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It is this second result, the Pickands-Balkema-de Haan 
(PBH) Theorem, which will be used here.  This theorem 
describes the distribution of observations above a high 
threshold as a generalized Pareto distribution.

This result is particularly useful because it can be applied 
in a great many situations with a minimal set of assump-
tions about the “true” underlying distribution of an arbi-
trary data set.

The DisTribuTion of excesses
Given a data set, choose a large threshold value u such 
that we have several data points larger than u. Assume 
for example, that in a data set of 1000 insurance claim 
amounts (in dollars) we choose u to be the 95th percentile, 
and there are 50 points above u.       

For each of those 50 points, {p1, p2,…, p50} , we compute 
the excess above u:  {p1-u, p2-u,…, p50-u}. These may be 
interpreted as random observations from a population 
with some underlying “distribution of excesses.”  

The PBH Theorem states that for a very large family of 
distributions, for a sufficiently large threshold value u, the 
distribution of excesses over u can be well approximated 
by a generalized Pareto distribution. 

The generalized Pareto distribution (GPD) can be 
expressed as a two parameter distribution with cumula-
tive distribution function (CDF):

Gs,k (x) = 1 – (1 –  kx/s) 1/k  for nonzero k, and  Gs,k (x) = 
1– exp(–x/s) for k=0

Note that if there is a left tail consisting solely of negative 
values, below some negative threshold far less than the 
median, we may apply the PBH theorem by simply look-
ing at absolute values.  The “excess” of an observation 
in this tail is the (positive) distance from the observation 
to the threshold. This idea will be used in the example 
shown later.

MoDel backlash
One Of the many things to come out 
of the recent market turmoil is a long list of scapegoats.  
Experts and laymen alike have assigned varying amounts 
of blame to a wide variety of sources ranging from 

greed and conceit, to rating 
agencies, the government, 
and executive bonus plans, 
which rewarded excessive 
risk taking.  Of course, they 
also blamed the risk models.

The idea that a model is not 
meant to capture reality or 
have significant predictive 

power is such a pervasive concept that it borders on tru-
ism.  That being said, it is likely that models should take 
some of the blame for the subprime meltdown and the 
subsequent crisis in the financial markets in general.

Perhaps the biggest problem was that, by design, a lot of 
the models could not warn of the potential for an observa-
tion significantly worse than outliers in the historical data.  
To use Nassim Taleb’s phrase, they failed to provide infor-
mation about the magnitude of potential “black swans.”  
  
Ideally, a statistical distribution that is used in a risk 
model should fit historical data well, both in the central 
portion of the data set and in the tail.  But the distribution 
should not be “constrained by history.”  Rather, it should 
make use of previous extreme values to offer informa-
tion on the probability and magnitude of potential values 
more extreme than those seen previously. Extreme Value 
Theory provides a theoretical basis for such a model.  
This theory quantifies, in a statistically sound manner, 
the potential black swans hinted at by historical extremes.

exTreMe Value Theory
Extreme Value Theory (EVT) is a branch of statistics 
dealing with the extreme deviations from the median of 
probability distributions.  Under very general conditions, 
EVT’s main results characterize the distribution of the 
sample maximum or the distribution of values above a 
given threshold.  

Damon Levine, Cfa, is assistant 

vice president at Assurant Inc., 

in New York, N.Y. He can be 

reached at damon.levine@

assurant.com. 

Modeling Tail Behavior with Extreme Value Theory
By Damon Levine

R i s k  Q U a n t i f i C at i O n



Risk Management  |  SEPTEMBER 2009  |  15

“Perhaps the biggest problem was that a lot of models failed to
 provide information about Black Swans.”

The choice of The ThresholD Value 
In choosing the threshold value it is important to under-
stand some of the technical aspects of the PBH theorem.  
The technical statement of theorem makes use of the 
notion of “right endpoint” of a distribution F.  This is the 
smallest value, r, such that the CDF evaluated at r is equal 
to 1, i.e., F(r) = 1.  In many cases r is infinite.

For our purposes, we can look at a somewhat simplified 
version of the theorem: for a large class of distributions, 
as the threshold u approaches the right endpoint of F, the 
excess distribution F u approaches a GPD.  The class of 
distributions conforming to this theorem includes all the 
common continuous distributions an actuary or statistician 
typically employs including the normal, lognormal, beta, 
exponential, F, gamma, Student t, uniform, etc. 3  Note that 
the only returns that are used in the parameter estimation 
of the GPD are those which are in the tail defined by the 
choice of threshold.

When fitting any distribution to a data set, a larger number 
of data points is ideal.  By selecting a smaller value of u 
we can expect a fair amount of data points to exceed that 
value, perhaps improving the GDP fit.

Contrary to this notion is the fact that the PBH theorem 
states a result based on the assumption of threshold values 
approaching the right endpoint of the distribution F.  This 
implies that better GPD fits are expected for larger choices 
of the threshold u.

One must strike a balance between choosing u large 
enough so that the theorem is applicable from a practical 
standpoint and small enough so that a sufficient number 
of data points can be used in estimation of the parameters 
of the GPD.  

There is no hard and fast rule describing the “right” 
choice of the threshold value. Some methods for threshold 
selection can be found in Bensalah’s  “Steps in Applying 
Extreme Value Theory to Finance: A Review.”  4  

MoDeling wiTh a hybriD eMpirical/
gpD MoDel
Let F represent the “true,” underlying cumulative distri-
bution function of the full set of claim data in the above 
example.  We assume the observed data set is a random 
sample drawn from some population following a statistical 
distribution.  Based on a particular choice of the threshold 
u, the cumulative distribution function of the excesses 
denoted by Fu (y) is defined for non-negative y as:

F u (y) = P{X – u ≤ y | X>u} = P{excess ≤ y for a random 
observation exceeding u}  

It is important to realize this CDF describes the distribu-
tion of the excess over the threshold.  It gives a probability 
that the excess over u, of a random observation larger than 
u, will be less than or equal to y.  It does not refer to the 
magnitude of the extreme value itself, but it is straightfor-
ward to make use of Fu  to do so.

For x ≥ u we have:

F(x) = P{X ≤x} = (1 - P{X ≤u}) Fu (x-u) + P{X ≤u} 1

Now, F u can be estimated by some GPD, G s,k , and P{X 
≤u} can be estimated from the data by Fn(u), the empirical 
distribution evaluated at u. 2  So for x ≥u we can approxi-
mate F(x) by:

F*(x) = [1 - Fn(u) ] Gs,k (x-u) + Fn(u)

The two parameters of the distribution Gs,k can be esti-
mated by a variety of methods including maximum likeli-
hood and the method of moments, which is used in the 
example shown later.

A CDF modeling the entire underlying distribution, F, can 
therefore be described as a hybrid empirical/GPD:

F(x) = Fn (x) for x<u, and F(x) = [1 - Fn(u) ] Gs,k (x-u) + 
Fn(u) for x ≥u  

If desired, one can perform simulation by regarding a ran-
dom digit, r, from (0,1) as a percentile of F(x), i.e. employ 
the mapping r → F-1(r).

CONTINUED ON PAGE 16
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The data set consists of 344 returns ranging from a mini-
mum of -7.16 percent to a maximum of 10.84 percent with 
selected percentiles as shown in Table I.

We focus on returns in the left tail; in other words, we are 
interested in returns less than some low value. Consider a 
choice of threshold u as the absolute value of some low, 
negative return and then, for returns less than u, define the 
excess to be the distance between u and the absolute value 
of that return.  Note that a large excess is equivalent to a 
poor return. The application of the PBH theorem to the left 
tail was introduced in the Distribution of Excesses section.

Setting u=1.54 percent, corresponding to the 10th percen-
tile, we may then approximate the excess distribution F u  

as a GPD with parameters s and k.  We determine these 
parameters by the method of moments.5  Note that the 
only returns that are used in the parameter estimation of 
the GPD are those above the threshold.

Recording this threshold value and its corresponding pair 
of parameters for the GPD, we will then choose a value 
of u farther out in that left tail and find the resulting pair 
of parameters for the associated GPD. This process will 
continue so that we have sequence of threshold candidates 
u1, u2,… , etc. moving further and further into this tail of 
poor returns.   

Our choice of threshold will be the first of these candidate 
values for which there is stability in the GPD parameter 
estimates from that point on.6  If no such stability is seen 
then the fitting of a GPD to the tail may not be pragmatic.  

exaMple: MoDeling MonThly ToTal 
reTurn for a-raTeD 7-To-10-year 
corporaTe bonDs
The data sample consists of monthly total returns for the 
A-rated 7-to 10-year corporate bond component of Citi’s 
U.S. Broad Investment Grade Bond Index.  The data was 
taken from Citi’s Yieldbook application and consists of 
monthly returns from January 1980 to August 2008.

Percentile Return

99th 5.97%

90th 2.94%

80th 2.05%

70th 1.59%

60th 1.18%

50th 0.83%

40th 0.44%

30th -0.14%

20th -0.77%

10th -1.54%

5th -2.33%

1st -3.87%

Table I

selected Percentiles of  
the Return Data

Table II

threshold Candidates: associated tails and gPD Parameter estimates

GPD  Parameter Es timates
Percentile Raw  Data Value = abs (return value) Wors e than Thres hold** s * k*

Thereshold Candidate* Numbers of Returns

10th -1.54% 1.54% 35 0.01 -0.12
8th -1.68% 1.68% 28 0.01 -0.06
6th -1.93% 1.93% 21 0.01 0.03
5th -2.33% 2.33% 18 0.01 -0.12
4th -2.52% 2.52% 14 0.01 -0.07
3rd -2.82% 2.82% 11 0.01 -0.07

 *   these are threshold candidates in the left tail of rhe return data; in all cases the value prior to taking absolute value is negative
 **  e.g. worse than the 5th percentile means less than -2.33% or a negative return whose absolute value exceeds 2.33%
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ally thought to be out of the realm of possibility.  At that 
time, the worse monthly return since 1980 had been -7.16 
percent and this occurred back in February of 1980!  So 
the methods of EVT allow us to say: 

 P(at least one monthly return ≤ -10.81 percent over a 
30-year period) = 1.4 percent.

What would the estimate of this probability be if we fit 
a normal distribution to the data?  Based on the sample 
mean and standard deviation of 0.77 percent and 1.98 per-
cent respectively, we are talking about a return of -10.81 
percent, which corresponds to a Z-score of -5.858 and a 
probability of 2.34 x 10-9.  From this we have, under the 
normal distribution fit,

PNORM (at least one monthly return ≤ -10.81 percent over a 
30-year period) = 8.42 x 10-7 

The difference is clear:  EVT points to low likelihood but 
puts the result on the radar screen.  The probability of the 
event using EVT is found to be more than 16,000 times 
greater than had it been calculated according to a normal 
distribution assumption! 

In September 2008 the monthly return for this bond index 
was -10.94 percent.  A risk manager or bond trader who 
has worked with EVT might think the event was surpris-
ing in that there was only about a 1 percent chance of its 
occurrence over a 30-year time period.  Had other meth-
ods been used the result might have seemed on par with 
a flipped coin landing on its edge!  For all intents and 
purposes it would have been considered impossible.

The key point is that such an unimaginably bad result 
would have shown up, before the fact, in the analysis 
based on EVT.

ConClusions
Models based on EVT, like other risk models, work best 
in concert with subjective tools such as intuition, judg-
ment and common sense derived from experience.  A risk 
quantification approach that incorporates both the Delphi 
method and EVT may very well be the best approach to 
making decisions under uncertainty.

We begin with the 10th as a threshold candidate. The 
results are summarized in Table II.

Taking incrementally larger values of a threshold choice 
u, we begin to see stability in the parameter estimates 
with the threshold set to the (absolute value of the) 4th 
percentile of the data set and this is our choice for the 
threshold.  

As a result, for returns below -2.52% we may model the 
distribution of distances below that threshold as a GPD 
with s=.01 and k=-.07.  The CDF can be written as:

G(x) = 1 – (1 + .07x/.01) 1/-.07  = 1 – (1+7x)-14.286  for x>0

Assume we are interested in the probability of a monthly 
return being less that -5% assuming it is less than -2.52%. 
This is equivalent to probability that the excess is greater 
than or equal to 2.48% (i.e. 5% - 2.52%) and can be found 
as 1 - G(2.48%) = 1 - .898 = .102. This is, of course, a 
conditional probability. The unconditional probability that 
a monthly return is less that -5% is .102 multiplied by the 
probability of being in this tail: .102*.04 or .004.

Keeping in mind that we’ve applied the PBH theorem to 
a left tail, the CDF for the entire underlying distribution, 
F, can be written as a hybrid empirical/GPD:

F(x) = Fn (x) for x ≥u, and F(x) = Fn(u) * [1-G(u-x)] for 
x<u

Key Model Results  
The model implies that for a return in the tail, the monthly 
probability of the return being at least 8.29 percent less 
than the threshold of -2.52 percent (i.e., less than or 
equal to -10.81 percent) is about .001. The unconditional 
probability is then .001*.04 or .00004.  Because this is a 
monthly probability, the probability of seeing a return at 
least this low in a year is 1- (1 - .00004)12  or .00048.  Over 
a period of 30 years the probability of seeing a return at 
least this low is 1- (1 - .00004)30*12    or 1.4 percent.  

This is certainly not a large likelihood but we are, after all, 
talking about a black swan.  As of August 2008, the idea 
of a monthly return worse than -10.81 percent was gener-

CONTINUED ON PAGE 18

“The alternative to well-founded methods like EVT may  
be reliance on intuition or fitting of  

distributions that are dangerously misleading.”
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Of course, EVT is no panacea.  It is, however, a scientific 
approach that allows the modeler to make the best use 
of a small number of prior extremes.  The alternative 
to using well founded methods like EVT may be full 
reliance on potentially flawed intuition or the fitting of 
distributions that are both dangerously misleading and 
possibly costly. F

noTes 
1   For x ≥ u , we have P{X ≤x} = P{X ≤u } +  P{u ≤ X 

≤x} and  P{u ≤ X ≤x} can be expressed as
     (1 – P{X ≤u}) F u (x – u).

2  An empirical distribution fitted to a data set defines a 
CDF consistent with percentiles directly observed in the 
data set.  In other words, it defines a CDF, F(x), such that 
F(x) is equal to the proportion of data points in the set 
less than or equal to x.

3  See below in References:  McNeil’s “Estimating the 
Tails of  Loss Severity Distributions using Extreme 
Value Theory” (pp. 7-8).

4  See below in References:  Bensalah’s “Steps in Applying 
Extreme Value Theory to Finance: A Review”

5  Let x = (1/n)∑ (xi – u) , w=(1/n) ∑ (xi – u)2  , where 
the summations extend over those n values, {x`, x2, … 
, xn}, that exceed the threshold u.  So x is the mean of 
the excesses, and w is the mean of the squared excesses.

  
Also, define A= x2 / (w – x2). Then for the GPD described 
by:  Gs,k (x) = 1 – (1 – kx/s) 1/k  (for nonzero k),  the Method 
of Moments parameter estimates of s and k are: s* = .5 x 
(A + 1)  and k* = .5(A – 1)

6  The stability will begin to wane as the threshold become 
large enough to significantly shrink the count of data 
values in the associated tail; so there is a sort of “win-
dow of stability.”
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