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WELCOME TO THIS ISSUE OF RISK 
MANAGEMENT!

We have a variety of papers this time covering differ-
ent branches of risk management. First, “Managing 
Systemic Risk in Retirement Systems” by Minaz H. 
Lalani discusses ways to mitigate the negative impacts 
caused by the shifting of retirement obligations towards 
the individual. The author lays out steps for major 
stakeholders (government, employer, financial institu-
tion, and employee) to help prepare for this shift.

Next, Pablo Fernandez, Javier Agirreamalloa, and Luis 
Corres have a paper called “Market Risk Premium used 
in five countries in 2011: a survey with 6,014 answers.”  
This paper shows the size of market risk premium by 
country and respondent. There’s also an interesting 
excerpt of participant’s responses that provides further 
insight into these figures.

Martin Eling and Hato Schmeiser present “Report on 
the CAS COTOR Risk Premium Project Update.” This 
article summarizes the work done by the Committee on 
Theory of Risk within CAS. This project is a follow up 
of an initial project done in 1999 whose mission was a 
review of the research of risk assessment in property-
casualty insurance.

Moshe Milevsky and Huaxiong Huang’s article, 
“Spending Retirement on Planet Vulcan: The Impact 
of Longevity Risk Aversion on Optimal Withdrawal 
Rates,” speaks about the impacts of risk management to 
the individual. The article discusses how risk aversion 
and a guaranteed income stream (pension or annuity) 
influence an individual’s optimal consumption rate 
over time.

Dave Ingram and Michael Thompson present “Changing 
Seasons of Risk Attitudes.” Their article shows how a 
firm’s economic outlook can influence its success. The 
article also relates how this outlook can influence risk 
managers within that firm.

Finally, we have a book review of Mastering Operational 
Risk, by Tony Blunden and John Thirwell. This book is 
geared towards the individual who is moving into an 
operational risk position or who needs to become better 
acquainted with the structure and goals of an opera-
tional risk management department.
 
Enjoy this issue. 

Letter from the Editors  
By Ross Bowen and Pierre Tournier

Risk management  |  DECEMBER 2011  |  3

C H A I R S P E R S O N ’ S  C O R N E RE D I T O R S ’  N O T E

Ross Bowen, FSA, CFA, MAAA,  

is vice president, profitability  

management at Allianz Life Insur-

ance Co. of North America in Min-

neapolis, Minn. He can be reached 

at Ross.Bowen@allianzlife.com.

Pierre Tournier, FSA, CERA, is an 

assistant actuary in the Profitabil-

ity Management area at Allianz 

Life Insurance Company in Min-

neapolis. He can be reached at 

pierrectournier@hotmail.com.



4  |  DECEMBER 2011  |  Risk management

Your section council recently met to consider our ser-
vices to you, our members, in the coming year. You will 
be hearing more about the programs we propose in the 
coming months but our goal is to encourage research 
and discussion on topics such as ERM blind spots. 
The planning for the spring 2012 ERM Symposium in 
Washington DC is well underway and I highly recom-
mend this successful event as an excellent opportunity 
for ERM learning and networking with experts from a 
range of ERM perspectives. In addition to our research 
program, newsletters and sponsoring of ERM sessions 
at many actuarial meetings, we plan on outreach to 
regional actuarial clubs. We are particularly excited 
about a planned series of planned one hour webinars 
through the coming year on topics such as credit 
risk, market risk (including ALM), group/conglomerate 
issues and ORSA. In conducting these webinars, the 
JRMS focus will be on the ERM aspects of the subjects 
and we will collaborate with other specialist groups/
sections to provide the technical aspects of these topics.

I do hope that you will find value in your JRMS mem-
bership this year. I also hope that you will spread the 
word to your colleagues not only of the JRMS programs 
but more fundamentally that ERM is a necessary part of 
our daily lives, for personal and business decision mak-
ing. The current ongoing global crisis, which has been 
more severe and long-lasting than many would have 
expected, is a clear example of the importance of ERM 
for all decision makers, not just CRO’s. Where are your 
ERM blind spots? 

WE ALL HAVE THEM. We may not want to admit 
that they might exist. We tend to focus on what we have, 
not on what we might be missing. What well intended 
incentives might be in play that are misaligning intended 
behaviors and leading to unexpected consequences and 
perhaps systemic risk? I am of course referring to our 
ERM blind spots. Have you given thought to where 
yours might lie?

We tend to learn from past mistakes. With each crisis or 
ERM challenge, we identify the problems and change 
our practices for the future. Inevitably, changing ERM 
practices (whether they be individuals, companies or 
regulators) lead to shifting incentives in markets. With 
the pace of change increasing by leaps and bounds and 
the inter-connected nature of the world in which we 

live, it is important 
that ERM include 
deliberate consider-
ation of its own blind 
spots.

Blind spots can occur 
for many reasons. 

One might occur due to an over-reliance on a single risk 
metric. No doubt you have heard the debates over use 
of VaR or TVaR (CTE). What about the use of different 
time horizons—quick shocks versus modeling longer 
term ripple effects? How about reliance on regulatory 
Pillar 1 measures versus your own independent model-
ing of the risks and also various Pillar 2 (e.g., ORSA, 
stress test) type techniques? Which valuation measures, 
consistently applied across your business, provide a 
more useful basis for decision making—amortized 
cost, past experience, current market experience, oth-
ers, etc.? Will the markets of tomorrow behave as they 
have in the past (e.g., dependencies, volatility etc)? 
Will human behavior, individually and collectively, 
change in the face of future crises? These are just a few 
examples of key ERM assumptions which need to be 
continuously reviewed. Over-reliance on one answer to 
each of these questions can leave us open to an ERM 
blind spot.

Where are your ERM blind spots? 
By Stuart Wason

C H A I R S P E R S O N ’ S  C O R N E RC H A I R P E R S O N ’ S  C O R N E R

Stuart F. Wason, FSA, CERA, FCIA, MAAA, HONFIA, 

is senior director at the Office of the Superintendent of 

Financial Institutions Canada in Toronto, ON. He can be 

reached stuart.wason@osfi-bsif.gc.ca. 
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Managing Systemic Risk in Retirement Systems
By Minaz H. Lalani
Editor’s Note: This essay originally appeared in the “Systemic Risk, Financial Reform, and Moving Forward from the Financial Crisis” essay e-book.

deferring their retirement age), institutional impact 
(financial companies will have to restructure their 
product offerings) and restructuring of the economy 
(financial regulators will have to deal with the decline 
of corporate defined benefit pension plans as a major 
player in the financial market).

In this essay, potential actions are 
recommended for key stakeholders 
to manage the unintended 
consequences of a systemic risk 
“brewing” within the retirement 
system today.

GOVERNMENTS
In countries where a pay-as-you-go approach is used to 
deliver government pensions, it is imperative that such 
governments stay at arm’s length and facilitate a process 
to fund future pension obligations through a separate 
trust apart from the general revenues of the government. 
Countries may want to adopt Canada’s approach, as it 
has in place an effective working model consisting 
of a separate trust and robust governance structure. 
In addition, all countries should remove uncertainty 
and have a long-term policy clearly articulated in 
legislation that states the level of government pension, 
which individuals can expect to receive. This would 
allow individuals and their pension advisors to better 
focus on retirement planning for the future. Since 
the expectation is that individuals should be directly 
responsible for a significant portion of their retirement 
income, governments could also provide meaningful 
incentives (e.g. tax credits) to individuals who attain 
a threshold level of savings for adequate retirement 
as prescribed (after collaboration and agreement with 
pension experts), or to individuals who participate 
and complete a certain prescribed set of educational 
courses on retirement planning. Governments could 
consider sponsorship of voluntary programs to facilitate 
provision of retirement for small to medium size 
companies who currently do not provide pensions to 
their employees6.

RETIREMENT SYSTEMS ARE BUILT ON THREE 
FOUNDATIONAL PILLARS:

• employer-sponsored pensions
• government pensions
•  pensions provided by personal savings.

Historically, the total pension consists of the following 
distribution: 50 percent coming from employer-provided 
pensions; 25 percent from government benefits; and the 
remaining shortfall of 25 percent being provided from 
personal savings1.

Employer-sponsored pensions have gradually been 
shifting pension risk2 to individuals by moving from 
defined benefit plans to defined contribution plans3. 
The effect is that the portion contributed by employer-
sponsored pensions toward the retirement pillar is 
expected to be significantly reduced to around 30 
percent (from 50 percent). In addition, government 
pensions are under review and the long-term expectation 
is that government pensions will be reduced, or paid at 
a later retirement age so as to reduce the cost of these 
government programs. The anticipated shortfall (in 
excess of 50 percent), due to the reduction in employer-
sponsored and government pensions, is expected to be 
recovered from personal savings.

For the short to medium term, employers and the 
government will be transferring the provision of 
retirement to individuals who will be ill-equipped to 
have adequate savings for retirement4. The inadequacy 
of savings will be compounded by the fact that 
individuals will require more savings as a result of 
increased life expectancy, transfer of post-retirement 
medical costs onto individuals, and the expectation of 
lower investment returns in the “new normal” world5. 
In combination, these trends will yield unintended 
consequences. In my view, without any explicit 
actions, these trends will result in social unrest (society 
may not accept these changes), sociological impact 
(e.g., society will have declining living standards), 
organizational workforce impact (employees will be 
unable to afford retirement, thus working longer and 

Minaz Lalani, FSA, CERA, FCIA, 

FCA, is a consulting actuary and 

managing principal at Lalani 

Consulting Group in Calgary,

Canada. He can be contacted at 

minaz@lalanicg.com. 

CONTINUED ON PAGE 6
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EMPLOYERS
In most countries, it is a fact that employers have 
been moving to defined contribution plans. This is 
due to increasingly complex pension funding rules and 
unclear, ambiguous surplus ownership rules for defined-
benefit plans. The result has been the underfunding of 
pension plans to minimize future actuarial surpluses. It 
may be too late to reverse the trend away from defined 
benefit plans; however, simplicity and clarity of pension 
legislation could slow the trend. Most employers have 
introduced auto-enrolment, auto-deductions and other 
auto-features in defined contribution plans to ensure 
that their employees adequately save for retirement. 
This is a great start; however, the underlying issue is 
that employer contributions to defined-contribution 
plans are significantly less than defined-benefit plans. 
Employers should be voluntarily asked to revisit 
their defined contribution plan designs and mirror the 
aggregate contributions paid into the defined benefit 
plans. Failing that, minimum defined contributions 
should be legislated so that all employers contribute 
toward an employee’s retirement account whether 
it is in a registered/qualified or non-registered/non-
qualified account. Of course, there will be push-back 
and resistance from employers, but governments need 
to consider the long-term social and societal impact of 
inadequate retirement income. Some forward-looking 
employers may welcome such an initiative, as it could 
allow such organizations to effectively manage their 
workforce. In other words, employers will be able to 
develop robust growth plans to manage attrition and 
retirement in a socially acceptable manner (employees 
would have adequate income to retire on). 

FINANCIAL INSTITUTIONS
Investment managers/counsellors, life insurance 
companies and trust companies are key stakeholders 
in the retirement industry. Traditionally, each of them 
has fulfilled an important role of managing assets 
and/or administering defined benefit pension plans. 
Also, in the emerging defined contribution market, 
these stakeholders have continued to be major players 
fulfilling similar roles. However, these institutions 
need to switch their focus on delivering innovative 
retirement and investment products, and implementing 
creative retirement educational programs. For example, 
an innovative retirement retail product would allow 

R I S K  I D E N T I F I C AT I O N

employees to manage their longevity risk and crystallize 
their retirement income by an annual/periodic purchase 
of deferred annuities over the employee’s working 
lifetime. Creative retirement education programs 
could incorporate dynamic modelling of employee’s 
retirement income, taking into account employee’s 
income from all sources, and incorporating expenses 
from personal data and comparative mainstream 
data. Currently, pension funds are very active in the 
financial markets from an investment and governance 
standpoint. With the decline of defined-benefit plans, 
and subsequently the maturity (pension outflows will 
exceed contribution, expenses and investment) of these 
plans, there will be a material impact on the role of 
pension funds in the financial marketplace. It would 
be prudent for market regulators to anticipate the 
consequences and develop strategies for a revised 
financial infrastructure.

INDIVIDUALS
Retirement risk has the most impact on individuals 
who have to make provision for their retirement either 
as pension plan members or non-pension members, 
and as citizens who have to fund government pensions 
directly (via pension contributions) or indirectly (via 
tax payments). Unfortunately, individuals do not have 
the ability to take actions to minimize systemic risk. 
However, individuals can take steps to understand 
their personal affairs and make adequate provision to 
save for retirement. An individual can be helped with 
retirement with proper education from the government, 
employer and financial institutions (as stated earlier). 
Collectively, individuals who care about retirement 
risks can vote out non-performing governments, or 
choose their employer, however, this is a “tall-order” 
and it is easier said than done.

At present, we do not “appear” to be in an immediate 
crisis mode on retirement, therefore, none of the 
above approaches may seem relevant. Unfortunately, 
retirement risk is an emerging and “silent” systemic 
risk; such a risk if left unaddressed, will creep into our 
society with damaging consequences. Prudence dictates 
that all stakeholders should take immediate action 
to evaluate the systemic risk posed by a retirement  
crisis. 

Managing Systemic Risk in Retirement Systems  | from Page 5



Risk management  |  DECEMBER 2011  |  7

C H A I R S P E R S O N ’ S  C O R N E RR I S K  I D E N T I F I C AT I O N

ENDNOTES:
1  For simplicity, the rounded percentages are determined on a generalized framework of pensions in Canada for a career individual earning $55,000 

with 35 years of service. Of course, such percentages will differ by salary bands, service periods, and eligibility to government pensions and by 
country. Despite this, the commentary in this essay is still applicable for most circumstances and for other countries with a mature retirement system.

2  Pension Risk: a complex and multi-faceted concept. It incorporates the following key risks: investment, interest rate, inflation, salary, longevity, 
demographic, retirement adequacy, governance and regulatory.

3  Defined-Benefit Plan: a plan which provides a pension based on a defined accrual formula based on years of service and salary history; usually, an 
employer will take most of the pension risk (e.g. volatility of on-going contributions, or payment of any solvency deficiency) related to such a plan. 
Defined Contribution Plan: a plan based on a defined-contribution formula, which grows with investment return over the individual’s working period 
to provide an accumulated fund for provision of pension; usually the individual is responsible for most of the pension risk (e.g. investment risk) 
related to such a plan.

4  Canadian Institute of Actuaries (2007), Planning for Retirement: Are Canadians Saving Enough? CIA and University of Waterloo.
5  “New Normal” is the phrase coined by PIMCO to describe an economic environment of de-leveraging, re-regulation and de-globalization resulting 

in slower, long-term economic growth.
6  Ambachtscheer, Keith (2008), “The Canada Supplementary Pension Plan, Towards an Adequate, Affordable Pension for All Canadians”, C.D Howe 

Institute Commentary No. 265.

Attestation is now open. You must attest compliance with the SOA CPD Requirement 
or be considered non-compliant. Three simple steps to attest:

STEP 1: Log on to the SOA membership  
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STEP 2: Indicate if you have met the SOA 
CPD Requirement.

STEP 3: Identify which compliance path  
was used.  

Attestation is OPEN!
NOVEMBER 1:

That’s it! Attest today at SOA.org/attestion.
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Market Risk Premium used in 56 countries in 2011: 
a survey with 6,014 answers
By Pablo Fernandez, Javier Aguirreamalloa and Luis Corres

THIS PAPER CONTAINS THE STATISTICS OF 
THE EQUITY PREMIUM OR MARKET RISK 
PREMIUM (MRP) USED IN 2011 FOR 56 COUN-
TRIES. We got answers for 85 countries, but we only 
report the results for 56 countries with more than six 
answers.

Most previous surveys have been interested in the 
Expected MRP, but this survey asks about the Required 
MRP. The paper also contains the references used to 
justify the MRP, comments from persons that do not 
use MRP, and comments from persons that do use MRP. 

1.  MARKET RISK PREMIUM (MRP) USED 
IN 2011 IN 56 COUNTRIES

We sent a short email (see exhibit 1) in March and 
April 2011 to about 19,500 email addresses of finance 
and economic professors, analysts and managers of 
companies obtained from previous correspondence, 
papers and webs of companies and universities. We 

asked about the Market Risk Premium (MRP) used “to 
calculate the required return to equity in different coun-
tries”. We also asked about “Books or articles that I use 
to support this number.”

By April 24, 2011, 3,998 of the answers provided a spe-
cific MRP used in 2011.1 Other 2,016 persons answered 
that they do not use MRP for different reasons (see table 
1). We would like to sincerely thank everyone who took 
the time to answer us.

Table 2 contains the statistics of the MRP used in 2011 
for 56 countries. We got answers for 85 countries, but 
we only report the results for 56 countries with more 
than six answers2. Fernandez et al (2011a)3 is an analy-
sis of the answers for the United States; it also shows 
the evolution of the Market Risk Premium used for the 
United States in 2011, 2010, 2009 and 2008 according 
to previous surveys (Fernandez et al, 2009, 2010a and 
2010b)4. Fernandez et al (2011b) is an analysis of the 
answers for Spain.

R I S K  Q U A N T I F I C AT I O N

Table 1. MRP used in 2011: 6,014 answers

Professors Analyst Companies Total

Answers reported (MRP figures) 850 1,462 1,562 3,874

Outliers 41 12 71 124

Answers that do not provide a figure 731 310 975 2,016

Total 1,622 1,784 2,608 6,014

Answers that do not provide a figure:
“I think about premia for particular stocks” 137 5 39 181

“MRP is a concept that we do not use”  390 390

“I use whatever MRP is specified in the 
textbook” 

31   31

“The CAPM is not very useful nor is the 
concept of MRP” 

145  76 221

“I did not have to use an estimate of the MRP 
in 2011” 

38   38

“I am an academic, not a practitioner” 17  17

“I teach derivatives: I did not have to use a 
MRP” 

39  39

“The MRP changes every day”, “weekly” or 
“monthly” 

34 102  136

“It is confidential”  16 83 99

Use a Required Return to Equity 71 38 22 131

Use a minimum IRR 36  242 278

Use multiples 41 127 89 257

Other reasons 142 22 34 198

SUM 731 310 975 2,016

Pablo Fernandez, is professor of 
finance at IESE Business School in 
Madrid, Spain. He can be reached 
at fernandezpa@iese.edu.

Prof. Javier Aguirreamalloa, is 
lecturer in the financial manage-
ment department at IESE Business 
School in Madrid, Spain. He can 
be reached at JAguirreamalloa@
iese.edu. 

Luis Corres, is a research Assistant 
in the financial department at IESE 
Business School in Madrid, Spain. 
He can be reached at lcorres@
iese.edu. 



Risk management  |  DECEMBER 2011  |  9

CONTINUED ON PAGE 10

Figures 1 and 2 are graph-
ic representations of the 
MRPs reported in table 2.

2. DIFFERENCES 
AMONG PROFES-
SORS, ANALYSTS 
AND MANAGERS 
OF COMPANIES
Table 3 shows the differenc-
es for the 34 countries that 
had at least two answers for 
each category (professors, 
analysts and managers of 
companies).

3. REFERENCES 
USED TO JUSTIFY 
THE MRP FIGURE 
1,173 respondents indicated 
which books, papers… they 
use as a reference to justify 
the MRP that they use (375 
of them provided more than 
a reference). Table 4 con-
tains the most cited refer-
ences.

4. COMPARISON 
WITH PREVIOUS 
SURVEYS
Table 4 of Fernandez et al 
(2011a) shows the evolution 
of the Market Risk Premium 
used for the United States 
in 2011, 2010, 2009 and 
2008 according to previous 
surveys (Fernandez et al, 
2009, 2010a and 2010b).

Welch (2000) performed 
two surveys with finance 
professors in 1997 and 
1998, asking them what 
they thought the Expected 

C H A I R S P E R S O N ’ S  C O R N E RR I S K  Q U A N T I F I C AT I O N

Table 2. Market Risk Premium used for 56 countries in 2011

Average Median St. Dev. Q1 Q3 P10% P90% Max. Min.
No. of 

answers

United States 5.5 5.0 1.7 4.5 6.0 4.0 7.0 15.0 1.5 1,503

Spain 5.9 5.5 1.6 5.0 6.0 4.5 8.0 15.0 1.5 930

United 
Kingdom

5.3 5.0 2.2 4.0 6.0 4.0 7.2 22.0 1.5 112

Italy 5.5 5.0 1.4 4.6 6.1 4.0 7.2 10.0 2.0 76

Germany 5.4 5.0 1.4 4.5 6.1 4.0 7.2 12.4 3.0 71

Mexico 7.3 6.4 2.7 5.9 9.1 5.0 10.2 16.0 1.4 56

Netherlands 5.5 5.0 1.9 4.4 6.2 3.9 7.2 12.5 2.5 48

France 6.0 6.0 1.5 5.0 7.0 4.8 7.2 11.4 2.0 45

Switzerland 5.7 5.5 1.3 5.0 6.6 4.0 7.2 9.6 3.8 44

Australia 5.8 5.2 1.9 5.0 6.0 4.0 7.1 14.0 3.0 40

Colombia 7.5 7.0 4.3 5.5 8.0 2.0 14.6 20.5 2.0 38

Sweden 5.9 5.5 1.4 5.0 7.2 4.8 7.2 10.6 3.9 38

Russia 7.5 6.5 3.7 5.5 8.0 5.0 11.0 25.0 1.3 37

Canada 5.9 5.0 2.1 5.0 6.0 4.0 8.0 14.5 3.5 36

Brazil 7.7 7.0 4.6 5.3 8.0 4.3 10.5 30.0 1.5 35

Greece 7.4 7.2 2.7 5.0 8.3 5.0 11.7 15.0 3.0 34

South Africa 6.3 6.0 1.5 5.6 6.5 5.0 7.0 11.8 4.5 34

Argentina 9.9 9.0 3.4 8.0 11.0 7.2 14.6 20.0 5.0 33

Portugal 6.5 6.1 1.7 5.0 7.2 5.0 7.2 14.0 4.5 33

Austria 6.0 5.7 1.8 5.0 7.2 4.6 7.2 14.3 3.5 32

Belgium 6.1 6.1 1.0 5.0 7.2 5.0 7.2 8.0 5.0 31

Chile 5.7 5.3 2.1 5.0 6.0 5.0 6.5 15.0 1.3 31

China 9.4 7.8 5.1 6.5 10.7 6.0 14.5 30.0 4.0 31

Norway 5.5 5.0 1.6 4.5 6.0 4.0 7.0 11.7 3.5 30

India 8.5 7.8 2.8 6.8 9.3 6.0 13.1 16.0 5.0 28

Poland 6.2 6.0 1.1 5.2 7.5 4.9 7.5 8.0 4.5 28

Turkey 8.1 8.2 3.0 5.5 10.0 5.0 11.2 15.0 2.5 25

Luxembourg 6.1 6.1 1.3 5.0 7.2 4.5 7.2 8.7 4.5 21

Czech Republic 6.1 6.0 0.9 5.5 6.5 5.0 7.3 8.0 5.0 19

Peru 7.8 7.5 2.8 6.6 7.7 5.4 10.0 15.0 3.5 19

Finland 5.4 4.7 2.0 4.5 5.0 4.5 7.4 12.0 3.5 18

Israel 5.6 5.0 1.7 4.5 6.0 4.3 7.4 10.0 3.0 17

New Zealand 6.0 6.0 1.0 5.0 6.8 5.0 7.2 7.5 5.0 17

Taiwan 8.9 8.0 3.8 6.0 10.0 6.0 13.4 20.0 5.8 17

Indonesia 7.3 7.5 2.3 5.6 7.5 5.0 10.8 12.0 4.5 14

Japan 5.0 3.5 3.7 3.5 5.0 3.2 7.1 16.7 2.0 14

Korea (South) 6.4 6.5 2.5 6.5 7.0 2.6 8.8 11.1 2.0 13

Denmark 5.4 4.5 3.3 4.4 4.5 3.1 9.3 14.0 2.0 12

Egypt 7.6 7.0 2.3 7.0 7.6 6.6 10.4 13.0 3.5 12

Ireland 6.0 5.1 2.2 5.0 5.6 5.0 7.8 12.3 5.0 12

Singapore 5.7 5.0 1.5 5.0 5.8 5.0 7.3 9.6 4.5 11

Hong Kong 6.4 5.0 2.6 5.0 6.0 5.0 10.4 11.9 5.0 9

Hungary 8.0 8.0 2.4 6.0 8.0 6.0 9.2 13.8 6.0 9

Malaysia 4.5 3.5 2.2 3.5 6.0 3.1 6.8 8.8 1.5 9

Thailand 7.9 6.5 2.8 6.5 7.5 6.5 10.2 15.1 6.5 9

Saudi Arabia 6.3 6.0 0.4 6.0 6.6 6.0 6.8 7.0 6.0 8

Nigeria 6.9 6.0 1.6 6.0 7.1 6.0 8.9 10.0 6.0 7

Pakistan 6.3 7.5 2.3 6.3 7.5 3.6 7.5 7.5 1.5 7

Iran 22.9 19.5 17.8 12.0 24.0 8.5 40.8 56.5 7.0 6

Kazakhstan 7.5 7.5 0.1 7.5 7.5 7.5 7.6 7.6 7.5 6

Kenya 6.2 5.0 2.9 5.0 5.0 5.0 8.5 12.0 5.0 6

Kuwait 6.6 6.5 0.2 6.5 6.5 6.5 6.8 7.0 6.5 6

Philippines 5.6 5.5 0.2 5.5 5.5 5.5 5.8 6.0 5.5 6

UAE 9.7 10.0 0.8 10.0 10.0 9.0 10.0 10.0 8.0 6

Zambia 6.6 6.0 1.6 6.0 6.0 6.0 7.9 9.8 6.0 6

Zimbabwe 6.5 5.5 2.4 5.5 5.5 5.5 8.5 11.4 5.5 6
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Figure 2. Market Risk Premium used in 2011. 
Average, median and dispersion of the  

answers by country
P90%: percentile 90%.  P 10%: percentile 10%
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CONTINUED ON PAGE 12

Average Median Number of 
answers Standard deviation

prof. anal. comp. prof. anal. comp. prof. anal. comp. prof. anal. comp.

United States 5.7 5.0 5.5 5.5 5.0 5.2 522 330 651 1.6 1.1 2.0

Spain 5.5 5.6 6.1 5.5 5.0 5.5 92 305 533 1.0 1.3 1.8

United Kingdom 5.6 5.4 4.9 5.0 5.0 5.0 20 68 24 4.0 1.6 1.1

Italy 5.1 5.7 5.7 5.0 5.0 5.0 21 40 15 1.3 1.4 1.4

Germany 4.9 5.7 4.8 5.0 5.0 5.0 8 47 16 0.8 1.6 0.6

Mexico 10.6 6.6 6.8 10.0 6.0 6.3 9 25 22 2.7 1.6 2.9

Netherlands 5.2 5.9 4.6 4.5 5.5 4.0 12 29 7 2.5 1.6 1.7

France 5.1 6.2 5.9 5.5 6.1 5.7 6 26 13 1.7 1.7 1.0

Switzerland 5.2 5.9 5.1 5.0 6.0 5.0 8 29 7 1.0 1.4 0.9

Australia 6.2 5.4 6.5 6.0 5.0 6.0 15 21 4 2.5 1.1 2.5

Colombia 6.7 5.7 10.1 7.4 7.0 8.2 5 19 14 2.6 2.4 5.5

Sweden 6.2 6.0 5.4 6.0 5.8 5.0 5 26 7 1.6 1.4 0.7

Canada 5.9 5.5 6.2 5.3 5.0 5.1 12 12 12 1.8 1.7 2.8

Brazil 6.6 7.3 8.3 6.0 8.0 7.0 5 14 16 1.3 3.3 6.1

Greece 8.9 6.3 9.3 8.6 6.1 9.5 7 21 6 3.9 1.5 3.2

South Africa 5.8 7.0 5.9 5.5 6.5 6.0 3 13 18 1.0 2.1 0.7

Argentina 10.4 8.7 10.8 9.5 8.3 9.0 10 12 11 4.1 1.7 4.1

Portugal 8.0 6.0 7.2 6.9 6.1 6.5 6 24 3 3.2 1.0 1.2

Austria 4.8 6.3 5.3 4.8 6.1 5.5 2 23 7 0.4 2.0 0.9

Belgium 5.6 6.1 6.1 5.6 6.1 6.0 2 22 7 0.9 1.0 1.2

Chile 6.1 5.2 6.5 6.0 5.3 5.5 5 17 9 0.2 0.4 3.8

China 8.9 7.9 10.9 9.0 6.5 8.0 8 10 13 3.6 2.5 7.0

Norway 5.0 5.9 5.2 5.0 5.8 5.0 2 13 15 0.0 2.3 0.8

India 7.3 8.0 10.1 7.0 7.5 9.0 9 9 10 1.5 2.3 3.5

Poland 6.2 6.1 6.2 5.5 6.0 6.1 3 13 12 1.5 1.3 0.9

Turkey 11.3 7.8 7.5 12.0 8.4 8.1 3 12 10 2.1 2.3 3.5

Czech Republic 5.8 6.2 6.1 5.8 6.5 5.8 2 10 7 0.3 0.9 1.1

Peru 6.5 7.5 8.4 6.5 7.5 7.2 2 9 8 2.1 0.7 4.3

Finland 6.0 4.8 6.1 6.0 4.5 5.0 3 9 6 1.0 1.4 2.9

New Zealand 6.0 5.6 6.6 5.5 5.0 6.7 3 8 6 1.3 0.9 0.7

Taiwan 11.3 7.1 8.4 9.3 6.0 8.0 6 6 5 5.1 2.6 1.8

Japan 3.0 6.0 4.6 3.0 3.5 5.0 3 7 4 1.0 5.0 0.8

Korea (South) 4.0 7.2 8.5 3.5 6.5 8.5 4 7 2 2.4 1.7 0.7

Egypt 10.0 7.5 5.5 10.0 7.0 5.5 2 8 2 4.2 1.3 2.8
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Table 3. Market Risk Premium used for 34 countries in 2011 by professors, analysts and managers of companies

Table 4. References used to justify the Market Risk Premium
References Professors Analysts Companies Total

Ibbotson/Morningstar 53 31 172 256

Damodaran 72 34 114 220

Internal (own) estimate 15 84 67 166

Analysts/Inv. Banks 16 25 80 121

Experience, subjective, own judgement 57 23 28 108

Bloomberg 7 44 47 98

Historic data 45 15 33 93

Fernandez 26 6 31 63

Duff&Phelps 2 0 34 36

Surveys, conversations,… 12 3 18 33

DMS 13 3 15 31

Grabowski/Pratt’s and Grabowski 1 5 24 30

Brealy & Myers 14 4 8 26

Mckinsey, Copeland 5 4 15 24

Internet 2 2 16 20

CFA books 2 9 6 17

Reuters 0 6 10 16

Ross/Westerfield 13 0 1 14

Fama and French 10 0 3 13

Siegel 5 0 5 10

Others* 142 47 135 324

I do not justify the number/do not answer 173 151 185 509

SUM 685 496 1.047 2.228

* Among them: CDS, Internet, Reuters, Siegel, Bodie, Kane, Marcus, Implied MRP, Economic Press, Datastream, Malkiel, 
Sharpe, Brigham, Consensus, IMF, RWJ, Shapiro, Kaplan, Shiller, Welch.
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Graham and Harvey (2007) indicate that U.S. CFOs 
reduced their average EEP from 4.65% in September 
2000 to 2.93% by September 2006 (st. dev. of the 465 
responses = 2.47%). In the 2008 survey, they report an 
average EEP of 3.80%, ranging from 3.1% to 11.5% at 
the tenth percentile at each end of the spectrum. They 
show that average EEP changes through time. Goldman 
Sachs (O’Neill, Wilson and Masih 2002) conducted a 
survey of its global clients in July 2002 and the average 
long-run EEP was 3.9%, with most responses between 
3.5% and 4.5%. 

Ilmanen (2003) argues that surveys tend to be optimis-
tic: “survey-based expected returns may tell us more 
about hoped-for returns than about required returns.” 
Damodaran (2008) points out that “the risk premiums 

                       Table 5. Comparison of previous surveys

Surveys of Ivo Welch Fernandez et al (2009, 2010)

Oct 97– Feb 98* Jan-May 99+ Sep 2001** Dec. 2007# January 2009++ US Europe US Europe

Number of answers 226 112 510 360 143 487 224 462 194

Average 7.2 6.8 4.7 5.96 6.2 6.3 5.3 6.0 5.3

Std. Deviation 2.0 2.0 2.2 1.7 1.7 2.2 1.5 1.7 1.7

Max 15 15 20 20 19.0 10.0 12.0 12.0

Q3 8.4 8 6 7.0 7 7.2 6.0 7.0 6.0

Median 7 7 4.5 6.0 6 6.0 5.0 6.0 5.0

Q1 6 5 3 5.0 5 5.0 4.1 5.0 5.3

Min 1.5 1.5 0 2 0.8 1.0 2.0 2.0

*30-Year Forecast. Welch (2000) First survey
+30-Year Forecast. Welch (2000) Second survey
**30 year Equity Premium Forecast (Geometric). “The Equity Premium Consensus Forecast Revisited” (2001)
#30-Year Geo Eq Prem Used in class. Welch, I. (2008), “The Consensus Estimate for the Equity Premium by Academic Financial Economists in December 2007”.  
http://ssrn.com/abstract=1084918 
++In your classes, what is the main number you are recommending for long-term CAPM purposes? “Short Academic Equity Premium Survey for January 2009”.    
http://welch.econ.brown.edu/academics/equpdate-results2009.html 

Table 6. Estimates of the EEP (Expected Equity Premium) according to other surveys

Authors Conclusion about EEP Respondents

Pensions and Investments (1998) 3% Institutional investors

Graham and Harvey (2007) Sep. 2000. Mean: 4.65%. Std. Dev. = 2.7% CFOs

Graham and Harvey (2007) 
Sep. 2006. Mean: 2.93%.  

Std. Dev. = 2.47% CFOs

Welch update
December 2007. Mean: 5.69%.  

Range 2% to 12% Finance professors

O’Neill, Wilson and Masih (2002) 3.9% Global clients Goldman

MRP would be over the next 30 years. He obtained 
226 replies, ranging from 1% to 15%, with an average 
arithmetic EEP of 7% above T-Bonds5.  Welch (2001) 
presented the results of a survey of 510 finance and 
economics professors performed in August 2001 and 
the consensus for the 30-year arithmetic EEP was 5.5%, 
much lower than just three years earlier. In an update 
published in 2008 Welch reports that the MRP “used in 
class” in December 2007 by about 400 finance profes-
sors was on average 5.89%, and 90% of the professors 
used equity premiums between 4% and 8.5%.

Johnson et al (2007) report the results of a survey of 
116 finance professors in North America done in March 
2007: 90% of the professors believed the Expected 
MRP during the next 30 years to range from 3% to 7%.
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in academic surveys indicate how far removed most 
academics are from the real world of valuation and 
corporate finance and how much of their own thinking 
is framed by the historical risk premiums... The risk 
premiums that are presented in classroom settings are 
not only much higher than the risk premiums in practice 
but also contradict other academic research.”

The magazine Pensions and Investments (12/1/1998) 
carried out a survey among professionals working for 
institutional investors: the average EEP was 3%. Shiller6 

publishes and updates an index of investor sentiment 
since the crash of 1987. While neither survey provides 
a direct measure of the equity risk premium, they yield 
a broad measure of where investors or professors expect 
stock prices to go in the near future. The 2004 survey 
of the Securities Industry Association (SIA) found 
that the median EEP of 1500 U.S. investors was about 
8.3%. Merrill Lynch surveys more than 300 institu-
tional investors globally in July 2008: the average EEP  
was 3.5%.

A main difference of this survey with previous ones 
is that this survey asks about the Required MRP, 
while most surveys are interested in the Expected 
MRP. Exhibits 2 and 3 contain comments from 168 
respondents.

5. MRP OR EP (EQUITY PREMIUM):  
4 DIFFERENT CONCEPTS
As Fernandez (2007, 2009b) claims, the term “equity 
premium” is used to designate four different concepts:

1.  Historical equity premium (HEP): historical differen-
tial return of the stock market over treasuries. 

2.  Expected equity premium (EEP): expected differen-
tial return of the stock market over treasuries.

3.  Required equity premium (REP): incremental return 
of a diversified portfolio (the market) over the risk-
free rate required by an investor. It is used for calcu-
lating the required return to equity.

4.  Implied equity premium (IEP): the required equity 
premium that arises from assuming that the market 
price is correct. 

The four concepts (HEP, REP, EEP and IEP) designate 
different realities. The HEP is easy to calculate and is 
equal for all investors, provided they use the same time 
frame, the same market index, the same risk-free instru-
ment and the same average (arithmetic or geometric). 
But the EEP, the REP and the IEP may be different for 
different investors and are not observable. 

The HEP is the historical average differential return 
of the market portfolio over the risk-free debt. The 
most widely cited sources are Ibbotson Associates and 
Dimson et al. (2007).

Numerous papers and books assert or imply that there 
is a “market” EEP. However, it is obvious that investors 
and professors do not share “homogeneous expecta-
tions” and have different assessments of the EEP. As 
Brealey et al. (2005, page 154) affirm, “Do not trust 
anyone who claims to know what returns investors 
expect.”

The REP is the answer to the following question: What 
incremental return do I require for investing in a diver-
sified portfolio of shares over the risk-free rate? It is a 
crucial parameter because the REP is the key to deter-
mining the company’s required return to equity and the 
WACC. Different companies may use, and in fact do 
use, different REPs. 

The IEP is the implicit REP used in the valuation of a 
stock (or market index) that matches the current market 
price. The most widely used model to calculate the IEP 
is the dividend discount model: the current price per 
share (P0) is the present value of expected dividends 
discounted at the required rate of return (Ke). If d1 is 
the dividend per share expected to be received at time 
1, and g the expected long term growth rate in dividends 
per share, P0 = d1 / (Ke - g), which implies:  IEP = d1/
P0 + g - RF (1)

The estimates of the IEP depend on the particular 
assumption made for the expected growth (g). Even if 
market prices are correct for all investors, there is not 
an IEP common for all investors: there are many pairs 

CONTINUED ON PAGE 14
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We provide the statistics of the Equity Premium or 
Market Risk Premium (MRP) used in 2011 for 56 
countries. We got answers for 85 countries, but we only 
report the results for 56 countries with more than six 
answers.

Most previous surveys have been interested in the 
Expected MRP, but this survey asks about the Required 
MRP. The paper also contains the references used to 
justify the MRP, comments from 12 persons that do 
not use MRP, and comments from 33 that do use MRP. 
Fernandez et al. (2011a)  has additional comments (58 
do not use MRP, and 110 use it). The comments illus-
trate the various interpretations of the required MRP 
and its usefulness.

This survey links with the Equity Premium Puzzle: 
Fernandez et al (2009), argue that the equity premium 
puzzle may be explained by the fact that many mar-
ket participants (equity investors, investment banks, 
analysts, companies…) do not use standard theory 
(such as a standard representative consumer asset pric-
ing model…) for determining their Required Equity 
Premium, but rather, they use historical data and advice 
from textbooks and finance professors. Consequently, 
ex-ante equity premia have been high, market prices 
have been consistently undervalued, and the ex-post 
risk premia has been also high. Many investors use 
historical data and textbook prescriptions to estimate 
the required and the expected equity premium, the 
undervaluation and the high ex-post risk premium are 
self fulfilling prophecies.

EXHIBIT 1
MAIL SENT ON MARCH AND APRIL 2011

We are doing a survey about the Market Risk Premium 
(MRP) that companies, analysts and professors use 
to calculate the required return to equity in different 
countries. 

We will be very grateful to you if you kindly reply to 
the following 3 questions.

Of course, no companies, individuals or universities 
will be identified, and only aggregate data will be made 
public.

Best regards and thanks, 
Pablo Fernandez 

R I S K  Q U A N T I F I C AT I O N
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(IEP, g) that accomplish equation (1). Even if equation 
(1) holds for every investor, there are many required 
returns (as many as expected growths, g) in the market. 
Many papers in the financial literature report differ-
ent estimates of the IEP with great dispersion, as for 
example, Claus and Thomas (2001, IEP = 3%), Harris 
and Marston (2001, IEP = 7.14%) and Ritter and Warr 
(2002, IEP = 12% in 1980 and -2% in 1999). There is 
no a common IEP for all investors. 

For a particular investor, the EEP is not necessary  
equal to the REP (unless he considers that the market 
price is equal to the value of the shares). Obviously, an 
investor will hold a diversified portfolio of shares if his 
EEP is higher (or equal) than his REP and will not hold 
it otherwise. 

We can find out the REP and the EEP of an investor 
by asking him, although for many investors the REP is 
not an explicit parameter but, rather, it is implicit in the 
price they are prepared to pay for the shares. However, 
it is not possible to determine the REP for the market 
as a whole, because it does not exist: even if we knew 
the REPs of all the investors in the market, it would be 
meaningless to talk of a REP for the market as a whole. 
There is a distribution of REPs and we can only say 
that some percentage of investors have REPs contained 
in a range. The average of that distribution cannot be 
interpreted as the REP of the market nor as the REP of 
a representative investor.

Much confusion arises from not distinguishing among 
the four concepts that the phrase equity premium des-
ignates: Historical equity premium, Expected equity 
premium, Required equity premium and Implied equity 
premium. 129 of the books reviewed by Fernandez 
(2009b) identify Expected and Required equity pre-
mium and 82 books identify Expected and Historical 
equity premium.

Finance textbooks should clarify the MRP by incorpo-
rating distinguishing definitions of the four different 
concepts and conveying a clearer message about their 
sensible magnitudes.

6. CONCLUSION
Most surveys have been interested in the Expected 
MRP, but this survey asks about the Required MRP. 
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Professor of Finance. IESE Business School. Spain 
http://www.iese.edu       http://ssrn.com/author=12696 
3 questions: 
1.  The Market Risk Premium that I am using in 2011 

for my country ___________ is:  _____________% 
2.  The Market Risk Premium that I am using in 2011 for 

United States is: _____________%  
3. Books or articles that I use to support this number: 
Comments

EXHIBIT 2
COMMENTS OF RESPONDENTS THAT DID NOT 
PROVIDE THE MRP USED IN 2011

1.  95% of valuations are executed on multiple basis, i.e. 
we don’t properly calculate a wacc per investment 
case nor market risk premium

2.  We focus on emerging markets. We don’t use a for-
mulaic approach to specific country risk and return 
requirements, and believe that it doesn’t adequately 
account for relative risk or reward. Rather, we look 
at each country and determine whether there is a 
compelling real estate opportunity from a perspec-
tive of fundamental demand (like Brazil) and which 
meets our overall return requirements (approxi-
mately 20%).  

3. Analyst. Europe. Changes every week
4.  Germany. We do not apply this methodology in ven-

ture capital.
5.  In Canada we don’t use MRP.  The majority of our 

appraisals are on an orderly liquidation basis. For the 
few fair market value appraisals, we use remaining 
useful life formulas. 

6.  I am fundamentally critical as regards the concept of 
a risk premium, it mainly serves as a tool to ratio-
nalize/ legitimate claims on income in the struggle 
between creditors and debitors.

7.  European Fund. We only invest in European non-
listed, private companies. Our required return is not 
depended on MRPs, we try to get the maximum out 
of it for our shareholders. A reference for us is the 
return you get on a savings account of a bank. For the 
moment this is about 2.5%. So if we get on top of an 
extra 10 to 15% per year, you are doing fine. 

8.  We usually calculate cost of equity in US$ and then 
translate it through PPP to R$. 

9.  The survey comes to me during the period of 
Japanese 9.0 earthquake, which I believe have strong 
impact in Taiwan. Unfortunately up to now no pre-
cise estimates for the damage can be obtained.

10.  I have to confess that what I have doing in finance 
area is for my own pleasure. In other words I have 
made some theoretical research but almost never 
did not try to calculate ‘numbers’. On the other 
hand my understanding of the problem related to 
the questions below is a little bit different than 
benchmark. In particular each ‘The MRP ‘ implies 
risk characteristics that cover the set of scenarios 
for which say ‘payer’ pays more than implied by 
scenarios. Actually I think that relevant general 
information can be drawn from CDS and Interest 
Rate Parity. The MRP are excessively simplified. 

11.  I believe that the long run risk dynamics of corpora-
tions versus sovereigns has altered to the extent that 
risk has diminished for the former and increased for 
the latter. South African cost of capital has also been 
shifting in the past few years with the cost of debt 
particularly declining. I think slightly higher Price 
Earnings ratios will be typical in South Africa going 
forward than the long run market average of around 
14x.In Private Equity EBITDA multiples of 7x are 
common today whereas a few years back 3 to 5x 
was the norm for deals. 

12.  No previous study is known of a comprehensive 
study of the portuguese domestic market. We (3 
professors) are developing a 3-year project that 
aims to estimate our domestic ERP along with an 
understanding of the reasons that influenced that 
premium. At this very moment we are finalizing the 
construction of a share index that covers the period 
1940 to 2010.

EXHIBIT 3
COMMENTS OF RESPONDENTS THAT DID 
PROVIDE THE MRP USED IN 2011 

1.  Your survey assumes that folks are using the seg-
mented markets approach. I use an International 
CAPM approach and the MRP on the world market 
index, which I assume to be 5% from the perspective 
US dollars. We base also on information provided by 
surveys (e.g. from KPMG, Roland Berger, and other, 
or finance articles).

2.  In estimating a cost of equity for a company with 
operations outside of US, we typically consider a 
country risk premium reflects subject country credit 
risk from the International Cost of Capital Report 
2010, Ibbotson Associates, Inc.

“At this very moment we are finalizing the 
construction of a share index that covers the period 

1940 to 2010.“
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to explain the case of Pakistan and in fact for all 
emerging economies, The country has a very large 
undocumented sector, very limited tax base and its 
policies - for the most part - lately are not set inde-
pendent of international political pressures.

14.  In the case of Japan, true premium should be higher, 
but risk premium computed by stock return - JGB 
yield is small. Also this number can change due to 
the real impact of the current Tsunami and Nuclear 
problems. 

15.  The U.S. is higher than Germany and before the 
earthquake, Japan, but still quite low. The biggest 
risk is inflation which I normally account for sepa-
rately – not as part of the country risk premium. In 
the long run, it is at least 1-3% as a component of 
the discount rate. Brueggeman and Fisher, Real 
Estate Finance, has some discussion of principals 
but no estimates of country risk premium.

16.  I anticipate China stock market to increase by 
around 10% within 2011 while its one-year deposit 
interest rate stands at 3.5%. It results in a 6.5% of 
MRP for China. I also project the US stock market 
to increase by around 5% while the risk free rate of 
US remains close to zero within 2011. 

17.  Calculating a MRP for Iran is not straightforward 
because of unforecastable economic situation. The 
best thing I can do is narrowing the range of possible 
rates. The reason for considering 18% as MRP for 
Iran is that the annual interest rate of bank invest-
ments and participation bonds are approximately 
14% to 16% (average 15%) announced by the central 
bank these years. Besides, historical return earned by 
the market, proxied by the Tehran Stock Exchange 
(TSE) Index, comes more than 30%. Using a CAPM, 
these two rates with a market beta of one come to 
15% (at least) as MRP. Unlike the other countries 
that are regaining from the economical crises, here it 
seems that it takes more time for Iran to revive from 
recession; that is a personal judgment and should 
push the premium down. Furthermore, Iranian gov-
ernment is now fulfilling and experiencing a new 
economical plan which involves cutting subsides 
and paying peoples directly any savings thereof. This 
might push the premium up as people expecting more 
inflation. In my opinion, this MRP goes above 15%. 
That is why I choose 18%.  

18.  For international markets from a US perspective 
we calculate the Cost of Capital per Country Credit 

3.  Stock market in Egypt has been closed for almost 
a month now, but just before that my planned MRP 
based on estimations for Egypt was 3.5%. I’ll 
probably not lower it too much after the revolution 
since I expect a lot of domestic investment and 
rebuilding efforts.

4.  In Japan, a big seismic hazard is received, and the 
real estate dealings market is being confused in Japan 
now. Therefore, I cannot appropriately answer your 
question now.

5.  Professor, UK. I think you’re potentially asking the 
wrong question in that I think we should measure 
(E(rm) directly rather than the MRP.  That seems par-
ticularly important in the context of current markets.

6.  Professor, Finland. Predicting the market premium 
by using the survey method for asking the personally 
subjective opinion on the future market outlooks is 
not the scientific way.

7.  I am working with/using a Long-term risk-free rate 
of 3%, and a premium of 9%. But note that this is to 
illustrate cases in teaching and/or Exam assignments! 
In Sweden the inflation is around 2%. The central 
banks target is 2%.

8.  I use CAPM Model. The Iranian stock Market has 
showed 46% gain in 2010 and it seems continuing 
for 2011.

9.  For the Euro zone, I use a country risk premium and 
the german bund rate as a risk free rate in euros.

10.  Indonesia. We export mainly to US, Europe, and 
Japan. The crisis on US affect our export, mean-
while our commodities hardly survive the compe-
tition with China commodities. But we still have 
prospect. We are optimist that our economic growth 
will increase from 5.7% in 2010 to more than 6.5% 
at the end of 2011.

11.  The Malaysian government securities yield is 
2,77% whereas historical market FBMKLIC return 
(market index) is 4,24% from Jan 1980 to the end 
of 2009.

12.  I dont believe  in  fixed ERP  its a random variable 
and partially predictable. You can use 10% for my 
country Cda and US 8%.

13.  Pakistan is an emerging market, Its interest rate 
statistics hardly show any correlation with develop-
ing world especially western Europe and United 
States, Despite higher interest rates, it has witnessed 
inflation in double digits and depreciation in its cur-
rency, Therefore, most monetary economics fails 
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Rating model based upon the International Cost of 
Capital Report issued by Morninstar.

19.  We use the policy potential index from this report 
to adjust project valuations for country risk. We 
find this is more useful and more comprehensive 
for the mines operated by our companies than a 
credit rating.

20.  Please note that while my WACC’s in general are 
high (11-13%) my growth rates are a bit higher also, 
anywhere from ½ to ¾ the overall long-run growth 
rate for the Chinese economy of 7-8%.

21.  The equity risk premium we use here is 5.0%, his-
torically we have used Ibbotson as a source for ERP 
minus the Ibbotson and Chen study adjustment, 
more recently we have joined KPMG ELLP and a 
5.0% ERP is the generally applied level for Equity 
Risk Premium. We do not calculate a specific MRP 
for Russia based on historical returns on the equity 
market as Gazprom and the oil majors dominate 
the index so the applicability of any number is only 
really applicable to the natural resources sector 
rather than the broader market. The risk free rate in 
rouble terms is also a problem as there are no reli-
able long-term rouble bonds traded so we tend to us 
Russian Government USD denominated bonds as a 
basis for the risk free rate and then add a currency 
risk premium based on the fisher formula, not a 
perfect solution but it seems to work. We also use 
Ibbotson for size premium determination.

22.  I use 4% for all countries based on the Credit Suisse 
Global Investment Returns Sourcebook that provide 
data for 17 countries beginning in 1900 

23.  Implied equity risk premium from major stock 
market indexes

24.  Please note that if we calculate the real MRP in 
Italy for the last ten years, the measure is negative. 
The value is reasonably considered as right only in 
force of an accepted practice by the main consulting 
and auditing firms active in Italy. There is no more 
rational explanation in doing it!

25.  This is based on my VC investors’ general require-
ment. Nowadays, US is no longer safer than some 
Asian emerging markets. Someday, it may even 
reverse. 

26.  Financial analyst for belgian institutions. In general 
I am using a standard WACC of 7,5% to 8%, which 
is in fact including an average risk premium of 3% 

to 4,5%. I am using these figures in good and in 
bad times, in order to get a standard approach. It is 
obvious that in bad times, risk premiums are high 
and thus valuations low and in good times low risk 
premium result in high valuations. I want to go 
through this phenomenon by using one standard 
WACC and risk premium.

27.  I would say that I think equities are going to outper-
form bonds by 3% for both US and the Netherlands.

28.  Risk premium for US is measured (for me) in £ i.e. 
is adjusted for expected depreciation in $  

29.  I tend to like the Dimson Marsh research.  Their 
Triumph of the Optimists is quite a good read as are 
some of their articles.  I tend to agree that Ibbotson 
tends to overestimate the MRP.

30.  We base our total premium at 12%, counting an 
estimation of 6% inflation for 2011, according to a 
survey done on our main market, which is environ-
mental services.

31.  Comparison of the interest rate that the market 
establishes for a standard security in the country to 
the comparable security in the benchmark country. 

32.  We use a regression on US Dollar denominated 
sovereign bonds and our in-house risk rating to 
determine African countries’ MRP. 

33.  This figure is adjusted regularly based on cur-
rent market levels and recent market performance.  
The Margin Lending borrowing rate also helps 
determine the MRP. Our current variable Margin 
Lending Rate is 9.75%. 
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Report on the CAS COTOR Risk Premium Project Update
By Martin Eling and Hato Schmeiser

BACKGROUND AND DEVELOPMENT OF 
THE RISK PREMIUM PROJECT
The RPP was initiated in 1999 with a call for research 
by COTOR. During that time the appropriate procedure 
to account for risk in discounted loss reserves has been 
subject of much research and discussion in the actu-
arial profession. COTOR’s intention was to develop a 
document integrating the various approaches presented 
in literature in order to provide guidance, e.g., for 
actuaries and regulators. Furthermore, COTOR wanted 
to advance the state of the art in risk assessment by 
identifying and working on open empirical research 
questions on the discounting of loss reserves.

A first document summarizing the state of research on 
risk adjustments for discounting liabilities in property-
liability insurance was published in 2000 (see Cummins 
et al., 2000; the RPP I report). This report widened 
the original focus on risk adjustments for discounting 
liabilities to other advances in risk assessment and 
capital allocation techniques. Based upon the presented 
findings, two empirical research papers were sponsored 
by COTOR: Cummins and Phillips (2005) analyze the 
costs of equity capital for insurers by line of insur-
ance and Cummins, Lin, and Phillips (2009) regress 
insurance price variables on capital allocations by line, 
measures of insurer insolvency risk, and other risk and 
control variables.

The results of these two empirical studies and other 
recent articles (see, e.g., Cummins, Derrig, and Phillips, 
2007) made it clear that literature on risk assessment 
for property-casualty insurance is evolving rapidly. In 
fact, the modeling and management of risk has seen 
significant new developments over the last ten years, 
with a substantial number of academic research papers 
published on topics such as risk mitigation, risk and 
solvency measurement, capital allocation, risk man-
agement tools, or valuation techniques. Noteworthy is 
as well the development of behavioral insurance, new 
valuation techniques (e.g., market consistent embed-
ded value), new regulatory models (e.g., Solvency II, 
Swiss Solvency Test), and analysis of emerging risks, 
especially in the field of operational risks. Furthermore, 
enterprise risk management, an integrated and holistic 

THE RISK PREMIUM PROJECT (RPP) REPRE-
SENTS AN EXTENSIVE ANALYSIS OF THE THE-
ORY AND EMPIRICS OF RISK ASSESSMENT IN 
PROPERTY-CASUALTY INSURANCE. The project 
was initiated by the Committee on Theory of Risk 
(COTOR) of the Casualty Actuarial Society (CAS) and 
began in 2000 with RPP I, a review of the actuarial 
and finance research done to that date. Given the vast 
development of research both in finance and actu-

arial science, the aim 
of RPP II was to extend 
the findings from RPP 
I with research done 
in the last decade. 
Furthermore, challeng-
es for future research 
shall be identified. The 
research on RPP II was 
undertaken from June 
to November 2010 and 
CAS members were 
involved in the process 
via an online question-
naire. The following 
article provides some 
background on the Risk 
Premium Project and 
highlights some key 
results. We also list 

some references to further information, especially a 
database available at http://www.casact.org/rpp2/.

The findings from this research are also of interest for 
members of the Society of Actuaries and the Canadian 
Institute of Actuaries. A number of new research topics 
are addressed that are of relevance both in the life and 
the non-life sector. Among these topics are operational 
risk, new emerging risks, insurance pricing, new risk 
measures, capital allocation, risk control and alternative 
risk transfer, among others. This article also represents 
an update article of an older article published in this 
newsletter (see Cummins, Derrig, and Phillips, 2007).

Martin Eling, is professor for 
insurance management and 
director of the Institute of 
Insurance Economics at the 
University of St. Gallen. 

Hato Schmeiser, holds the chair 
for Risk Management and Insur-
ance and is managing director of 
the Institute of Insurance Econom-
ics at the University of St. Gallen. 
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implications from the crisis are discussed. Throughout 
RPP II five conclusions from RPP I are revised and five 
new conclusions are added. Furthermore, five areas for 
future research are identified.

REVISION OF KEY CONCLUSIONS FROM 
RPP I
1.  Financial vs. actuarial approaches: There is an ongo-

ing consolidation between financial and actuarial 
literature with regard to pricing of insurance con-
tracts. Both fields acknowledge the role of systematic 
and non-systematic risk in the pricing of insurance 
contracts.

2.  Fair value of the insurance premium: Theoretical 
models and empirical tests have confirmed that given 
the real-world market imperfections, the price of 
insurance should be a function of the (1) expected 
cash flow with adjustments for systematic risk, (2) 
production costs (i.e. expenses), (3) default risk, 
and (4) frictional capital costs. By-line adjustments 
should be integrated depending on the cash flow pat-
tern of the liabilities.

3.  General finance: The single beta CAPM cannot ade-
quately price financial contracts. Asset pricing mod-
els were systematically expanded to account for new 
aspects (e.g., liquidity risk or behavioral aspects). 
Empirical validation is ongoing. All these aspects are 
of high relevance for the insurance industry, but have 
not yet been investigated in an insurance context.

4.  Capital allocation: Capital allocation is still contro-
versial in the literature. More than 20 new approach-
es have been proposed in the recent literature and 
critically reviewed in light of economic and mathe-
matical principles. Some authors consider the Myers 
and Read (2001) model as a benchmark, while oth-
ers believe that it is inaccurate. Capital allocation 
remains a topic of active discussion in academia and 
practice.

5.  Risk transfer: Numerous papers have theoretically 
and empirically confirmed the assertion that default 
risk is recognized in pricing risk transfer to the poli-
cyholder.

view on risk and risk management, has become an 
accepted and widespread concept in the profession.

AIMS OF THE RPP UPDATE
All these developments motivated COTOR in 2010 
to renew its call for research. The goals of the Risk 
Premium Project Update (RPP II) is thus to revise the 
findings of the first Risk Premium Project. Specifically, 
three goals were defined by COTOR:

An update of the bibliography from Phase I of RPP I 
with additional papers and research done since 2000, 
incorporating literature from reinsurance, risk manage-
ment, and catastrophe sources.

A revision of the key conclusions included in Phase II 
of RPP I in light of additional literature and results of 
the two empirical studies funded by COTOR (Cummins 
and Phillips, 2005; Cummins, Lin, and Phillips, 2009).
The recommendation of additional empirical studies to 
enhance the understanding of the current theories and to 
quantify particular aspects, update, and provide alterna-
tives to recent models.

For RPP II it was important to recognize that the litera-
ture has seen an impressive increase in the number of 
topics, papers, and journals. In addition, strategies for 
literature search as well as means of communication 
among researchers have completely changed over the 
last decade. The search and evaluation strategy used 
for RPP II incorporates these changes. For example, 
an online questionnaire to collect feedback on recent 
developments from interested colleagues in academia 
and practice was included.

KEY RESULTS
The RPP II literature review covers 961 references. The 
opinions of 51 colleagues from academia and practice 
were incorporated into the review. As a brief summary 
of the main results, we find that actuarial and financial 
views of how to price risk are still converging, but 
additional factors have incorporated into the discussion 
such as new risk measures, new valuation techniques, 
behavioral aspects, or emerging risks. In the aftermath 
of the financial crisis, systemic risk, liquidity risks, and 

C H A I R S P E R S O N ’ S  C O R N E RR I S K  Q U A N T I F I C AT I O N
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EXTENSION OF KEY CONCLUSIONS 
FROM RPP I
6.  Use of market consistent valuation techniques: 

Practitioners are increasingly using market consistent 
valuation techniques, for example in the context of 
regulation (Solvency II, Swiss Solvency Test) and 
public disclosure (IFRS, MCEV). The new valuation 
techniques reflect the theoretical conclusions on the 
price of insurance (see, e.g., conclusion 2).

7.  Increasing importance of enterprise risk management 
involving classical techniques as well as new product 
categories: Market consistent valuation reveals the 
volatility of the insurer’s business model and calls 
for holistic risk management. In this context we see 
an increasing role of both classical risk management 
techniques (e.g., risk mitigation) as well as new 
means (e.g., reinsurance and alternative risk trans-
fer) to manage risk in a world of market-consistent 
values.

8.  New risk measures and new risk categories: The last 
decade has seen the success story of quantile-based 
risk measures (value at risk, expected shortfall) and 
generalizations of these (spectral, distortion). New 
risk categories (operational risk, systemic risk) have 
been introduced in academic literature and their limi-
tations are discussed.

9.  Emergence of behavioral insurance: First steps have 
been taken towards behavioral insurance, a new 
area of literature that may bridge the gap between 
theoretical models and real world outcomes. Many 
researchers have discussed default risk and comple-
ment findings of theoretical models.

10.  Reinsurance and alternative risk transfer: The 
convergence of (re-) insurance and capital markets 
through alternative risk transfer (ART) has been 
one of the most important economic develop-
ments of the past decade. The market for ART is, 
however, still below the expected capacity and has  
suffered several setbacks. Recent literature has 
analyzed the reasons for market failures (e.g., diver-
sification trap) and alternative product innovations 
(e.g. hybrid cat bonds) to increase volume of the 
ART market.

FIVE AREAS FOR FUTURE RESEARCH
1.  Pricing and cost of capital: Classical CAPM is insuf-

ficient to estimate costs of capital; Fama/French, and 
Rubinstein-Leland are better models for this purpose. 
However, more research has been done on financial 
economics in recent years, with unclear implications 
for pricing of insurance. Are there other factors that 
we need to take into consideration, such as liquidity 
risk, credit risk, operational risk, or behavioral as-
pects such as time varying risk aversion? A system-
atic analysis of asset pricing theories in an insurance 
context could thus constitute a major empirical re-
search agenda.

2.  Capital Allocation: Dozens of capital allocation 
approaches are discussed in literature and adding 
another one will be of very limited value. It might be 
more helpful to empirically validate the usefulness of 
different capital allocation approaches. Some authors 
see the Myers and Read (2001) approach as a best 
practice; others think that this model is inaccurate. 
Which model is the best one?

3.  ERM, modeling of risk, and dependencies: Several 
empirical questions surrounding ERM need to be 
answered. First, the value added by ERM is an 
empirical but still unanswered question. Second, 
there are many models for the depiction of depen-
dencies, but no empirical evidence for their validity. 
Third, the robustness of risk measures should be 
tackled empirically. Finally, the consistency in risk 
management must be addressed. 

4.  Financial crisis and systemic risk: The recent finan-
cial crisis has raised important questions. Do regula-
tions accelerate a crisis? What is the role of insurers 
in the highly connected financial services industry? 
Is an insurance run possible or not?

5.  Analysis of new insurance markets and products: 
In theory the market for ART products should have 
a huge potential, but in reality the market is rather 
small. How can we eliminate the market failure 
in ART? What is the capacity of the ART mar-
ket? Finally, emerging insurance markets are future 
growth markets, but we still do not know enough 
about insurance business in these markets.
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A searchable website with all review results is provided 
at www.casact.org/rpp2. The webpage is structured 
along four categories (About RPP II; Questionnaire; 
RPP II Results; RPP II Database) and contains most 
of the results presented in this document. The central 
element is the searchable RPP II database with 961 
references and all future research topics that might 
encourage future research on risk assessment for 
property-casualty insurers. The selection of thematic 
categories and literature is subjective, but by incor-
porating the opinions of interested colleagues from 
academia and practice, we hope to make the survey as 
objective as possible. 

For further details we also refer to the RPP II report, 
a 58 page pdf-document with detailed analysis of the 
conclusions and future research areas outlined above 
(also available at www.casact.org/rpp2). We hope that 
the results encourage future research on the theory 
and empirics of property-casualty insurance. We also 
hope that it will serve as an interesting reference for 
members of the Society of Actuaries and the Canadian 
Institute of Actuaries, e.g., with respect to new topics 
such as operational risk, new emerging risks, or alterna-
tive risk transfer.    
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a reduced lifetime standard of living. On the other hand, 
financially risk-tolerant investors accept more risk in 
their portfolios in exchange for the potential—never a 
guarantee—of a higher standard of living in retirement. 
But the impact of longevity risk aversion on retirement 
spending behavior has not received as much attention, 
and most practitioners are unfamiliar with the concept.

Although neither our framework nor our mathematical 
solution is original—they can be traced back almost 80 
years—we believe that the insights from a normative 
life-cycle model (LCM) are worth emphasizing in the 
current environment, which has grown jaded by eco-
nomic models and their prescriptions. Our pedagogical 
objective was to contrast the optimal (i.e., utility-
maximizing) retirement spending policy with popular 
recommendations offered by the investment media and 
financial planners.

The main results of our investigation are as follows: 
Counseling retirees to set initial spending from invest-
able wealth at a constant inflation-adjusted rate (e.g., 
the widely popular 4 percent rule) is consistent with 
life-cycle consumption smoothing only under a very 
limited set of implausible preference parameters—that 
is, there is no universally optimal or safe retirement 
spending rate. Rather, the optimal forward-looking 
behavior in the face of personal longevity risk is to con-
sume in proportion to survival probabilities—adjusted 
upward for pension income and downward for longev-
ity risk aversion—as opposed to blindly withdrawing 
constant income for life.

HISTORY OF THE PROBLEM
The first problem I propose to tackle is this: How much 
of its income should a nation save?

With those words, the 24-year-old Cambridge University 
economist Frank R. Ramsey began a celebrated paper 
published two years before his tragic death, in 1930. 
The so-called Ramsey (1928) model and the resultant 
Keynes–Ramsey rule, implicitly adopted by thousands 
of economists in the last 80 years (including Fisher 
1930; Modigliani and Brumberg 1954; Phelps 1962; 
Yaari 1965; Modigliani 1986), form the foundation for 
life-cycle utility optimization. They are also the work-
horse supporting the original asset allocation models of 
Samuelson (1969) and Merton (1971).

RECOMMENDATIONS FROM THE MEDIA AND 
FINANCIAL PLANNERS REGARDING RETIRE-
MENT SPENDING RATES DEVIATE CONSIDER-
ABLY FROM UTILITY MAXIMIZATION MODELS. 
This study argues that wealth managers should advocate 
dynamic spending in proportion to survival prob-
abilities, adjusted up for exogenous pension income and 
down for longevity risk aversion.

In our study, we 
attempted to derive, 
analyze, and explain 
the optimal retirement 
spending policy for a 
utility-maximizing con-
sumer facing (only) a 
stochastic lifetime. We 
deliberately ignored 
financial market risk 
by assuming that all 
investment assets are 
allocated to risk-free 
bonds (e.g., Treasury 
In f l a t ion -Pro tec ted 
Securities [TIPS]). We 
made this simplifying 
assumption in order to 
focus attention on the 

role of longevity risk aversion in determining optimal 
consumption and spending rates during a retirement 
period of stochastic length.

By longevity risk aversion, we mean that different 
people might have different attitudes toward the “fear” 
of living longer than anticipated and possibly depleting 
their financial resources. Some might respond to this 
economic risk by spending less early on in retirement, 
whereas others might be willing to take their chances 
and enjoy a higher standard of living while they are still 
able to do so. 

Indeed, the impact of financial risk aversion on optimal 
asset allocation has been the subject of many studies 
and is intuitively well understood by practitioners. On 
the one hand, investors who are particularly concerned 
about losing money (i.e., risk averse) invest conserva-
tively and thus sacrifice the potential upside, leading to 
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LITERATURE ON RETIREMENT 
SPENDING RATES
Within the community of retirement income planners, 
a frequently cited study is Bengen (1994), in which he 
used historical equity and bond returns to search for the 
highest allowable spending rate that would sustain a 
portfolio for 30 years of retirement. Using a 50/50 equi-
ty/bond mix, Bengen settled on a rate between 4 percent 
and 5 percent. In fact, this rate has become known as 
the Bengen or 4 percent rule among retirement income 
planners and has caught on like wildfire. The rule sim-
ply states that for every $100 in the retirement nest egg, 
the retiree should withdraw $4 adjusted for inflation 
each year—forever, or at least until the portfolio runs 
dry or the retiree dies, whichever occurs first.

Indeed, it is hard to overestimate the influence of the 
Bengen (1994) study and its embedded “rule” on the 
community of retirement income planners. Other stud-
ies in the same vein include Cooley, Hubbard, and Walz 
(1998), often referred to as the Trinity Study. In the last 
two decades, these and related studies have been quoted 
and cited thousands of times in the popular media (e.g., 
Money Magazine, USA Today, Wall Street Journal).2

The 4 percent spending rule now seems destined for the 
same immortality enjoyed by other (unduly simplistic) 
rules of thumb, such as “buy term and invest the differ-
ence” and dollar cost averaging. And although numer-

In its basic form, the normative LCM assumes a ratio-
nal individual who seeks to maximize the discounted 
additive utility of consumption over his entire life. 
Despite its macroeconomic origins, the Ramsey model 
has been extended by scores of economists. Indeed, ask 
a first-year graduate student in economics how a con-
sumer should be “spending” over some deterministic 
time horizon T, and she will most likely respond with 
a Ramsey-type model that spreads human capital and 
financial capital (i.e., total wealth) between time zero 
and the terminal time, T.

The pertinent finance literature has advanced since 
1928 and now falls under the rubric “portfolio choice” 
or extensions of the Merton model. We counted more 
than 50 scholarly articles on this topic published in 
the top finance journals over the last decade alone. 
Unfortunately, much of the financial planning com-
munity has ignored these dynamic optimization models, 
and nowhere is this ignorance more evident than in the 
world of “retirement income planning.”

Lamentably, the financial crisis, coupled with gen-
eral skepticism toward financial models, has moved the 
practice of personal finance even further away from a 
dynamic optimization approach. In fact, many popular 
and widely advocated strategies are at odds with the 
prescriptions of financial economics. For examples of 
how economists “think about” problems in personal 
finance and how their thinking differs from convention-
al wisdom, see Bodie and Treussard (2007); Kotlikoff 
(2008); Bodie, McLeavey, and Siegel (2008); Ayres and 
Nalebuff (2010).

Along the same lines, we attempted to narrow the gap 
between the advice of the financial planning com-
munity regarding retirement spending policies and the 
“advice” of financial economists who use a rational 
utility-maximizing model of consumer choice.1

In particular, we focused exclusively on the impact of 
life span uncertainty—longevity risk—on the optimal 
consumption and retirement spending policy. To isolate 
the impact of longevity risk on optimal portfolio retire-
ment withdrawal rates, we placed our deliberations on 
Planet Vulcan, where investment returns are known 
and unvarying, the inhabitants are rational and utility-
maximizing consumption smoothers, and only life 
spans are random. CONTINUED ON PAGE 26
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rate (PWR) is the annualized ratio of the amount with-
drawn from the portfolio divided by the value of the 
portfolio at that time. (3) The initial PWR is the annu-
alized ratio of the initial amount withdrawn from the 
portfolio divided by the initial value of the portfolio.

Recall that we are spending our retirement on Vulcan, 
where only life spans are random. Our approach forced 
us to specify a real (inflation-adjusted) investment 
return. So, after carefully examining the real yield from 
U.S. TIPS over the last 10 years on the basis of data 
from the Fed, we found that the maximum real yield 
over the period was 3.15 percent for the 10-year bond 
and 4.24 percent for the 5-year bond. The average yield 
was 1.95 percent and 1.50 percent, respectively. 

The longer-maturity TIPS exhibited higher yields but 
obviously entailed some duration risk. After much 
deliberation, we decided to assume a real interest rate 
of 2.5 percent for most of the numerical examples, even 
though current (fall 2010) TIPS rates were substantially 
lower. Readers can code the formulas in Appendix A—
with their favorite riskfree-return estimate—to obtain 
their own rational spending rates. Our values are 
consistent with the view expressed by Arnott (2004) 
regarding the future of the lower ERP.

As for longevity risk, we exercised a great deal of mod-
eling caution because it was the impetus for our investi-
gation. We assumed that the retiree’s remaining lifetime 
obeys a (unisex) biological law of mortality under 
which the hazard rate increases exponentially over 
time. This notion is known as the Gompertz assumption 
in the actuarial literature, and we calibrated this model 
to common pension annuitant mortality tables. (See 
Appendix A for a full description of the mortality law.)

In most of our numerical examples, therefore, we 
assumed an 86.6 percent probability that a 65-year-old 
will survive to the age of 75, a 57.3 percent probability 
of surviving to 85, a 36.9 percent probability of reach-
ing 90, a 17.6 percent probability of reaching 95, and 
a 5 percent probability of attaining 100. Again, note 
that we do not plan for a life expectancy or an ad hoc 
30-year retirement. Rather, we account for the entire 
term structure of mortality.

ous authors have extended, refined, and recalibrated 
these spending rules, the spirit of each rule remains 
intact across all versions.3

We are not the first to point out that this “start by 
spending x percent” strategy has no basis in eco-
nomic theory. For example, Sharpe, Scott, and Watson 
(2007) and Scott, Sharpe, and Watson (2008) raised 
similar concerns and alluded to the need for a life-cycle 
approach, but they never actually solved or calibrated 
such a model. The goal of our study was to illustrate 
the solution to the lifecycle problem and demonstrate 
how longevity risk aversion—in contrast to financial 
risk aversion, so familiar to financial analysts—affects 
retirement spending rates.

Other researchers have recently teased out the implica-
tions of mortality and longevity risk for portfolio choice 
and asset allocation (see, e.g., Bodie, Detemple, Ortuba, 
and Walter 2004; Dybvig and Liu 2005; Babbel and 
Merrill 2006; Chen, Ibbotson, Milevsky, and Zhu 2006; 
Jiménez-Martín and Sánchez Martín 2007; Lachance, 
forthcoming 2011). Likewise, Milevsky and Robinson 
(2005) argued that retirement spending rates should be 
reduced because the embedded equity risk premium 
(ERP) assumption is too high. In our study, however, 
we used an economic LCM approach to retirement 
income planning.

NUMERICAL EXAMPLES AND CASES
The model we used is fully described in Appendix A so 
that readers can select their own parameter values and 
derive optimal values under any assumptions. Using 
our equations, readers can obtain values quite easily 
in Microsoft Excel. We selected one (plausible) set to 
illustrate the main qualitative insights, which are rather 
insensitive to assumed parameter values.

Note that we use the following terms (somewhat 
loosely and interchangeably, depending on the context) 
throughout the article: (1) The consumption rate is an 
annualized dollar amount that includes withdrawals 
from the portfolio, as well as pension income, and is 
scaled to reflect an initial portfolio value of $100. The 
retirement consumption rate is synonymous with the 
retirement spending rate. (2) The portfolio withdrawal 
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Let us now take a look at some results. We will assume 
a 65-year-old with a (standardized) $100 nest egg. 
Initially, we allow for no pension annuity income, 
and therefore, all consumption must be sourced to the 
investment portfolio that is earning a deterministic 
interest rate. On Planet Vulcan, financial wealth must 
be depleted at the very end of the life cycle (say, age 
120) and bequest motives are nonexistent. So, accord-
ing to Equation A5 (see Appendix A), the optimal con-
sumption rate at retirement age 65 is $4.605 when the 
risk-aversion parameter is set to (  = 4) (see Table 1), 
and the optimal consumption rate is $4.121 when the 
risk-aversion parameter is set to (  = 8).

Note that these rates—perhaps surprisingly—are within 
the range of numbers quoted by the popular press for 
optimal portfolio withdrawal (spending) rates. Thus, at 
first glance, these numbers seem to suggest that simple 
4 percent rules of thumb are consistent with an LCM. 
Unfortunately, the euphoria is short-lived. The numbers 
(may) coincide only in the first year of withdrawals 
(at age 65) and for a limited range of risk-aversion 
coefficients (most importantly, no pension income). As 
retirees age, they rationally consume less each year—in 
proportion to their survival probability adjusted for risk 
aversion. For example, at our baseline intermediate 
level of risk aversion (  = 4), the optimal consumption 
rate drops from $4.605 at age 65 to $4.544 at age 70, 

Our main objective was to focus attention on the impact 
of risk aversion on the optimal PWR and especially the 
initial PWR. Therefore, we display results for a range 
of values—for example, for a retiree with a very low  
(  = 1) and a relatively high (  = 8) coefficient of rela-
tive risk aversion (CRRA).

To aid a clear understanding of mortality risk aver-
sion, we offer the following analogy to classical asset 
allocation models. An investor with a CRRA value of  
(  = 4) would invest 40 percent of her assets in an 
equity portfolio and 60 percent in a bond portfolio, 
assuming an equity risk premium of 5 percent and vola-
tility of 18 percent. This analogy comes from the famed 
Merton ratio. Our model does not have a risky asset and 
does not require an ERP, but the idea is that the CRRA 
can be mapped onto more easily understood risk atti-
tudes. Along the same lines, the very low risk-aversion 
value of (  = 1), which is often labeled the Bernoulli 
utility specification, would lead to an equity allocation 
of 150 percent, and a high risk-aversion value of ( = 8) 
implies an equity allocation of 20 percent (all rounded 
to the nearest 5 percent).

Finally, to complete the parameter values required for 
our model, we assume that the subjective discount rate 

, which is a proxy for personal impatience, is equal 
to the risk-free rate (mostly 2.5 percent in our numerical 
examples). To those familiar with the basic LCM with-
out lifetime uncertainty, this assumption suggests that 
the optimal consumption rates would be constant over 
time in the absence of longevity risk considerations. 
Again, our motivation for all these assumptions is to 
tease out the impact of pure longevity risk aversion.

In the language of economics, when the subjective dis-
count rate (SDR) in an LCM is set equal to the constant 
and risk-free interest rate, a rational consumer will 
spend his total (human plus financial) capital evenly 
and in equal amounts over time. In other words, in a 
model with no horizon uncertainty, consumption rates 
and spending amounts are, in fact, constant, regardless 
of the consumer’s elasticity of intertemporal substitu-
tion (EIS).4

The question is, what happens when lifetimes are sto-
chastic?
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Table 1. Optimal Rate (pre-$100)  
under Medium Risk Aversion (γ=4)
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Including Pension Annuities. 
Let us now use the same model to examine what hap-
pens when the retiree has access to a defined benefit 
(DB) pension income annuity, which provides a guar-
anteed lifetime cash flow. In the United States, the 
maximum benefit from Social Security, which is the 
ultimate real pension annuity, is approximately $25,000 
per annuitant. Let us examine the behavior of a retiree 
with 100, 50, and 20 times this amount in her nest 
egg—that is, $2,500,000, $1,250,000, and $500,000 in 
investable retirement assets.

Alternatively, one can interpret Table 2 as display-
ing the optimal policy for four different retirees with 
varying degrees of longevity risk aversion, each with 
$1,000,000 in investable retirement assets. The first 
retiree has no pension (  = $0), the second has an 
annual pension of $10,000 (  = $1), the third has an 
annual pension of $20,000 (  = $2), and the fourth has 
a pension of $50,000 (  = $5).

Table 2 shows the net initial PWR (i.e., the optimal 
amount withdrawn from the investment portfolio) 
as a function of the risk-aversion values and pre-
existing pension income. Thus, for example, when the  
(  = 4) retiree (medium risk aversion) has $1,000,000 
in investable assets and is entitled to a real lifetime pen-
sion of $50,000—which, in our language, is a scaled 
nest egg of $100 and a pension ( = $5)—the optimal 
total consumption rate is $10.551 in the first year. Of 
that amount, $5.00 obviously comes from the pension 
and $5.551 is withdrawn from the portfolio. The net 
initial PWR is thus 5.551 percent.

In contrast, if the retiree has the same $1,000,000 in 
assets but is entitled to only $10,000 in lifetime pension 
income, the optimal total consumption rate is $5.873 
per $100 of assets at age 65, of which $1.00 comes from 
the pension and $4.873 is withdrawn from the portfolio. 
Hence, the initial PWR is 4.873 percent. All these num-
bers are derived directly from Equation A5.

The main point of our study can be summarized in 
one sentence: The optimal portfolio withdrawal rate 
depends on longevity risk aversion and the level of 
pre-existing pension income. The larger the amount of 
the pre-existing pension income, the greater the optimal 
consumption rate and the greater the PWR. 

and then to $4.442 at age 75, $3.591 at 90, and $2.177 
at 100, assuming the retiree is still alive. All these val-
ues are derived from Equation A5. 

Note how a lower real interest rate (e.g., 0.5 percent 
in Table 1) leads to a reduced optimal retirement con-
sumption/spending rate. Indeed, in the yield curve and 
TIPS environment of fall 2010, our model offered an 
important message for Baby Boomers: Your parents’ 
retirement plans might not be sustainable anymore.

The first insight in our model is that a fully rational plan 
is for retirees to spend less as they progress through 
retirement. Life-cycle optimizers (i.e., “consumption 
smoothers” on Vulcan) spend more at earlier ages and 
reduce spending as they age, even if their SDR is equal 
to the real interest rate in the economy. 

Intuitively, they deal with longevity risk by setting 
aside a financial reserve and by planning to reduce 
consumption (if that risk materializes) in proportion to 
their survival probability adjusted for risk aversion—all 
without any pension annuity income.

As Irving Fisher (1930) observed in The Theory  
of Interest, 

The shortness of life thus tends powerfully to 
increase the degree of impatience or rate of 
time preference beyond what it would other-
wise be. . . . Everyone at some time in his life 
doubtless changes his degree of impatience for 
income. . . . When he gets a little older . . . he 
expects to die and he thinks: instead of piling 
up for the remote future, why shouldn’t I enjoy 
myself during the few years that remain? (pp. 
85, 90)
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Table 2. Initial PWR at age 65 with Pension Income,  
as a Function of Risk Aversion
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ed investment return is less than the risk-free rate, the 
investor shuns the risky asset. Of course, this analogy is 
not quite correct because retirees cannot shun longevity 
risk, but the spirit is the same. The longevity probability 
they see is not the longevity probability they feel.

Again, an important take-away is the impact of pen-
sion annuities on retirement consumption. Although 
the point of our study was not to advocate for pen-
sion annuities or examine the market for longevity 
protection—already well achieved in a recent book by 
Sheshinski (2008), as well as the excellent collection of 
studies by Brown, Mitchell, Poterba, and Warshawsky 
(2001)—we present yet another way to use Equations 
A5 and A6.

Table 3 reports the optimal consumption rate at various 
ages, assuming that a fixed percentage of the retirement 
nest egg is used to purchase a pension annuity (“pen-
sionized”). The cost of each lifetime dollar of income 

The pension acts primarily as a buffer and allows the 
retiree to consume more from discretionary wealth. 
Even at high levels of longevity risk aversion, the 
risk of living a long life does not “worry” retirees too 
much because they have pension income to fall back 
on should that chance (i.e., a long life) materialize. We 
believe that this insight is absent from most of the popu-
lar media discussion (and practitioner implementation) 
of optimal spending rates. If a potential client has sub-
stantial income from a DB pension or Social Security, 
she can afford to withdraw more—percentagewise—
than her neighbor, who is relying entirely on his invest-
ment portfolio to finance his retirement income needs. 

Table 2 confirms a number of other important results. 
Note that the optimal PWR—for a range of risk-aver-
sion and pension income levels—is between 8 percent 
and 4 percent, but only when the inflation-adjusted 
interest rate is assumed to be a rather generous 2.5 
percent. Adding another 100 bps to the investment 
return assumption raises the initial PWR by 60–80 bps. 
Reducing interest assumptions, however, will have the 
opposite effect. Readers can input their own assump-
tions into Equation A5 to obtain suitable consumption/
spending rates. 

The impact of longevity risk aversion can be described 
in another way. If the remaining future lifetime has a 
modal value of (m = 89.335) and a dispersion (volatil-
ity) value of (b = 9.5), then a consumer averse to lon-
gevity risk behaves (consumes) as if the modal value 
were [m* = m + bln( )] but with the same dispersion 
parameter, b.

Longevity risk aversion manifests itself by (essentially) 
assuming that retirees will live longer than the biologi-
cal/medical estimate. Only extremely risk-tolerant retir-
ees (  = 1) behave as if their modal life spans were the 
true (biological) modal value. Note that this behavior is 
not risk neutrality, which would ignore longevity risk 
altogether. 

In the asset allocation literature, the closest analogy 
to these risk-adjusted mortality rates is the concept of 
risk-adjusted investment returns. A risk-averse investor 
observes a 10 percent expected portfolio return and 
adjusts it downward on the basis of the volatility of the 
return and her risk aversion. If the (subjectively) adjust-
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Table 3. Impact of Pensionization on Retirement Consumption Rates
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is displayed in Equation A2, which is the expression 
for the pension annuity factor. So, if 30 percent of $100
is pensionized, the corresponding value of F0 is $70 and 
the resulting pension annuity income is

We note that the pricing of pension (income) annuities 
by private sector insurance companies usually involves 
mortality rates that differ from population rates owing 
to anti-selection concerns. This factor could be easily 
incorporated by using different mortality parameters, 
but we will keep things simple to illustrate the impact of 
lifetime income on optimal total spending rates. 

Results are reported for a retirement age of 65 and 
planned consumption 15 years later (assuming the 
retiree is still alive), at age 80. We illustrate with a 
variety of scenarios in which 0 percent, 20 percent 40 
percent, 60 percent, or 100 percent of initial wealth is 
pensionized—that is, a nonreversible pension annuity 
(priced by Equation A2) is purchased on the basis of the 
going market rate.5

Table 3 shows total dollar consumption rates, including 
the corresponding pension annuity income. These rates 
are not (only) the PWRs that are reported in percent-
ages in Table 2. For example, if the retiree with medium 
risk aversion allocates $20 (from the $100 available) to 
purchase a pension annuity that pays $1.261 for life, 
optimal consumption will be $1.261 + $3.997 = $5.258 
at age 65. Note that the $3.997 withdrawn from the 
remaining portfolio of $80 is equivalent to an initial 
PWR of 4.996 percent.

In contrast, the retiree with a high degree of longevity 
risk aversion (  = 8) will receive the same $1.261 from 
the $20 that has been pensionized but will optimally 
spend only $3.535 from the portfolio (a withdrawal 
rate of 4.419 percent), for a total consumption rate of 
$4.801 at age 65.

If the entire nest egg is pensionized at 65, leading to 
$6.3303 of lifetime income, the consumption rate is 
constant for life—and independent of risk aversion—
because there is no financial capital from which to draw 
down any income. This example is yet another way 
to illustrate the benefit of converting financial wealth 
into a pension income flow. The $6.3303 of annual 
consumption is the largest of all the consumption plans. 
Thus, most financial economists are strong advocates of 
pensionizing (or at least annuitizing) a portion of one’s 
retirement nest egg.

Visualizing the Results. Figure 1 depicts the optimal 
consumption path from retirement to the maximum 
length of life as a function of the retiree’s level of lon-
gevity risk aversion (  in our model). This figure pro-
vides yet another perspective on the rational approach 
and attitude toward longevity risk management. It uses 
Equation A5 to trace the entire consumption path, from 
retirement at age 65 to age 100.
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1.  Using Equation A8, recalibrate the model from time 
zero but with the shocked level of wealth and com-
pute the new WDT. 

2.  Use Equation A7 to compute the new level of initial 
consumption, which will be different from the old 
consumption level because of the financial shock. 

3.  Continue retirement consumption from time s onward 
on the basis of Equation A5.

To understand how this approach would work in prac-
tice, let us begin with a (CRRA = 4) retiree who has 
$100 in investable assets and is entitled to $2 of lifetime 
pension income. With a real interest rate of r = 2.5 per-
cent, the optimal policy is to consume a total of $7.078 
at age 65 ($2 from the pension and $5.078 from the 
portfolio) and adjust withdrawals downward over time 
in proportion to the survival probability to the power of 
the risk-aversion coefficient. The WDT is at age 105.

Under this dynamic policy, the expectation is that at age 
70, the financial capital trajectory will be $86.668 and 
total consumption will be $6.984 if the retiree follows 
the optimal consumption path for the next five years.

Now let us assume that the retiree survives the next five 
years and experiences a financial shock that reduces the 
portfolio value from the expected $86.668 to $60 at age 
70, which is 31 percent less than planned. In this case, 
the optimal plan is to reduce consumption to $5.583, 
which is obtained by solving the problem from the 
beginning but with a starting age of 70. This result is a 
reduction of approximately 20 percent compared with 
the original plan.

Of course, this scenario is a bit of an apples-to-oranges 
comparison because (1) a shock is not allowed in our 
model and (2) the time zero consumption plan is based 
on a conditional probability of survival that could 
change on the basis of realized health status. The prob-
lem of stochastic versus hazard rates obviously takes us 
far beyond the simple agenda of our study.

In sum, a rational response to an x percent drop in one’s 
retirement portfolio is not to reduce consumption and 
spending by the same x percent. Consumption smooth-
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Note that the optimal consumption rate declines with 
age and in relation to the retiree’s attitude toward lon-
gevity risk as measured by the CRRA.

Figure 1 plots four cases that correspond to various 
levels of the CRRA. Note that the consumption rate 
eventually hits $5, which is the pension income flow. 
For example, the consumer with a CRRA of 2 (i.e., very 
low aversion to longevity risk) will start retirement by 
withdrawing 6.55 percent from his nest egg plus his 
pension income of $5. The withdrawals from the port-
folio will continue until the retiree rationally exhausts 
his wealth at age 95. From the wealth depletion time 
(WDT) onward, he consumes only his pension.6

Figure 2 shows the corresponding trajectory for financial 
capital. At all levels of longevity risk aversion, the curve 
begins at $100 and then declines. The rate of decline is 
higher and faster for lower levels of longevity risk aversion 
because the retiree is “unafraid” of living to an advanced 
age. She will deplete her wealth after 24.6 years (at age 
90), after which she will live on her pension ($5).

In contrast, the retiree with a longevity risk aversion 
of CRRA = 8 does not (plan to) deplete wealth until 
age 105 and draws down wealth at a much slower 
rate. When there is no pension annuity income at all, 
the WDT is exactly at the end of the terminal horizon, 
which is the last possible age on the mortality table. In 
other words, wealth is never completely exhausted. This 
result can also be seen from Equation A8, in which the 
only way to obtain zero (on the right-hand side) is for 
the survival probability to be zero, which can happen 
only when  equals the maximum length of life.

Reacting to Financial Shocks. Using our methodol-
ogy, one can examine the optimal reaction to financial 
shocks over the retirement horizon. Take someone who 
experiences a 30 percent loss in his investment portfolio 
and wants to rationally reduce spending to account for 
the depleted nest egg. The rule of thumb suggesting that 
retirees spend 4–5 percent says nothing about how to 
update the rule in response to a shock to wealth.

The rational reaction to a financial shock at time s, 
which results in a new (reduced) portfolio value, would 
be to follow these steps:

CONTINUED ON PAGE 32
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ing in the LCM is about amortizing unexpected losses 
and gains over the remaining lifetime horizon, adjusted 
for survival probabilities.

SUMMARY 
To a financial economist, the optimal retirement con-
sumption rate, asset allocation (investments), and prod-
uct allocation (insurance) are a complicated func-
tion of mortality expectations, economic forecasts, 
and the trade-off between the preference for retire-
ment sustainability and the desire to leave a financial  
legacy (bequest motive). Although it is not an easy 
problem to solve even under some very simplifying 
assumptions, the qualitative trade-off can be illustrated 
(see Figure 3).

Retirees can afford to spend more if they are willing to 
leave a smaller financial legacy and risk early depletion 
times. They should spend less if they desire a larger leg-
acy and greater sustainability. Optimization of invest-
ments and insurance products occurs on this retirement 
income frontier. Ergo, a simple rule that advises all 
retirees to spend x percent of their nest egg adjusted up 
or down in some ad hoc manner is akin to the broken 
clock that tells time correctly only twice a day. 

We are not the first authors—and will certainly not be 
the last—to criticize the “spend x percent” approach to 
retirement income planning. For example, as noted by 
Scott, Sharpe, and Watson (2008), 

The 4 percent rule and its variants finance a con-
stant, non-volatile spending plan using a risky, 
volatile investment strategy. Two of the rule’s inef-
ficiencies—the price paid for funding its unspent 
surpluses and the overpayments for its spending 
distribution—apply to all retirees, independent of 
their preferences. (p. 18)

Although we obviously concur, the focus of our study 
was to illustrate what exactly a life-cycle model says 
about optimal consumption rates. Our intention was to 
contrast ad hoc recommendations with “advice” that a 
financial economist might give to a utility-maximizing 
consumer and see whether the two approaches have 
any overlap and how much they differ. In particular, 
we shined a light on aversion to longevity risk—uncer-
tainty about the human life span—and examined how 
this aversion affects optimal spending rates.7

Computationally, we solved an analytic LCM that was 
calibrated to actuarial mortality rates (see Appendix A). 
Our model can easily be used by anyone with access to 
an Excel spreadsheet. Our main insights are as follows:
 
1.  The optimal initial PWR, which the “planning lit-

erature” says should be an exogenous percentage of 
(only) one’s retirement nest egg, critically depends on 
both the consumer’s risk aversion—where risk con-
cerns longevity and not just financial markets—and 
any preexisting pension annuity income. For exam-
ple, if the portfolio’s assumed annual real investment 
return is 2.5 percent, the optimal initial PWR can be 
as low as 3 percent for highly risk-averse retirees and 
as high as 7 percent for those who are less risk averse. 
The same approach applies to any pension annuity 
income. The greater the amount of pre-existing pen-
sion income, the larger the initial PWR, all else being 
equal. Of course, if one assumes a healthier retiree 
and/or lower inflation-adjusted returns, the optimal 
initial PWR is lower. 

2.  The optimal consumption rate ( *
tc )—which is the 

total amount of money consumed by the retiree in 
any given year, including all pension income—is a 
declining function of age. In other words, retirees 
(on Vulcan) should consume less at older ages. The 
consumption rate for discretionary wealth is propor-
tional to the survival probability  and is a func-
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Figure 3. Economic Tradeoffs at Retirement:
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tion of risk aversion, even when the subjective rate 
of time preferences is equal to the interest rate. 
The rational consumer—planning at age 65—is will-
ing to sacrifice some income at 100 in exchange the 
age of 100 the same preference weight as the age of 
80 can be explained within an LCM only if the SDR 

 is a time-dependent function that exactly offsets 
the declining survival probability. That people might 
have such preferences is highly unrealistic. 

3.  The interaction between (longevity) risk aversion and 
survival probability is quite important. In particular, 
risk aversion tends to increase the effective prob-
ability of survival. So, imagine two retirees with the 
same amount of initial retirement wealth and pension 
income (and the same SDR) but with different levels 
of risk aversion (γ). The retiree with greater risk aver-
sion behaves as if her modal value of life were high-
er. Specifically, she behaves as if it were increased 
by an amount proportional to ln(γ) and spends less 
in anticipation of a longer life. Observers will never 
know whether such retirees are averse to longevity 
risk or simply believe they are much healthier than 
the population. 

4.  The optimal trajectory of financial capital also 
declines with age. Moreover, for retirees with pre-
existing pension income, spending down wealth 
by some advanced age, and thereafter living exclu-
sively on pension income, is rational. The WDT 
can be at age 90—or even 80 if the pension income 
is sufficiently large. Greater (longevity) risk aver-
sion, which is associated with lower consumption, 
induces greater financial capital at all ages. Planning 
to deplete wealth by some advanced age is neither 
wrong nor irrational.8  

5.  The rational reaction to portfolio shocks (i.e., losses) 
is nonlinear and dependent on when the shock occurs 
and the amount of pre-existing pension income. One 
does not reduce portfolio withdrawals by the exact 
amount of a financial shock unless the risk aver-
sion is (γ = 1), known as the Bernoulli utility. For 
example, if the portfolio suffers an unexpected loss 
of 30 percent, the retiree might reduce consumption 
by only 30 percentage points. 

6.  Converting some of the initial nest egg into a stream 
of lifetime income increases consumption at all ages 
regardless of the cost of the pension annuity. Even 

when interest rates are low and the cost of $1 of 
lifetime income is (relatively) high, the net effect 
is that pensionization increases consumption. Note 
that we are careful to distinguish between real-world 
pension annuities—in which the buyer hands over a 
nonrefundable sum in exchange for a constant real 
stream—and tontine annuities, which are the founda-
tion of most economic models but are completely 
unavailable in the marketplace. 

7.  Although not pursued in the numerical examples, 
one result that follows from our analysis is counter-
intuitive and perhaps even controversial: Borrowing 
against pension income might be optimal at advanced 
ages. For retirees with relatively large pre-existing 
(DB) pension income, preconsuming and enjoying 
their pensions while they are still able to do so might 
make sense. The lower the longevity risk aversion, 
the more optimal this path becomes.

The “cost” of our deriving a simple analytic expres-
sion—described by Equations A1–A8—is that we had 
to assume a deterministic investment return. Although 
we assumed a safe and conservative return for most of 
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our numerical examples, we essentially ignored the last 
50 years of portfolio modeling theory. Recall, however, 
that our goal was to shed light on the oft-quoted rules of 
thumb and how they relate to longevity risk, as opposed 
to developing a full-scale dynamic optimization model.

CONCLUSION: BACK TO PLANET 
EARTH 
How might a full stochastic model—with possible 
shocks to health and their related expenses— change 
optimal consumption policies? Assuming agreement on 
a reasonable model and parameters for long-term port-
folio returns, the risk-averse retiree would be exposed 
to the risk of a negative (early) shock and would plan 
for this risk by consuming less. With a full menu of 
investment assets and products available, however, the 
retiree would be free to optimize around pension annui-
ties and other downside-protected products, in addi-
tion to long-term-care insurance and other retirement 
products. In other words, even the formulation of the 
problem itself becomes much more complex. 

More importantly, the optimal allocation  depends on 
the retiree’s preference for personal consumption ver-
sus bequest, as illustrated in Figure 3. A product and 
asset allocation suitable for a consumer with no bequest 
or legacy motives— those in the lower left-hand corner 
of the figure—is quite different from the optimal port-
folio for someone with strong legacy preferences. In 
our study, we assumed that the retiree’s objective is to 
maximize utility of lifetime consumption without any 
consideration for the value of bequest or legacy. 

Although some have argued that a behavioral explana-
tion is needed to rationalize the desire for a constant 
consumption pattern in retirement, we note that very 
high longevity risk aversion leads to relatively constant 
spending rates and might “explain” these fixed rules. 
In other words, we do not need a behavioral model to 
justify constant 4 percent spending. Extreme risk aver-
sion does that for us.

That said, we believe that another important take-away 
from our study is that offering the following advice to 
retirees is internally inconsistent: “You might live a 
very long time, so you better make sure to own a lot of 

stocks and equity.” The first part of the sentence implies 
longevity risk aversion, while the second part is suitable 
only for risk-tolerant retirees. Risk is risk.

To make this sort of statement more precise, we are 
working on a follow-up study in which we derive the 
optimal portfolio withdrawal rate for both pension and 
tontine annuities in a robust capital market environ-
ment à la Richard (1975) and Merton (1971) but with 
a model that breaks the reciprocal link between the 
elasticity of intertemporal substitution and general risk 
aversion. Another fruitful line of research would be to 
explore the optimal time to retire in the context of a 
mortalityonly LCM, which would take us far beyond 
the current literature.9

One thing seems clear: Longevity risk aversion and 
pension annuities remain very important factors to con-
sider when giving advice regarding optimal portfolio 
withdrawal rates. That is the main message of our study, 
a message that does not change here on Planet Earth.
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in Chicago, seminar participants at Georgia State 
University, and participants at the QMF2010 confer-
ence in Sydney—for helpful comments. We also offer 
a special acknowledgment to our colleagues at York 
University—Pauline Shum, Tom Salisbury, Nabil 
Tahani, Chris Robinson, and David Promislow—
for helpful discussions during the many years of 
this research program. Finally, we thank Alexandra 
Macqueen and Faisal Habib at the QWeMA Group 
(Toronto) for assistance with editing and analytics.

APPENDIX A. LIFE-CYCLE MODEL IN 
RETIREMENT 
The value function in the LCM during retirement 
years when labor income is zero, assuming no bequest 
motive, can be written as follows:
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Appendix A. Life-Cycle Model 
in Retirement
The value function in the LCM during retirement
years when labor income is zero, assuming no
bequest motive, can be written as follows:

(A1)

where
x = the age of the retiree when the consump-

tion/spending plan is formulated (e.g.,
60 or 65)

D = the maximum possible life span years in
retirement (the upper bound of the util-
ity integration, which is currently 122 on
the basis of the world’s longest-lived
person, Jeanne Calment, who died in
France in 1997) 

 = the SDR, or personal time preference
(which ranges in value from 0 percent to
as high as 20 percent in some empirical
studies)

tpx = the conditional probability of survival
from retirement age x to age x + t, which
is based on an actuarial mortality table

We parameterize (tpx) on the basis of the Gom-
pertz law of mortality, under which the biological
hazard rate is t = (1/b)e(x – m + t)/b, which grows
exponentially with age—m denotes the modal value
of life (e.g., 80 years), and b denotes the dispersion
coefficient (e.g., 10 years) of the future lifetime ran-
dom variable. Both numbers are calibrated to U.S.
mortality tables to fit advanced-age survival rates.

In our study, we assumed that the utility func-
tion of consumption exhibits constant elasticity of
intertemporal substitution, which is synonymous
with (and the reciprocal of) constant relative risk
aversion (RRA) under conditions of perfect certainty
and time-separable utility. The exact specification is

u(c) = c1 – /(1 – ), where  is the coefficient of relative
(longevity) risk aversion, which can take on values
from Bernoulli ( = 1) up to infinity.

The actuarial present value function, denoted
by  depends implicitly on the survival
probability curve (tpx) via the parameters (m,b). It
is defined and computed by using the following:

(A2)

which is the retirement age “price”—under a real,
constant discount rate v—of a life-contingent pen-
sion annuity that pays a real $1 a year until death
or time T, whichever comes first. Although we do
not include a mortality risk premium from the per-
spective of the insurance company in this valuation
model, one could include it by tilting the survival
rate toward a longer life.

A closed-form representation of Equation A2
is possible in terms of the incomplete gamma func-
tion (A,B), which is available analytically:

(A2a)

See Milevsky (2006, p. 61) for instructions on
how to code the gamma function in Microsoft
Excel.

The wealth trajectory (financial capital during
retirement) is denoted by Ft, and the dynamic con-
straint in our model—linked to the objective func-
tion in Equation A1—can now be expressed as
follows:

(A3)

where the dot is shorthand notation for a derivative
of wealth (financial capital) with respect to time, 0
denotes the income (in real dollars) from any pre-
existing pension annuities, and the function multi-
plying wealth itself is defined by

(A3a)

where R  r. The discontinuous function v(t,Ft)
denotes the interest rate on financial capital and
allows Ft to be negative. For credit cards and other
unsecured lines of credit, v(t,Ft) = R + t. The bor-
rower pays R plus the insurance (to protect the
lender in the event of the borrower’s death).
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We also offer a special acknowledgment to our colleagues
at York University—Pauline Shum, Tom Salisbury, Nabil
Tahani, Chris Robinson, and David Promislow—for help-
ful discussions during the many years of this research
program. Finally, we thank Alexandra Macqueen and
Faisal Habib at the QWeMA Group (Toronto) for assis-
tance with editing and analytics.

max ,c
t

t x t
DV c e p u c dt( ) = ( ) ( )∫ −ρ
0

a v m bx
T , , ,( )

a v m b e p dsx
T vsT

s x, , ,( ) = ∫ ( )−
0

a v m b
b vb

x m
b

m x v
x m

b

x
T , ,

, exp

exp exp
( )

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

( ) ⎛
⎝⎜

⎞
⎠

=
−

−

− −
−

Γ

⎟⎟⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

( ) ⎛
⎝⎜

⎞
⎠

−
−

− +

− −
−

b vb
x m T

b

m x v
x m

b

Γ , exp

exp exp ⎟⎟⎡
⎣⎢

⎤
⎦⎥

.

F v t F F ct t t t= ( ) − +, ,π0

v t F
r F

R Ft
t

t t
,

,
,

,( ) =
≥

+ <
⎧
⎨
⎩

0
0λ



Risk management  |  DECEMBER 2011  |  35

C H A I R S P E R S O N ’ S  C O R N E RR I S K  R E S P O N S E

CONTINUED ON PAGE 36

where 
x =    the age of the retiree when the consumption/ 

spending plan is formulated (e.g., 60 or 65)  
D =    the maximum possible life span years in 

retirement (the upper bound of the utility inte-
gration, which is currently 122 on the basis 
of the world’s longest-lived person, Jeanne 
Calment, who died in France in 1997)  

ρ =     the SDR, or personal time preference (which 
ranges in value from 0 percent to as high as 20 
percent in some empirical studies)  

tPx =    the conditional probability of survival from 
retirement age x to age x + t, which is based 
on an actuarial mortality table

We parameterize (tPx) on the basis of the Gompertz 
law of mortality, under which the biological hazard rate 
is λt = (1/b)e(x – m + t)/b, which grows exponentially with 
age—m denotes the modal value of life (e.g., 80 years), 
and b denotes the dispersion coefficient (e.g., 10 years) 
of the future lifetime random variable. Both numbers 
are calibrated to U.S. mortality tables to fit advanced-
age survival rates. 

In our study, we assumed that the utility function of 
consumption exhibits constant elasticity of intertem-
poral substitution, which is synonymous with (and the 
reciprocal of) constant relative risk aversion (RRA) 
under conditions of perfect certainty and time-sep-
arable utility. The exact specification is u(c) = c1– γ/
(1–γ), where γ is the coefficient of relative (longevity)  
risk aversion, which can take on values from Bernoulli 
(γ = 1) up to infinity.

The actuarial present value function, denoted by    
depends implicitly on the survival probability 

curve (tpx) via the parameters (m,b). It is defined and 
computed by using the following: 
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which is the retirement age “price”—under a real,
constant discount rate v—of a life-contingent pen-
sion annuity that pays a real $1 a year until death
or time T, whichever comes first. Although we do
not include a mortality risk premium from the per-
spective of the insurance company in this valuation
model, one could include it by tilting the survival
rate toward a longer life.

A closed-form representation of Equation A2
is possible in terms of the incomplete gamma func-
tion (A,B), which is available analytically:
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See Milevsky (2006, p. 61) for instructions on
how to code the gamma function in Microsoft
Excel.

The wealth trajectory (financial capital during
retirement) is denoted by Ft, and the dynamic con-
straint in our model—linked to the objective func-
tion in Equation A1—can now be expressed as
follows:
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where the dot is shorthand notation for a derivative
of wealth (financial capital) with respect to time, 0
denotes the income (in real dollars) from any pre-
existing pension annuities, and the function multi-
plying wealth itself is defined by

(A3a)

where R  r. The discontinuous function v(t,Ft)
denotes the interest rate on financial capital and
allows Ft to be negative. For credit cards and other
unsecured lines of credit, v(t,Ft) = R + t. The bor-
rower pays R plus the insurance (to protect the
lender in the event of the borrower’s death).
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Appendix A. Life-Cycle Model 
in Retirement
The value function in the LCM during retirement
years when labor income is zero, assuming no
bequest motive, can be written as follows:

(A1)

where
x = the age of the retiree when the consump-

tion/spending plan is formulated (e.g.,
60 or 65)

D = the maximum possible life span years in
retirement (the upper bound of the util-
ity integration, which is currently 122 on
the basis of the world’s longest-lived
person, Jeanne Calment, who died in
France in 1997) 

 = the SDR, or personal time preference
(which ranges in value from 0 percent to
as high as 20 percent in some empirical
studies)

tpx = the conditional probability of survival
from retirement age x to age x + t, which
is based on an actuarial mortality table

We parameterize (tpx) on the basis of the Gom-
pertz law of mortality, under which the biological
hazard rate is t = (1/b)e(x – m + t)/b, which grows
exponentially with age—m denotes the modal value
of life (e.g., 80 years), and b denotes the dispersion
coefficient (e.g., 10 years) of the future lifetime ran-
dom variable. Both numbers are calibrated to U.S.
mortality tables to fit advanced-age survival rates.

In our study, we assumed that the utility func-
tion of consumption exhibits constant elasticity of
intertemporal substitution, which is synonymous
with (and the reciprocal of) constant relative risk
aversion (RRA) under conditions of perfect certainty
and time-separable utility. The exact specification is

u(c) = c1 – /(1 – ), where  is the coefficient of relative
(longevity) risk aversion, which can take on values
from Bernoulli ( = 1) up to infinity.

The actuarial present value function, denoted
by  depends implicitly on the survival
probability curve (tpx) via the parameters (m,b). It
is defined and computed by using the following:

(A2)

which is the retirement age “price”—under a real,
constant discount rate v—of a life-contingent pen-
sion annuity that pays a real $1 a year until death
or time T, whichever comes first. Although we do
not include a mortality risk premium from the per-
spective of the insurance company in this valuation
model, one could include it by tilting the survival
rate toward a longer life.

A closed-form representation of Equation A2
is possible in terms of the incomplete gamma func-
tion (A,B), which is available analytically:

(A2a)

See Milevsky (2006, p. 61) for instructions on
how to code the gamma function in Microsoft
Excel.

The wealth trajectory (financial capital during
retirement) is denoted by Ft, and the dynamic con-
straint in our model—linked to the objective func-
tion in Equation A1—can now be expressed as
follows:

(A3)

where the dot is shorthand notation for a derivative
of wealth (financial capital) with respect to time, 0
denotes the income (in real dollars) from any pre-
existing pension annuities, and the function multi-
plying wealth itself is defined by

(A3a)

where R  r. The discontinuous function v(t,Ft)
denotes the interest rate on financial capital and
allows Ft to be negative. For credit cards and other
unsecured lines of credit, v(t,Ft) = R + t. The bor-
rower pays R plus the insurance (to protect the
lender in the event of the borrower’s death).
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which is the retirement age “price”—under a real, 
constant discount rate 
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years when labor income is zero, assuming no
bequest motive, can be written as follows:
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where
x = the age of the retiree when the consump-

tion/spending plan is formulated (e.g.,
60 or 65)

D = the maximum possible life span years in
retirement (the upper bound of the util-
ity integration, which is currently 122 on
the basis of the world’s longest-lived
person, Jeanne Calment, who died in
France in 1997) 

 = the SDR, or personal time preference
(which ranges in value from 0 percent to
as high as 20 percent in some empirical
studies)

tpx = the conditional probability of survival
from retirement age x to age x + t, which
is based on an actuarial mortality table

We parameterize (tpx) on the basis of the Gom-
pertz law of mortality, under which the biological
hazard rate is t = (1/b)e(x – m + t)/b, which grows
exponentially with age—m denotes the modal value
of life (e.g., 80 years), and b denotes the dispersion
coefficient (e.g., 10 years) of the future lifetime ran-
dom variable. Both numbers are calibrated to U.S.
mortality tables to fit advanced-age survival rates.

In our study, we assumed that the utility func-
tion of consumption exhibits constant elasticity of
intertemporal substitution, which is synonymous
with (and the reciprocal of) constant relative risk
aversion (RRA) under conditions of perfect certainty
and time-separable utility. The exact specification is

u(c) = c1 – /(1 – ), where  is the coefficient of relative
(longevity) risk aversion, which can take on values
from Bernoulli ( = 1) up to infinity.

The actuarial present value function, denoted
by  depends implicitly on the survival
probability curve (tpx) via the parameters (m,b). It
is defined and computed by using the following:
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which is the retirement age “price”—under a real,
constant discount rate v—of a life-contingent pen-
sion annuity that pays a real $1 a year until death
or time T, whichever comes first. Although we do
not include a mortality risk premium from the per-
spective of the insurance company in this valuation
model, one could include it by tilting the survival
rate toward a longer life.

A closed-form representation of Equation A2
is possible in terms of the incomplete gamma func-
tion (A,B), which is available analytically:

(A2a)

See Milevsky (2006, p. 61) for instructions on
how to code the gamma function in Microsoft
Excel.

The wealth trajectory (financial capital during
retirement) is denoted by Ft, and the dynamic con-
straint in our model—linked to the objective func-
tion in Equation A1—can now be expressed as
follows:

(A3)

where the dot is shorthand notation for a derivative
of wealth (financial capital) with respect to time, 0
denotes the income (in real dollars) from any pre-
existing pension annuities, and the function multi-
plying wealth itself is defined by

(A3a)

where R  r. The discontinuous function v(t,Ft)
denotes the interest rate on financial capital and
allows Ft to be negative. For credit cards and other
unsecured lines of credit, v(t,Ft) = R + t. The bor-
rower pays R plus the insurance (to protect the
lender in the event of the borrower’s death).
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—of a life-contingent pension 
annuity that pays a real $1 a year until death or time 
T, whichever comes first. Although we do not include 
a mortality risk premium from the perspective of the 
insurance company in this valuation model, one could 

include it by tilting the survival rate toward a longer 
life.

A closed-form representation of Equation A2 is possi-
ble in terms of the incomplete gamma function Γ(A,B), 
which is available analytically:  
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where
x = the age of the retiree when the consump-
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60 or 65)

D = the maximum possible life span years in
retirement (the upper bound of the util-
ity integration, which is currently 122 on
the basis of the world’s longest-lived
person, Jeanne Calment, who died in
France in 1997) 

 = the SDR, or personal time preference
(which ranges in value from 0 percent to
as high as 20 percent in some empirical
studies)

tpx = the conditional probability of survival
from retirement age x to age x + t, which
is based on an actuarial mortality table

We parameterize (tpx) on the basis of the Gom-
pertz law of mortality, under which the biological
hazard rate is t = (1/b)e(x – m + t)/b, which grows
exponentially with age—m denotes the modal value
of life (e.g., 80 years), and b denotes the dispersion
coefficient (e.g., 10 years) of the future lifetime ran-
dom variable. Both numbers are calibrated to U.S.
mortality tables to fit advanced-age survival rates.

In our study, we assumed that the utility func-
tion of consumption exhibits constant elasticity of
intertemporal substitution, which is synonymous
with (and the reciprocal of) constant relative risk
aversion (RRA) under conditions of perfect certainty
and time-separable utility. The exact specification is

u(c) = c1 – /(1 – ), where  is the coefficient of relative
(longevity) risk aversion, which can take on values
from Bernoulli ( = 1) up to infinity.

The actuarial present value function, denoted
by  depends implicitly on the survival
probability curve (tpx) via the parameters (m,b). It
is defined and computed by using the following:
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which is the retirement age “price”—under a real,
constant discount rate v—of a life-contingent pen-
sion annuity that pays a real $1 a year until death
or time T, whichever comes first. Although we do
not include a mortality risk premium from the per-
spective of the insurance company in this valuation
model, one could include it by tilting the survival
rate toward a longer life.

A closed-form representation of Equation A2
is possible in terms of the incomplete gamma func-
tion (A,B), which is available analytically:
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See Milevsky (2006, p. 61) for instructions on
how to code the gamma function in Microsoft
Excel.

The wealth trajectory (financial capital during
retirement) is denoted by Ft, and the dynamic con-
straint in our model—linked to the objective func-
tion in Equation A1—can now be expressed as
follows:

(A3)

where the dot is shorthand notation for a derivative
of wealth (financial capital) with respect to time, 0
denotes the income (in real dollars) from any pre-
existing pension annuities, and the function multi-
plying wealth itself is defined by

(A3a)

where R  r. The discontinuous function v(t,Ft)
denotes the interest rate on financial capital and
allows Ft to be negative. For credit cards and other
unsecured lines of credit, v(t,Ft) = R + t. The bor-
rower pays R plus the insurance (to protect the
lender in the event of the borrower’s death).
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See Milevsky (2006, p. 61) for instructions on how to 
code the gamma function in Microsoft Excel.

The wealth trajectory (financial capital during retire-
ment) is denoted by Ft , and the dynamic constraint 
in our model—linked to the objective function in 
Equation A1—can now be expressed as follows:
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D = the maximum possible life span years in
retirement (the upper bound of the util-
ity integration, which is currently 122 on
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 = the SDR, or personal time preference
(which ranges in value from 0 percent to
as high as 20 percent in some empirical
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tpx = the conditional probability of survival
from retirement age x to age x + t, which
is based on an actuarial mortality table

We parameterize (tpx) on the basis of the Gom-
pertz law of mortality, under which the biological
hazard rate is t = (1/b)e(x – m + t)/b, which grows
exponentially with age—m denotes the modal value
of life (e.g., 80 years), and b denotes the dispersion
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which is the retirement age “price”—under a real,
constant discount rate v—of a life-contingent pen-
sion annuity that pays a real $1 a year until death
or time T, whichever comes first. Although we do
not include a mortality risk premium from the per-
spective of the insurance company in this valuation
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where the dot is shorthand notation for a derivative 
of wealth (financial capital) with respect to time, π0 
denotes the income (in real dollars) from any preexist-
ing pension annuities, and the function multiplying 
wealth itself is defined by 
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from Bernoulli ( = 1) up to infinity.

The actuarial present value function, denoted
by  depends implicitly on the survival
probability curve (tpx) via the parameters (m,b). It
is defined and computed by using the following:

(A2)

which is the retirement age “price”—under a real,
constant discount rate v—of a life-contingent pen-
sion annuity that pays a real $1 a year until death
or time T, whichever comes first. Although we do
not include a mortality risk premium from the per-
spective of the insurance company in this valuation
model, one could include it by tilting the survival
rate toward a longer life.

A closed-form representation of Equation A2
is possible in terms of the incomplete gamma func-
tion (A,B), which is available analytically:

(A2a)

See Milevsky (2006, p. 61) for instructions on
how to code the gamma function in Microsoft
Excel.

The wealth trajectory (financial capital during
retirement) is denoted by Ft, and the dynamic con-
straint in our model—linked to the objective func-
tion in Equation A1—can now be expressed as
follows:

(A3)

where the dot is shorthand notation for a derivative
of wealth (financial capital) with respect to time, 0
denotes the income (in real dollars) from any pre-
existing pension annuities, and the function multi-
plying wealth itself is defined by

(A3a)

where R  r. The discontinuous function v(t,Ft)
denotes the interest rate on financial capital and
allows Ft to be negative. For credit cards and other
unsecured lines of credit, v(t,Ft) = R + t. The bor-
rower pays R plus the insurance (to protect the
lender in the event of the borrower’s death).
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where R ≥ r. The discontinuous function 

March/April 2011 www.cfapubs.org 55

Spending Retirement on Planet Vulcan

Appendix A. Life-Cycle Model 
in Retirement
The value function in the LCM during retirement
years when labor income is zero, assuming no
bequest motive, can be written as follows:
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where
x = the age of the retiree when the consump-

tion/spending plan is formulated (e.g.,
60 or 65)

D = the maximum possible life span years in
retirement (the upper bound of the util-
ity integration, which is currently 122 on
the basis of the world’s longest-lived
person, Jeanne Calment, who died in
France in 1997) 

 = the SDR, or personal time preference
(which ranges in value from 0 percent to
as high as 20 percent in some empirical
studies)

tpx = the conditional probability of survival
from retirement age x to age x + t, which
is based on an actuarial mortality table

We parameterize (tpx) on the basis of the Gom-
pertz law of mortality, under which the biological
hazard rate is t = (1/b)e(x – m + t)/b, which grows
exponentially with age—m denotes the modal value
of life (e.g., 80 years), and b denotes the dispersion
coefficient (e.g., 10 years) of the future lifetime ran-
dom variable. Both numbers are calibrated to U.S.
mortality tables to fit advanced-age survival rates.

In our study, we assumed that the utility func-
tion of consumption exhibits constant elasticity of
intertemporal substitution, which is synonymous
with (and the reciprocal of) constant relative risk
aversion (RRA) under conditions of perfect certainty
and time-separable utility. The exact specification is

u(c) = c1 – /(1 – ), where  is the coefficient of relative
(longevity) risk aversion, which can take on values
from Bernoulli ( = 1) up to infinity.

The actuarial present value function, denoted
by  depends implicitly on the survival
probability curve (tpx) via the parameters (m,b). It
is defined and computed by using the following:
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which is the retirement age “price”—under a real,
constant discount rate v—of a life-contingent pen-
sion annuity that pays a real $1 a year until death
or time T, whichever comes first. Although we do
not include a mortality risk premium from the per-
spective of the insurance company in this valuation
model, one could include it by tilting the survival
rate toward a longer life.

A closed-form representation of Equation A2
is possible in terms of the incomplete gamma func-
tion (A,B), which is available analytically:
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See Milevsky (2006, p. 61) for instructions on
how to code the gamma function in Microsoft
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The wealth trajectory (financial capital during
retirement) is denoted by Ft, and the dynamic con-
straint in our model—linked to the objective func-
tion in Equation A1—can now be expressed as
follows:
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where the dot is shorthand notation for a derivative
of wealth (financial capital) with respect to time, 0
denotes the income (in real dollars) from any pre-
existing pension annuities, and the function multi-
plying wealth itself is defined by
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where R  r. The discontinuous function v(t,Ft)
denotes the interest rate on financial capital and
allows Ft to be negative. For credit cards and other
unsecured lines of credit, v(t,Ft) = R + t. The bor-
rower pays R plus the insurance (to protect the
lender in the event of the borrower’s death).
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(t,Ft) denotes 
the interest rate on financial capital and allows Ft to be 
negative. For credit cards and other unsecured lines of 
credit, 
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where
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tion/spending plan is formulated (e.g.,
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D = the maximum possible life span years in
retirement (the upper bound of the util-
ity integration, which is currently 122 on
the basis of the world’s longest-lived
person, Jeanne Calment, who died in
France in 1997) 

 = the SDR, or personal time preference
(which ranges in value from 0 percent to
as high as 20 percent in some empirical
studies)

tpx = the conditional probability of survival
from retirement age x to age x + t, which
is based on an actuarial mortality table

We parameterize (tpx) on the basis of the Gom-
pertz law of mortality, under which the biological
hazard rate is t = (1/b)e(x – m + t)/b, which grows
exponentially with age—m denotes the modal value
of life (e.g., 80 years), and b denotes the dispersion
coefficient (e.g., 10 years) of the future lifetime ran-
dom variable. Both numbers are calibrated to U.S.
mortality tables to fit advanced-age survival rates.

In our study, we assumed that the utility func-
tion of consumption exhibits constant elasticity of
intertemporal substitution, which is synonymous
with (and the reciprocal of) constant relative risk
aversion (RRA) under conditions of perfect certainty
and time-separable utility. The exact specification is

u(c) = c1 – /(1 – ), where  is the coefficient of relative
(longevity) risk aversion, which can take on values
from Bernoulli ( = 1) up to infinity.

The actuarial present value function, denoted
by  depends implicitly on the survival
probability curve (tpx) via the parameters (m,b). It
is defined and computed by using the following:
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which is the retirement age “price”—under a real,
constant discount rate v—of a life-contingent pen-
sion annuity that pays a real $1 a year until death
or time T, whichever comes first. Although we do
not include a mortality risk premium from the per-
spective of the insurance company in this valuation
model, one could include it by tilting the survival
rate toward a longer life.

A closed-form representation of Equation A2
is possible in terms of the incomplete gamma func-
tion (A,B), which is available analytically:
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See Milevsky (2006, p. 61) for instructions on
how to code the gamma function in Microsoft
Excel.

The wealth trajectory (financial capital during
retirement) is denoted by Ft, and the dynamic con-
straint in our model—linked to the objective func-
tion in Equation A1—can now be expressed as
follows:
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where the dot is shorthand notation for a derivative
of wealth (financial capital) with respect to time, 0
denotes the income (in real dollars) from any pre-
existing pension annuities, and the function multi-
plying wealth itself is defined by
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where R  r. The discontinuous function v(t,Ft)
denotes the interest rate on financial capital and
allows Ft to be negative. For credit cards and other
unsecured lines of credit, v(t,Ft) = R + t. The bor-
rower pays R plus the insurance (to protect the
lender in the event of the borrower’s death).
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(t,Ft) = R + λt. The borrower pays R plus the 
insurance (to protect the lender in the event of the bor-
rower’s death). 

Note that we do not assume a complete liquidity con-
straint that prohibits borrowing in the sense of Deaton 
(1991), Leung (1994), or Bütler (2001). We do not 
allow stochastic returns. Equations A1, A2, and A3 are 
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coefficient (e.g., 10 years) of the future lifetime ran-
dom variable. Both numbers are calibrated to U.S.
mortality tables to fit advanced-age survival rates.

In our study, we assumed that the utility func-
tion of consumption exhibits constant elasticity of
intertemporal substitution, which is synonymous
with (and the reciprocal of) constant relative risk
aversion (RRA) under conditions of perfect certainty
and time-separable utility. The exact specification is

u(c) = c1 – /(1 – ), where  is the coefficient of relative
(longevity) risk aversion, which can take on values
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sion annuity that pays a real $1 a year until death
or time T, whichever comes first. Although we do
not include a mortality risk premium from the per-
spective of the insurance company in this valuation
model, one could include it by tilting the survival
rate toward a longer life.
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is possible in terms of the incomplete gamma func-
tion (A,B), which is available analytically:
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The wealth trajectory (financial capital during
retirement) is denoted by Ft, and the dynamic con-
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plying wealth itself is defined by

(A3a)

where R  r. The discontinuous function v(t,Ft)
denotes the interest rate on financial capital and
allows Ft to be negative. For credit cards and other
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rower pays R plus the insurance (to protect the
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pertz law of mortality, under which the biological
hazard rate is t = (1/b)e(x – m + t)/b, which grows
exponentially with age—m denotes the modal value
of life (e.g., 80 years), and b denotes the dispersion
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mortality tables to fit advanced-age survival rates.

In our study, we assumed that the utility func-
tion of consumption exhibits constant elasticity of
intertemporal substitution, which is synonymous
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aversion (RRA) under conditions of perfect certainty
and time-separable utility. The exact specification is
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which is the retirement age “price”—under a real,
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sion annuity that pays a real $1 a year until death
or time T, whichever comes first. Although we do
not include a mortality risk premium from the per-
spective of the insurance company in this valuation
model, one could include it by tilting the survival
rate toward a longer life.

A closed-form representation of Equation A2
is possible in terms of the incomplete gamma func-
tion (A,B), which is available analytically:
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follows:
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essentially the Yaari (1965) setup, under which pension 
annuities, but not tontine annuities, are available.

The initial condition is F0 = W, where W denotes the 
investable assets at retirement. The terminal condition 
is Fτ = 0, where τ denotes the wealth depletion time, at 
which point only the pension annuity income is con-
sumed. Leung (1994, 2007) explored the existence of 
a WDT in a series of theoretical papers. In theory, the 
WDT can be at the final horizon time (τ = D) if the pen-
sion income is minimal (or zero) and/or the borrowing 
rate is relatively low. To be very precise, it is possible 
for Ft < 0 for some time t < D. We are not talking about 
the zero values of the function. Rather, the definition of 
our WDT is Ft = 0; t > τ permanently. One can show 
that when R > ρ, borrowing is not optimal and τ < D 
under certain conditions. For our numerical results, we 
assume a high-enough value of R.

The Euler–Lagrange theorem from the calculus of 
variations leads to the following. The optimal trajec-
tory, Ft, in the region over which it is positive, assuming 
that v(t,Ft) = r, can be expressed as the solution to the 
following second-order nonhomogeneous differential 
equation: 
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Note that we do not assume a complete liquid-
ity constraint that prohibits borrowing in the sense
of Deaton (1991), Leung (1994), or Bütler (2001). We
do not allow stochastic returns. Equations A1, A2,
and A3 are essentially the Yaari (1965) setup, under
which pension annuities, but not tontine annuities,
are available.

The initial condition is F0 = W, where W
denotes the investable assets at retirement. The
terminal condition is F = 0, where  denotes the
wealth depletion time, at which point only the
pension annuity income is consumed. Leung (1994,
2007) explored the existence of a WDT in a series of
theoretical papers. In theory, the WDT can be at the
final horizon time ( = D) if the pension income is
minimal (or zero) and/or the borrowing rate is
relatively low. To be very precise, it is possible for
Ft < 0 for some time t < D. We are not talking about
the zero values of the function. Rather, the defini-
tion of our WDT is Ft = 0; t >  permanently. One
can show that when R > , borrowing is not optimal
and  < D under certain conditions. For our numer-
ical results, we assume a high-enough value of R.

The Euler–Lagrange theorem from the calcu-
lus of variations leads to the following. The optimal
trajectory, Ft, in the region over which it is positive,
assuming that v(t,Ft) = r, can be expressed as the
solution to the following second-order nonhomo-
geneous differential equation:

(A4)

where the double dots denote the second derivative
with respect to time and the time-dependent func-
tion kt = (r –  – t)/ is introduced to simplify
notation. The real interest rate, r, is a positive con-
stant and a pivotal input to the model. We reiterate
that Equation A4 is valid only until the wealth
depletion time, . But one can always force a wealth
depletion time  < D by assuming a minimal pen-
sion annuity, as well as a large-enough (arbitrary)
interest rate v(t,Ft) on borrowing when Ft < 0. For a
more detailed discussion, including the impact of a
stochastic mortality rate, see Huang, Milevsky, and
Salisbury (2010).

The solution to the differential Equation A4 is
obtained in two stages. First, the optimal consump-
tion rate while Ft > 0 can be shown to satisfy the
equation

(A5)

where k = (r – )/ and the unknown initial con-
sumption rate, , can be solved for. The optimal
consumption rate declines when the SDR, , is
equal to the interest rate, r, and hence, k = 0. This
outcome is a very important implication (and
observable result) from the LCM. Planning to

reduce one’s standard of living with age is rational,
even if ( = r).

Note also that consumption as defined earlier
includes the pension annuity income, 0. Therefore,
the portfolio withdrawal rate (PWR), which is the
main item of interest in our study, is (  – 0)/Ft,
and the initial PWR (i.e., the retirement spending
rate) is (  – 0)/F0.

The optimal financial capital trajectory (also
defined as only until time t < ), which is the solu-
tion to Equation A4, can be expressed as a function
of  as follows:

(A6)

where the modified modal value in the annuity
factor is m* = m + bln(). The actuarial present value
term multiplying time zero consumption values a
life-contingent pension annuity under a shifted
modal value of m + bln() and a shifted valuation
rate of r – (r – )/ instead of r. Plugging Equation
A6 into the differential Equation A4, however, con-
firms that the solution is correct and valid over the
domain t  (0,).

In other words, the value function in Equation
A1—and thus life-cycle utility—is maximized
when the consumption rate and the wealth trajec-
tory satisfy Equations A5 and A6, respectively. Of
course, these two equations are functions of two
unknowns—  and —and we must now solve for
them, which we will do sequentially.

First, from Equation A6 and the definition of
the WDT (F = 0), we can solve for the initial con-
sumption rate:

(A7)

Note that when  = 1, 0 = 0, and  = r, Equation
A7 collapses to W/ .

Finally, the WDT, , is obtained by substituting
Equation A7 into Equation A5 and searching the
resulting nonlinear equation over the range (0,D) for
the value of  that solves  – 0 = 0. In other words,
if a WDT exists, then for consumption to remain
smooth at that point—which is part of the founda-
tion of life-cycle theory—it must converge to 0.

Mathematically, the WDT, , satisfies the equation
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Put another way,
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where the double dots denote the second derivative with 
respect to time and the time-dependent function kt =  
(r – ρ – λt)/γ is introduced to simplify notation. The real 
interest rate, r, is a positive constant and a pivotal input 
to the model. We reiterate that Equation A4 is valid 
only until the wealth depletion time, τ. But one can 
always force a wealth depletion time τ < D by assuming 
a minimal pension annuity, as well as a large-enough 
(arbitrary) interest rate 
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Appendix A. Life-Cycle Model 
in Retirement
The value function in the LCM during retirement
years when labor income is zero, assuming no
bequest motive, can be written as follows:

(A1)

where
x = the age of the retiree when the consump-

tion/spending plan is formulated (e.g.,
60 or 65)

D = the maximum possible life span years in
retirement (the upper bound of the util-
ity integration, which is currently 122 on
the basis of the world’s longest-lived
person, Jeanne Calment, who died in
France in 1997) 

 = the SDR, or personal time preference
(which ranges in value from 0 percent to
as high as 20 percent in some empirical
studies)

tpx = the conditional probability of survival
from retirement age x to age x + t, which
is based on an actuarial mortality table

We parameterize (tpx) on the basis of the Gom-
pertz law of mortality, under which the biological
hazard rate is t = (1/b)e(x – m + t)/b, which grows
exponentially with age—m denotes the modal value
of life (e.g., 80 years), and b denotes the dispersion
coefficient (e.g., 10 years) of the future lifetime ran-
dom variable. Both numbers are calibrated to U.S.
mortality tables to fit advanced-age survival rates.

In our study, we assumed that the utility func-
tion of consumption exhibits constant elasticity of
intertemporal substitution, which is synonymous
with (and the reciprocal of) constant relative risk
aversion (RRA) under conditions of perfect certainty
and time-separable utility. The exact specification is

u(c) = c1 – /(1 – ), where  is the coefficient of relative
(longevity) risk aversion, which can take on values
from Bernoulli ( = 1) up to infinity.

The actuarial present value function, denoted
by  depends implicitly on the survival
probability curve (tpx) via the parameters (m,b). It
is defined and computed by using the following:

(A2)

which is the retirement age “price”—under a real,
constant discount rate v—of a life-contingent pen-
sion annuity that pays a real $1 a year until death
or time T, whichever comes first. Although we do
not include a mortality risk premium from the per-
spective of the insurance company in this valuation
model, one could include it by tilting the survival
rate toward a longer life.

A closed-form representation of Equation A2
is possible in terms of the incomplete gamma func-
tion (A,B), which is available analytically:

(A2a)

See Milevsky (2006, p. 61) for instructions on
how to code the gamma function in Microsoft
Excel.

The wealth trajectory (financial capital during
retirement) is denoted by Ft, and the dynamic con-
straint in our model—linked to the objective func-
tion in Equation A1—can now be expressed as
follows:

(A3)

where the dot is shorthand notation for a derivative
of wealth (financial capital) with respect to time, 0
denotes the income (in real dollars) from any pre-
existing pension annuities, and the function multi-
plying wealth itself is defined by

(A3a)

where R  r. The discontinuous function v(t,Ft)
denotes the interest rate on financial capital and
allows Ft to be negative. For credit cards and other
unsecured lines of credit, v(t,Ft) = R + t. The bor-
rower pays R plus the insurance (to protect the
lender in the event of the borrower’s death).
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(t,Ft) on borrowing when Ft < 
0. For a more detailed discussion, including the impact 
of a stochastic mortality rate, see Huang, Milevsky, and 
Salisbury (2010).

The solution to the differential Equation A4 is obtained 
in two stages. First, the optimal consumption rate 
while Ft > 0 can be shown to satisfy the equation     
 

where k = (r – ρ)/γ and the unknown initial consump-
tion rate,
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Note that we do not assume a complete liquid-
ity constraint that prohibits borrowing in the sense
of Deaton (1991), Leung (1994), or Bütler (2001). We
do not allow stochastic returns. Equations A1, A2,
and A3 are essentially the Yaari (1965) setup, under
which pension annuities, but not tontine annuities,
are available.

The initial condition is F0 = W, where W
denotes the investable assets at retirement. The
terminal condition is F = 0, where  denotes the
wealth depletion time, at which point only the
pension annuity income is consumed. Leung (1994,
2007) explored the existence of a WDT in a series of
theoretical papers. In theory, the WDT can be at the
final horizon time ( = D) if the pension income is
minimal (or zero) and/or the borrowing rate is
relatively low. To be very precise, it is possible for
Ft < 0 for some time t < D. We are not talking about
the zero values of the function. Rather, the defini-
tion of our WDT is Ft = 0; t >  permanently. One
can show that when R > , borrowing is not optimal
and  < D under certain conditions. For our numer-
ical results, we assume a high-enough value of R.

The Euler–Lagrange theorem from the calcu-
lus of variations leads to the following. The optimal
trajectory, Ft, in the region over which it is positive,
assuming that v(t,Ft) = r, can be expressed as the
solution to the following second-order nonhomo-
geneous differential equation:

(A4)

where the double dots denote the second derivative
with respect to time and the time-dependent func-
tion kt = (r –  – t)/ is introduced to simplify
notation. The real interest rate, r, is a positive con-
stant and a pivotal input to the model. We reiterate
that Equation A4 is valid only until the wealth
depletion time, . But one can always force a wealth
depletion time  < D by assuming a minimal pen-
sion annuity, as well as a large-enough (arbitrary)
interest rate v(t,Ft) on borrowing when Ft < 0. For a
more detailed discussion, including the impact of a
stochastic mortality rate, see Huang, Milevsky, and
Salisbury (2010).

The solution to the differential Equation A4 is
obtained in two stages. First, the optimal consump-
tion rate while Ft > 0 can be shown to satisfy the
equation

(A5)

where k = (r – )/ and the unknown initial con-
sumption rate, , can be solved for. The optimal
consumption rate declines when the SDR, , is
equal to the interest rate, r, and hence, k = 0. This
outcome is a very important implication (and
observable result) from the LCM. Planning to

reduce one’s standard of living with age is rational,
even if ( = r).

Note also that consumption as defined earlier
includes the pension annuity income, 0. Therefore,
the portfolio withdrawal rate (PWR), which is the
main item of interest in our study, is (  – 0)/Ft,
and the initial PWR (i.e., the retirement spending
rate) is (  – 0)/F0.

The optimal financial capital trajectory (also
defined as only until time t < ), which is the solu-
tion to Equation A4, can be expressed as a function
of  as follows:

(A6)

where the modified modal value in the annuity
factor is m* = m + bln(). The actuarial present value
term multiplying time zero consumption values a
life-contingent pension annuity under a shifted
modal value of m + bln() and a shifted valuation
rate of r – (r – )/ instead of r. Plugging Equation
A6 into the differential Equation A4, however, con-
firms that the solution is correct and valid over the
domain t  (0,).

In other words, the value function in Equation
A1—and thus life-cycle utility—is maximized
when the consumption rate and the wealth trajec-
tory satisfy Equations A5 and A6, respectively. Of
course, these two equations are functions of two
unknowns—  and —and we must now solve for
them, which we will do sequentially.

First, from Equation A6 and the definition of
the WDT (F = 0), we can solve for the initial con-
sumption rate:

(A7)

Note that when  = 1, 0 = 0, and  = r, Equation
A7 collapses to W/ .

Finally, the WDT, , is obtained by substituting
Equation A7 into Equation A5 and searching the
resulting nonlinear equation over the range (0,D) for
the value of  that solves  – 0 = 0. In other words,
if a WDT exists, then for consumption to remain
smooth at that point—which is part of the founda-
tion of life-cycle theory—it must converge to 0.

Mathematically, the WDT, , satisfies the equation

(A8)

Put another way,
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, can be solved for. The optimal consump-
tion rate declines when the SDR, ρ, is equal to the 
interest rate, r, and hence, k = 0. This outcome is a very 
important implication (and observable result) from the 
LCM. Planning to even if (ρ = r).
 
Note also that consumption as defined earlier includes 
the pension annuity income, π0. Therefore, the portfo-
lio withdrawal rate (PWR), which is the main item of 
interest in our study, is (
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Note that we do not assume a complete liquid-
ity constraint that prohibits borrowing in the sense
of Deaton (1991), Leung (1994), or Bütler (2001). We
do not allow stochastic returns. Equations A1, A2,
and A3 are essentially the Yaari (1965) setup, under
which pension annuities, but not tontine annuities,
are available.

The initial condition is F0 = W, where W
denotes the investable assets at retirement. The
terminal condition is F = 0, where  denotes the
wealth depletion time, at which point only the
pension annuity income is consumed. Leung (1994,
2007) explored the existence of a WDT in a series of
theoretical papers. In theory, the WDT can be at the
final horizon time ( = D) if the pension income is
minimal (or zero) and/or the borrowing rate is
relatively low. To be very precise, it is possible for
Ft < 0 for some time t < D. We are not talking about
the zero values of the function. Rather, the defini-
tion of our WDT is Ft = 0; t >  permanently. One
can show that when R > , borrowing is not optimal
and  < D under certain conditions. For our numer-
ical results, we assume a high-enough value of R.

The Euler–Lagrange theorem from the calcu-
lus of variations leads to the following. The optimal
trajectory, Ft, in the region over which it is positive,
assuming that v(t,Ft) = r, can be expressed as the
solution to the following second-order nonhomo-
geneous differential equation:

(A4)

where the double dots denote the second derivative
with respect to time and the time-dependent func-
tion kt = (r –  – t)/ is introduced to simplify
notation. The real interest rate, r, is a positive con-
stant and a pivotal input to the model. We reiterate
that Equation A4 is valid only until the wealth
depletion time, . But one can always force a wealth
depletion time  < D by assuming a minimal pen-
sion annuity, as well as a large-enough (arbitrary)
interest rate v(t,Ft) on borrowing when Ft < 0. For a
more detailed discussion, including the impact of a
stochastic mortality rate, see Huang, Milevsky, and
Salisbury (2010).

The solution to the differential Equation A4 is
obtained in two stages. First, the optimal consump-
tion rate while Ft > 0 can be shown to satisfy the
equation

(A5)

where k = (r – )/ and the unknown initial con-
sumption rate, , can be solved for. The optimal
consumption rate declines when the SDR, , is
equal to the interest rate, r, and hence, k = 0. This
outcome is a very important implication (and
observable result) from the LCM. Planning to

reduce one’s standard of living with age is rational,
even if ( = r).

Note also that consumption as defined earlier
includes the pension annuity income, 0. Therefore,
the portfolio withdrawal rate (PWR), which is the
main item of interest in our study, is (  – 0)/Ft,
and the initial PWR (i.e., the retirement spending
rate) is (  – 0)/F0.

The optimal financial capital trajectory (also
defined as only until time t < ), which is the solu-
tion to Equation A4, can be expressed as a function
of  as follows:

(A6)

where the modified modal value in the annuity
factor is m* = m + bln(). The actuarial present value
term multiplying time zero consumption values a
life-contingent pension annuity under a shifted
modal value of m + bln() and a shifted valuation
rate of r – (r – )/ instead of r. Plugging Equation
A6 into the differential Equation A4, however, con-
firms that the solution is correct and valid over the
domain t  (0,).

In other words, the value function in Equation
A1—and thus life-cycle utility—is maximized
when the consumption rate and the wealth trajec-
tory satisfy Equations A5 and A6, respectively. Of
course, these two equations are functions of two
unknowns—  and —and we must now solve for
them, which we will do sequentially.

First, from Equation A6 and the definition of
the WDT (F = 0), we can solve for the initial con-
sumption rate:

(A7)

Note that when  = 1, 0 = 0, and  = r, Equation
A7 collapses to W/ .

Finally, the WDT, , is obtained by substituting
Equation A7 into Equation A5 and searching the
resulting nonlinear equation over the range (0,D) for
the value of  that solves  – 0 = 0. In other words,
if a WDT exists, then for consumption to remain
smooth at that point—which is part of the founda-
tion of life-cycle theory—it must converge to 0.

Mathematically, the WDT, , satisfies the equation

(A8)

Put another way,

(A8a)
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– π0)/Ft, and the initial PWR 
(i.e., the retirement spending rate) is (
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Note that we do not assume a complete liquid-
ity constraint that prohibits borrowing in the sense
of Deaton (1991), Leung (1994), or Bütler (2001). We
do not allow stochastic returns. Equations A1, A2,
and A3 are essentially the Yaari (1965) setup, under
which pension annuities, but not tontine annuities,
are available.

The initial condition is F0 = W, where W
denotes the investable assets at retirement. The
terminal condition is F = 0, where  denotes the
wealth depletion time, at which point only the
pension annuity income is consumed. Leung (1994,
2007) explored the existence of a WDT in a series of
theoretical papers. In theory, the WDT can be at the
final horizon time ( = D) if the pension income is
minimal (or zero) and/or the borrowing rate is
relatively low. To be very precise, it is possible for
Ft < 0 for some time t < D. We are not talking about
the zero values of the function. Rather, the defini-
tion of our WDT is Ft = 0; t >  permanently. One
can show that when R > , borrowing is not optimal
and  < D under certain conditions. For our numer-
ical results, we assume a high-enough value of R.

The Euler–Lagrange theorem from the calcu-
lus of variations leads to the following. The optimal
trajectory, Ft, in the region over which it is positive,
assuming that v(t,Ft) = r, can be expressed as the
solution to the following second-order nonhomo-
geneous differential equation:

(A4)

where the double dots denote the second derivative
with respect to time and the time-dependent func-
tion kt = (r –  – t)/ is introduced to simplify
notation. The real interest rate, r, is a positive con-
stant and a pivotal input to the model. We reiterate
that Equation A4 is valid only until the wealth
depletion time, . But one can always force a wealth
depletion time  < D by assuming a minimal pen-
sion annuity, as well as a large-enough (arbitrary)
interest rate v(t,Ft) on borrowing when Ft < 0. For a
more detailed discussion, including the impact of a
stochastic mortality rate, see Huang, Milevsky, and
Salisbury (2010).

The solution to the differential Equation A4 is
obtained in two stages. First, the optimal consump-
tion rate while Ft > 0 can be shown to satisfy the
equation

(A5)

where k = (r – )/ and the unknown initial con-
sumption rate, , can be solved for. The optimal
consumption rate declines when the SDR, , is
equal to the interest rate, r, and hence, k = 0. This
outcome is a very important implication (and
observable result) from the LCM. Planning to

reduce one’s standard of living with age is rational,
even if ( = r).

Note also that consumption as defined earlier
includes the pension annuity income, 0. Therefore,
the portfolio withdrawal rate (PWR), which is the
main item of interest in our study, is (  – 0)/Ft,
and the initial PWR (i.e., the retirement spending
rate) is (  – 0)/F0.

The optimal financial capital trajectory (also
defined as only until time t < ), which is the solu-
tion to Equation A4, can be expressed as a function
of  as follows:

(A6)

where the modified modal value in the annuity
factor is m* = m + bln(). The actuarial present value
term multiplying time zero consumption values a
life-contingent pension annuity under a shifted
modal value of m + bln() and a shifted valuation
rate of r – (r – )/ instead of r. Plugging Equation
A6 into the differential Equation A4, however, con-
firms that the solution is correct and valid over the
domain t  (0,).

In other words, the value function in Equation
A1—and thus life-cycle utility—is maximized
when the consumption rate and the wealth trajec-
tory satisfy Equations A5 and A6, respectively. Of
course, these two equations are functions of two
unknowns—  and —and we must now solve for
them, which we will do sequentially.

First, from Equation A6 and the definition of
the WDT (F = 0), we can solve for the initial con-
sumption rate:

(A7)

Note that when  = 1, 0 = 0, and  = r, Equation
A7 collapses to W/ .

Finally, the WDT, , is obtained by substituting
Equation A7 into Equation A5 and searching the
resulting nonlinear equation over the range (0,D) for
the value of  that solves  – 0 = 0. In other words,
if a WDT exists, then for consumption to remain
smooth at that point—which is part of the founda-
tion of life-cycle theory—it must converge to 0.

Mathematically, the WDT, , satisfies the equation
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– π0)/F0.  The 
optimal financial capital trajectory (also defined as only 
until time t < τ), which is the solution to Equation A4, 
can be expressed as a function of 
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Note that we do not assume a complete liquid-
ity constraint that prohibits borrowing in the sense
of Deaton (1991), Leung (1994), or Bütler (2001). We
do not allow stochastic returns. Equations A1, A2,
and A3 are essentially the Yaari (1965) setup, under
which pension annuities, but not tontine annuities,
are available.

The initial condition is F0 = W, where W
denotes the investable assets at retirement. The
terminal condition is F = 0, where  denotes the
wealth depletion time, at which point only the
pension annuity income is consumed. Leung (1994,
2007) explored the existence of a WDT in a series of
theoretical papers. In theory, the WDT can be at the
final horizon time ( = D) if the pension income is
minimal (or zero) and/or the borrowing rate is
relatively low. To be very precise, it is possible for
Ft < 0 for some time t < D. We are not talking about
the zero values of the function. Rather, the defini-
tion of our WDT is Ft = 0; t >  permanently. One
can show that when R > , borrowing is not optimal
and  < D under certain conditions. For our numer-
ical results, we assume a high-enough value of R.

The Euler–Lagrange theorem from the calcu-
lus of variations leads to the following. The optimal
trajectory, Ft, in the region over which it is positive,
assuming that v(t,Ft) = r, can be expressed as the
solution to the following second-order nonhomo-
geneous differential equation:

(A4)

where the double dots denote the second derivative
with respect to time and the time-dependent func-
tion kt = (r –  – t)/ is introduced to simplify
notation. The real interest rate, r, is a positive con-
stant and a pivotal input to the model. We reiterate
that Equation A4 is valid only until the wealth
depletion time, . But one can always force a wealth
depletion time  < D by assuming a minimal pen-
sion annuity, as well as a large-enough (arbitrary)
interest rate v(t,Ft) on borrowing when Ft < 0. For a
more detailed discussion, including the impact of a
stochastic mortality rate, see Huang, Milevsky, and
Salisbury (2010).

The solution to the differential Equation A4 is
obtained in two stages. First, the optimal consump-
tion rate while Ft > 0 can be shown to satisfy the
equation

(A5)

where k = (r – )/ and the unknown initial con-
sumption rate, , can be solved for. The optimal
consumption rate declines when the SDR, , is
equal to the interest rate, r, and hence, k = 0. This
outcome is a very important implication (and
observable result) from the LCM. Planning to

reduce one’s standard of living with age is rational,
even if ( = r).

Note also that consumption as defined earlier
includes the pension annuity income, 0. Therefore,
the portfolio withdrawal rate (PWR), which is the
main item of interest in our study, is (  – 0)/Ft,
and the initial PWR (i.e., the retirement spending
rate) is (  – 0)/F0.

The optimal financial capital trajectory (also
defined as only until time t < ), which is the solu-
tion to Equation A4, can be expressed as a function
of  as follows:

(A6)

where the modified modal value in the annuity
factor is m* = m + bln(). The actuarial present value
term multiplying time zero consumption values a
life-contingent pension annuity under a shifted
modal value of m + bln() and a shifted valuation
rate of r – (r – )/ instead of r. Plugging Equation
A6 into the differential Equation A4, however, con-
firms that the solution is correct and valid over the
domain t  (0,).

In other words, the value function in Equation
A1—and thus life-cycle utility—is maximized
when the consumption rate and the wealth trajec-
tory satisfy Equations A5 and A6, respectively. Of
course, these two equations are functions of two
unknowns—  and —and we must now solve for
them, which we will do sequentially.

First, from Equation A6 and the definition of
the WDT (F = 0), we can solve for the initial con-
sumption rate:

(A7)

Note that when  = 1, 0 = 0, and  = r, Equation
A7 collapses to W/ .

Finally, the WDT, , is obtained by substituting
Equation A7 into Equation A5 and searching the
resulting nonlinear equation over the range (0,D) for
the value of  that solves  – 0 = 0. In other words,
if a WDT exists, then for consumption to remain
smooth at that point—which is part of the founda-
tion of life-cycle theory—it must converge to 0.

Mathematically, the WDT, , satisfies the equation
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as follows:

where the modified modal value in the annuity factor 
is m* = m + bln(γ). The actuarial present value term 
multiplying time zero consumption values a life-con-
tingent pension annuity under a shifted modal value of  
m + bln(γ) and a shifted valuation rate of r – (r – ρ)/γ 
instead of r. Plugging Equation A6 into the differen-
tial Equation A4, however, confirms that the solution is 
correct and valid over the domain t 
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Note that we do not assume a complete liquid-
ity constraint that prohibits borrowing in the sense
of Deaton (1991), Leung (1994), or Bütler (2001). We
do not allow stochastic returns. Equations A1, A2,
and A3 are essentially the Yaari (1965) setup, under
which pension annuities, but not tontine annuities,
are available.

The initial condition is F0 = W, where W
denotes the investable assets at retirement. The
terminal condition is F = 0, where  denotes the
wealth depletion time, at which point only the
pension annuity income is consumed. Leung (1994,
2007) explored the existence of a WDT in a series of
theoretical papers. In theory, the WDT can be at the
final horizon time ( = D) if the pension income is
minimal (or zero) and/or the borrowing rate is
relatively low. To be very precise, it is possible for
Ft < 0 for some time t < D. We are not talking about
the zero values of the function. Rather, the defini-
tion of our WDT is Ft = 0; t >  permanently. One
can show that when R > , borrowing is not optimal
and  < D under certain conditions. For our numer-
ical results, we assume a high-enough value of R.

The Euler–Lagrange theorem from the calcu-
lus of variations leads to the following. The optimal
trajectory, Ft, in the region over which it is positive,
assuming that v(t,Ft) = r, can be expressed as the
solution to the following second-order nonhomo-
geneous differential equation:

(A4)

where the double dots denote the second derivative
with respect to time and the time-dependent func-
tion kt = (r –  – t)/ is introduced to simplify
notation. The real interest rate, r, is a positive con-
stant and a pivotal input to the model. We reiterate
that Equation A4 is valid only until the wealth
depletion time, . But one can always force a wealth
depletion time  < D by assuming a minimal pen-
sion annuity, as well as a large-enough (arbitrary)
interest rate v(t,Ft) on borrowing when Ft < 0. For a
more detailed discussion, including the impact of a
stochastic mortality rate, see Huang, Milevsky, and
Salisbury (2010).

The solution to the differential Equation A4 is
obtained in two stages. First, the optimal consump-
tion rate while Ft > 0 can be shown to satisfy the
equation

(A5)

where k = (r – )/ and the unknown initial con-
sumption rate, , can be solved for. The optimal
consumption rate declines when the SDR, , is
equal to the interest rate, r, and hence, k = 0. This
outcome is a very important implication (and
observable result) from the LCM. Planning to

reduce one’s standard of living with age is rational,
even if ( = r).

Note also that consumption as defined earlier
includes the pension annuity income, 0. Therefore,
the portfolio withdrawal rate (PWR), which is the
main item of interest in our study, is (  – 0)/Ft,
and the initial PWR (i.e., the retirement spending
rate) is (  – 0)/F0.

The optimal financial capital trajectory (also
defined as only until time t < ), which is the solu-
tion to Equation A4, can be expressed as a function
of  as follows:

(A6)

where the modified modal value in the annuity
factor is m* = m + bln(). The actuarial present value
term multiplying time zero consumption values a
life-contingent pension annuity under a shifted
modal value of m + bln() and a shifted valuation
rate of r – (r – )/ instead of r. Plugging Equation
A6 into the differential Equation A4, however, con-
firms that the solution is correct and valid over the
domain t  (0,).

In other words, the value function in Equation
A1—and thus life-cycle utility—is maximized
when the consumption rate and the wealth trajec-
tory satisfy Equations A5 and A6, respectively. Of
course, these two equations are functions of two
unknowns—  and —and we must now solve for
them, which we will do sequentially.

First, from Equation A6 and the definition of
the WDT (F = 0), we can solve for the initial con-
sumption rate:

(A7)

Note that when  = 1, 0 = 0, and  = r, Equation
A7 collapses to W/ .

Finally, the WDT, , is obtained by substituting
Equation A7 into Equation A5 and searching the
resulting nonlinear equation over the range (0,D) for
the value of  that solves  – 0 = 0. In other words,
if a WDT exists, then for consumption to remain
smooth at that point—which is part of the founda-
tion of life-cycle theory—it must converge to 0.

Mathematically, the WDT, , satisfies the equation

(A8)

Put another way,

(A8a)
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 (0,τ).

In other words, the value function in Equation A1—
and thus life-cycle utility—is maximized when the 
consumption rate and the wealth trajectory satisfy 
Equations A5 and A6, respectively. Of course, these 
two equations are functions of two unknowns— 
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Note that we do not assume a complete liquid-
ity constraint that prohibits borrowing in the sense
of Deaton (1991), Leung (1994), or Bütler (2001). We
do not allow stochastic returns. Equations A1, A2,
and A3 are essentially the Yaari (1965) setup, under
which pension annuities, but not tontine annuities,
are available.

The initial condition is F0 = W, where W
denotes the investable assets at retirement. The
terminal condition is F = 0, where  denotes the
wealth depletion time, at which point only the
pension annuity income is consumed. Leung (1994,
2007) explored the existence of a WDT in a series of
theoretical papers. In theory, the WDT can be at the
final horizon time ( = D) if the pension income is
minimal (or zero) and/or the borrowing rate is
relatively low. To be very precise, it is possible for
Ft < 0 for some time t < D. We are not talking about
the zero values of the function. Rather, the defini-
tion of our WDT is Ft = 0; t >  permanently. One
can show that when R > , borrowing is not optimal
and  < D under certain conditions. For our numer-
ical results, we assume a high-enough value of R.

The Euler–Lagrange theorem from the calcu-
lus of variations leads to the following. The optimal
trajectory, Ft, in the region over which it is positive,
assuming that v(t,Ft) = r, can be expressed as the
solution to the following second-order nonhomo-
geneous differential equation:

(A4)

where the double dots denote the second derivative
with respect to time and the time-dependent func-
tion kt = (r –  – t)/ is introduced to simplify
notation. The real interest rate, r, is a positive con-
stant and a pivotal input to the model. We reiterate
that Equation A4 is valid only until the wealth
depletion time, . But one can always force a wealth
depletion time  < D by assuming a minimal pen-
sion annuity, as well as a large-enough (arbitrary)
interest rate v(t,Ft) on borrowing when Ft < 0. For a
more detailed discussion, including the impact of a
stochastic mortality rate, see Huang, Milevsky, and
Salisbury (2010).

The solution to the differential Equation A4 is
obtained in two stages. First, the optimal consump-
tion rate while Ft > 0 can be shown to satisfy the
equation

(A5)

where k = (r – )/ and the unknown initial con-
sumption rate, , can be solved for. The optimal
consumption rate declines when the SDR, , is
equal to the interest rate, r, and hence, k = 0. This
outcome is a very important implication (and
observable result) from the LCM. Planning to

reduce one’s standard of living with age is rational,
even if ( = r).

Note also that consumption as defined earlier
includes the pension annuity income, 0. Therefore,
the portfolio withdrawal rate (PWR), which is the
main item of interest in our study, is (  – 0)/Ft,
and the initial PWR (i.e., the retirement spending
rate) is (  – 0)/F0.

The optimal financial capital trajectory (also
defined as only until time t < ), which is the solu-
tion to Equation A4, can be expressed as a function
of  as follows:

(A6)

where the modified modal value in the annuity
factor is m* = m + bln(). The actuarial present value
term multiplying time zero consumption values a
life-contingent pension annuity under a shifted
modal value of m + bln() and a shifted valuation
rate of r – (r – )/ instead of r. Plugging Equation
A6 into the differential Equation A4, however, con-
firms that the solution is correct and valid over the
domain t  (0,).

In other words, the value function in Equation
A1—and thus life-cycle utility—is maximized
when the consumption rate and the wealth trajec-
tory satisfy Equations A5 and A6, respectively. Of
course, these two equations are functions of two
unknowns—  and —and we must now solve for
them, which we will do sequentially.

First, from Equation A6 and the definition of
the WDT (F = 0), we can solve for the initial con-
sumption rate:

(A7)

Note that when  = 1, 0 = 0, and  = r, Equation
A7 collapses to W/ .

Finally, the WDT, , is obtained by substituting
Equation A7 into Equation A5 and searching the
resulting nonlinear equation over the range (0,D) for
the value of  that solves  – 0 = 0. In other words,
if a WDT exists, then for consumption to remain
smooth at that point—which is part of the founda-
tion of life-cycle theory—it must converge to 0.

Mathematically, the WDT, , satisfies the equation

(A8)

Put another way,

(A8a)
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and τ—and we must now solve for them, which we 
will do sequentially.

First, from Equation A6 and the definition of the WDT 
(Fτ = 0), we can solve for the initial consumption rate:
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Note that we do not assume a complete liquid-
ity constraint that prohibits borrowing in the sense
of Deaton (1991), Leung (1994), or Bütler (2001). We
do not allow stochastic returns. Equations A1, A2,
and A3 are essentially the Yaari (1965) setup, under
which pension annuities, but not tontine annuities,
are available.

The initial condition is F0 = W, where W
denotes the investable assets at retirement. The
terminal condition is F = 0, where  denotes the
wealth depletion time, at which point only the
pension annuity income is consumed. Leung (1994,
2007) explored the existence of a WDT in a series of
theoretical papers. In theory, the WDT can be at the
final horizon time ( = D) if the pension income is
minimal (or zero) and/or the borrowing rate is
relatively low. To be very precise, it is possible for
Ft < 0 for some time t < D. We are not talking about
the zero values of the function. Rather, the defini-
tion of our WDT is Ft = 0; t >  permanently. One
can show that when R > , borrowing is not optimal
and  < D under certain conditions. For our numer-
ical results, we assume a high-enough value of R.

The Euler–Lagrange theorem from the calcu-
lus of variations leads to the following. The optimal
trajectory, Ft, in the region over which it is positive,
assuming that v(t,Ft) = r, can be expressed as the
solution to the following second-order nonhomo-
geneous differential equation:

(A4)

where the double dots denote the second derivative
with respect to time and the time-dependent func-
tion kt = (r –  – t)/ is introduced to simplify
notation. The real interest rate, r, is a positive con-
stant and a pivotal input to the model. We reiterate
that Equation A4 is valid only until the wealth
depletion time, . But one can always force a wealth
depletion time  < D by assuming a minimal pen-
sion annuity, as well as a large-enough (arbitrary)
interest rate v(t,Ft) on borrowing when Ft < 0. For a
more detailed discussion, including the impact of a
stochastic mortality rate, see Huang, Milevsky, and
Salisbury (2010).

The solution to the differential Equation A4 is
obtained in two stages. First, the optimal consump-
tion rate while Ft > 0 can be shown to satisfy the
equation

(A5)

where k = (r – )/ and the unknown initial con-
sumption rate, , can be solved for. The optimal
consumption rate declines when the SDR, , is
equal to the interest rate, r, and hence, k = 0. This
outcome is a very important implication (and
observable result) from the LCM. Planning to

reduce one’s standard of living with age is rational,
even if ( = r).

Note also that consumption as defined earlier
includes the pension annuity income, 0. Therefore,
the portfolio withdrawal rate (PWR), which is the
main item of interest in our study, is (  – 0)/Ft,
and the initial PWR (i.e., the retirement spending
rate) is (  – 0)/F0.

The optimal financial capital trajectory (also
defined as only until time t < ), which is the solu-
tion to Equation A4, can be expressed as a function
of  as follows:

(A6)

where the modified modal value in the annuity
factor is m* = m + bln(). The actuarial present value
term multiplying time zero consumption values a
life-contingent pension annuity under a shifted
modal value of m + bln() and a shifted valuation
rate of r – (r – )/ instead of r. Plugging Equation
A6 into the differential Equation A4, however, con-
firms that the solution is correct and valid over the
domain t  (0,).

In other words, the value function in Equation
A1—and thus life-cycle utility—is maximized
when the consumption rate and the wealth trajec-
tory satisfy Equations A5 and A6, respectively. Of
course, these two equations are functions of two
unknowns—  and —and we must now solve for
them, which we will do sequentially.

First, from Equation A6 and the definition of
the WDT (F = 0), we can solve for the initial con-
sumption rate:

(A7)

Note that when  = 1, 0 = 0, and  = r, Equation
A7 collapses to W/ .

Finally, the WDT, , is obtained by substituting
Equation A7 into Equation A5 and searching the
resulting nonlinear equation over the range (0,D) for
the value of  that solves  – 0 = 0. In other words,
if a WDT exists, then for consumption to remain
smooth at that point—which is part of the founda-
tion of life-cycle theory—it must converge to 0.

Mathematically, the WDT, , satisfies the equation
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Put another way,
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Note that we do not assume a complete liquid-
ity constraint that prohibits borrowing in the sense
of Deaton (1991), Leung (1994), or Bütler (2001). We
do not allow stochastic returns. Equations A1, A2,
and A3 are essentially the Yaari (1965) setup, under
which pension annuities, but not tontine annuities,
are available.

The initial condition is F0 = W, where W
denotes the investable assets at retirement. The
terminal condition is F = 0, where  denotes the
wealth depletion time, at which point only the
pension annuity income is consumed. Leung (1994,
2007) explored the existence of a WDT in a series of
theoretical papers. In theory, the WDT can be at the
final horizon time ( = D) if the pension income is
minimal (or zero) and/or the borrowing rate is
relatively low. To be very precise, it is possible for
Ft < 0 for some time t < D. We are not talking about
the zero values of the function. Rather, the defini-
tion of our WDT is Ft = 0; t >  permanently. One
can show that when R > , borrowing is not optimal
and  < D under certain conditions. For our numer-
ical results, we assume a high-enough value of R.

The Euler–Lagrange theorem from the calcu-
lus of variations leads to the following. The optimal
trajectory, Ft, in the region over which it is positive,
assuming that v(t,Ft) = r, can be expressed as the
solution to the following second-order nonhomo-
geneous differential equation:

(A4)

where the double dots denote the second derivative
with respect to time and the time-dependent func-
tion kt = (r –  – t)/ is introduced to simplify
notation. The real interest rate, r, is a positive con-
stant and a pivotal input to the model. We reiterate
that Equation A4 is valid only until the wealth
depletion time, . But one can always force a wealth
depletion time  < D by assuming a minimal pen-
sion annuity, as well as a large-enough (arbitrary)
interest rate v(t,Ft) on borrowing when Ft < 0. For a
more detailed discussion, including the impact of a
stochastic mortality rate, see Huang, Milevsky, and
Salisbury (2010).

The solution to the differential Equation A4 is
obtained in two stages. First, the optimal consump-
tion rate while Ft > 0 can be shown to satisfy the
equation

(A5)

where k = (r – )/ and the unknown initial con-
sumption rate, , can be solved for. The optimal
consumption rate declines when the SDR, , is
equal to the interest rate, r, and hence, k = 0. This
outcome is a very important implication (and
observable result) from the LCM. Planning to

reduce one’s standard of living with age is rational,
even if ( = r).

Note also that consumption as defined earlier
includes the pension annuity income, 0. Therefore,
the portfolio withdrawal rate (PWR), which is the
main item of interest in our study, is (  – 0)/Ft,
and the initial PWR (i.e., the retirement spending
rate) is (  – 0)/F0.

The optimal financial capital trajectory (also
defined as only until time t < ), which is the solu-
tion to Equation A4, can be expressed as a function
of  as follows:

(A6)

where the modified modal value in the annuity
factor is m* = m + bln(). The actuarial present value
term multiplying time zero consumption values a
life-contingent pension annuity under a shifted
modal value of m + bln() and a shifted valuation
rate of r – (r – )/ instead of r. Plugging Equation
A6 into the differential Equation A4, however, con-
firms that the solution is correct and valid over the
domain t  (0,).

In other words, the value function in Equation
A1—and thus life-cycle utility—is maximized
when the consumption rate and the wealth trajec-
tory satisfy Equations A5 and A6, respectively. Of
course, these two equations are functions of two
unknowns—  and —and we must now solve for
them, which we will do sequentially.

First, from Equation A6 and the definition of
the WDT (F = 0), we can solve for the initial con-
sumption rate:

(A7)

Note that when  = 1, 0 = 0, and  = r, Equation
A7 collapses to W/ .

Finally, the WDT, , is obtained by substituting
Equation A7 into Equation A5 and searching the
resulting nonlinear equation over the range (0,D) for
the value of  that solves  – 0 = 0. In other words,
if a WDT exists, then for consumption to remain
smooth at that point—which is part of the founda-
tion of life-cycle theory—it must converge to 0.

Mathematically, the WDT, , satisfies the equation

(A8)

Put another way,
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Note that we do not assume a complete liquid-
ity constraint that prohibits borrowing in the sense
of Deaton (1991), Leung (1994), or Bütler (2001). We
do not allow stochastic returns. Equations A1, A2,
and A3 are essentially the Yaari (1965) setup, under
which pension annuities, but not tontine annuities,
are available.

The initial condition is F0 = W, where W
denotes the investable assets at retirement. The
terminal condition is F = 0, where  denotes the
wealth depletion time, at which point only the
pension annuity income is consumed. Leung (1994,
2007) explored the existence of a WDT in a series of
theoretical papers. In theory, the WDT can be at the
final horizon time ( = D) if the pension income is
minimal (or zero) and/or the borrowing rate is
relatively low. To be very precise, it is possible for
Ft < 0 for some time t < D. We are not talking about
the zero values of the function. Rather, the defini-
tion of our WDT is Ft = 0; t >  permanently. One
can show that when R > , borrowing is not optimal
and  < D under certain conditions. For our numer-
ical results, we assume a high-enough value of R.

The Euler–Lagrange theorem from the calcu-
lus of variations leads to the following. The optimal
trajectory, Ft, in the region over which it is positive,
assuming that v(t,Ft) = r, can be expressed as the
solution to the following second-order nonhomo-
geneous differential equation:

(A4)

where the double dots denote the second derivative
with respect to time and the time-dependent func-
tion kt = (r –  – t)/ is introduced to simplify
notation. The real interest rate, r, is a positive con-
stant and a pivotal input to the model. We reiterate
that Equation A4 is valid only until the wealth
depletion time, . But one can always force a wealth
depletion time  < D by assuming a minimal pen-
sion annuity, as well as a large-enough (arbitrary)
interest rate v(t,Ft) on borrowing when Ft < 0. For a
more detailed discussion, including the impact of a
stochastic mortality rate, see Huang, Milevsky, and
Salisbury (2010).

The solution to the differential Equation A4 is
obtained in two stages. First, the optimal consump-
tion rate while Ft > 0 can be shown to satisfy the
equation

(A5)

where k = (r – )/ and the unknown initial con-
sumption rate, , can be solved for. The optimal
consumption rate declines when the SDR, , is
equal to the interest rate, r, and hence, k = 0. This
outcome is a very important implication (and
observable result) from the LCM. Planning to

reduce one’s standard of living with age is rational,
even if ( = r).

Note also that consumption as defined earlier
includes the pension annuity income, 0. Therefore,
the portfolio withdrawal rate (PWR), which is the
main item of interest in our study, is (  – 0)/Ft,
and the initial PWR (i.e., the retirement spending
rate) is (  – 0)/F0.

The optimal financial capital trajectory (also
defined as only until time t < ), which is the solu-
tion to Equation A4, can be expressed as a function
of  as follows:

(A6)

where the modified modal value in the annuity
factor is m* = m + bln(). The actuarial present value
term multiplying time zero consumption values a
life-contingent pension annuity under a shifted
modal value of m + bln() and a shifted valuation
rate of r – (r – )/ instead of r. Plugging Equation
A6 into the differential Equation A4, however, con-
firms that the solution is correct and valid over the
domain t  (0,).

In other words, the value function in Equation
A1—and thus life-cycle utility—is maximized
when the consumption rate and the wealth trajec-
tory satisfy Equations A5 and A6, respectively. Of
course, these two equations are functions of two
unknowns—  and —and we must now solve for
them, which we will do sequentially.

First, from Equation A6 and the definition of
the WDT (F = 0), we can solve for the initial con-
sumption rate:

(A7)

Note that when  = 1, 0 = 0, and  = r, Equation
A7 collapses to W/ .

Finally, the WDT, , is obtained by substituting
Equation A7 into Equation A5 and searching the
resulting nonlinear equation over the range (0,D) for
the value of  that solves  – 0 = 0. In other words,
if a WDT exists, then for consumption to remain
smooth at that point—which is part of the founda-
tion of life-cycle theory—it must converge to 0.

Mathematically, the WDT, , satisfies the equation
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Note that when γ = 1, π0 = 0, and ρ = r, Equation A7 
collapses to 
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Note that we do not assume a complete liquid-
ity constraint that prohibits borrowing in the sense
of Deaton (1991), Leung (1994), or Bütler (2001). We
do not allow stochastic returns. Equations A1, A2,
and A3 are essentially the Yaari (1965) setup, under
which pension annuities, but not tontine annuities,
are available.

The initial condition is F0 = W, where W
denotes the investable assets at retirement. The
terminal condition is F = 0, where  denotes the
wealth depletion time, at which point only the
pension annuity income is consumed. Leung (1994,
2007) explored the existence of a WDT in a series of
theoretical papers. In theory, the WDT can be at the
final horizon time ( = D) if the pension income is
minimal (or zero) and/or the borrowing rate is
relatively low. To be very precise, it is possible for
Ft < 0 for some time t < D. We are not talking about
the zero values of the function. Rather, the defini-
tion of our WDT is Ft = 0; t >  permanently. One
can show that when R > , borrowing is not optimal
and  < D under certain conditions. For our numer-
ical results, we assume a high-enough value of R.

The Euler–Lagrange theorem from the calcu-
lus of variations leads to the following. The optimal
trajectory, Ft, in the region over which it is positive,
assuming that v(t,Ft) = r, can be expressed as the
solution to the following second-order nonhomo-
geneous differential equation:

(A4)

where the double dots denote the second derivative
with respect to time and the time-dependent func-
tion kt = (r –  – t)/ is introduced to simplify
notation. The real interest rate, r, is a positive con-
stant and a pivotal input to the model. We reiterate
that Equation A4 is valid only until the wealth
depletion time, . But one can always force a wealth
depletion time  < D by assuming a minimal pen-
sion annuity, as well as a large-enough (arbitrary)
interest rate v(t,Ft) on borrowing when Ft < 0. For a
more detailed discussion, including the impact of a
stochastic mortality rate, see Huang, Milevsky, and
Salisbury (2010).

The solution to the differential Equation A4 is
obtained in two stages. First, the optimal consump-
tion rate while Ft > 0 can be shown to satisfy the
equation

(A5)

where k = (r – )/ and the unknown initial con-
sumption rate, , can be solved for. The optimal
consumption rate declines when the SDR, , is
equal to the interest rate, r, and hence, k = 0. This
outcome is a very important implication (and
observable result) from the LCM. Planning to

reduce one’s standard of living with age is rational,
even if ( = r).

Note also that consumption as defined earlier
includes the pension annuity income, 0. Therefore,
the portfolio withdrawal rate (PWR), which is the
main item of interest in our study, is (  – 0)/Ft,
and the initial PWR (i.e., the retirement spending
rate) is (  – 0)/F0.

The optimal financial capital trajectory (also
defined as only until time t < ), which is the solu-
tion to Equation A4, can be expressed as a function
of  as follows:

(A6)

where the modified modal value in the annuity
factor is m* = m + bln(). The actuarial present value
term multiplying time zero consumption values a
life-contingent pension annuity under a shifted
modal value of m + bln() and a shifted valuation
rate of r – (r – )/ instead of r. Plugging Equation
A6 into the differential Equation A4, however, con-
firms that the solution is correct and valid over the
domain t  (0,).

In other words, the value function in Equation
A1—and thus life-cycle utility—is maximized
when the consumption rate and the wealth trajec-
tory satisfy Equations A5 and A6, respectively. Of
course, these two equations are functions of two
unknowns—  and —and we must now solve for
them, which we will do sequentially.

First, from Equation A6 and the definition of
the WDT (F = 0), we can solve for the initial con-
sumption rate:

(A7)

Note that when  = 1, 0 = 0, and  = r, Equation
A7 collapses to W/ .

Finally, the WDT, , is obtained by substituting
Equation A7 into Equation A5 and searching the
resulting nonlinear equation over the range (0,D) for
the value of  that solves  – 0 = 0. In other words,
if a WDT exists, then for consumption to remain
smooth at that point—which is part of the founda-
tion of life-cycle theory—it must converge to 0.

Mathematically, the WDT, , satisfies the equation
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Finally, the WDT, τ, is obtained by substituting Equation 
A7 into Equation A5 and searching the resulting non-
linear equation over the range (0,D) for the value of τ 
that solves 
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Note that we do not assume a complete liquid-
ity constraint that prohibits borrowing in the sense
of Deaton (1991), Leung (1994), or Bütler (2001). We
do not allow stochastic returns. Equations A1, A2,
and A3 are essentially the Yaari (1965) setup, under
which pension annuities, but not tontine annuities,
are available.

The initial condition is F0 = W, where W
denotes the investable assets at retirement. The
terminal condition is F = 0, where  denotes the
wealth depletion time, at which point only the
pension annuity income is consumed. Leung (1994,
2007) explored the existence of a WDT in a series of
theoretical papers. In theory, the WDT can be at the
final horizon time ( = D) if the pension income is
minimal (or zero) and/or the borrowing rate is
relatively low. To be very precise, it is possible for
Ft < 0 for some time t < D. We are not talking about
the zero values of the function. Rather, the defini-
tion of our WDT is Ft = 0; t >  permanently. One
can show that when R > , borrowing is not optimal
and  < D under certain conditions. For our numer-
ical results, we assume a high-enough value of R.

The Euler–Lagrange theorem from the calcu-
lus of variations leads to the following. The optimal
trajectory, Ft, in the region over which it is positive,
assuming that v(t,Ft) = r, can be expressed as the
solution to the following second-order nonhomo-
geneous differential equation:

(A4)

where the double dots denote the second derivative
with respect to time and the time-dependent func-
tion kt = (r –  – t)/ is introduced to simplify
notation. The real interest rate, r, is a positive con-
stant and a pivotal input to the model. We reiterate
that Equation A4 is valid only until the wealth
depletion time, . But one can always force a wealth
depletion time  < D by assuming a minimal pen-
sion annuity, as well as a large-enough (arbitrary)
interest rate v(t,Ft) on borrowing when Ft < 0. For a
more detailed discussion, including the impact of a
stochastic mortality rate, see Huang, Milevsky, and
Salisbury (2010).

The solution to the differential Equation A4 is
obtained in two stages. First, the optimal consump-
tion rate while Ft > 0 can be shown to satisfy the
equation

(A5)

where k = (r – )/ and the unknown initial con-
sumption rate, , can be solved for. The optimal
consumption rate declines when the SDR, , is
equal to the interest rate, r, and hence, k = 0. This
outcome is a very important implication (and
observable result) from the LCM. Planning to

reduce one’s standard of living with age is rational,
even if ( = r).

Note also that consumption as defined earlier
includes the pension annuity income, 0. Therefore,
the portfolio withdrawal rate (PWR), which is the
main item of interest in our study, is (  – 0)/Ft,
and the initial PWR (i.e., the retirement spending
rate) is (  – 0)/F0.

The optimal financial capital trajectory (also
defined as only until time t < ), which is the solu-
tion to Equation A4, can be expressed as a function
of  as follows:

(A6)

where the modified modal value in the annuity
factor is m* = m + bln(). The actuarial present value
term multiplying time zero consumption values a
life-contingent pension annuity under a shifted
modal value of m + bln() and a shifted valuation
rate of r – (r – )/ instead of r. Plugging Equation
A6 into the differential Equation A4, however, con-
firms that the solution is correct and valid over the
domain t  (0,).

In other words, the value function in Equation
A1—and thus life-cycle utility—is maximized
when the consumption rate and the wealth trajec-
tory satisfy Equations A5 and A6, respectively. Of
course, these two equations are functions of two
unknowns—  and —and we must now solve for
them, which we will do sequentially.

First, from Equation A6 and the definition of
the WDT (F = 0), we can solve for the initial con-
sumption rate:

(A7)

Note that when  = 1, 0 = 0, and  = r, Equation
A7 collapses to W/ .

Finally, the WDT, , is obtained by substituting
Equation A7 into Equation A5 and searching the
resulting nonlinear equation over the range (0,D) for
the value of  that solves  – 0 = 0. In other words,
if a WDT exists, then for consumption to remain
smooth at that point—which is part of the founda-
tion of life-cycle theory—it must converge to 0.

Mathematically, the WDT, , satisfies the equation
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– π0 = 0. In other words, if a WDT exists, 
then for consumption to remain smooth at that point—
which is part of the foundation of life-cycle theory—it 
must converge to π0.

Mathematically, the WDT, τ, satisfies the equation    

Put another way,  

The optimal consumption policy (described by Equa-
tion A5) and the optimal trajectory of wealth (described 
by Equation A6) are now available explicitly. Practi-
cally speaking, the WDT (τ ≤ D) is extracted from 
Equation A8, and the initial consumption rate is then 
obtained from Equation A7. Everything else follows. 
These expressions can be coded in Excel in a few  
minutes.  
 
NOTES
1.  Thus, our use of “Planet Vulcan” in the title of 

our study, inspired by Thaler and Sunstein (2008), 
who distinguished “humans” from perfectly rational 
“econs,” much like the Star Trek character Spock, 
who is from Vulcan. 

2.  See, for example, Walter Updegrave, “Retirement: 
The 4 Percent Solution,” Money Magazine (16 
August 2007): http:/ /money.cnn.com/2007/08/13/pf/
expert/expert.moneymag/ index.htm. 

3.  In fact, to some extent, Milevsky and Robinson 
(2005) encouraged this approach by deriving and 
publishing an analytic expression for the lifetime 
ruin probability that assumes a constant consumption 
spending rate. 

4.  For detailed information on possible parameter esti-
mates for the EIS and how they affect consumption 
under deterministic life-cycle models in which the 
SDR is not equal to the interest rate, see Hanna, Fan, 
and Chang (1995) and Andersen, Harrison, Lau, and 
Rutstrom (2008). 

5.  This annuity is quite different from the Yaari (1965) 
tontine annuity, in which mortality credits are paid 
out instantaneously by adding the mortality haz-
ard rate, λt, to the investment return, r. Thus, we 
use the term pensionization to distinguish it from 
economists’ use of the term annuitization. The lat-
ter assumes a pool in which survivors inherit the 
assets of the deceased, whereas the former requires 
an insurance company or pension fund to guarantee 
the lifetime payments. See Huang, Milevsky, and 
Salisbury (2010) for a discussion of the distinction 
between the two and their impact on optimal retire-
ment planning in a stochastic versus deterministic 
mortality model. 

6.  The consumption function is concave until the WDT, 
at which point it is nondifferentiable and set equal to 
the pension annuity income. 

7.  A (tongue-in-cheek) rule of thumb that could be sub-
stituted for the static 4 percent algorithm is to counsel 
retirees to pick any initial spending rate between 
2 percent and 5 percent but to reduce the actual 
spending amount each year by the proportion of 
their friends and acquaintances who have died. This 
approach would roughly approximate the optimal 
decline based on anticipated survival rates. 

8.  Thus, one could say that there are bag ladies on 
Vulcan.  9. See Stock and Wise (1990) for an exam-
ple of this burgeoning literature.
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Note that we do not assume a complete liquid-
ity constraint that prohibits borrowing in the sense
of Deaton (1991), Leung (1994), or Bütler (2001). We
do not allow stochastic returns. Equations A1, A2,
and A3 are essentially the Yaari (1965) setup, under
which pension annuities, but not tontine annuities,
are available.

The initial condition is F0 = W, where W
denotes the investable assets at retirement. The
terminal condition is F = 0, where  denotes the
wealth depletion time, at which point only the
pension annuity income is consumed. Leung (1994,
2007) explored the existence of a WDT in a series of
theoretical papers. In theory, the WDT can be at the
final horizon time ( = D) if the pension income is
minimal (or zero) and/or the borrowing rate is
relatively low. To be very precise, it is possible for
Ft < 0 for some time t < D. We are not talking about
the zero values of the function. Rather, the defini-
tion of our WDT is Ft = 0; t >  permanently. One
can show that when R > , borrowing is not optimal
and  < D under certain conditions. For our numer-
ical results, we assume a high-enough value of R.

The Euler–Lagrange theorem from the calcu-
lus of variations leads to the following. The optimal
trajectory, Ft, in the region over which it is positive,
assuming that v(t,Ft) = r, can be expressed as the
solution to the following second-order nonhomo-
geneous differential equation:

(A4)

where the double dots denote the second derivative
with respect to time and the time-dependent func-
tion kt = (r –  – t)/ is introduced to simplify
notation. The real interest rate, r, is a positive con-
stant and a pivotal input to the model. We reiterate
that Equation A4 is valid only until the wealth
depletion time, . But one can always force a wealth
depletion time  < D by assuming a minimal pen-
sion annuity, as well as a large-enough (arbitrary)
interest rate v(t,Ft) on borrowing when Ft < 0. For a
more detailed discussion, including the impact of a
stochastic mortality rate, see Huang, Milevsky, and
Salisbury (2010).

The solution to the differential Equation A4 is
obtained in two stages. First, the optimal consump-
tion rate while Ft > 0 can be shown to satisfy the
equation

(A5)

where k = (r – )/ and the unknown initial con-
sumption rate, , can be solved for. The optimal
consumption rate declines when the SDR, , is
equal to the interest rate, r, and hence, k = 0. This
outcome is a very important implication (and
observable result) from the LCM. Planning to

reduce one’s standard of living with age is rational,
even if ( = r).

Note also that consumption as defined earlier
includes the pension annuity income, 0. Therefore,
the portfolio withdrawal rate (PWR), which is the
main item of interest in our study, is (  – 0)/Ft,
and the initial PWR (i.e., the retirement spending
rate) is (  – 0)/F0.

The optimal financial capital trajectory (also
defined as only until time t < ), which is the solu-
tion to Equation A4, can be expressed as a function
of  as follows:

(A6)

where the modified modal value in the annuity
factor is m* = m + bln(). The actuarial present value
term multiplying time zero consumption values a
life-contingent pension annuity under a shifted
modal value of m + bln() and a shifted valuation
rate of r – (r – )/ instead of r. Plugging Equation
A6 into the differential Equation A4, however, con-
firms that the solution is correct and valid over the
domain t  (0,).

In other words, the value function in Equation
A1—and thus life-cycle utility—is maximized
when the consumption rate and the wealth trajec-
tory satisfy Equations A5 and A6, respectively. Of
course, these two equations are functions of two
unknowns—  and —and we must now solve for
them, which we will do sequentially.

First, from Equation A6 and the definition of
the WDT (F = 0), we can solve for the initial con-
sumption rate:

(A7)

Note that when  = 1, 0 = 0, and  = r, Equation
A7 collapses to W/ .

Finally, the WDT, , is obtained by substituting
Equation A7 into Equation A5 and searching the
resulting nonlinear equation over the range (0,D) for
the value of  that solves  – 0 = 0. In other words,
if a WDT exists, then for consumption to remain
smooth at that point—which is part of the founda-
tion of life-cycle theory—it must converge to 0.

Mathematically, the WDT, , satisfies the equation
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Ft < 0 for some time t < D. We are not talking about
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Changing Seasons of Risk Attitudes
By David Ingram and Dr. Michael Thompson
Editor’s Note: This article originally appeared in the February/March 2011 issue of The Actuary. 

RISK ATTITUDES ARE AN EXTREMELY IMPOR-
TANT DRIVER FOR FINANCIAL DECISION 
MAKING. The authors talk about how and why those 
risk attitudes keep changing with experiences and espe-
cially with surprises. 

On July 21, 2010, Ben Bernanke, the chairman of the 
Federal Reserve, said that he thought that the economy 
was “unusually uncertain.” Business leaders are report-
ing that there is relatively little investment going on 
by U.S. businesses. Companies are paying down debt 
and building up cash. Things are just too unsettled, 
too unpredictable for them to feel comfortable making 
commitments.

Just three years ago, Charles Prince made the now 
famous statement to a Hong Kong reporter regarding 
Citigroup’s participation in the U.S. subprime mortgage 
market, “As long as the music is playing, you’ve got to 
get up and dance, [and] we’re still dancing.” That state-
ment represented almost the exact opposite approach 
to business, a compulsion to participate in the market.

In between, U.S. businesses did a remarkably quick 
adjustment to a shrinking level of economic activity. 
Payrolls were trimmed, jobs were shed, benefits cur-
tailed and businesses returned quickly to profitability 
in a no-growth economy.

If you look carefully enough, you will also find firms 
who avoided participating in either the high growth of 
the boom, the cuts of the bust or the paralysis of the 
uncertain environment. These firms seem to just keep 
steering their company carefully between the rocks, 
avoiding both shipwrecking rocks, fast currents and 
eddies.

But you can feel the sea change in the prevailing opin-
ion of the economy. In a free market economy, this pre-
vailing opinion is formed, not by edict but as individual 
managers and separate firms each reach the conclusion 
that some prior way of thinking is no longer working 
for them. They also notice that other managers and 
other firms with different attitudes are doing better (or 
less worse). These individuals and these firms all had 
firm opinions of how the world worked and therefore 
how best to run their firms that were formed based upon 
hard earned experience and careful perceptions.

Even in the best of times or the worst of times or even in 
“unusually uncertain” times, that prevailing opinion is 
never unanimous. In all times, these opinions about the 
environment and especially about risk in the environ-
ment tend to fall into four categories or risk attitudes. 

They are:

•  Pragmatists who believe that the world is uncertain 
and unpredictable, 

•  Conservators whose world belief is of peril and high 
risk, 

•  Maximizers who see the world as low risk and funda-
mentally self correcting, and finally, 

•  Managers whose world is risky, but not too risky for 
firms that are guided properly.

(See “Full Spectrum of Risk Attitude” in the August/
September 2010 issue of The Actuary.)

Changes come to these risk 
attitudes via the process of sur-
prise. Surprise is the persistent, 
and very likely growing, mis-
match between what we expect 
to happen based upon our cho-
sen strategy and what actually 
happens. Surprise is the differ-
ence between Knightian risk 
and uncertainty.1 If there is no 
uncertainty, there should never 
need to be a surprise. But there 
clearly is uncertainty because 
over and over again, we are 
surprised.

When we all have the exact 
same expectations, then we are 
all surprised at the same time. 
But at any point in time, there are firms and individual 
managers with totally different risk attitudes. So there 
is a varied and varying set of surprises that are actu-
ally happening at all times. In market terms, we might 
expect a moderate market with fluctuations that follow 
past experiences, an uncertain market with unpredict-
able volatility, a market boom when everything seems 
to be going up or a recession when everything seems to 
be going down. Different business strategies are usually 
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chosen because of an expectation of a market in one 
or the other of those states. This means that surprises, 
when they come, can come in a total of 12 different 
ways. (See Figure 1)

Along the matrix’s top-left to bottom-right diagonal, 
where the world is indeed the way it is stipulated to 
be, there are no penalties and therefore no surprises, 
but there are in each of the remaining 12 boxes. To 
deduce what each of these surprises will be, we need to 
contrast the strategy that is sensible to each firm with 
the responses the resulting tactics will provoke in each 
of the actual worlds.

•  In the uncertain market there is no discoverable 
pattern to the responses: the world is an enormous 
slot machine. This is the world of financial uncer-
tainty, when business activity and markets might turn 
abruptly. The model of the world has unknown drift 
and unknown volatility. Maximizers, Conservators 
and Managers are all surprised by the lack of predict-
ability of the uncertain market. Each had their own 
different idea of what they were predicting and they 
are all disappointed.

•  In a bust there is a discoverable order: the world is 
a vast negative-sum game. This is the world of the 
financial market bust. The world model has negative 
drift and low volatility. Of course, Maximizers and 
Managers are surprised. The Maximizers thought that 
persistent losses would just not happen and Managers 
are surprised by the magnitude of the losses. The 
Pragmatists were surprised when “correlations all go 
to one” and their preferred strategy of diversification 
fails to protect them.

•  In a boom the reverse is the case—the world is a 
huge positive-sum game. This is the world when the 
financial bubbles form. The model for this world has 
high positive drift and low volatility. Managers and 
Conservators see the large gains of the Maximizers 
in the boom and are surprised that they can get away 
with that. Pragmatists see their own larger than 
expected gains and are surprised.

•  In a moderate market there are two games going 
on—a positive-sum one and a negative-sum one. But, 
unlike the uncertain market, there is a discoverable 
order: it is possible to differentiate between those 
situations in which one game is operating and those 
in which the other holds sway. This is the “normal” 
world of the risk management models, with moderate 
drift and moderate volatility, perhaps at the levels of 
long-term averages. The Maximizers will be surprised 
that they underperform their outsized expectations, 
while Conservators see the Managers’ careful tak-
ing of risks, which they had shunned, succeeding. 
Pragmatists are puzzled and surprised by the success 
of the orderly Managers as well.

The process of changing risk attitudes for business 
takes two routes. First, individual managers will be 
surprised just as is described earlier. The process of 
noticing again and again that their expectations are not 
being met by the world will wear away at their con-
victions about how the world works. Some managers 
will notice immediately and adapt quickly; others will 
keep expecting that they will wake up tomorrow and 
the world will again work the way they expect it to 
work, persisting in their unrequited beliefs even with 
repeated evidence to the contrary. As these individuals 
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“The process of changing risk attitudes for business 
takes two routes. “

shift their risk attitudes, they will shift their approach to 
their business and especially to the risks of their busi-
ness. If they are very perceptive and highly adaptable, 
they will change to a belief that aligns with the current 
environment and the process will begin again. They 
will help to lead their firms to the best result they can 
achieve in that environment. If they are less adaptable 
and less perceptive, they might well shift to a different 
risk attitude that does not align with the environment. 
Their firms might then lurch along from one type of 
suboptimal performance to another.

The second way that firms adapt is by changing lead-
ers. This happens when the firm has been spectacularly 
surprised. Firms that were led by Maximizers like Mr. 
Prince at Citigroup are more likely to create large 
crashes for their firms when the environment shifts and 
the firm persists with its “all ahead full” approach to 
business. Firms led by leaders with a Manager strategy 
are also subject to potential collapses. We saw that in 
the past two years when the firms who used their excel-
lent risk models to help them to take the maximum 
amount of risk that was tolerable as shown by those 
models and subsequently choked on the outsized losses. 
Conservators and Pragmatists are much less likely to 
suffer collapse because their strategies tend to be much 
less aggressive. Their surprises are more often disap-
pointments because their firms miss the opportunities 
that the Maximizers are jumping on and the Managers 
are taking up in moderation.

In the firms where the board reacts to a collapse or even 
to a disappointment by changing leaders, then the new 
leader faces the problem of shifting the prevailing risk 
attitude of the firm. The new leader will be looking 
around for managers within the firm who share his or 
her attitude. Through a series of persuasions, orders, 
reorganizations, promotions, retirements and layoffs, 
the new leader will eventually get the firm’s risk atti-
tude to be what he or she and the board want.

Meanwhile, the success of the firms with an approach 
that aligns with the environment will cause them to 
grow and the firms with a misaligned approach will 
shrink relative to each other. That process will addi-
tionally create a shift of the emphasis of the market to 
different risk attitudes. The risk attitude that aligns well 
will eventually control more of the market’s resources.

Back in the risk department, there is a model, and a group 
of modelers. They will be seeing and experiencing the 
changing environment. Emerging experience will fit one 
and only one of these four situations. (See figure 2)

Figure 2 

Drift Volatility
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Boom High Low
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Uncertain Unknown/
Unpredictable
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The modelers will also experience the changing winds 
of corporate risk attitude described above. Most often 
the risk models will fit into the moderate mold. These 
modelers will find that their work will be seen to have 
high value by management sometimes and completely 
ignored in other times. However, there may be folks 
within the modeling group who think that the model is 
too conservative and see that it will keep the firm from 
growing at the time when business is very advanta-
geous. There may be others who think that the moder-
ate assumptions understate the risks and lead the firm 
to excessive risk taking at just the wrong time. And 
when the discussion in the modeling group turns to 
correlation calculations, the fourth group will identify 
themselves by their skepticism about the reliability of 
any tail diversification effects.

The same surprise process that causes changes in firm 
risk attitude will have a profound impact on the risk 
modelers. That impact may mean that management 
looks at different outputs from the models at different 
points in time. Or it might mean that the firms ignore 
the models and the modelers some of the time. And 
some firms will simply stop funding risk modeling and 
disband the entire group.

To avoid this cycle of irrelevancy and defunding, risk 
modelers need to be aware of this process of changing 
environments and changing risk attitudes, and perhaps 
to be more adaptable to the different environments and 
to the different needs for risk information from manag-
ers with different risk strategies.



42  |  DECEMBER 2011  |  Risk management

R I S K  C U LT U R E  A N D  D I S C L O S U R E S

Changing Seasons of Risk Attitudes | from Page 39

And to expect surprises.

For more on Surprise see Thompson, M. (2008). 
Organising and Disorganising, Triarchy Press.   

ENDNOTES: 

1   Frank Knight famously separated the definitions of Risk (as 
purely statistical variations with known frequency distribu-
tions) and Uncertainty (variations with unknown distribution 
of frequency and severity) in his 1921 book Risk, Uncertainty, 
and Profit. 
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ULTIMATELY, ONE CAN ARGUE that many of the 
risks that we face in society today manifest themselves 
through the decisions, behaviors and biases of people, 
and not necessarily through any exogenous and uncon-
trollable event. The collaboration of an actuary, Dave 
Ingram, FSA, CERA, MAAA, and anthropologist, Dr. 
Michael Thompson, continues to strengthen this notion 
and is prompting some tremendously interesting, evolu-
tionary and thought-provoking articles (such as the one 
in this issue of The Actuary) around the cultural view of 
risk and how it relates to risk management and decision 
making.

I personally had the pleasure of meeting Dr. Thompson 
for the first time at the 2010 ERM Symposium in Chicago 
last April where I had recruited both he and Dave Ingram 
to speak on the human element of risk management. I 
learned that he not only is an eloquent speaker, and a 
tremendous individual, but he also is an avid mountain 
climber as 35 years ago he successfully climbed Mount 
Everest in the Himalayas. One would think this would 
give a great perspective of risk and reward—definitely a 
human element perspective.

As humans, we tend to not search for disconfirming evi-
dence to our own beliefs. As decision makers, we all devi-
ate from rationality based on our own biases, and we are 
clearly influenced by the format of how we receive infor-
mation. Dr. Thompson goes further, saying, “At the heart 
of what I have to say is a very bold assertion. The world of 
human activity can be divided into four divergent views 
of risk, four resulting [types]of risk taking strategists, and 
four different environments that impact the views of risk 
and are themselves impacted by the [types] of risk tak-
ing strategists. These four divergent views came from the 
eminent British anthropologist Mary Douglas in her work 
on plural rationalities.”

Dr. Thompson is one of Mary Douglas’ students. The 
main premise of plural rationalities concerns how we, as 
individuals, behave in groups. We as humans do not fol-
low alone the risk-averse individual in classical econom-
ics, nor the emotional human via behavioral finance. Dr. 
Thompson states, “Groups form because people share 
the same concept of risk. In anthropology, the key term is 

Risk—The Concept of Dr. Michael Thompson’s “Di-vidual”
By Robert Wolf

‘social solidarity,’ defined by the great French Sociologist 
Emiel Durkheim as, ‘The different ways we bind ourselves 
to one another as a way of organizing and in so doing 
determine our relationship with nature.’” Dr. Thompson 
further states, “Cultural theory, in essence, maps all that 
in a four-fold typology of forms of social solidarity. These 
four specific models of nature, per se, are intended to 
sustain and justify the four fundamental arrangements for 
the promotion of social transactions.”

When asked how he differs from the points of view of 
behavioral economists, Dr. Thompson says, “Behavioral 
economists assume that we individuals get it wrong in a 
systematic way. I argue that these forms of social solidari-
ties should be the true units of analysis, and not that of 
the individual. Indeed, if you take this approach, it makes 
more sense to speak not of the individual, but of the ‘di-
vidual.’ If you think about it, we all move in and out of 
those different solidarities in different parts of our daily 
lives. These views contrast the more familiar theories that 
take the ‘individual’ as the unit of analysis, such as the 
case in classical economics,  and behavioral finance. ”

From these views one can truly substantiate why we as in-
dividuals sometimes say one thing, and do the other. Dr. 
Thompson and Dave Ingram’s work continues to evolve 
in integrating the anthropological viewpoints and the fi-
nancial problems that actuaries and risk managers face 
with the four seasons of risk, the types of risk manage-
ment tools, and the ultimate solution of rational adapt-
ability and what Dr. Thompson calls clumsy solutions. 
Their contribution via the voice and the pen, I envision 
will continue to evolve how we will think in risk manage-
ment terms. I thank Mike and Dave for being our cata-
lysts in bringing about, perhaps, a new way of thinking. 
I’m looking forward to their next chapter.  

Robert Wolf, ASA, CERA, FCAS, MAAA, is staff fellow,  
Risk Management for the Society of Actuaries. He can 
be contacted at rwolf@soa.org.   
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Book Review: Mastering Operational Risk
By Tony Blunden and John Thirwell 
Review by Pierre Tournier

A weakness of this book is the use of acronyms and 
terms that are not defined until later sections. Early 
on, for example, the authors mention the “three lines 
of defense” philosophy which isn’t described until the 
last few chapters. Also, the two parts of the book don’t 
feel cohesive. The first part is relevant to the corporate 
world and provides significant detail. The second part 
is broader and more general. 

The authors did give me some things to consider; quite 
a few of the suggestions were different from my own 
experience. In the proposed framework risk ownership, 
monitoring duties, and management is pushed down to 
the business level. Risk Management takes an assur-
ance, support, and coordination role rather than being 
directly involved in daily monitoring. I partially chose 
this book because it was published post 2008 and was 
based on a banking model. I expected a more central-
ized structure then what was proposed. 

A significant strength of Mastering Operational Risk is 
how risk culture is treated. In addition to being directly 
addressed, risk culture is continuously referenced as 
a key part of the risk management process. The value 
of upper and middle management buy-in is frequently 
stressed as is pairing risk management with the proper 
message. Risk management awareness and education 
are also well covered themes.

In all, Mastering Operational Risk does a good job 
of being both a conceptual and hands on introduction 
to operational risk. This book takes a “big picture” 
approach, mostly describing a structure and manage-
ment philosophy for each step of operational risk man-
agement. At the same time, entire sections are devoted 
topics like to effective report generation and practical 
scenario analysis. I liked having the “big picture” 
issues along side day to day challenges to maintain my 
perspective.   

WHEN I PICKED UP MY COPY of Mastering 
Operational Risk I had a mixed feeling. First, it looks 
imposing (344 pages) and second, it’s part of a series of 
financial “how-to” books. As soon as I started reading 
though, it was obviously worth my time. Although it’s 
long, each section feels concise and I wouldn’t want 
less detail.

Mastering Operational 
Risk is a high level 
review covering the the-
ory, culture, and practice 
or the risk management 
process. Although the 
sample reports are based 
on the banking industry, 
the material is relevant 

in other industries. The authors keep a practical feel 
by spending significant time on some of the nuts and 
bolts of risk management, particularly around effective 
reporting technique. The target audience is someone 
looking to understand the big picture of their company’s 
operational risk framework or who is moving into a risk 
management role.

The authors begin by describing a risk management 
framework that also sets the structure of the book. 
The framework includes: Governance, Indicators, 
Assessments, Events, Modeling, and Reporting. Each 
part of the framework is sequentially presented in rela-
tion to this framework. Continually tying the different 
parts of operational risk management process back to 
the framework is a useful way of putting context to 
each section and reminding the reader of the overarch-
ing purpose. For me, this was the most interesting and 
relevant part of the book.

The second part of this book deals with specific 
risks (people, reputation, continuity) and specific risk 
management tools (insurance, audit.) Throughout this 
section, the emphasis is on proactive operational risk 
management rather than describing a management 
framework. The section header “The outsourcing proj-
ect – getting it right at the start” is representative of this 
part. The boundary between careful business practice 
and risk management is blurry at times, but this seems 
consistent with the idea that effective operational risk 
management includes a risk culture.

Pierre Tournier, FSA, CERA, is an 

assistant actuary in the Profitabil-

ity Management area at Allianz 

Life Insurance Company in Min-

neapolis. He can be reached at 

pierrectournier@hotmail.com.
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