilibrium condition that the option price must obey.
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66.   Consider two stocks X and Y.  There is a single source of uncertainty which is 
captured by a standard Brownian motion {Z(t)}.  

 
 You are given: 
 
 (i) Each stock pays dividends continuously at a rate proportional to its price.  

For X, the dividend yield is 2%.  For Y, the dividend yield is 1%. 
 

 (ii) X satisfies 
 

   

d ( )

( )

X t

X t
  0.06dt  0.2dZ(t), t ≥ 0. 

 
 (iii) The time-t price of Y is 
 
   Y(t)  Y(0)et  0.1Z(t), t ≥ 0. 
 

(iv) The continuously compounded risk-free interest rate is 4%.  
 
 
 Calculate the constant . 
 
 
 (A) 0.005 
 
 (B) 0.010 
 
 (C) 0.015 
 
 (D) 0.025 
 
 (E) 0.045 
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Solution to (66)    Answer: (A) 

 

Differentiating the equation in (iii) using Itô’s Lemma (or from Example 20.1 on page 

665 of McDonald (2006)), we have 

  
d ( )

( )

Y t

Y t
  [ + ½(−0.1)2]dt − 0.1dZ(t) 

    ( + 0.005)dt − 0.1dZ(t). 

Because Y’s dividend yield is 0.01, we rewrite the last equation as 

  
d ( )

( )

Y t

Y t
 [( + 0.015) – 0.01]dt − 0.1dZ(t), 

so that it is comparable to (20.25).  Similarly, we rewrite the equation in (ii) as 

  
 

d ( )

( )

X t

X t
  (0.08 – 0.02)dt  0.2dZ(t). 



The no-arbitrage argument in Section 20.4 “The Sharpe Ratio” of McDonald (2006) 
shows that 

  
0.015 0.08

0.1 0.2

   



r r

. 

By (iv), r = 0.04.  Thus, the equation becomes 

  
0.015 0.04 0.08 0.04

0.1 0.2

   



, 

or 

     =  0.005. 
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67. Assume the Black-Scholes framework.   

 
 In a securities market model, there are two stocks, S1 and S2, whose price 

processes are:  

)](d20d[
)(

)(d

1

1 tZt
tS

tS
  , 

d[ln S2(t)]  0.03dt + 0.2dZ(t), 
 

where  is a constant and {Z(t)} is a standard Brownian motion. 
 
 S1 does not pay dividends. 
 
 For t ≥ 0, S2 pays dividends of amount 0.01S2(t)dt between time t and time      

t  dt. 
 
 The continuously compounded risk-free interest rate is 4%. 
 
 
Determine . 

 
 

(A) −0.04 
 

(B) −0.02 
 

(C) 0 
 

(D) 0.02 
 
(E) 0.04 
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Solution to (67)    Answer: (A) 
 

Define Y(t)  ln S2(t).  Differentiating S2(t)  eY(t) by means of Itô’s lemma, we have 

    dS2(t) eY(t)dY(t)  )(

2

1 tYe [dY(t)]2 + 0dt

    S2(t)[0.03dt  0.2dZ(t)]  )(
2

1
2 tS [0.22dt] 

   = 0.05S2(t)dt  0.2S2(t)dZ(t). 
 

Hence, 2  2  0.05.  Since it is given that 2  0.01, we obtain  

  2  2  0.05  0.06. 
 
The no-arbitrage argument in Section 20.4 “The Sharpe Ratio” of McDonald (2006) 
shows that  

  
0.06

20 0.2

r r

 

 , 

With r = 0.04, we obtain  

       =  −0.04. 
 
 
Remarks:  (i) An alternative solution:  Integrating  

d[ln S2()]  0.03d  0.2dZ() 
from   0 to   t yields   

ln S2(t)  ln S2(0)  0.03(t – 0)  0.2[Z(t)  Z(0)]. 

Because Z(0)  0 by definition, we obtain 

  S2(t)  S2(0)exp[0.03t  0.2Z(t)]. 
It follows from (20.29) of McDonald (2006) or from Itô’s lemma that 

      0.03  2  2  2
22

1  2  2  2)2.0(
2

1
, 

which leads to 2  2  0.05 again. 
 
(ii) In the last paragraph on page 394 of McDonald (2006), the Sharpe ratio for an asset is 
defined as “the ratio of the risk premium to volatility.”  (On page 917, the term “return 
standard deviation” is used in place of “volatility.”)  If the price process of an asset S 
satisfies  

   
d ( )

( )d ( )d ( )
( )

S t
a t t b t Z t

S t
   

and if S pays dividends of amount (t)S(t)dt between time t and t  dt, then its time-t 
Sharpe ratio is 
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|)(|

)()()(

tb

trtta 
,  

where r(t) is the short-rate at time t.  In Section 24.1, this formula takes the form 

   
( ( ), , ) ( )

( ( ), , )

 r t t T r t

q r t t T
. 

In this sample problem, the Sharpe ratio for S1 is 

  
0.04 0.04

0.1,
| 20 | 20 0.04

r

  

  


 

and the Sharpe ratio for  S2 is 

   
0.06 0.04

0.1,
0.2


  

which is the negative of that for S2.   
 
(iii) For a derivative security or an option on a stock, the Sharpe ratio is 

  option

option




 r
= stock

stock

( )

| |




 
 

r
 = sign(Ω)× stock

stock




 r
, 

where  = SVS/V.  The formula above is a corrected version of (21.21) on page 687; see 
also (12.12) on page 394.  This shows that some derivative securities, such as put options, 
have a Sharpe ratio that is the negative of that for the stock, while others, such as call 
options, have the same Sharpe ratio as the stock. 
 
(iv) Some authors call the ratio 

   
( ) ( ) ( )

( )

a t t r t

b t

 
, 

where there is no absolute value in the denominator, the market price of risk or market 
price for risk.  The argument in Section 20.4 shows that the condition of no arbitrage 
implies that, at each t, all tradable assets have the same market price of risk.  Three 
examples of this important result are: 

   
0.06

20 0.2

r r

 

 , 

which is the equation we used to solve the problem; 

  1 2

1 2

( ( ), , ) ( ) ( ( ), , ) ( )

( ( ), , ) ( ( ), , )

r t t T r t r t t T r t

q r t t T q r t t T

  


 
, 

which is equivalent to equation (24.16) in McDonald (2006); and 

     stock

stock




 r
  =  option

optionsign( )

r



 
, 

which is a corrected version of (21.21).  The term “market price of risk” is not in the 
current syllabus of MFE/3F. 
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68.    Consider the stochastic differential equation  
 

dX(t)  3X(t)dt  2dZ(t), 
 

 where {Z(t)} is a standard Brownian motion.   

 

 You are given that a solution is  





   t DsAt sZeCBetX

 

0 
)(d)( , 

 where A, B, C and D are constants. 

 

 Calculate the sum A  C  D. 

 
 (A)  2 
 
 (B)  4 
 
 (C)  7 
 
 (D)  8 
 
 (E)  11 
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Solution to (68) Answer: (D)  
 
With the definitions 

  Y(t) = 
t Ds sZe
 

0 
)(d  

and 

  g(y, t) =  e−At(B + Cy), 

the given solution can be expressed as 

  X(t)  =  g(Y(t), t), 

which we now differentiate by means of Itô’s lemma.  Because 

   gt(y, t)  e−At(A)(B  Cy)  Ag(y, t), 

   gy(y, t)  eAtC, 

   gyy(y, t)  0, 

and 

   dY(t) = eDtdZ(t), 

we obtain 

        dg(Y(t), t)   gy(Y(t), t)dY(t)    ½gyy(Y(t), t)[dY(t)]2    gt(Y(t), t)dt 

     Ce−AteDtdZ(t) − Ag(Y(t), t)dt. 

Replacing g(Y(t), t) by X(t), we have 

  dX(t)  Ce(D − A)tdZ(t) − AX(t)dt, 

comparing which with the given stochastic differential equation yields  

A  3, D  A  3, and C  2. 

Hence, 

A  C  D  8. 

 

Remarks:   

(i)  This question is related to Exercise 20.9 in McDonald (2006) and #24 in this set of 

sample questions.   

(ii) B  X(0).   

(iii)  {X(t)} is an Ornstein-Uhlenbeck process. 
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69.   Consider the following three-period binomial tree for modeling the price 

movements of a nondividend-paying stock.  The length of each period is 1 year.   

 

 

 

 

 

 

 

 

 

 

  

 The continuously compounded risk-free interest rate is 10%. 

 

 Consider a 3-year at-the-money American put option on the stock. 

 

Approximate the time-0 theta of the put, measured in years, using the method in 

Appendix 13.B of McDonald (2006). 

 
 

(A)  8.94 
 

(B)  2.33  
 

(C)  0.62 
 

(D)  0.90 
 

(E) 8.24 
 
 

   234.375 
 
  187.5 
 
 150   150 
 
120   120 
 
 96   96 
 
  76.8 
 
   61.44 
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Solution to (69)    Answer: (C) 
 
American options are priced by the method of backward induction.  See Section 10.4 of 
McDonald (2006). 

By (10.5), we have 678158.0
96150

96120
*

1.0






e

p . 

Applying (10.12) repeatedly, we obtain the binomial tree for pricing the American put 
option.  (* means that early exercise is optimal.) 
 
 
 
 
 
 
 
 
 
 
 
 
 
It is obvious that Puu = 0.  The other values are: 

0.1[24(1 *)] 6.9891612udP e p    

2.43}2.43 ,7804.31max{}2.43 *)],1(56.58*24[max{ 1.0   ppePdd  

0.1[6.9891612(1 *)] 2.0353489uP e p    

24}42 ,8692.16max{]}24 *)],1(2.43*9891612.6[max{ 1.0   ppePd

0.1
0 [2.0353489 * 24(1 *)] 8.23809684P e p p     

 

Formula (13.17) approximates theta as  

2( ,  2 ) [ ( ,  0) ( ,0) ½ ( ,0)]

2
ud P PP S h P S S S

h

     
. 

With h = 1 and   Sud  S  0, the expression above becomes 

0( ,  2 ) ( ,  0) 6.989161 8.238097
0.624468

2 2 2
ud udP S h P S P P

h

  
    .

 

 

   0 
 
  0 
 
 2.035349    0 
 
8.238097   6.989161 
 
 24 *    24 
 
  43.2 * 
 
    58.56 
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Remarks: 
 
(i)  While it is stated on p. 383 of McDonald (2006) that “[t]heta () measures the 

change in the option price when there is a decrease in the time to maturity of 1 

day,” the formula to compute theta under the binomial tree model (Appendix 13.B, 

formula (13.17)) and the formula to compute theta of European calls and puts under 

the Black-Scholes model (Appendix 12.B) give the value of theta measured in 

years.  To obtain the per-day theta, one divides the per-year theta by 365. 

 

(ii)  The thetas in formulas (13.6), (13.7), (13.9) and (13.10) are measured in years, 

because the unit of h in Section 13.4 and 13.5 is in years.  The last two sentences on 

p. 425 of McDonald (2006) are: “Since the variables in the option pricing formula 

are expressed as annual values, a one-unit change in T  t implies a  of 6.33251. 

Since h  1/365, the implied daily option price change is 6.33251/365   

0.01735.”  The value 0.01735 is the value for Option 1 in Table 12.2 on p. 392. 
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70.   Assume the Black-Scholes framework.   
 
 You are given: 
 
 (i) S(t) is the time-t price of a stock. 
 
 (ii) The stock pays dividends continuously at a rate proportional to its price.  

The dividend yield is 2%. 
 

 (iii) S(t) satisfies 

    
d ( )

   0.1d     0.2d ( )
( )

S t
t Z t

S t
  , 

  where {Z(t)} is a standard Brownian motion. 
 
 (iv) An investor employs a proportional investment strategy.  At every point of 

time, 80% of her assets are invested in the stock and 20% in a risk-free 
asset earning the risk-free rate. 
 

 (v) The continuously compounded risk-free interest rate is 5%. 
 

 
 Let W(t) be the value of the investor’s assets at time t, 0t  . 
 
 
 Determine W(t). 
 
 
 (A) 0.0772 0.16 ( )(0) t Z tW e   
 
 (B) 0.0900 0.16 ( )(0) t Z tW e   
 
 (C) 0.0932 0.16 ( )(0) t Z tW e   
 
 (D) 0.1060 0.16 ( )(0) t Z tW e   
 
 (E) 0.1200 0.16 ( )(0) t Z tW e   
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Solution to (70)    Answer: (C) 
 
For t ≥ 0, the rate of return over the time interval from t to t + dt is  

 

 

d ( ) d ( )
0.8 δd 0.2 d

( ) ( )

0.8 0.12d 0.2d ( ) 0.2(0.05)d

0.106d 0.16d ( )

W t S t
t r t

W t S t

t Z t t

t Z t

 
   

 
  

 

, 

By Example 20.1, the solution for W(t) is 

2 0.0932 0.16 ( )1
( ) (0)exp [0.106 (0.16) ] 0.16 ( ) (0)

2
t Z tW t W t Z t W e      

 
. 

 

Remark:  Further discussion can be found in #32 of this sample set.
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71.   Assume the Black-Scholes framework.  You are given:  

 (i) For t ≥ 0, S(t) denotes the time-t price of a stock.   

 (ii) S(0)  1 

 (iii)   
d ( )

0.08d 0.40d ( ),
( )

S t
t Z t

S t
      t ≥ 0, 

where { ( )}Z t  is a standard Brownian motion under the risk-neutral 

probability measure. 

 (iv) For t ≥ 0, the stock pays dividends of amount 0.04S(t)dt between time t 

and time t  dt. 

 (v) For a real number c and a standard normal random variable Z, 

   
22 2 / 2E[ ] (1 ) . cZ cZ e c e  

 

 Consider a derivative security that pays  

    1  S(1){ln[S(1)]}2 

 at time t  1, and nothing at any other time. 

 

 Calculate the time-0 price of this derivative security. 

 

 

 (A)  0.932 
 

 (B)  1.050 
 

 (C)  1.065 
 

 (D)  1.782 
 

 (E)  2.001
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Solution to (71)    Answer: (C) 
 
The simplest way to price the security is to use the method of risk neutral pricing.  That 
is, we compute the expectation of the discounted value of the payoff, where discounting 
is done with respect to the risk-free interest rate and expectation is taken with respect to 
the risk-neutral probability distribution.  (See Section 21.3 of McDonald (2006), in 
particular, the first sentence in the second paragraph on page 692.)   
Thus, the time-0 price is 

   E*[e−rT(1  S(T){ln[S(T)]}2)], 
where T is the exercise date (which is 1 in this problem) and 

   )](
~

)
2

δexp[()0()(
2

TZTrSTS 
 . 

Now, statement (iv) means   0.04. 

From (21.28) and the stochastic differential equation given in (iii), we have r    0.08, 

and  = 0.40.  Hence, we also have r  0.08 +   0.12. 
 

With S(0)  1, we obtain  

   S(1)  )1(
~

4.0 Ze , 
which means 

 1  S(1){ln[S(1)]}2  =  0.4 (1) 21 (0.4 (1))Ze Z
   =  0.4 (1) 21 0.16 ( (1))Ze Z

  . 

 
Thus, the time-0 price of the derivative security is  
 

0.12 0.4 (1) 2 0.12 0.4 2E*[ [1 0.16 ( (1)) ]] [1 0.16E( )]   
 Z Ze e Z e e Z  

 

where Z is a standard normal random variable.  By the formula given in (v) with c = 0.4, 
 

time-0 price  e–0.12[1  0.16(1  0.42)exp(0.42/2)]  1.0652, 
 

which means (C) is the answer. 
 

Remarks:  (i) The formula given in statement (v), 
22 2 / 2E[ ] (1 ) cZ cZ e c e , can be 

derived as follows:  

2

2 2

2

 2 2

 

 2 / 2

 

 / 2 2 ( ) / 2

 

/ 2 2

E[ ] ( )d

1
d

2
1

d
2

E( ),









 


  
















cZ cz
Z

cz z

c z c

c

Z e z e f z z

z e e z

e z e z

e X
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where X is a normal random variable with mean c and variance 1.  Because 

  

2 2 2E[ ] = Var( ) (E ) 1 ,  X X X c

 

we obtain the formula in (v). 

 

(ii) Alternatively, we start with the moment-generating function formula for Z, 

   E(ecZ)  exp(c2/2).  

Differentiating both sides with respect to c, we get E(ZecZ)  exp(c2/2)×c. 

Differentiating again, we obtain 

  E(Z2ecZ)  exp(c2/2) )×c + exp(c2/2)  (1  c2)exp(c2/2). 

The method of differentiation under the expectation sign may be familiar to some Life 

Contingencies students: 

 ( ) ( ) ( )= E[ ] E[ ] E[ ( ( ))] ( )T x T x T x
x xA e e e T x IA  

  
    

     
  

, 

where  is the force of interest; more generally, 

 ( )( ) / ( ) /( ) ( ) ( )= E[ ] E[ ] ( )
mT xmT x m mT x mm m m

x xmA e e I A 

 
          

   
 

. 

 

(iii) Arguably, the most important result in the entire MFE/3F syllabus is that securities 
can be priced by the method of risk neutral pricing.  This may seem a surprise to actuarial 
students because they have learned to value insurance liabilities by calculating their 
expected present values, and risk neutral pricing also means calculating expected present 
values.  However, financial pricing is different from actuarial valuation in that the 
expectation is taken with respect to a risk-neutral probability measure and also that the 
discounting is computed with respect to the risk-free interest rate.  Some authors call the 
following result the fundamental theorem of asset pricing: in a frictionless market, the 
absence of arbitrage is “essentially equivalent” to the existence of a risk-neutral 
probability measure with respect to which the price of a payoff is the expected discounted 
value.  The term “fundamental theorem of asset pricing” is not in the current syllabus of 
exam MFE/3F. 
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72.   Assume the Black-Scholes framework.   

 

 The continuously compounded risk-free interest rate is 7%. 

 

 With respect to a stock S, you are given: 

(i) The current stock price, S(0), is 10. 

(ii) The stock pays dividends continuously at a rate proportional to its price. 

 The stock’s volatility is 10%. 

(iii) The price of a 6-month European gap call option on S2, with a strike price 

of 95 and a payment trigger of 120, is 5.543. 

(iv) The price of a 6-month European gap put option on S2, with a strike price 

of 95 and a payment trigger of 120, is 4.745. 

(v) The strike price and payment trigger refer to the value of S2, rather than S. 

 

Calculate the dividend yield. 

 

 (A)  2.0% 

 (B)  3.5% 

 (C)  4.0% 

 (D)  4.5% 

 (E)  5.5% 
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Solution to (72)    Answer: (A)  
 
Let K1 denote the strike price (which is 95 in this problem), K2 denote the payment 
trigger (which is 120), and T denote the exercise date (which is ½).  Let I(.) the denote the 
indicator function. 
 

The payoff of the gap call is (Sa(T)  K1)×I(Sa(T)  K2) with a = 2. 

The payoff of the gap put is (K1  Sa(T))×I(Sa(T)  K2)  (Sa(T)  K1)I(S
a(T)  K2). 

 

Let  be a real number, A be an event and A  be its complement.  Obviously, 

   ( ) ( )I A I A    . 

It follows from this identity that  

 (Sa(T)  K1)×I(Sa(T)  K2) − (K1  Sa(T))×I(Sa(T) < K2) Sa(T)  K1 
(the right-hand side which is independent of K2).  By considering the prices of these time-
T payoffs, we have a generalization of put-call parity: 

 price of gap call  price of gap put  0, 1 0, 1( ) ( )P a P a rT
T TF S K F S K e    .  

 

To evaluate 0, ( ),P a
TF S  we use the “Black-Scholes framework” assumption.  It follows 

from (20.30) of McDonald (2006) that 

  
22 2 [ 2( δ) ]

0, ( ) (0)P r r T
TF S S e     . 

 
Solving the equation 

 5.543  (4.745)  2 [ 0.07 2(0.07 ) 0.01] ½(10) e       0.07 ½95e   

yields 

     0.02. 
 
 
Remark:  Formula (20.30) of McDonald (2006) can be derived as follows: 

 

2

2

2 2

0,

[( ½ ) ( )]

( ½ ) ( )

( ½ ) ½( )

        ( ) E*[ ( )]

(0)E*[ ]

(0) E*[ ]

(0)

  

  

  



   

  

  













P a rT a
T

rT a a r T Z T

rT a a r T a Z T

rT a a r T a T

F S e S T

e S e

e S e e

e S e e
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73.   You are given: 
 

 (i) 
d ( )

    0.3 d   d ( )
( )

S t
t Z t

S t
  ,  t  0, 

 where Z(t) is a standard Brownian motion and  is a positive constant. 
 
(ii) There is a real number a such that 

 

)(d 0.6    d 66.0    
)]([

)](d[
tZt

tS

tS
a

a

 ,  t  0. 

 
 

Calculate .   
 
 

(A) 0.16 
 
(B) 0.20 
 
(C) 0.27 
 
(D) 0.60 
 
(E) 1.60 
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Solution to (73)  Answer: (B)   
 

From (20.32), with  changed to , we obtain the following two equations: 

 a(  0.6,     (1) 

 0.3a½a(a  1)(2  0.66.   (2) 
From (1), 

   =  0.6/a, 
substitution of which in (2) yields 

 0.3a ½a(a – 1)(0.36/a2)  0.66, 
or 

 0  0.3a20.84a – 0.18  0.02(5a – 1)(a3). 

Because  is positive and because of (1), a must be negative.  So a  −3, and we have 

   0.6/a  0.6 / (3)  0.2. 
 
 
Remark:  There is no need to memorize (20.32).  Differentiate [S(t)]a using Itô’s Lemma: 
     d[S(t)]a =  a[S(t)]a−1dS(t)  +  ½a(a −1)[S(t)]a−2[dS(t)]2  +  0 

 =  [S(t)]a{a[0.3d  d ( )]t Z t   +  ½a(a −1) 2[0.3d  d ( )]t Z t } 

 
=  [S(t)]a{a[0.3d  d ( )]t Z t   +  ½a(a −1)2dt}, 

or 

             
d[ ( )]

[ ( )]

a

a

S t

S t
 = [0.3a +  ½a(a −1)2]dt  −  adZ(t), 

comparing which with the equation in (ii) yields (1) and (2). 
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74.   An equity-indexed product sold by an insurance company has a guarantee that is 
equivalent to a four-year at-the-money European put option on a nondividend-
paying stock.   
The company does not hedge its risk.  Instead, the company will set aside a fund 
that accumulates at the risk-free rate. 
The company wants the fund amount to be big enough so that there will be a 99% 
probability of being able to pay the guarantee out of the accumulated value of this 
fund. 

 
 You are given: 

 
 (i) The current price of the stock is 40. 

 
 (ii) The stock-price process is a geometric Brownian motion. 

 
 (iii) The stock’s volatility is 30%. 

 
 (iv) The continuously compounded expected rate of return on the stock is 10%.  

 
 (v) The effective annual risk-free interest rate is 2%. 

 

 Calculate the fund amount. 

 
 (A) 1 

 (B)  5 

 (C)  17 

 (D)  22 

 (E) 26 
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Solution to (74)  Answer: (E) 
 
Let A denote the fund amount.  Then, the condition for A is 
     1% =  Pr{[K – S(T)]+  >  erTA} 
  =  Pr{[S(0) – S(4)]+  >  (1.02)4A} 
  =  Pr{S(0) – S(4)  >  (1.02)4A}     because (1.02)4A is nonnegative 

  =  Pr{S(0) – (1.02)4A
  
>  S(0)

2( ½ ) 4 (4)Ze      } 

  =  Pr{1 – (1.02)4A/S(0)
 
> 0.22 0.3 (4)Ze  } 

  =  Pr{1 – 0.02706A
 
> 0.22 0.3 4Ye  }    where Y is a normal (0, 1) r.v. 

  
ln(1 0.02706 ) 0.22

0.6

A 
 =  −2.326 

   ln(1 – 0.02706A)  =  −1.3956 + 0.22 = −1.1756 
   A  =  (1 − e−1.1756)/0.02706  = 25.549 ≈ 26 
 
 
Remarks: (i) An alternative solution is to use (18.23) on page 599. 

     1% =  Pr{S(4) < S(0)  1.024A} = )ˆ( 2dN  , 

where 

2

4

2

(0) 0.3
ln (0.1 ) 4

(0) 1.02 2ˆ
0.3 4

S
S A

d
  

 . 

Since N(2.326) = 1%,  

 

2

4

4

(0) 0.3
ln (0.1 ) 4

(0) 1.02 2
2.326

0.3 4
40

ln 1.1756
40 1.02

25.549 26.

S
S A

A
A

  
 




   
 
(ii) Value at Risk is discussed in McDonald’s Chapter 25, which is not part of the Exam 
MFE/3F syllabus.  For the put option, the quantity (1.02)4A can be viewed as the four-
year Value at Risk with a 99% level of confidence. 
 
(iii) Suppose that the company employs the following static hedging strategy.  Upon the 
sale of a policy, it would sell short a fraction of a share of the stock; there is no 
rebalancing.  Then, the problem is to find A such that 

     1% =  Pr{[S(0) – S(T)]+ + S(T)  >  erT [A + S(0)]} 

  =  Pr{[S(0) – S(T)]+  >  erT A + erTS(0) − S(T)]}, 
which is a harder problem.  Because the right-hand side of the last inequality can be 
negative, we cannot simply replace [S(0) – S(T)]+ by [S(0) – S(T)]. 
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(iv) Suppose that the exercise price is K = S(0)erT, instead of K = S(0).  Then 

  0, ( )P
TF K  = e−rTK = S(0) = 0, ( )P

TF S . 

It follows that the European put price and European call price are the same; the price is 

  S(0)[N(½T) − N(−½T)]  =  S(0)[2N(½T) – 1], 

which is a nontrivial fraction of S(0) if T is not small.  On the other hand, because 

  [S(0)erT – S(T)]  =  S(0)[erT − 
2( ½ ) ( )T Z Te     ], 

we have 

  
2

2 ( ½ )
Pr[ (0) ( ) 0] Pr[ ( ½ ) ( )]rT r

S e S T rT T Z T N T
   


  
         

 
, 

which is a formula that can also be found on page 603 of McDonald (2006).  Thus, if  

r <  – ½2 (which is not an unreasonable assumption), the “true” probability that a 
European put option with exercise price K = S(0)erT and a long maturity date T will be in 
the money is small.  Hence, some would argue that such a put option should cost little, 
contradicting the fact that its price is a substantial fraction of S(0). 
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75.   You are using Monte Carlo simulation to estimate the price of an option X, for 
which there is no pricing formula.  To reduce the variance of the estimate, you use 
the control variate method with another option Y, which has a pricing formula.  
 

 You are given: 
 

(i) The naive Monte Carlo estimate of the price of X has standard deviation 5. 
 
(ii) The same Monte Carlo trials are used to estimate the price of Y. 
 
(iii) The correlation coefficient between the estimated price of X and that of Y 

is 0.8. 
 
 

Calculate the minimum variance of the estimated price of X, with Y being the 
control variate. 

 
 

(A)   1.0 
 
(B)   1.8 
 
(C)   4.0 
 
(D)   9.0 
 
(E) 16.0 
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Solution to (75)  Answer: (D)  
 

Following (19.10), we let X*  Xsim +  (Ytrue  Ysim).  Its variance is  

  Var(X*) = Var(Xsim) +  2 Var(Ysim)  2 Cov(Xsim, Ysim), 

which is (19.11). 

To find the optimal , differentiate the RHS with respect to  and equate the derivative to 

0.  The solution of the resulting equation is the optimal , which is  

   
)(Var

),(Cov

sim

simsim

Y

YX
, 

a result that can be found on page 632 in McDonald (2006).   

Thus, that the minimum of Var(X*) is 

 Var(Xsim) 
2

sim

simsim

)(Var

),(Cov








Y

YX
Var(Ysim)  2

)(Var

),(Cov

sim

simsim

Y

YX
Cov(Xsim, Ysim) 

  Var(Xsim)  
2

sim

simsim

)(Var

)],([Cov

Y

YX
  

  Var(Xsim) 









)()VarVar(

)],([Cov
1

simsim

2
simsim

YX

YX
 

  Var(Xsim){1  [Corr(Xsim, Ysim)]2} 

  52(1  0.82)  

  9. 

 

Remarks:  (i) For students who have learned the concept of inner product (scalar 
product or dot product), here is a way to view the problem.  Given two vectors x and y, 
we want to minimize the length ||x  –  y|| by varying .  To find the optimal , we 
differentiate ||x  –  y||2 with respect to  and equate the derivative with 0.  The optimal  
is <x, y>/||y||2.  Hence,   

 Minimum


||x  –  y||2  =  ||x  –  
2

,

|| ||

 x y

y
y||2  =  ||x||2 (1  –  

2

2 2

,

|| || || ||

 x y

x y
). 

(ii) The quantity 
,

|| || || ||

 


x y

x y
 is the cosine of the angle between the vectors x and y. 

(iii) A related formula is (4.4) in McDonald (2006).   
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76. You are given the following information about a Black-Derman-Toy binomial 

tree modeling the movements of effective annual interest rates: 

(i) The length of each period is one year. 

(ii) In the first year, r0  9%. 

(iii) In second year, ru  12.6% and rd  9.3% 

(iv)  In third year, ruu = 17.2% and rdd  10.6%.  The value of rud is not provided. 

 

Calculate the price of a 3-year interest-rate cap for notional amount 10,000 and 

cap rate 11.5%. 

 
 

(A)  202 
 

(B)  207 
 

(C)  212 
 

(D)  217 
 

(E)  222 
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Solution to (76)    Answer: (D) 
 
A related problem is #15 in this set of sample questions and solutions. 
 
Caps are usually defined so that the initial rate, r0, even if it is greater than the cap rate, 
does not lead to a payoff, i.e., the year-1 caplet is disregarded.  In any case, the year-1 
caplet in this problem has zero value because r0 is lower than the cap rate. 
 
Since a 3-year cap is the sum of a year-2 caplet and a year-3 caplet, one way to price a 3-
year cap is to price each of the two caplets and then add up the two prices.  However, 
because the payoffs or cashflows of a cap are not path-dependent, the method of 
backward induction can be applied, which is what we do next.   
 
It seems more instructive if we do not assume that the binomial tree is recombining, i.e., 
we do not assume rud  = rdu.  Thus we have the following three-period (three-year) interest 
rate tree. 
 
 

 
 
 
We also do not assume the risk-neutral probabilities to be ½ and ½.  We use p* to denote 
the risk-neutral probability of an up move, and q* the probability of a down move.  
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In the next diagram, we show the payoffs or cashflows of a 3-year interest-rate cap for 
notional amount 1 and cap rate K.  Here, (r – K)+ means max(0, r – K). 

  
 
 
 
Discounting and averaging the cashflows at time 3 back to time 2: 
 

          
 
Moving back from time 2 back to time 1: 
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Finally, we have the time-0 price of the 3-year interest-rate cap for notional amount 1 and 
cap rate K:   

0

( ) ( )1 1
* ( ) * *

1 1 1 1

( ) ( )1
              * ( ) * * .      (1)

1 1 1

uu ud
u

u uu ud

du dd
d

d du dd

r K r K
p r K p q

r r r r

r K r K
q r K p q

r r r

 


 


             
            

 

 

 

As we mentioned earlier, the price of a cap can also be calculated as the sum of caplet 

prices.  The time-0 price of a year-2 caplet is
 

0

( ) ( )1

1 1 1
u d

u d

r K r K
p q

r r r
    

    
. 

The time-0 price of a year-3 caplet is 

0

( ) ( ) ( ) ( )1 1 1
* * *  * * * .   (2)

1 1 1 1 1 1 1
uu ud du dd

u uu ud d du dd

r K r K r K r K
p p q q p q

r r r r r r r
   

                         
It is easy to check that the sum of these two caplet pricing formulas is the same as 

expression (1).
 

 

Rewriting expression (2) as 

 

2

0 0

2

0 0

( ) ( )
( *) * *

(1 )(1 )(1 ) (1 )(1 )(1 )

( ) ( )
* * ( *)

(1 )(1 )(1 ) (1 )(1 )(1 )

uu ud

u uu u ud

du du

d du d dd

r K r K
p p q

r r r r r r

r K r K
q p q

r r r r r r

 

 

 


     

 
 

     

 

shows the path-by-path nature of the year-3 caplet price. 

 

A Black-Derman-Toy interest rate tree is a recombining tree (hence rud  rdu) with  

p*  q* = ½.  Expression (1) simplifies as 

 
0

( ) ( )1 1 1 1
( )

2 1 1 2 1 1

( ) ( )1 1
              ( ) . (3)

1 2 1 1

uu ud
u

u uu ud

ud dd
d

d ud dd

r K r K
r K

r r r r

r K r K
r K

r r r

 


 


                
               

 

 
In this problem, the value of rud is not given.  In each period of a B-D-T model, the 
interest rates in different states are terms of a geometric progression.  Thus, we have  

    0.172/rud  rud/0.106,  
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from which we obtain rud  0.135.  With this value, we can price the cap using (3).   
 
Instead of using (3), we now solve the problem directly.  As in Figure 24.9 on page 806 
of McDonald (2006), we first discount each cap payment to the beginning of the payment 

year.  The following tree is for notational amount of 1 (and K  0.115). 

 

 

Discounting and averaging the cashflows at time 2 back to time 1: 

  

 
Thus the time-0 price of the cap is 

 
1 1 1 1 0.057 0.02 1 1 0.02 0

0.011  0
1.09 2 1.126 2 1.172 1.135 1.093 2 1.135 1.106

                          
 

 

1 1 1 1
0.044128  0.008811

1.09 2 1.126 1.093

0.02167474.

      
 



 

Answer (D) is correct, because the notation amount is 10,000. 

 

Remark:  The prices of the two caplets for notional amount 10,000 and K  0.115 are 
44.81 and 171.94.  The sum of these two prices is 216.75. 
 


