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ABSTRACT 

The estimation of surivival functions is fundamental to the disciplines 

of reliability engineering, biostatistics, demography, and actuarial science. 

In actuarial applications we deal with populations of insureds, annuitants, 

and pensioners. We need to estimate probabilities of individuals remaining 

in the populations and moving from the populations for reasons of death, change 

in health status, voluntary withdrawal, etc. Estimates of these probabilities 

aid us in premium and reserve determination and, as a consequence, in develop­

ing investment strategies and cash flow projections. 

Let there be K age groups in a life table. Suppose that for each age 

group a death rate has been observed for each of c1 calendar periods. We 

present a Bayesian approach to (1) estimation of the underlying death rates 

for the observation period (graduation), (2) estimation of the underlying 

death rates for c2 future calendar periods (extrapolation), and (3) prediction 

of the observed death rates for the c2 future calendar periods (forecasting). 

KEY WORDS: Bayesian, Graduation, Forecasting, Mortality. 
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1. INTRODUCTION 

The estimation of survival functions is fundamental to the disciplines 

of reliability engineering, biostatistics, demography, and actuarial science. 

In actuarial applications we deal with populations of insureds (lives or 

property), annuitants, or pensioners. We need to estimate probabilities of 

items remaining in populations and moving from populations for reasons of 

death or damage, change in health status, voluntary withdrawal, or what have 

you. Our estimates of these probabilities, along with other information, aid 

us in premium and reserve determination and, as a consequence in developing 

investment strategies and cash flow projections. In demography estimates of 

mortality, fertility, and marriage rates are used to obtain predictions of 

age distributions and sizes of populations, which are needed for a va\iety 

of planning and policy purposes. 

In this paper we shall present our results in terms of the estimation of 

human mortality rates, but the results carry over to other applications. We 

shall discuss a Bayesian model that encompasses both graduation (smoothing) 

and prediction. 
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2. LITERATURE REVIEW 

Estimates of mortality rates are almost universally graduated or ad­

justed to conform more nearly to a priori smoothness characteristics (Haem 

(1972), (1976) and Miller (1942)). The deviation of the estimates from ex-

pected behavior is the result of several sources of error. The data may be 

incomplete either because they are a sample or because individuals become 

unobservable during the observation period (censoring). The estimation 

methods themselves usually rely on approximations that introduce some degree 

of error. Finally, reporting and processing errors can be quite serious. 

Adjustment of raw estimates can be done by fitting them to smooth 

functions such as Gompertz, Makeham, or Hadwiger (inverse Gaussian) functions 

(Haem (1972), (1976)). A more common practice in actuarial science is to find 

adjusted estimates that minimize an objective function containing "fit" and 

"smoothness" components, i.e., 

where 
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K number of age groups (assumed "equally spaced") 

x age group index 

ux raw estimate of mortality rate x 

vx graduated estimate of mortality rate x 

wx =weight (usually the exposure to risk of death) 

6m = m-th forward difference operator 

q1 ,q2 positive numbers, usually integers and usually equal 

e parameter measuring relative emphasis on "smoothness" over "fit" 

E.T. Whittaker (1923) developed the latter formulation of the graduation 

problem using a Bay~sian argument in which the likelihood function was pro­

portional to 

and the prior density was proportional to 

He chose the mode of the resulting posterior distribution as the graduated 

values on the theory that the purpose of graduation ~1as to obtain "most 

probable" death rates. 

This prior density was singular on.!!_= (v
1 

, .•• ,vK)', and while singularity 

is not a disastrous quality for a prior, the justification for its use in 

this case is not immediately apparent. Whittaker may not have thought in 
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terms of a prior on~ at all but rather in terms of a prior on S of the 

-es form ee , where S could be any of a number of measures of smoothness. 

Many other possible prior functions come to mind, but Whittaker's choice has 

become more or less enshrined in actuarial practice. 

I.J. Schoenberg (1964) modified Whittaker's objective function by allowing 

unequally-spaced arguments a= x1 ~ ... ~ xn = b, choosing wx = 1, and treat­

ing vx as a function having a square integrable derivative of order m. He 

showed that the solution of the problem 

n 2 e b ()2 
min{ I (u -v ) + ------2 f (v m ) dx} 

V v=l XV XV (m!) a X 

was a unique spline function of order 2m with knots xv(l~v~n). He also showed 

that for the optimum spline function vx' (m!)-2 f~ (v~ml) 2 dx could be written 

as a positive definite quadratic form in the m-th divided differences of vx' 

the values depending on the knots. Wahba (1978) showed how a spline smoothing 

function could be obtained from a Bayesian argument using an improper prior. 

Marquardt (1974) rederived Whittaker's objective function using ridge regression 

arguments, ~1hich can also be given a Bayesian interpretation. 

Kimeldorf and Jones (1967), using a direct Bayesian argument, proposed 

using nonsingular priors in the graduation problem and discussed the elicitation 

of prior parameters in some depth. (See also Dickey (1969).) Hickman and 

Miller (1978) suggested that prior specifications could be simplified by 

making variance stabilizing transformations on the raw estimates. 

All the methods discussed so far were designed to smooth mortality rates 

arising from a single calendar period of observation. Our purpose in this 
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paper is to develop a model that incorporates several calendar periods and 

that will be useful for prediction. 11cKay and Wilkin (1977) discussed a 

two-directional smoothing technique based on a direct extension of Whittaker's 

objective function, but their purpose was not prediction. Three papers on pre­

dicting demographic functions and reasons for doing so are Keyfitz (1972), 

Brass (1974), and Cox and Scott (1977). 

In an extensive paper on mortality graduation and forecasting Cram~r 

and Wold (1935) stated that the earliest attempt at forecasting mortality 

known to them was made by the Swedish astronomer Gyld~n in 1878. The earliest 

cited commercial use of a mortality projection was 1901 and had to do with pre­

dicting annuity values for a pension fun1. Cram~r and Wold reported Swedish 

demographic data for males and females (exposed to risk and deaths) for the 

twelve five-year age intervals between the ages of 30 and 90 and for the 26 

five-year calendar periods between 1800 and 1930. They predicted mortality 

rates through 1980. 

3. MODEL SPECIFICATION 

Definitions 

Haem (1971), (1972), and (1976), has presented a general stochastic model 

for demographic populations and discussed the estimation of transition rates 

(usually called forces in demographic and actuarial work). While we do not 

wish to reproduce Haem's model, we need to present some notation and his key 

estimation theorem. 

For any life in the population let the positive-valued random variable T 
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stand for the time until the life dies. Assume that T has absolutely con­

tinuous distribution function F(·) with density f(·), and define the force of 

mortality (instantaneous death rate) to be 

~(t) f(t)/[1-F(t)]. 

fort> 0. If w denotes the maximum value of T, then ~(w) = oo. If F(tlx) 

denotes the conditional distribution function of time until death, given survival 

to time (age) x, then we have 

t 
F(tlx) 1 - exp{- f ~(x+s)ds}. 

0 

Similarly, we may define the force of transition from the population for reasons 

other than death, v(t), say. Then the total force of transition is the sum 

~(t) + v(t). 

We break the age interval [O,w) into subintervals [O,x1), [x1 ,x2), .... ,[xK+l'w) 

These intervals are typically 1, 3, 5, or 10 years in length. During an ob­

servation period, which would ordinarily be between 1 and 5 years in length, all 

the lives between ages xk and xk+l(k = O,l, ... ,K) contribute "exposure to risk 

of death or withdrawal" during that age interval. The exposure in the age 

interval [xk,xk+l) is denoted by Lk and is the total time measured in years lived 

by individuals under study during the observation period. The exposures Lk and 

the numbers of deaths Dk during each age interval k are the data from which 

mortality estimates are made. In actuarial and demographic work we make 

estimates of ~(xk), where xk is a point in [xk,xk+l), graduate them, and then 
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find other values of ~ by interpolation. These values can then be used to 

estimate other important mortality functions such as tqx = F(tjx). 

Let nk denote the total number of (stochastically independent) lives under 
p 

study during a given observation period. Assume Lk/nk + 'k > 0 as nk + oo, 

A 

and take ~(xk) = Dk/Lk. Let n denote the total number of lives ever under study. 

Then Hoem (1972) shows that, under suitable conditions, the quantities 

A 

/rl[~(xk)- u(xk)], k l, ... ,K, 

are asymptotically independent and normally distributed with means 0 and 

asymptotic variances a~= ~(xk)/Tk. It follows from a theorem in Rao [(1952), 

sec. 12e] that the quantities -lC(xk) are asymptotically independent and normally 

distributed with means l~(xk) and variances l/4Lk. These variances depend only 

on the observed quantity Lk' a very helpful simplification. 

The Likelihood Function 

Hoem's theorem continues to hold, under suitable conditions, when ob-

servations are made over c adjacent calendar periods. We shall index calendar 

periods by£ =1 ,2, ... , c, and we define (in fairly obvious notation) the quantities 

The force of mortality in the £-th time period is ll£( ·), and xk£ is the 

estimation point in age interval [xk ,xk+l) chosen during time period £. 
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Let!:!..= (ull,u2l'"""'uKl'ul2,···•uKc)', Y... = (vll,v2l'"""'vKl'vl2'"""'vKc)', 
(-1)- ( -1 -1 -1 -1 -1), and~ - L11 ,L 21 , ... ,LKl ,L12 , ... ,LKc . Asymptotically, the conditional 

density of!:!_, given y_ and ~is proportional to 

(1) 

where B = 250 diag L(-l). 

We let c = c1 + c2, where c1 is the number of periods of observation and 

c2 is the number of periods to be predicted. We partition!:!_, y_, and B as follows: 

u = v = 

u(2) v(2) 
Kc2xl Kc2xl 

B = Bll 0 
Kc1 xKc1 Kc1xKc2 

From a Bayesian point of view, given a prior distribution on y_ and data 

(~(l\ .~(-l)), we wish to compute the posterior distributions of v{l) and v( 2) 
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and the predictive distribution of ~( 2 ). The posterior distributions of ~(l) 

and ~( 2 ) depend only on the elements of h(-l) that come from the observation 

period, so the conditioning of the inferences appears natural. The predictive 

distribution of ~( 2 ), given (~(l) .h(-l)) requires a guess at the exposures that 

will be observed in the prediction period. A formal mechanism for guessing at 

these exposures is not part of our model , and we assume that the future ex-

posures will be projected by standard demographic techniques. We shall base 

the necessary conditional distributions (likelihood functions) on the normal 

density in (1). The approximation error in doing so is likely to be negligible 

in most actuarial and demographic applications as the exposures tend to be large. 

The Prior Distribution 

The function of the prior in Bayesian graduation is to set forth the 

smoothness characteristics that are to be satisfied by the graduated estimates. 

We shall first discuss smoothness over age groups for a given calendar period. 

Then we shall discuss smoothness over calendar periods. 

For each calendar period ~ we shall assume in our illustration that the 

prior distribution on ~i = (vli'··· ,vKi) 1 is multivariate normal with mean 

~i = (mji •... ,m~i) 1 and covariance matrix 

A 1, ... ,K, j 1 , •.. , K, 0 < pl < 1. 

This form for the prior covariance matrix is selected not only because it 

meets the technical requirements of being symmetric and positive definite but 

also because each of its parameters has a fairly natural interpretation. The 

prior information about transformed forces of mortality comes from earlier 

mortality studies. The exposures generated in these earlier studies are 
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generally known and hence serve as a starting point for determining Li, 

i = l, ••. ,K. In many cases the graduator may want to reduce the observed 

exposures if he feels setting the Li's equal to these exposures may overstate 

the certainty with which current transformed forces are known. 

The parameter pl has a direct interpretation as the reduction in the 

variance of a transformed force if the value of an adjacent force were given. 

In some cases the choice of a single pl for all ages may be simplistic and not 

adequately represent the prior relationship among transformed forces at different 

ages. Two choices, each of which requires the specification of additional para­

meters, are available. First, we may choose a larger class of covariance 

matrices or attempt to specify all the elements of A directly by a pariwise 

consideration of prior probability statements about transformed forces, with 

an adjacent value known. See Kimeldorf and Jones [(1967), section III] for a 

paradigm for doing this. 

A second alternative is to partition A into submatrices, each having 

the fonn of A but with different p's, so that each submatrix reflects the 

belief that within different age intervals the correlation coefficient between 

adjacent transformed forces may be different. See Hickman and Miller (1978) 

and Klugman (1978) for further discussion of this point. (We note that 

Leonard (1973, 1978) has used covariance matrices similar to A in other 

Bayesian smoothing contexts.) 

We now define the cxc matrix 

c = ((p~i-jl)) i,j l, ... ,c, 

where p2 is a positive fraction measuring the correlation between adjacent 

calendar periods. We then take the covariance matrix of the multivariate 
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normal prior distribution of v = (~1·····~)' to be the Kronecker product 

of C and A, i.e., 

GA =C 1~A= A 
KcxKc 

A 

This matrix is a function of only the K + 2 parameters Li ,L2····•LK' pl and p2, 

all of which can be given concrete interpretations. Many other such structures 

can be designed, but we feel this one has both reasonable simplicity and 

flexibility to recommend it. 

The specification of the vector of prior means ~can be accomplished in 

any number of ways. One intriging possibility is to start by assuming that 

the prior expected forces of mortality fall on a conveniently chosen smooth 

curve, such as that of t·iakeham. Of course, the chosen prior means will be subject 

to the square root transformation to produce the vector ~· The posterior means 

will then be constrained toward the selected transformed curve without being 

required to fall upon it, as was done by Cramer and Wold and others using 

specific fimilies of distributions. This contraint toward smoothness, but with 

the possibility of the data overriding the shape of the curve of prior means, 

is certainly in the spirit of Whittaker's original Bayesian based suggestion. 

Cornfield and Detre (1977) explicitly mentioned these ideas in the context 

of Bayesian clinical life table analysis. 
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The Posterior Distributions 

The posterior mean (mode) of ~(l) will be interpreted as the graduated 

values of the transformed mortality rates that have arisen during the ob­

servation period, while the posterior mean (mode) of ~( 2 ) will be interpreted 

as the predicted transformed mortality rates. The mean (mode) of the predictive 

distribution of ~( 2 ), given ~(l), will be taken as a forecast of the raw 

transformed mortality rates that will be observed as we pass through the pre­

diction period. Of course, the latter two means are equal, but their standard 

errors are different. 

The joint distribution of the vector [~(l) 
1 

.~( 2 ) 
1 

.~(1) 
1 

.~( 2 ) 1
]

1 is 

multivariate normal with mean [!!!.(ll
1

,!!!_( 2l
1

,!!!_(ll
1

,!!!_( 2)
1

]
1

, where 

m( 1) I [ I I ] d ( 2) I [ I I ] d • t • !!!_1, ... •!!!.c an !!!. !!!.c +l'" .. •!!!.c , an covanance rna nx 
1 1 

GAll GA12 GAll GA12 

GA21 GA22 GA21 GA22 

GAll GA12 GAll +Bll GA12 

GA21 GA22 GA21 GA22+822 

where the GA .. define a partition of GA that is compatible with the partition 
lJ 

of B. The conditional distributions of ~(l), ~( 2 ), and ~( 2 ), given ~(l) 

follow immediately from this result. They are all multivariate normal distri-

butions whose means and covariance matrices are given in Table 1. 
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Table 1. Means and covariance matrices of conditional distributions, given ~(l). 

Random 
Variable 

v(l) 

)2) 

u(2) 

Conditional !-lean Conditional Covariance 
l~atri x 

GAll-GAll(GAll+Bll)-lGAll 

GA22-GA2l(GAll+Bll)-lGA12 

GA22+822-GA21(GAll+Bll)-lGA12 

The covariance of ~( 2 ), given ~(l), depends on s22 , which in turn depends 

on a specification of the exposures to be observed in the prediction period. 

Naturally probability statements about future forces must depend on future exposures. 

The Reversal of the Transformation 

The use of the variance stabilizing square root transformation has greatly 

simplified the distribution theory of the tra~sformed mortality rates, but of 

course we wish to make statements about the untransformed rates. We mainly 

consider statements about the marginal distribution of a single rate. Let v 

denote the transformed rate under discussion and denote its marginal distri­

bution by N(ev,o~). We wish to analyze the marginal distribution of the 

untransformed rate n = i, which is a non-central chi-square distribution with 

1 degree of freedom. The distribution function of n is obtained from 

IY-ev 
2 °v Pr[n2Y] = Pr[v 2Y] = J 

IY-ev 
ov 

2 z 
_1_ e-2 dz, 
,127[ 

so probability intervals are easy to obtain. Of course the idea of using the 

mode of n's distribution is not sensible here, but the mean, and in fact any 
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moment can be obtained from the formula E(nk) = E(v2k). In practice, if a 

point estimate is needed for decision making purposes,. then e~, the square 

of the posterior mean (mode) of v1 will often be used, but the minimum mean 

square error estimate E(n) = e~ + o~ perhaps deserves attention. 

Probability statements about vectors of rates require calculations with 

multivariate distrib~tion functions that are not easy to handle. Tedious 

calculations will yield moments of the untransformed rates, however. 

4. MEASURES OF FIT AND SMOOTHNESS 

Evidently graduation is a complex, multidemensional process, and so it 

is inevitable that a graduator will have difficulty assessing at a glance the 

"success" of the application of any formal graduation procedure. Often the 

graduator is not aware of the policy issues that may be decided on the basis 

of his work. As a result it is difficult to formulate a loss function which 

may be used with the posterior or predictive distributions in a formal decision 

theory approach to graduation and forecasting. Thus a graduator will typically 

perform a variety of in forma 1 "tests" on the results from a formal procedure. If 

the results pass the tests, they are deemed reasonable. Reasonableness is 

a necessary but not sufficient condition for acceptability, which depends 

(presumably) on the graduator's acceptance of the criteria used by the formal 

procedure. Within the Bayesian approach, failure to pass a "test of reasonab 1 e­

ness" requires examination of the prior distribution and the data for in-

compatibilities. 
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In univariate graduation the quantities most commonly computed as "test 
K 

statistics" are the measures of fit, L Lx(ux-v )2/250, and smoothness 
K-m x=l x 
L (~mv )2, where m = 2 or 3. These quar.tities are useful to an experienced 

x=l x 
graduator in comparing a series of graduations. 

Notice that the traditional measure of fit, 

nothing more than the exponent of (1), so with 

K 2 
L L (ux-vx) /250, is 

x=l x 
~ replaced by a consistent 

estimator this measure can be interpreted as a chi-square statistic. But 

from a Bayesian point of view perhaps a more natural measure of fit would 

be the exponent of the posterior distribution with ~ replaced by ~· This 

can also be interpreted as a chi-square statistic and is a generalized dis-

tance between .~ and v in a coordinate system defined by the covariance 

matrix of the posterior distribution rather than the covariance matrix of the 

sampling distribution (1). 

The measure of fit may be extended to the two-dimensional case in an 

obvious way, but we can think of several ways to measure smoothness in two 

dimensions. For example, McKay and Wilkin (1979) use the function 

where 

c K-2 2 2 K c-2 2 2 
a L L (~ v .. ) + B L L (~ v .. ) 

j=l i=l v lJ i=l j=l h lJ 

~ stands for "vertical forward difference", 
v 
~ stands for "horizontal forward difference", 
h 

a,B are constants measuring relative emphasis on vertical 

and horizontal smoothness. 
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In the context of Bayesian graduation we believe the calculation of some 

generalized variances is useful. The generalized variance of a nonsingular 

multivariate normal distribution is simply the determinant of the covariance 

matrix. The generalized variances of the prior and posterior distributions 

are measures of concentration of these distributions about their respective 

means. These generalized variances, along with the generalized variance of 

the distribution in (1), JBJ, measure the interaction of prior opinion and 

data. Finally, the generalized variance of the predictive distribution of 

future observations is a measure of the overall precision with which pre­

dictions can be made. 

5. NUMERICAL ILLUSTRATIONS 

In our first numerical illustration we graduate five and predict three 

calendar periods using a portion of the Cram~r-Wold (1935) data. Forces of 

mortality (Xl0 3) are estimated for each of the twelve five-year age groups 

between ages 30 and 90. The observation periods are the five five-year periods 

between 1861 and 1885. The prediction periods are the three five-year periods 

between 1886 and 1900. Estimated forces are assumed to be for the middle 
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of the age group and the middle of the calendar period. Table 2 contains the 

Cram~r-Wold data. To illustrate predictive analysis we have ignored the data 

in the last three calendar periods, but these data will be useful in judging 

the predictions from the formal procedure. In applying the procedure the ex­

posures to risk for the prediction periods are projected assuming exposures 

increase by 5% per period in each age group. 

We have conducted an extensive sensitivity analysis on these data, 

changing the input values of the prior means, the hypothetical past exposures, 

and the values of pl and p2. (See Hickman and Miller (1979).) For illustrative 

purposes here we shall display only one graduation/prediction. The prior 

means are taken to be the square roots of the graduated values produced by 

Cram~r and Wold, so in this sense we are constraining toward a bivariate 

Makeham surface (see Table 3). The hypothetical past exposures are one-third 

of the reported actual exposures in the calendar period 1856-1860. We took 

pl = .9 and p2 = .5. 

Tables 4, 5, and 6 display some of the output from the Bayesian graduation/ 

prediction analysis. Table 4 shows the observed and graduated square roots 

of the forces of mortality in the observation period along with appropriate 

standard errors and generalized variances. Generally speaking, the graduated 

values are only slightly different from the observed values, a result we expect 

because the hypothetical past exposures are relatively small. The data have 

caused a dramatic drop in standard errors from the prior to the posterior dis­

tributions. The ability to quote standard errors for the graduated values 

seems to us to be a distinct contribution of the Bayesian approach. 
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Table 2. Male Deaths/Exposures for 12 Five-year Age 

Groups and for 8 Five-year Calendar Periods 

taken from Cratrer and Wold (1935) 

Calendar Period 

Age 
Group 1861-1865 1866-1870 1871-1875 1876-1880 1881-1885 1886-1890 1891-1895 1896-1900 
30-35 5165/695 808 6144/698 606 5802/660 396 5069/677 544 4926/693 847 4 721/724 605 5149/756 873 5059/766 184 
35-40 6207/680 014 6747/648 580 6314/638 072 5330/627 501 5007/631 630 4795/647 280 5143/673 908 5451/724 180 
40-45 6655/604 158 8277/631 658 6936/594 612 6035/603 386 5851/588 496 5341/592 426 5381/609 471 5650/643 482 

>-' 45-50 6989/488 385 9014/555 840 8319/575 737 6772/558 036 6733/552 518 6444/550 033 5976/557 050 6183/577 836 
>-' 

" 50-55 7236/381 662 9418/441 812 9039/500 496 8434/532 488 7862/513 702 7310/521 246 7175/513 448 7021/521 819 
55-50 8006/310 485 9552/336 390 9388/389 479 9584/452 662 9968/480 417 8823/468 254 9164/478 513 8506/472 109 
60-65 9470/255 413 10739/262 404 9740/286 128 10027/339 858 11360/396 312 11513/424 098 11076/416 817 10964/427 146 ' 
65-70 10740/206 882 12124/200 294 10551/209 634 106 71/234 820 12204/281 456 13166/333 466 14509/358 301 13651/354 276 'f' 
70-75 10435/132 644 13419/145 472 11339/143 655 10921/155 082 11964/175 473 13549/216 792 16338/259 337 17056/279 156 
75-80 8105/ 65 038 10932/ 78 316 1 049 3/ 86 444 10280/ 89 444 10938/ 98 922 11756/115 567 15011/144 193 17402/175 988 
80-85 5290/ 27 141 6012/ 29 691 I 6521/ 34 794 7406/ 42 174 7923/ 44 239 8428/ 50 292 10103/ 60 170 12705/ 75 412 
85-90 2054/ 6 866 2461 7 407 2428/ 8 320 3091/ 10 904 3728/ 13 901 3915/ 14 708 4550/ 17 114 5596/ 21 536 
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Age 
Group 

Table 3. Prior Parameters for Graduation and Prediction 

of Cram~r-Wold Data 

Hypothetical 
Age 1861- 1866- 1871- 1876- 1881- 1886- 1891-
Group 

Past _3 Exposures XlO 1865 1870 1875 1880 1885 1890 1895 

30-35 231 

35-40 210 

40-45 196 

45-50 187 

50-55 171 

55-60 160 

60-65 132 

65-70 93 

70-75 58 

75-80 32 

ao.:.a5 14 

85-90 4 

1861-1865 

3.041 2.972 2.903 2.835 2.768 2.698 

3.212 3.134 3.061 2.992 2.924 2.856 

3.464 3.366 3.282 3.205 3.134 3.066 

3.848 3.718 3.607 3.513 3.431 3.358 

4.427 4.252 4.099 3.971 3.868 3.779 

5.246 5.032 4.832 4.657 4.511 4.394 

6.336 6.100 5.866 5.645 5.449 5.283 

7.693 7.482 7.235 6.990 6.755 6.541 

9.346 9.182 8.960 8. 715 8.474 8.238 

11.395 11.243 11 .066 10.846 10.621 10.406 

13.911 13.768 13.606 13.427 13.229 13.052 

16.956 16.854 16.699 16.536 16.371 16.221 

pl .9 p2 .5 

Table 4. Square root of observed force of mortality (sampling 

distribution standard error)/graduated value of square 
root of force of mortality (posterior standard error) for 

observation period. Cram~r-Hold data. Prior standard errors 
and generalized variances also shown. 

Observed (SE)/Graduated (SE) 

Period 

2.629 

2. 789 

3.000 

3.291 

3.704 

4.298 

5.152 

6.356 

8.014 

10.187 

12.893 

16.130 

1866-1870 1871-1875 1876-1880 1881-1885 
30-351 2.72(.019)/ 2.81(.013) 2.96( .019)/ 3.02( .013) 2.96(.020)/ 2.94(.013) 2.74(.019)/ 2.75(.013) 2.66(.019)/ 2.69(.013T 
35-40 3.02( .019)/ 3.02( .012) 3.22( .019)/ 3.25( .012) 3. 14( .020)/ 3. 14( .011) 2.91(.020)/ 2.92(.012) 2.82( .020)/ 2.8G( .012) 
40-45 3.32(.020)/ 3.32(.012) 3.62{.020)/ 3.58( .012) 3.42(.021)/ 3.40(.012) 3. 16( .020)/ 3.1 7( .01 3) 3. 15( .021)/ 3. 12( .012) 
45-50 3.78(.023)/ 3.74(.013) 4.03( .021 )I 3.99( .012) 3.80(.021)/ 3.76(.012) 3.48(.021)/ 3.49(.012) 3.46( .021)/ 3.44( .01 3) 
50-55 4.35( .026)/ 4.32( .014) 4.62( .024)/ 4.56( .013) 4.25(.022)/ 4.24(.013) 3.98( .022)/ 3.95( .013) 3.91 ( .022)/ 3.89( .013) 
55-60 5.08( .028)/ 5. 10( .015) 5.36( .027)/ 5.31 ( .015) 4.91( .025)/ 4.91 ( .014) 4.60( .023)/ 4.59( .014) 4.56( .023)/ 4.50( .014) 
50-65 6.09( .031)/ 6. 12( .016) 6.40( .031)/ 6.35( .016) 5.83( .029)/ 5.87( .016) 5.43( .027)/ 5.50( .015) 5.35( .025)/ 5.313( .015) 
65-70 7.20(.035)/ 7.40(.019) 7.78(.035)/ 7.73(.019) 7.09(.034)/ 7.18(.019) 6.74( .033)/ 6.78( .018) 6.58(.030)/ 6.63(.018) 
70-75 8.87(.043)/ 9.03(.025) 9.60(.041)/ 9.51(.023) 8.88(.042)/ 8.91(.023) 8.39(.040)/ 8.48(.023) 8.26(.038)/ 8.3~(.022) 
75-80 11. 16( .062 )/11. 1 3( .034) 11.81 ( .05 7) /11. 71( .032) 1 1.02( .054) /1 1.06( .031) 10. 72( .053) /10. 66( .030) 10. 52( .050) /10 .52( .030) 
80-85113. 96( .096) /13. 71( .054) 14 .23( .092) !1 4. 45 ( .052) 13.69 ( .085) /1 3.68( .049) 13 .25( .077) /1 3.29( .04 7) 13. 38( .075) /13 .22( .046) 
a5-so 17 .3o(. 191 l/16. 81( .116l 1 18.23(. 1 84)/18. 16(. 1D9l 17 .o8( .173)116 .99(. 1D6l 16 .84(. 151 l/16 .5o( .o99l 16. 38(. 1 34)/16 .43( .o95l 

Prior 

0.18 X 10-15 

Generalized Variances X 10180 

Sampling Distribution 

0.38 X 105 

Posterior 

Q.J7 X 10-35 

1896-
1900 

2.555 

2. 721 

2.934 

3.228 

3.636 

4.218 

5.045 

6.210 

7.813 

9.966 

12.720 

16.073 

Prior Standard Errors 

of Graduate Values 

0.033 

0.034 

0.036 

0.037 

0.038 

0.040 

0.044 

0.052 

0.066 

0.089 

0.134 

0.250 

I 

"' 0 
I 

I 

~ 
I 



-22-

Table 5 reports traditional measures of smoothness for both square roots 

of forces and the forces themselves. The apparently minor adjustments have 

resulted in substantial increases in smoothness across age groups. The data 

are scanty across calendar periods, but the evidence suggests little or no 

smoothing across these periods. This is perhaps consistent with setting p2 = .5. 

We also ran the minimum mean squared error values, (mean) 2 
+ variance, through 

the smoothness calculation and found that their smoothness measures were larger 

than those of the actual data. 

Table 6 presents both Bayesian and sampling theory measures of "fit" for 

the observation period. The Bayesian measure is the exponent of the posterior 

marginal distribution of the component of ~{l) defined by the row or column 

under discussion with u's substituted for v's. The sampling theory measure is 

the usual exposure weighted sum of squares of the form Elx(ux-~x) 2/250, where 
A 

vx is the graduated value of ux. The overall measures of fit are computed 

from~ the cells in the observation period. The table also shows rankings 

of the column and row fits. While there are some minor differences in the 

rankings, the two sets tend to tell the same story. 

Table 7 presents some predictions of the transformed forces of mortality. 

If we look at these predictions as forecasts of future observed forces, we 

associate with them the predictive standard errors, whereas if we look at 

them as estimates of the underlying population forces, we associate with them 

the posterior standard errors. 

We also have covariances of the estimates, and these would be needed if 

we wanted to calculate the variance of a linear combination of estimated forces. 
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!;a1endar 
Period 

1861-65 

1866-70 

1871-75 

1876-80 

1881-85 

Averaqe 
Age 
-·- - -· 

30-35 

35-40 

40-45 

45-50 

50-55 

55-60 

60-65 

65-70 

70-75 

75-80 

80-85 I 

i 85-90 
I 

Table 5. Sums of squares of second/third differences of prior mean 

observed, and graduated forces of mortality and their 

square roots in the observation period. Cram~r-Wold data. 

Variable 

m u v m2 u2 
Differencing Across Age Groups 

1.06/0.04 1 
pl0-~2 pl0-4) 

1.01 /0.03 1.40/ 0.30 0.174/0.017 0.230/0.025 

1.05 /0.03 3.17/0.01 1.84/ 0.22 I 0.179/0.019 0.519/0.268 

1.07 /0.03 1.46/ 0.18 1.32/ 0.08 0.177/0.019 0.244/0.036 

1.10 /0.03 2.06/ 1.18 1.22/ 0.05 0.176/0.017 0. 302/0 .111 

1.15 /0.03 1.23/ 0.41 1.23/ 0.04 0.179/0.018 0.158/0.019 

I 
{X10- 4 ) {X10- 4 ) 

1.08 /0.03 1.86/ 0.82 1.33/ 0.09 0.177/0.018 0.291/0.092 
-~ 

- ... -· -··-· .. ··-· --- --·-··--· . -· ·--
p1o ~) 

0.003/0.003 0.14/ 0.15 0.11/ 0.09 0.006/0.000 4.43/ 4.92 

0.052/0.010 0.12/ 0.10 0.15/ 0.12 0.004/0.000 4.67/ 3.78 

0.280/0.046 0.32/ 0.29 0.22/ 0.19 0.018/0.003 15.06/ 14.25 
-

0.826/0.034 0.32/ 0.29 0.28/ 0.26 0.062/0.003 18.41/ 17.04 

1.72 /0.016 0.44/ 0.54 0.36/ 0.38 0.169/0.001 35.44/ 44.64 

1.65 /0.125 0.61/ 0.76 0.44/ 0.50 0.251/0.006 65.23/ 84.51 

0.767/0.236 0.89/ 1.09 0.58/0.69 0.216/0.024 134.38/ 172.92 

1.430/1.582 1.74/2.56 0. 88/ 1.09 0. 282/0.368 390.20/ 588.59 

4.066/2.065 2.30/ 2.85 1 .28/ 1.58 1 .16 /0.750 785. 34/l 006. 3 

2. 462/l. 668 2.36/ 3.97 1.64/ 2.16 1.00 /0.828 : 1242.8 /2111.2 

1.039/0.009 0.99/ 1.05 2.54/ 3.59 0.603/0.008 i 757.59/ 816.08 

2. 739/1.831 5.17/10.09 7.01/10.37 2.96/2.13 6482.6 I 12 673 

I (X10
3

) 

Average ~ _ _ 2_.42 ~~_It_ _ 1 ._28/ 1 .98 1.29/ 1.75 0.56/0.34 830 /1490 

v2 

I (X10- 4 ) 

0.181/0.018 

0.353/0.073 

0.224/0.032 

0.194/0.022 

0.190/0.018 
{X10- 4 ) 

0.228/0.032 
--

3.72/ 3.03 

3.96/ 4.91 

10.32/ 9.20 

16.22/ . 15.80 

27.43/ 30.33 

46.15/ 55.28 

88.45/110.12 

198.28/ 255.87 

436.27/ 588.71 

855.06/1154.4 

2019.7 /2895.8 

864 7. 2 /12 9 76 

1020 /1510 

I 
N 
w 
I 
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Table 6. Bayesian and sampling theory measures of 

"fit" of square roots of forces of mortality 

in the observation period. Cramer-Wold data. 

Calendar Measure 
Period Ba_lesian Rank Sam(!ling Theor_l Rank 

1861-65 253 21.4 

1866-70 140 2 11.0 2 

1871-75 47 5 3.92 5 

1876-80 92 4 5.26 4 

1881-85 100 3 6.88 3 

Age 
Grou(! 
30-35 66 4 8.19 2 

35-40 20 12 1.80 11 

40-45 24 10 1.99 10 

45-50 28 9 2.72 8 

50-55 29 7 2.94 6 

55-60 28 8 1.99 9 

60-65 40 5 2.83 7 

65-70 153 1 10.40 1 

70-75 97 2 6.73 3 
75-80 21 11 1.40 12 

80-85 68 3 4.50 4 
85-90 31 6 2.97 5 

Overall 794 48.5 
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Age 
Group 

30-35 

35-40 

40-45 

45-50 

50-55 

55-60 

60-65 

65-70 

70-75 

75-80 

80-85 

85-90 
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Table 7. Square root of observed force of mortality/ 

predicted value of square root of force of 

mortality (predictive standard error) (posterior standard 

error) for prediction period. Cram~r-Wold data. 

Observed/Predicted 

2.55/ 2.66(.034)(.029) 2.61/ 2.61(.037)(.032) 2.57/ 2.54(.037)(.033) 

2.72/ 2.82(.036)(.030) 2.76/ 2.77(.039)(.034) 2.74/ 2.71( .039)( .034) 

3.00/ 3.06(.037)(.032) 2.97/ 3.00(.040)(.035) 2.96/ 2.93(.040)(.035) 

3.42/ 3.36(.038)(.032) 3.28/ 3.29( .041) ( .036) 3.27/ 3.23(.041)( .036) 

3.74/ 3.79(.040)(.034) 3.74/ 3.71(.043)(.037) 3.67/ 3.64(.043)(.038) 

4.34/ 4.39( .041 )( .035) 4.38/ 4.30(.044)(.038) 4.24/ 4.22(.045)(.039) 

5.21/ 5.25(.046)(.038) 5.15/ 5.13(.049)(.042) 5.07/ 5.04(.049)(.043) 

6.28/ 6.48( .054)( .046) 6.36/ 6.32(.058)(.050) 6.21/ 6.19( .059)( .051) 

7.91/ 8.16(.069)(.058) 7.94/ 7.98(.073)(.064) 7.82/ 7.79(.078)(.065) 

10.09/10.36(.092)(.078) 10.20/10.16(.098)(.086) 9.94/ 9.95(.104)(.088) 

12.95/13.04( .139) ( .118) 12.96/12.89( .149)( .130) 12.98/12. 72( .158) ( .133) 

16.32/16.25(.259)(.222) 16.31/16.14( .275)( .243) 16.12/16.08( .292)( .248) 

Generalized Variances X 1o108 

Prior 

0.14 X lQ-8 
Sampling Distribution Posterior 

0.098 0.35 X 10-9 
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Such would be the case if we were to interpolate a force in the table 

using an interpolation formula that was a linear combination of tabled forces 

or if we were to approximate an integral with a linear quadrature formula. 

The second example is der~ved from d~ta collected by the committee on 

mortality and morbidity under group and self-administered plans of the Society 

of Actuaries. The data are published in the annual reports of mortality and 

morbidity experience number of Transactions, Society of Actuaries. The data 

used in the example are for female lives retired under group annuity policies 

on or after normal retirement date. Therefore, the perplexing problem of 

heterogeneous data created by ill health early retirements is reduced. The ex­

POsures and deaths are reported in terms of number of lives. The experience 

was contributed by a group of large life insurance companies that issued a 

high proportion of the group annuity policies in the United States and Canada 

during the period covered by the example. 

The prior means were obtained from the Ga-1951 female table (see Peterson 

(1952)). This table served as a reserve and premium basis for group annuities 

in the United States and Canada during the period covered by the example. The 

table was based on intercompany group annuity matured life experience for years 

1946-1950, with respect to retirements on or after the normal retirement dat~. 

The basic data will be found in the 1951 Reports of 11ortality and Morb~dity 

~erience, Transactions, Society of Actuaries. These data were used in 

SPecifying past exposures in the prior distribution. 

The prior means for the four calendar years 1953, 1958, 1963, and 1968 

used in the example were obtained by applying projection scale C to the 1951 
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mortality probabilities as specified in the 1951 Ga-female table. Projection 

scale C was one of three sets of annual rates of decrease in mortality pro­

babilities that were developed by U.S. actuaries around 1950. Scales A and B 

were proposed by Jenkins and Lew (1949). Scale A assumed a continuation of 

long term mortality decrease as had been observed during the first half of the 

twentieth century. Scale B assumed that after 1950 rates of mortality decrease 

would be smaller at ages below 60 and somewhat higher above age 60. This was 

based on the proposition that mortality at higher ages was most susceptible 

to efforts to control cardiovascular-renal diseases and cancer. Peterson's 

(1950) projection scale C assumed still larger rates of mortality decrease 

at higher ages. Table 8 compares the three projection scales for the ages 

used in the example. 

Table 8 

Average Rates of Decrease per year 

~ Scale A Scale B Scale C 

50 .016 .0125 .0125 

60 .012 .0120 .0125 

65 .010 .0110 .0125 

70 .008 .0095 .0125 

75 .006 .0075 .0100 

80 .004 .0050 .0067 

85 .002 .0025 .0033 

90 .000 .0000 .0000 

125 



-28-

Almost thirty years have passed since these projection scales were 

developed. With the benefit of hindsight one may observe that changes in 

mortality have not followed any of the projection scales. However, the scales 

were proposed only after systematic study that followed closely the outline 

suggested for specifying the mean of a prior distribution. That is, past 

mortality experience was studied and informed opinion was elicited. The work 

of Jenkins and Lew was exhaustive. Peterson, who built on the Jenkins and Lew 

foundations, had the advantage of three additional years of mortality experience 

and development of scientific opinion in forming projection scale C. 

In projecting exposure for the predictive distribution for 1968, two 

methods were used. For age groups at age 71 and above, the exposure for 1963 

was multiplied by the probability of survival for five years, for the central 

age of the group, according to the Ga-1951 female table. For age groups age 

65 and below, an average growth rate of exposure for the previous two five 

year periods was applied to the exposure in 1963. A mixed method was used 

for the age 66-70 group. That is; an estimate of the expected survivors from 

those exposed at ages 61-65 in 1963 was obtained by the same method used for 

higher ages. To this was added an estimate of the increase in exposure due to 

new retirements based on the method used at younger ages. 

Table 9 displays the actual deaths and exposures for the four years 1953, 

1958, 1963, and 1968. The year 1968 is taken as the prediction year, while 

the other three are observation years. Table 10 displays the prior parameters 

and projected exposures needed for this illustration. Table 11 displays the 

observed and graduated transformed forces and their standard errors, while 
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Tables 12 and 13 display measures of smoothness and fit. Table 14 presents a 

comparison of several predictions of the transformed and untransformed raw 

force of mortality. Comparison of columns (3) and (4) and columns (7), (8), 

and (9) shows that passing the data from the observation period through our 

Bayesian procedure yields better predictions than does using the prior mean 

(projection scale C). Columns (5) and (10) show the results of a naive use 

of the data. For each age group the ratios 

and 

rate in 1958 
rate in 1953 

rate in 1963 
rate in 1958 

were formed the geometric mean of these ratios was applied to the 1963 rates 

to obtain the projection for 1968. To obtain column (5) this procedure was 

applied to the transformed rates, column (6) the untransformed rates. Clearly 

these naive projections are inferior to the Bayesian predictions. 
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Table 9. Female annuitant deaths/exposures for 9 five-year 

age groups and for 4 years. (Sources in text) 

Year 

Age 
Group 1953 1958 1963 1968 

51-55 0/ 171 2/ 214 3/ 328 3/ 439 

56-60 15/1371 8/ 1874 20/ 2879 28/ 3597 

61-65 63/4899 87/ 793g 132/ll ,230 174/16,530 

66-70 111/6596 235/14,463 430/22,500 529/33,360 

71-75 69/2414 180/ 6451 407/13,668 611/22,109 

76-80 69/ 925 115/ 2029 340/ 5387 611/ll ,689 

81-85 35/ 269 59/ 631 158 1448 351/ 3941 

86-90 9/ 62 23/ 130 59/ 363 130/ 802 

91-95 2/ 10 71 24 13/ 62 48/ 149 
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Table 10. Prior parameters and predicted exposures for 

female annuitant data 

Hypotheti ca 1 Prior Means of Transformed Forces Projected 
Age Past Year Exposures 
Group Exposures 1953 1958 1963 1968 for 1968 
51-55 577 1.95 1.89 1.83 1. 78 459 

56-60 4,323 2.48 2.40 2.32 2.25 4,147 

61-65 12,277 3.29 3.18 3.08 2.99 16,846 

66-70 13,024 4.23 4.10 3.97 3.85 33,745 

71-75 5,474 5.88 5. 72 5.56 5.41 20,024 

76-80 2,027 7.87 7. 71 7.55 7.40 10,877 

81-85 . 519 9.99 9.87 9.75 9.63 3,658 

86-90 131 12.31 12.27 12.22 12.21 795 

91-95 13 15.17 15.17 15.17 15.17 147 

.9 
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Age 
Group 

51-55 

56-60 
61-65 

66-70 

Table 11. Square root of observed force of mortality 

1953 

(sampling distribution standard error)/graduated 

value of square root of force of mortality (posterior 

standard error) for observation period. Female 
annuitant data. Prior standard errors and generalized 

variances also shown. 

Observed (SE)/Graduated (SE) 
Year 
1958 1963 

0.00(1.209)/ 2.09(0.446) 3.06(1.081)/ 2.01(0.409) 3.02(0.873)/ 2.67(0.387) 

3.31(0.427)/ 2.56(0.151) 2.07(0.365)/ 2.43(0.134) 2.64(0.295)/ 2.64(0.126) 

3.59(0.226)/ 3.34(0.085) 3.31(0.177)/ 3.21(0.073) 3.43(0.149)/ 3.29(0.067) 

4.10(0.195)/ 4.25(0.079) 4.03(0.131)/ 4.08(0.065) 4.37(0.105)/ 4.15(0.048) 

71-75 . 5.35(0.322)/ 5.86(0.119) 5.28(0.197)/ 5.60(0.096) 5.46(0.135)/ 5.69(0.080) 

76-80 l 8.64(0.520)/ 7.96(0.196) 7.53(0.351)/ 7.63(0.157) 7.94(0.215)/ 7.82(0.127) 

81-85 I 11.41(0.964)/10.21(0.386) 9.67(0.629)/ 9.85(0.307) 10.45(0.416)/10.23(0.246) I 
86-90 ! 12.05(2.008)/12.70(0.787) 13.30(1 .387)/12.33(0.627) 12.75(0.830)/12.83(0.489) 

91-95 i 14.14(5.ooo)/16.o3(2.595) 1 17.o8(3.227l!l5.23(2.o4o) I 14.48(2.oo8)/l5.88(1.546l i 

Prior 
2.6 X ]Q-36 

Generalized Variances 
Sampling Distribution 

2.9 X ]Q-l? 
Posterior 
< 10-38 

Prior Standard 
Errors of 

Graduated Value 

0.791 
0.228 
0.112 
0.102 

0.158 

0.250 
0.500 

0.913 

2.236 

I 
w 
N 
I 



Year 

1953 
1958 
1963 

Average 

Age 
Group 

51-55 

56-60 
61-65 
66-70 
71-75 
76-80 
81-85 
86-90 
91-95 

Average 
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Table 12. Sums of squares of second/third differences of prior 

m 

1.06/0.63 
1.07/0.58 

1.09/0.48 
1.07/0.56 

(Xl0 5 ) 

0.55 

1.07 
2.01 
3. 39 
4.12 
2.34 

81.4 
107 
0.00 

(xl0 5 ) 

22.43 

mean, observed, and graduated forces of mortality and 

their square roots in the observation period. Female 

annuitant data. 

Variable 

u v ~2 
Differencing Across Age Groups 

20.86/34.64 1.62/0.87 
(Xl0-4l 

0.12/0.02 
(Xl0-4l 

0.46/1.04 
. {Xl0-4l 
0.22/0.06 

8.89/14.84 1.08/0.50 0.13/0.02 0.37/0.22 0.12/0.01 
3.77/ 4.76 l .62/0.60 0.13/0.02 0.08/0.07 0.15/0.02 

11.17/18.08 1.44/0.66 0.13/0.02 0.30/0.44 0.16/0.03 

Differencing Across Years 
(only second differences computed 

9.55 0.55 0.00 91.11 ll. 79 

3.28 0.12 0.00 87.42 2.97 
0.16 0.05 0.00 7.87 2.06 
0.17 0.06 0.01 11.85 3.80 
0.06 0.12 0.02 6.54 16.18 
2.22 0.26 0.02 569 62.13 
6.32 0.55 0.29 2727 220 
3.26 0.76 0.64 2130 478 

30.63 2.14 0.00 30,157 2078 

6.18 0.51 0.11 3976.42 319.44 
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Table 13 .. Bayesian and sampling theory measures of "fit" 
of square roots of forces of.mortality in the 
observation period. Female annuitant data. 

Measure 

Year Ba~esian Rank Samel ing Theor~ Rank 
1953 384 3481 
1958 104 2 1507 3 
1961 65 3 2416 2 

Age 
Graue 
51-55 41.3 2 1025 3 
56-60 43.9 1 1016 4 
61-65 12.1 7 617 5 
66-70 21.9 4 1314 2 
71-75 28.7 3 2036 1 
76-80 15.3 5 529 6 
81-85 12.3 6 475 7 
86-90 4.2 8 152 9 
91-95 2.9 9 240 8 

Overall 791 7403 
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T~ble 14. Observed and Predicted Functions of Force of Mortality 

for Prediction Year 1968. Female Annuitant Data. 

Transformed Untransformed 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

Age Observed Prior Predictive Naive Observed Prior Predictive I Predictive II 
Group 

_u_x_ ~ E(vxl* 2.._ l m2 [E(vxd [E(vx) ]2+Var(vxl __ x _ _ x_ 

51-55 2.614 1. 78 2. 19(0.95) 2.99 6.834 3.817 4.817 5.179 

56-60 2.790 2.25 2.41(0.33) 2.35 7.784 6.128 5.818 5.865 

61-65 3.244 2.99 3.09(0.18) 3.35 10.526 10.794 9.550 9.567 

66-70 3.982 3.85 3.94(0.15) 4.51 15.857 17.904 15.487 15.502 

71-75 5.257 5.41 5.47(0.22) 5.51 27.636 34.607 29.936 29.971 

76-80 7.230 7.40 7 .53(0.35) 7.62 52.271 61.983 56.728 56.824 

81-85 9.437 9.63 9.87(0.67) 10.00 89.064 99.185 97.347 97.723 

85-90 12.732 12.21 12.52(1.33) 13.10 162.095 151.41 156.64 158.13 

91-95 17.948 15.17 15.53(4.09) 14.65 322.148 230.08 241.08 256.10 

frn --.. ** --.... --..... ---...... ----Predicition 21.49 19.00 65.66 0.070 0.020 0.018 
Error L!2l - - - 0.080+ 0.018+ 0.017+ 

* Predictive standard error in parentheses. Generalized Variances 

** 9 2 I Lx(ux-predx) /250 
x=l 

*** I [Lx(u~-predx) 2/pred ]xlo-6 
x=l x 

+ t [Lx(u;-predx) 2tu;]x10-6 

x=l 

Prior • 16 x lo-11 

Sampling .38 x lo-10 

Posterior .72 x 10-12 

Predictive .45 x 10-7 

(10) 

l:aive 

-~ 
8.95 

8.65 

11.24 

20.37 

30.40 

58.06 
I 

99.92 If 
172.29 

214.69 -- ...... 
0.060 
0.064+ 
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6. SUI1'>1ARY 

We have presented a Bayesian model that combines graduation and prediction 

of mortality rates in a natural way. The prior parameters have physical in­

terpretations that should ease their specification in many problems. The 

explicit statement of prior information in the model invites sensitivity 

analysis not only on the parameters of the prior distribution we have suggested 

but also on the very form of the distribution itself. The ease in interpreting 

the prior parameters is brought about by the use of an asymptotically correct 

sampling model and a variance stabilizing transformation. In actuarial 

and demographic studies the order of approximation implied is usually 

acceptable. An important product of our model is the covariance matrix of 

the graduated and predicted mortality rates, as well as of linear com­

binations of them. Finally, we remark that our approach can be applied to 

any set of demographic rates provided the relevant asymptotic distribiton 

theory is available. 
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