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Actuarial theory has traditionally accounted for the randomness inherent in a 

sample estimate by use of a credibility factor Z, where the final estimate U is 

a credibility weighted sum of the sample estimate X and some earlier estimate 

V, i.e., U = 2 X + (I - Z) V. For instance, in the case of class data, X could 

be the experience of an individual class and V the average of all classes 

combined. 

The credibility factor Z has been calculated in various ways, and different 

choices for the previous estimate V have also been used. The least squares 

approach to credibility provides a mathematically well-grounded development of 

these elements in one specific setting. 

Generally speaking, the previous estimate V is intended to represent the best 

estimate available without the particular observation X. The criteria for 

determining "best" usually involves informed judgment of some sort. Often V 

is taken to be the prior year's credibility weighted estimate. Using the 

overall group data as the previous estimate in a classification framework, is 

also prevalent. In some settings more than one previous estimate is used, each 

with a different credibility, e.g., U = ~o X + E 1 V + (i - ~o " El) W, where V 

and W each have some claim on being a good estimate. 

The use of informed judgment in selecting the prior estimate is one subjective 

aspect of the historical credibility analysis (there are others). The least 
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squares approach, on the other hand, can be carried out entirely from observa- 

tions, without references to ]udgment, subjective probabilities, or prior 

beliefs. Because of this, non-Bayesian interpretations of this method are 

becoming understood, even though it was first developed in a Bayesian 

framework. 

The least squares approach is developed for estimation within a classification 

framework, in which the pre-credibility estimate X. is the observation for the 
1 

ith class and the prior estimate V is the average of all classes. Thus, the 

credibility estimate U. for the ith class is: 
1 

rt 

: . • (I - ~) v = a x i + (I - ~)j:i xj/n, U i ~ X I 

where ~ can be expressed  in the form P/(P + K). In the l e a s t  squares approach 

this formula is generalized somewhat to allow for the possibility that 

different weights could apply to each class, that is, the credibility estimate ~%, 

is taken to be U i J:' Z] X3 or even more generally. U i = Y +jo, j~- Xj i.e. 

a constant term is added. The problem is then formulated as finding the values 

for Y and the ~. that give the optimal estimate U. in the sense of least 
] i 

squares. In simple cases the answer turns out to be expressible in the 

original form U i = ~ X i + (I - 2)~= Xj/n, i.e., all the ~.] turn out to be the 

same except for j = i, and the weights sum to unity. 

The least squares approach can be put into a quite general framework. The 

problem is posed as estimating a random variable X as a linear combination of 
o 

random variables X I, ... X n, i.e. X ~ Y * ~ ~. X.. Examples will be given 

below, but one application could be that the variables X 1, ..., X n each 
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represent the experience of a class for a single year, where several years are 

available for each class, and X ° represents one of the classes for the next 

year. This is the original application of this theory. Developing it in this 

more general fram6work allows for extensions to be derived in a straightforward 

manne r. 

Three basic forms of extensions of the original application will be considered 

herein. 

i. Credibility in a hierarchical or nested series of 

groups. An illustration is the situation where a class is a member 

of a group, and the group is incorporated in a cluster of groups. 

The class experience is credibility weighted against all the 

classes in the cluster but those classes in the same group receive 

greater weight. In other words, some credibility is given to the 

class experience, some to the local group, and the remainder to the 

average of all groups. 

2. The simultaneous credibility estimation of several 

correlated variables. For instance, if class frequencies for 

different types of injury are correlated, then each would contain 

information that could be used to help estimate the other types. 

The class experience for each injury type would be credibility 

weighted against the other classes' experience for that injury type 

and the class experience for the other injury types. 
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3. A two-dimensional 

frequency for a class in a 

class's frequency in other 

frequencies in th~ state. 

weighting- For example, the 

state would be weighted against that 

states and the other classes' 

The mathematical development of the P/(P * K) formulation for credibility for 

the original application follows. This is done in a fairly general framework, 

involving the correlations of the various random variables X i with each other. 

This framework will provide the basis for the extensions of this approach to be 

developed. 

To employ this framework, model assumptions made about the variables X i must be 

u s e d  t o  e x p r e s s  t h e  e x p e c t e d  v a l u e s  a n d  c o v a r i a n c e s  o f  t h e  v a r i a b l e s  X i i n  

terms of postulated model parameters. From this covariance structure, 

expressions for the Z i in terms of the model parameters can be derived. 

Estimators for the model parameters from the data at hand can also be derived 

from the covariance relationships. 

The covariances thus play a key role in the development of credibility 

mathematics. They link the model parameters to the data used to estimate these 

parameters, and to the credibility estimators derived from the parameters and 

the model assumptions. 

M o r e o v e r .  s i n c e  d i f f e r e n t  mode l  a s s u m p t i o n s  may l e a d  t o  t h e  same c o v a r i a n c e  

structure, just specifying the covariances may be a more general way to specify 

the model. On the other hand. it is sometimes difficult to get an intuitiv{ 
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grasp of a model when it is so specified. Thus examples of model assumptions 

leading to different covariance structures will be given for each case 

discussed. 

In the least squares set up, the values for Y and the Z. in the above formula 
l 

that give the optimal estimate are sought. Optional means in the sense of 

expected least squares, i.e., Y and Z i are sought to minimize E(X ° y 

- ~i Xi) " It turns out that the Y and F. that do this can be expressed as: 
i . i  l 

-~2i. E(X i ) y = E(X o).. 

where the Ei are the solutions of the system of n equations: 

cov(X o, Xj) = ~ E i cov(X i, Xj) 
L:0 

j = i, ..., n. 

This can be proved quite readily by taking the partial derivatives of the 

expectation to be minimized. In fact, the partial with respect to Y gives the 

first equation. Multiplying this by E(Xj) and subtracting it from the partial 

with respect to Xj gives the second. 

Thus, if the covariances are known, the gi can be found by solving this linear 

system by standard procedures. Then Y can be determined from the expected 

values. This is the first link in the credibility calculation: calculating 

the Zi, and therefore estimating Xo, from the covariance relations. To make 

this useful, it will be necessary to have a way of calculating the covariances 

from the model assumptions. This will be addressed below. 
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Now it could be asked, if you know E(Xo), why bother with this procedure at 

all? The answer to this becomes more specific when this approach is applied to 

a particular model; heuristically speaking, in most applications E(Xo) denotes 

the global eKpect~tion; that is, it is the eXpected value of a class drawn at 

random from the collection of all classes, so E(Xo) = E(X I) = E(xj) = E(Xn) is 

the overall averaqe of all classes, and is thus the same for every class. The 

conditional eKpectation of X O given all the observations X 1 .... b#Xn is more 

like what is being sought. As will be seen below, the credibility estimator 

approximates this conditional expectation, sometimes quite closely. In short, 

E(Xo) is not the optimal estimator for Xo, i.e., it does not minimize the 

expected predictive error. 

If the covariances and eEpectations needed to solve for Y and the Z i are not 

known they can be estimated. However, the resulting Y and ~i's are then no 

longer optimal to the extent that there is estimation error. Some adjustment 

can be made for this, although the theory behind common adjustments is 

incomplete. Since the quantities (i.e., variances) being estimated are of a 

global nature, there should be significantly less estimation error for them 

than for individual class estimates of the same quantities. 

Some examples of the application of this theory should help clarify the above 

general discussion. First, some notation will be useful. Let d(i,j) = 1 if 

i=j and d(i,j) = O otherwise. This indicator function is very useful when 

with covariances. For instance, cov(X i, X]) = d(i,j)s 2 would say that dealing 

2 
the variance of each variable X. is s and any two different variables are 

uncorrelated. 
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A univariate one-dimensional single layer model 

With this background, the first, and original, model-type considers class 

experience over ~ime. Xa(t) denotes the experience for class a at tzme t. 

Usually a ratio is being estimated, such as loss ratio, claim frequency, claim 

severity, or pure premium. Thus Xa(t) is this ratio. The denominator is taken 

to be a known quantity (premium, exposure, claim count, etc.), and this will be 

denoted by Pa(t). 

To illustrate the first model-type, assume that the ratio for a particular 

class and time period can be decomposed as follows: 

x a + T (t) (t) = m + R a a ' 

where R is the systematic (i.e., time independent) deviation of class a from a 

the overall average m and Ta(t) is the random deviation of Xa(t) from its 

underlying mean. Further assume that E(Ra) = 0 and E(Ta(t)) = 0. That is, the 

systematic and random deviations are expected to average to zero over all 

classes and time periods. Different R's and T's are assumed to be independent 

random variables. To specify the variances of these variables, there are 

assumed to be two constants s and K such that E(Ta(t)Tb(U)) = d(t,u) 

2 z 
d(a,b)s /Pa(t), and E(RaRb) = d(a,b)s /K. The last two assumptions imply that 

Var(Ta(t)) = a(t) and Var(Ra) = s IK. 

2 
Thus the random fluctuation term Ta(t ) has variance s /Pa(t) which is 

2 . 
inversely proportional to the denominator of Xa(t). The quantity s Is just 

the constant of proportionality. The conditions where this inverse 

proportionality may be appropriate or inapproriate are discussed later. The 
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factor s is retained in the specification of vat (Ra), but this is only for 

notational convenience. The variance s2/K is usually calculated as a unit, 

then K backed out separately. 

In this set up, the global expectation of Me(t) is m, even though there is a 

systematic deviation Ra, i.e., each class over time will display its own 

average. 

Under these assumptions, what is the covariance of two observations Xa(t ) and 

Xb(u)? Since cov(XY) = E(XY) - E(X)E(Y) and E(Xa(t)) = E(Xb(U) ) = m, 

cov(Xa(t)Xb(U)) = E(Xa(t)%(u)) - m 2. Substituting the formula for the X's in 

terms of the R's and T's and multiplying out yields: 

cov(Xa(t)Xb(u)) = m z + mE(R a) + ~b ) + 

mZ(Za(t))+ mZ(Tb(u)) + E(~aR b) + 

2 
E(RaTb(U~÷ E(RbTa(t)) + E(Ta(t)Tb(U)) - m 

= E(RaRb) + E(Ta(t)Tb(U)) (by independence of R's and T's) 

= d(a,b)s2((i/K) ÷ d(tou)/Pa(t)) 

The credibility estimators that derive from this covariance structure are 

developed below. Other seemingly more general models will also be seen to 

produce this covariance structure, and so will produce the same credibility 

estimates. 

Thus in summary, the first model-type assumes the following covariance 

structure: 

E(Xa(t)) = m 

coV(Xa(t)0Xb(u)) = s2d(a,b) ((I/K) + d(t.u)/Pa(t)) 
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This implies that the global expectation for each class and time period is the 

same, separate classes are uncorrelated, the covariance of two different time 

periods for a single class is s2/K, and the variance of Xa(t ) is s2((I/K) + I/ 

Pa(t)) " 

For this model specification, the optimal Y and Za(t) are sought for the 

estimate of Xg(O), the ratio for an unobserved time period for class g. The 

estimating relationship is: 

Xg(0) = Y + ~ Z a ( t )  Xa(t). 
e , t  

By the general least squares development above, the optimal Y and ~a(t)'s are 

the solutions of the system: 

Y : E(Xg(O)) - ~  Za(t)E(Xa(t)) 

coV(Xg(O),Xh(u)) =~ [  Za(t) cov(Xa(t),Xh(u)), 
C,t 

where there is a copy of the last equation for every class h and observed time 

period u. By plugging in the covariance assumptions, this system can be 

converted to a system of equations for the unknown ~'s in terms of the known 

P's and the two parameters s and K, and in fact s will drop out. Then the 

system can be solved for the ~'s. This can be done by matrix methods, but for 

this model it will be possible to solve explicitly for the ~'s, by straight- 

forward algebra. 

From the defining equations of the model-type (i.e., the covariance 

structure assumed) the system of equations becomes, after some algebra: 

Y = m (i- ~ Za(t)) 
Q., t 

s d(g,h)/K = s Zh(t)/K + Zh<U)S IPh(U) 
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In this last equation many terms have dropped out because of the d function in 

the covariance assumption. Using a dot to denote the sum over an index, this 

equation then becomes: 

Ph(U)d(g,h) = ~h(.)Ph(U) + KZh(U) 

S i n c e  t h e r e  i s  a c o p y  o f  t h i s  f o r  e a c h  h a n d  u ,  sum o v e r  u t o  y i e l d :  

P h ( . ) d ( g , h )  = ~ h ( . ) P h ( . )  + K ~ h ( . ) ,  o r  

• h ( . )  = P h ( . ) d ( g , h ) / ( Z  + P h ( . ) )  

Substituting this above yields: 

• h(U) = d(g,h)Ph(U)(l-(Ph(.)/(K + Ph(.)))/Z 

= d(g,h)Ph(U)/(Ph(.) + K) 

Th is  ezcpresses the  ~ ' s  i n  terms o f  K and the known P ' s .  

e s t i m a t e  b e c o m e s :  

Thus the optimal 

Xg(0) = Y + h~.u Z~(u)Xh(=) 

= m(l-Pg(.)/(Pg(.) + K)) +~u Pg(U)Xg(U)/(Pg(.)+ K) 

= m(KI(Pg(.) + K)) + Xg(.) Pg(.)I(Pg(.) + K) 
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That is, Xg(O) is estimated by a weighted average of the grand mean m and 

Xg(1), which is the weighted average ratio for class g, weighted in proportion 

to Pg(t). The terms for the other classes have dropped out. Since g was any 

class, this same credibility formula applies to all classes, i.e., the K is the 

same, although the credibilities will be different. 

The estimation of K will be discussed later. The above derivation illustrates 

how the credibility formula can be derived from the covariance structure. In 

the more general model-types discussed below, derivations are similar so 

less detail will be needed. 

The above covariance structure was derived from a simple linear decomposition 

of Xa(t). Another model, due to Buhlmann and Straub, that gets to this same 

covariance structure is based on conditioning. The model assumptions are 

given below and the above covariance structure is derived from these 

assumptions. This will demonstrate that the above credibility formula holds 

for these assumptions. 

Each class a is assumed to carry an unobserved parameter V a which determines 

the probability distribution of Xa(t). The various V.'s are assumed to be 
I 

independent and identically distributed random variables. Let V = (VI,V2,...). 

The following assumptions are made: 

E(Xa(t) IV) = m(V a) 

Var(Xa(t)IV) = s2(Va)/Pa(t), 

that is, there is a function m(Va) which will give the expected value for a 

class with parameter V and this is independent of time, and there is a a' 

function s2(Va) which will give the variance for a class with parameter Va up 
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to the constant Pa(t).  Let m = E(m(Va)). This does not depend on a because 

the V.'s are identically distributed. Let s 2 = E(s2(Va)), and K = 
l 

s2/var(m(Va)). Then the covariance structure above holds as long as Xa(t ) and 

Xb(U ) are independent given V, for in that case: 

cov(m(Va), m(Vb)) = d(a,b)Var(m(Va)) 

(independence of V i) 

and coV(Xa(t),%(u)JV)) = d(a,b)d(t,u)Var(Xa(t)JV) 

(conditional independence of X's). 

Thus: 

cov(Xa(t), Xb(U)) = E cov(Xa(t),Xb(U)lV) + cov(E(Xa(t)IV),E(Xb(U){V)) 

(by general pr inc ip les of condit ioning) 

=E(d(a,b)d(t,u)Var(Xa(t)JVa) ) ÷ d(a,b) Var(m(Va)) 

=d(a,b)d(t,u)s2/Pa(t)÷d(a,b)s2/K. 

This model makes the notion of a global expectation that is the same for a l l  

classes with a condi t ional  expectation that is unique to each class more 

precise for both the first and second moments. This model is also the paradigm 

of this type of analysis. In the more general models that follow, only the 

covariance structure will be specified, along with a simplified linear example 

of a model that will produce that covariance. Each could be represented in a 

more general conditioning framework, however. 
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A univariate one dimensional two layer model 

The second covariance structure is the hierarchical model. In this, each class 

belongs to a unique group of classes. This can be generalized to groups of 

groups, etc. The random variables will be denoted as XAa(t), and represent a 

ratio for class a in group A for time t. The assumed expections and 

covariances are: 

E(XAa(t)) --~ 

COY (XAa(t), XBb(U)) = d(A,g)s2((i/K)+d(a,b)((I/KA)+d(t,u)/PAa(t))) 

Here PAa(t) is the denominator of XAa(t ). A model having this structure is 

XAa(t ) = m + QA + RAa + TAa(t)' where the Q's, R's, and T's have global 

expectation zero and are mutually independent, and E(QAQB) = d(A,B)s2/K, 

E(RAa ~b ) = d(A,B)d(a,b)sZ/KA , and 

E(TAa(t)TBb(U)) = d(A,B)d(a,b)d(t,u)s2/PAa(t). 

In this model, QA represents the systematic departure of group A from the 

overall mean, RAa is the departure of class a from the group A mean, and TAa(t ) 

is the random fluctuation. 

For a particular class, XGg(O) is estimated as: 

XGg(O)=y+ ~ S X Aa(t). A,a,t Aa(t) 

The optimal weights under the general theory above are as follows: 

Y : m(l - ~ S ) A,a,t Aa (t) 

ZAa(t) = 0 except for A=G. 

For A = G: 

Let WAa(t ) = PAa(t)/(PAa(.) + KA) 

Then ZGa(t) = d(a,g) WGg(t) + (I-WGg(.))WG.a(t)/(WG(.)+K/KG) 
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These formulas are derived in the same manner as for the single layer model. 

with some algebraic manipulation, the estimating equation can be written as: 

XGg(0 ) = WGg(.) XGq(. ) + (l-WGg(.))m G. where m G = VGM G ÷ (l-VG)m with V G = 

+ ~K G) and M G =~-~a WGa(.) XGa(.)/WG.(.) again the bar over the WG.{,)/(WG- (.) 

X's denotes the average weighted proportionally to the P~s, This formulation 

shows that the hierarchical model can be considered to be a stepwise 

application of the simpler model. Several authors have discussed this model 

from a conditioning perspective, especially in the Scandinavian actuarial 

Journal. For example, see Jewel ~ and Taylor ~. The estJJ~ation of the K's 

is discussed later. 

A multivariate one dimensional single layer model 

Another covar iance s t r u c t u r e  is  p rov ided by the es t ima t i on  of  severa l  

correlated variables, such as frequencies for different injury types. For 

this, let XAa(t) denote the injury type A frequency for class a at time t. 

In this model each injury type will have its own grand mean, denoted by m A• 

In fact, for the simple decomposition model, each term gets an additional 

subscript A as follows: 

Xaa(t) = m a +Raa + TAm(t). 

again it is assumed that E(RAa) = E(TAa(t)) = O, and the various R's and T's 

are mutually independent. To specify convariances, there are assumed to be 

constants sA and tAB such tha t  E(RAaRBb ) = d (a ,b ) r~3 ,  and E(Taa( t ) ,TBb(U))  = 
2 

d ( a , B ) d ( a , b ) d ( t , u ) s  A/PAa( t ) .  The f i r s t  o f  these equat ions is  the unique one 
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for this model. It allows the systematic departure terms for two different 

variables for a given class to be correlated. 

The covariance strhcture is given by: 

E(XAa(t)) = m A 

CoV(XAa(t),~b(U)) = d(a,b)[rAB + d(A,B)d(t,u)sA2/PAa(t) ] 

The estimating equation is then 

XGg(O) = Y + A,a,t ZAa(t)XAa(t) 

and the optimal Y and Z's turn out to be: 

A.~a. ZAa(t) ma Y = mG° , ,t 

ZAa(t ) = 0 unless a=g 

ZAg(t) = PAa(t)(rAG -B ~ ZBg (-) rAB)/SA 2 

where the ~g(.) are the solutions of the system of equations: 

rGB --L" A ZAg(-)rAB + SB2ZBg(.)/PBg(.) (one equation for each B) 

Again the derivation of this result follows the general logic of the univariate 

model. Estimating the s B and the tAB will be discussed below. Note that in 

this model tAB, which relates to the correlation between the expected 

frequencies for the injury types, must be estimated for each pair of injury 

types. 

Another model with this same covariance structure can be defined 

following the Buhlmann-Straub approach, by establishing distinct functions m A 

and s A for each injury type. Thus: 
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E(XAa(t)IV) = mA(Va) and 
z 

Var(XAa(t)~V ) = S A (Va}/PAa(t)- 

Let tAB = Cov(mA(V~),mB(Va)). Since the V a are identically distributed, rAB is 

not a function of a. Then the derivation of the covariance structure of the 

Buhlma1%n-Staub model outlined above can be used for this model to show that 
a 

cov(XAa(t),~b~)) = d(a,b)[rAB + d(a,B)d(t,u)s A/PA(t)]. 

Univariatetwo dimensional single layer.models 

F i n a l l y ,  cross c l a s s i f i c a t i o n  is  considered.  Here XAa(t) may be a frequency 

for state A and class a at time t, for example. State and class are assumed 

to have separate effects that act independently. The expectation/covariance 

structure for this model-type is: 

E(×Aa(t)) = m 

cov(XAa(t),~b(U)) = s2((d(AoB)/K)+(d(a,b)/J)+d(A,B)d(a,b)d(t,u)/PAa(t)) 

Specific models motivating this structure are discussed below. 

The estimating equation is: 

XGg(O) = Y + A,a,t ~ Zaa(t)XAa(t) 

Again, Y = m(l- A,a,t ~Aa (t)) 

Finding gAa(t) is somewhat more involved in this case. Let 

WAa=PAa(.)/(PAa(.)+K). Then the following system of equations (one for each a) 

can be solved for the Z.a(.): 

(PGa(-)/K)+(d(g,a)P-a(-)/J)-(WGa PG (.)/K) -~C WcaPcg(.)/J 

(1+P.~(.)/J)za(.) -~wc z.c(.)/J 
Then the ZA (.) can he calculated by: 

(I+P.a(.)/J)ZA (-)=d(G,A)PA.(.)/K÷PAg(.)/J -~c PAc(-)Z.c(.)/J 
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Fina l ly ,  ZAa(t) : PAa(t)((d(A,G)/Ktd(a,g)/J)-ZA ( . ) /K-Z.a(- ) /J)  

An example of this covariance structure is given by the following model: 

= + TAa(t) XAa(t) m + QA + Ra 

Here QA is the state departure component for state A and R a is the class 

departure component for class a. It is assumed that the Q's, R's, and T's are 

mutually independent, each with an expected value over all classes, 

states, and time periods of zero, and that there are constants s, J, and K 

such that E(QAQB) = d(A,B)s2/K, E(Ra%) = d(a,b)s2/j, and E(TAa(t)TBb(U)) = 

d(A,B)d(a,b)d(t,u)s2/PAa(t). Essentially, s 2 is the variance factor for the 

random fluctuation term T, and given that, K expresses the variance across 

states and J across classes. 

This model-type can be generalized to include interaction between class and 

territory. For example, the above model can be expanded to include an 

interaction term: 

XAa(t) = m + QA + Ra + CAa + TAa(t)" 

CAa expresses the systematic dev iat ion of  the state-class ce l l  from the sum of 

m plus the state component QA and the class component R a. I f  i t  is assumed 

that 

E(CAa ) = 0 and 

E(CAaCBb ) = d(A,B)d(a,b)s2((I/LA ) + (I/Ma)), then the resu l t ing  

expectation/covariance structure is:  
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~(X^a(t))  = m 

cov(XAa(t),XBb(U)) = s2((d(A,B)/K) + (d(a,b)/J) + d(A,B)d(a,b)((1/L A) 

+ (I/M a) ~ d(t,u)~PAa(t))) 

This covariance structure is more general than the particular model 

illustrated. The resulting weights ZAa(t) can be calculated as follows. Let 

WAa = PAa( . ) / ( *  + Paa( . ) ( (Z /L  A) + ( Z / . a ) ) )  

= WAa((I/LG) + (I/Mg)) (where G and g give the fixed class-territory UAa 

combination being estimated) 

D A = -(WAg/J)-d(G,A)(UAg + WA./K) 

+a ~ (WAa/(J+W.a))((WGa/X)+d(g,a)(UGa+W.a/J)) 

MBA -d(A,B)(I + WA./K) + ~ = a WBaWAa/K(J * W.a) 

Then the ZA.(.) are the solutions of the system of equations: 

<-) 
B RBAZB" = D A (one equatlon f o r  each A) 

Froa there, the Z.a(.) can be calculated via: 

Z.a(.)(J+W.a)/J = (WGa/K) + d(g,a)(UGa+W.a/J)-A~WAaZA.(.)/K 

Then ZAa(.) follows by: 

ZAa(.)/WAa = (d(G,A)/K) + (d(g,a)/J) + d(G,A)d(g,a)((1/LG)+(1/M a) - (ZA.(-)/K) 

- z.a(.)Ij 
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and finally, 

ZAa(t) : ZAa(.)PAa(t)/PAa(. ). 

The derivation of this result requires some fairly lengthy algebra, but it is 

a straightforward application of the methods discussed above for the one- 

dimensional model. 

In contrast to the correlated variables model, the constants, J, K, La, HA, 

etc. must be estimated for each state and class, but not for pairs of states 

or classes. 

If this model were defined mutiplicatively, e.g., XAa(t) = m(l + QA)(I + RA) + 

CAa + TAa(t), with the other assumptions the same as above, the resulting 

covariances would be: 

cov(XAa(t )~b(U))  = s2((d(A,B)m2/K) + (d(a,b)m2/ j )  + 

d(A,B)d(a,b)((I/LA) + (I/M a) + (s2m2/jK) + d(t,u)/PAa(t))). 

The extra term m2s2/jK can be absorbed into either L A or M a by redefining the 

constants, and the original covariance structure is maintained, just with 

different parameter values. Thus, the same credibility formulas can be used 

for the multiplicative and additive models. That is, let K 1 = K/m 2 and jl 

= J/m z and either Mal = JKMa/(JK + s2m2Ma ) or LAI = JKLA/(JK + s2m2LA ) . Then 

the covariance equation for the multiplicative model is of the same form as 

that for the additive model, and the same credibility estimates apply to both. 

In prac t ice  th is  model seems to make more sense wi th e i t he r  the I / L  A or the 

I/M a parameters assumed to be zero. 
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Multivariate and Multidlmensional Model Comparison 

Instead of using the above two-dimensional credibility model, the 

multivariate model could be tried in a two-dlmensional situation. For 

ex~mmple, the frequencies for the different states could each be interpreted as 

different variables, and the correlations measured. In the cross classified 

model with interaction, where I/H a = 0, for example, the decomposition 

: : ÷ formulas for the two models will look the same if m A m + Qa and RAa R a CAa 

are taken. 

The covariances will not be the sau~e, however. In the multivariate 

model m A is a constant, where m + QA is a random variable. This provides an 

2 
extra element of variance, the s /K term, in the two-dimensional model. 

2 2 
Also, by taking tAB = s /J + s d(A,B)/L A, the E(RAa R~b) terms of 

the two models will be equated. However, doing this would require estimating 

each rA5 separately, where in the two-dimensional model only s, J, and the L A 

need be estlmated. An important part of the structure is being ignored, so 

information is lost. 
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Estimation of Parameters 

The final link in the credibility chain is to use the model assumptions, 

namely the covariance structure, to develop formulas to estimate the model 

parameters. 

Natural unbiased estimators of some of the parameters needed in the various 

models above can be estimated from weighted sums of squared differences of the 

observed data. The remaining parameters can be developed as combinations of 

those so estimated. 

The procedure in general will be to write down the sums of squared differences 

most suggested from the model, then use the expectatlon/covariance structure of 

the model to evaluate the expected values of these estimators. From these 

expected values, the desired unbiased estimators can be calculated. 

While this is a natural and straightforward way to estimate variances, it is 

probably not optimal. It may be appropriate to temper with the resulting 

estimates judqmentally in many cases. 

To illustrate the method, some details of the procedure will be shown for the 

simplest model, but only more summarized outlines will be given for the more 

general models. 

For the univariate one-dimensional single layer model, then, it is assumed that 

observations Xa(t ) are available for a = 1 .... ,N and t = 1 .... n. Let: 

X~ = t~Pa(t)Xa(t)/Pa(.) 
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× = P a ( t ) X a ( t ) / P . ( . )  

DI = ~t Pa(t)(Xa It~ - ~)2 

DZ = ~_ pa(t)(Xa(t ) _-~)2 
a,t 

To evaluate E(DI) and E(D2), note that from the covariance structure, 

E(Xa(t)Xb(u)) = m 2 ÷ s2d(a,b)((I/k)+d(t,u)/Pa(t)). 

Also recall tha t  in general, 

Thus. 

( Z y i )  2 -  _ ~- y . y  
t.3 l] 

Pa()2E(~a2) = ~-- E(Pa(t)Pa(U)Xa(t)Xa(U)) 
• t.%/ 

= t,U ~ Pa (t)Pa(u)(m2 + sZ((I/K) + d(t'u)/Pa(t))) 

= (m 2 + s2 /Z) t~u Pa( t )  Pa(U) +~ ' t sZPa( t )2 /Pa( t )  

= (m2 + s2/K)~t Pa (t) Pa (') +~tS2Pa (t) 

+ )2 S2Pa ( " ) = (m 2 s2/K) Pa (. + 

Thus E(~a 2) = m 2 + s2/X + s2/Pa(.) 

Similar algebra will yield: 

E(~ 2) = m 2 + ( s 2 / K ) a ( P a ( . ) / P . ( . ) ) 2  + s 2 / p . ( . )  

E(XXa(t)) = m 2 + ( s 2 / K ) ( P a ( . ) / P . ( . )  + s 2 / p . ( . )  

E(Xa(t)X~) = m 2 + (s2/Z) + s2 / ea ( .  ) 
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Then: 

, a 

: . ~ - -pa ( t ) (m  2 + s2tK + s2/Pa(t) 
- a , t  

_2m z -2s21K _ 2s21Pa(.) 

2 s2/Pa (.) +m + sZ/K + ) 

= S2a~tPa(t)(I/Pa(t) + i/Pa(. ) - 2/Pa(.)) 

= s2(Nn + N - 2N) = N(n-l)s 2 

2 
Thus DJN(n-I)_.. is an unbiased estimator of s o 

Also: 

E(D2) = a~tPa(t)E(Xa(t) 2 - ZXa(t) ~ + ~2) 

= a~t(Pa(t)(m 2 + s2/K + s2/Pa(t) 

_2m 2 . 2(s2/K)(Pa(.)/p.(.) - 2s2/p.(.)) 

+m + (s2/Z) (Pa(.)/P.(.)) 2 + s2/p.(.)) 
/~fg÷ 

= a~tPa(t)(s21Z)(l-2Pa(.~(pa(.)Ip.(.)) 2) 

+a,~Pa(t)s2(I/Pa(t) - 2/P.(.) + I/P.(.)) 

= (s2/K) (P.(.) - 2~aPa(.)2/p.(. ) ~aPa(.)2/P.(.)) 

+ s2(Nn - 2 + i) 

= (s2/K)(P'(') -! Pa (')2/P'(')) + s2(Nn - I) 

Thus (D 2 - (Nn-I)DI/N(n-I))/(P.(.) -~aPa(.)2/P.(.)) is an unbiased estimator of 

s2/K. From this, K can be estimated. While the result is a natural estimator 

it is not in general unbiased. 

While a fair amount of algebra is involved, the above calculation proceeds in a 

straightforward manner from the covariance structure. The same will be the 
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case for the other models. Estimation of the global expectation m will be 

discussed separately, 

This development assumes that e~ery class has exposure in every time period, 

but the estimation can proceed without this assUmption. This is illustrated 

below, for the hierarchical model. 

Hierarchical Model 

It will be convenient to adopt the notation I(P) = 0 if P = 0 and I(P) = 1 

otherwise. This will be used to count the number of cells with non-zero 

exposure. For example, ~t I(PAa(t)) would give the number of years of 

experience for class a in state A. M will be used to denote the number of A's, 

N the number of a's. and n the number of t's. For the two layer model, Heckman 

developed the following estimators: 

• 
P (X ( t )  - ~Aa )2 D1 = A,a,t Aa(t) Aa 

ozA = ~tP~a<t)(XAa(t~ - xq~ 2 

D3 = ~pAa(t)(XAa(t) ~ ~)2. 

which have the expected values: 

E(DI) = s2(~a.tI(PAa(t)) " A~aI(PAa(-))) 

E(D2a) = 52(PA (.) (I - ~a(PAa( )/PA ('))2)/KA + ~I(P. (t))-I(P. (.) 
• " . a,t A a  a .  

E(D3) = s2(,A.~a,tI(PAa(t)) - l + (P..(.)/K)(I-A~PA(.)/P..(.))2) + 

~(PA. () " ~(PAa ()/PA. ("))2)/KA> 

Thus, D 1 provides an unbiased estimate of s 2, D2A 

Z 
to estimate K Erom K A and s . 
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The expected values shown can be derived from the covariance structure in the 

same manner as for the baslc model. 

Correlated Variables Model 

For the multivariate model, let: 

DA = a~t PAa(t)(XAa(t) " ~Aa) 2 

DAB : a~,t(PAa~a(t))(XAa(t) - Xq)(~a(t) -%) 

By direct calculation from the covariance assumptions, 

E(DA) = S2A<n-l)N 

E<DAS) = rAB<PA.<.) * PB.(.) 

+ 2sZAd(A,B)(Nn-I). 

- ~aPAa(.)E/PA ( . )  - ~aPBa(.)2/PB { . ) )  

2 These provide unbiased estimators of both tAB and s A" 

Two-Dimensional Models 

For the two dimensional models, let: 

D1 ~ (XAa(t) -- 2 = A,a,t PAa (t) - XAa) 

~" PAa(t)(XAa(t ) - ~AA.) 2 D2A = a,t 

P 2 =~AD2A 

D3a = ~ PAa(t)(XAa (t) - X-~.a )2 

D 3 =a~D3a 
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D4 : ~ PAa(t) (XAa(t) .~)2 A,a,t 

Then the techniques above will yield: 

E(DI) = sZMN(n-I) 

E(D 2) = sZ(M(Nn-l) * (P-.(.) - ~P Aa(.)Z/PA (.))IJ) 

E(D3) = s2(N(Mn-l) + (P..(.) - ~aPAa(.)2/p.a(.))/K) 

These can be used to estimate s 2, J, and K. 

In the case of the model with interaction terms, 

E(D 1) = s~IN(n-l) 

E(D2A) = s2(UA/J + UA/L A + a~RAalMa + Nn-l) 

E(D3a) = s2(Va/K + Va/M a +~AQAa/LA + Mn-1) 

E(D 4) = s2(wl/z + w2/J +~cA/L A +~Fa/~ a + ~n- l )  

whe re UA = PA.(.) -~a PAa<.)2/PA.(.) 

Va = P.a(.) -~A PAa (')2/P'a(') 

RAa = PAa(.) - PAa(.)2/PA.(.) 

QAa = PAa (') " P~a(')2/P'a (') 

w I = p . . ( . )  - ~ p A . ( . ) 2 / p . . ( . )  

w 2 = p . . ( . )  - ~ P . a ( . ) 2 / p . . ( . )  

C A = PA.(.) - a~PAS(-)2/P--(-) 

F a = P.a(.) - A~PAa(.)2/P..(.) 

These equations are enough to estianate all but one paraaneter in a simultaneou., 

system. 
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It may generally be more practical to set either the [/M a or the I/L A 

parameters to zero. Then D I. D 4, and either D 2 and the D3a or D 3 and the D2A 

will be enough to estlmate the remaining parameters. 

Estimation of m 

The overall mean would seem to be the easiest parameter to estimate. However, 

since it is so easy, more can be done in the way of deriving an optimal 

estimate. Because of this, the formulas for estimating the means may seem as 

complex as those for the other parameters. 

In complex structures with auxiliary data at hand, the overall mean might be 

estlmated outside of the model used to estimate specific classes, and this may 

be entirely legitimate. However, if it is to be estimated as a linear 

function of the observations Xi, the following approach is indicated. 

The general credibility formula X ° = Y +~Z.X i has been seen to require Y = 

E(X o) -~Z.E(X.) and thus can be written as X = E(Xo) + ,~Zi(Xi-E(Xi)). 
i 1 1 ' o 

From this it can be seen that the credibility estimate is unbiased. If the 

expected values themselves are to be estimated as weighted averages of the X., 
1 

then this formula can be expressed as: 

X ° =~ZiX i (different Z's) 
& 

i.e., no constant term is needed. Thus, in the case that the expected values 

of the X. are estimated as weighted averages of the observations, the 
] 

credibility estimator is an unbiased linear estimate with no constant term. 

If the Z.'s could be found that produced the optimal unbiased no constant 
1 

estimate, in the sense of least squares, then equating this estimator with the 
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o r i g i na l  c r e d i b i l i t y  est imator would y ie ld  an imp l i c i t  expression for the 

global mean needed in the original estimator. This would then be the best 

linear estimate of the global mean, in the sense that it produces the best 

least square credibility estimate of X o. 

To find the optimal no constant unbiased linear estimator for X o. the technique 

of Lagrangian multipliers is used. This technique provides maximums or 

minimums of functions subject to a side condition, or constraint. In this 

case the f~ction to be minimized is E(Xo-~ZiXi ) 2 _  and the constraint is 

x 
E(Xo)-~ZiE(Xi) = O. The Lagrangian multiplier technique unbiasedness, i.e., 

% 
is to find the Y and Z. that minimize the following function: 

l 

£(X ° -~ZiXi ) 2 ~  - 2y(E(Xo) - ~'~ZiE(Xi)). Then the Z i so determined 

will minimize the original function subject to the side constraint. 

Taking partial derivatives of this function with respect to Y and 

the Z i yields the following system of equations: 

E(X ° =~ZiE(X i) 

coV(Xo0Xj) = i~i cov(XiXj) + Y E(Xj) 

This system can be solved for the Z's in terms of the model parameters for 

each of the model-types discussed earlier, just by plugging in the covariances 

and algebraic manipulation. 

Paralleling the original development for the basic model, the first equation 

implies Z.(.) = I, The second yields: 

Zh(.) = ph(.)<d(g,h)-KYm)/(K * Ph(.)) 
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Summing this o v e r  h will provide: 

Ym = 1 / ( P g ( . )  + K ) ~ ( P h ( . ) / ( P h ( .  ) + K)) 

After some algebra the estimate of Xg(0) is: 

Xg(O) = (K/(Pg(.) + K))(~..)Ph(.)/(Ph(.) + K)) +~hPh(.)/(Ph(. ) + K) 

+ Xg(.) Pg(.)/(Pg(.) + K) 

Equating this with the original estimate for this model yields: 

m = (~Xh(.)Ph(.)/(Ph(.. + K)) ÷~Ph(')/(Ph(')n + K) 

This can be seen to be a welghted average of the observations, where the 

weight is proportional to the credibility Ph(.)/(Ph(. ) + K). 

Referring now to the hierarchical model, the mean to be used for a group of 

classes, before looking outside the group, was seen to be just such a weighted 

average, i.e., it is the weighted average of the class means, where the weights 

are proportional to the class credibility. The mean of all the groups was not 

specified before, but it can be estimated by the above methodology. The 

results is a weighted average of the group means, where group A gets weight 

proportional to WA.(.)~A.(.) + K/KA). In fact, this weight is the credibility 

the group mean received in the overall weighting process. So again the overall 

mean is estimated as a weighted average of the cases, with the weights 

proportional to the credibility. 

For the multivariate and multidimensional models the same sort of analysis 

can be carried out, but no closed form formulas for the means have been 
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developed-  Formulas can be g iven  in ma t r i x  n o t a t i o n .  However, i f  t h i s  

approach to estimating the mean is to be taken, i t  may be easier to develop the 

credibility formulas directly from the no constant approach without 

c o n s i d e r i n g  the  mean explicitly. 
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Relation to Bayesian Analysis 

The credibility estlmates above were developed by minimizing the 

expected value of the square of the difference between the linear estimate y + 

2 Z i X i and the bariable X 0 being estimated. The Bayesian predictive mean, 

E(XO/ Xl...Xn), has been shown to be the unique function of any form, i.e., not 

just linear, of XI...X n that minimizes the expected squared estimation error. 

A proof of this can be found in DeVIyder. 

Thus, the credibility estimation error can be considered to have (at 

least) two components: the fundamental randomness component that even the 

optimal Bayesian estimate possesses, and a "linearization error," which is the 

additional error, if any, that arises from restriction to the class of linear 

estimators. 

When the Bayesian estimate can be expressed as a linear function of 

the observations X., there is of course no linearization error, and the 
i 

credibility estimate is equal to the Bayesian estimate. Jewell has shown that 

this will be the case for a fairly wide range of distributions, but for other 

distributions the linearization error can be significant. Many of the heavily 

skewed distributions that arise in Property and Casualty insurance 

applications fall into the latter category. 

For both credibility and Bayesian estimates an additional source of 

error arises from the estimation of parameters. In fact, the Bayes estimate 

is optimal only if the joint distribution of the X. 's is known, and the optimum 
] 

linear property of the credibility estimate holds only if the required moments 

are known. The question of whether Bayes estimation or least squares 

credibility will be more accurate may hinge on whether the additional 

approximations needed to estimate the joint distribution function of the X.'s ] 

instead of just the two moments needed for credibility will produce more error 

than the linearization error inherent in credibility estimates. This is 

currently an open issue in many practical settings. 
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S t e i n  e s t i m a t o r s  p r o v i d e  a n o t h e r  a l t e r n a t i v e .  E s t i m a t i o n  t h e r e  £s 

viewed as strictly a function of the data, i.e., the optLmal estimate 

knowing just the data is sought. In so,he cases this approach has been shown 

to improve credibility estimates. 8y interpreting the Stein estimate as a 

credibility formula, an adjustment to the credLbility factor can be derived 

that compensates for error in the estimation of K. 

Stratifying the population is an alternative in some situations. 

Each of the strata would be more likely to approximate the requirements for no 

linearization error. However, more parameters would have to be estimated. 

This is the approach currently under investigation in Workers Compensation 

insurance. 

Another alternative, to be discussed further below, is to use 

credibility on transformed values of the variables, then apply the inverse 

transformation to the estimate. This may reduce linearization error, but 

could magnify the error in estimation of parameters. 

To compute Bayes estimates in the case of the simplest credibility 

model is more involved than it may seem, in that two distinct prior 

distributions may be needed, one for the mean and one for the variance. This 

is illustrated in the example below. 

Consider the negative binomial distribution with parameters (y,q) in 

the form Pr(N=n)=qY(l-q)ny(y+l)...(y*n-l)/n!, where y and q are positive and q 

2 
is below i. Then E(N)=y(l-q)/q and Var(N)=y(l-q)/q . 

Suppose for class a for time t the number of eXposure units is 

Pa(t), the frequency is Xa(t) and the number of claims Na(t)=Xa(t)Pa(t) is 

negative binomial distributed with parameters (YaPa(t),qa). Let V a denote the 

pair (ya,qa), Then E(Xa(t)/Va)=E(Na(t)/Va)/Pa(t)=Ya(l-qa)/qa=m(Va ) and Vat 

2 2 2 
(Xa(t)/Va)= Vat (Na(t)/Va)/Pa(t) =Ya(l-qa)/qa Pa(t)=s (Va)/Pa(t). Under these 

definitions of the functions m and s the conditions for the Buhlmann-Straub 

formulation are satisfied. 
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To use Bayes estmmation instead of credibility, the 3o~nt density 

functions for Ya and qa would be needed. This could be simplified to a single 

variable problem by assuming qa=q is a constant for all classes, or by taking 

qa to be a ftmn~£ion of Ya" Such assumptions are common in risk theory 

applications generally (e.g., see Patrik and John for an example of the former 

and Meyers and Heckman for the latter). However, the credibility model does 

allow for the more general case. The limited data currently available for 

Workers Compensation gives little support for a functional relationship 

between q's and y's. In fact scatter diagrams of class sample means and 

variances tend to support independence of q's and y's. 
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Relation Between Variance and Exposure 

In the negative binomial example above, the variance of Xa(t ) was 

found to be inversely proportional to Pa(t), with constant Ya(1-qa)/qa, 

consistent with -'the assumptions of the basic credibility model. The 

applicability of the inverse variance assumption is explored further in this 

section. 

Let Xa(t)=Na(t)/Pa(t), where Pa(t) is a constant, the "exposure," 

and Na(t) is a random variable, such as total nu~er or dollar amount of 

claims. Denote E(Xa(t)) as m a, so E(Na(t))--maPa(t ). While not denoted as such, 

these expectations could be understood as conditional on some parameter. The 

notation assumes that the expected value of Xa(t) does not depend on t. Note 

2 
that Vat (Xa(t))= Vat (Na(t))/Pa(t) . 

Consider the case where there is a proportional relation between the 

mean and variance of N, i.e., Var(Na(t))= cE(Na(t)). Then Vat 

2 
(Xa(t))=cE(Na(t))/Pa(t) = Cma/Pa(t), i.e., the inverse relation holds. 

It turns out, as discussed below, that the proportional relationship 

for the mean and variance of N is a reasonable assumption for both the ntm~ber 

and aggregate amount of claims. Thus, taking appropriate measures for P, this 

would lead to the inverse relation for variance for frequency, severity, pure 

premium, and loss ratio. 

What makes the proportional relationship between variance and mean a 

reasonable assumption is that the proportion does not depend on volume. Thus, 

let N be either the number or aggregate amount of claims and let K = 

Var(N)/E(N). Let M be a similar random variable, independent of N, such that 

Var(M)/E(M) is also equal to K. Then Var(N + M) = Vat(N) ÷ Vat(M) = KE(M) 

+ KE(N) = KE(N+M). Thus the large volume of exposure maintains the same 

relation of variance to mean as the parts. 
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Thus the inverse relationship between variance and exposure is a 

reasonable assumption in many situations. Now a situation where it does not 

hold is explored. 

Again, let the parameter V a for class a consist of the pair ya,qa. 

The number of claims for time period t is determined as follows: 

A random variable H is drawn from a specific distribution with E(H) 

2 
= yaq a and Vat(H) = yaq a , perhaps a gamma distribution. Then Na(t ) is drawn 

from a Poisson distribution with mean HPa(t). Thus E(Na(t)/Va) = EE(Na(t)/H ) 

= Pa(t)yaqa and Var(Na(t)/Va) = E(Var(Na(t)/H)) + Vat (E(Na(t)/H)) = 

2 
E(HPa(t)) + Var(HPa(t)) = Pa(t)Yaqa * Pa (t) Yaqa 2. (If H is in fact gamma 

distributed, Na(t ) turns out to follow a negative binomial, this time with 

parameters (Ya,i/(l+Pa(t)qa)). Note that the dependence on P is now in the 

other parameter than that from the earlier negative binomial example.) 

The moment formulas for N yield: 

E(Xa(t)/Va) = yaq a 

Var(Xa(t)/V a) = yaqa 2 + yaqa/Pa(t). The variance of N is not 

proportional to the mean, and thus the variance of X is not inversely 

proportional to P. This occurs because the element of variance that arises 

from the selection of H is not related to P. 

For this model it is still possible to define m(Va) = yaqa, but now 

the conditional variance is a function Sl(Va) + 52(Va)/Pa(t). This 

formulation could be used in developing credibility formulas. The estimation 

of E(SI(Va) ) and E(S2(Va)) may require regression. 

There may be difficulties in determining whether this model is more 

the earlier negative binomial model. The functions s2(Va), appropriate than 

SI(Va), and S2(Va) may take on very different values for different classes, so 

comparing sample variances among classes is not definitive. 
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In o t h e r  words ,  i f  the  sample  f r e q u e n c y  v a r i a n c e s  of  c l a s s e s  w i th  

large values of P were found to be not too much smaller than the frequency 

variances of classes with small values of P, one might think that Sl(Va) 

tended to be fairl@ large. H~ever, such a finding is not inconsistent with S1 

= O. The classes with large P could also be the classes with large values of 

2 
s (Va), for example. This would violate the asstumption of iid Va'S, however, 

and thus would also change the credibility calculation. 

An area in which the implications of the two models differ is in the 

experience over time of single classes. Both models predict that for a given 

class, the years with higher P will tend to stay closer to the class average, 

but the dependence of this tendency on P will be greater for the first (SI=O) 

model. This difference may be st~tle, however, and it is not clear how much 

data is needed to identify it. 

The former effect has been seen in Workers Compensation data, i.e., 

the larger classes do not have proportionally smaller frequency variances th~un 

do the smaller ones. Groups of large classes tend to indicate higher K's, and 

hence tighter credibility requirements, than do groups of smaller classes. It 

could be that the larger classes are inherently more variable and $i=0, but 

the alternate hypothesis also seems plausible. 

If 51 is positive, then S 2 will probably be estlmated as a lower 

2 
nu~er th~ the s of the other model, so the credibility of the large classes 

may rise. This would be consistent with an effect that has been noticed: the 

predictive accuracy of the credibility models seems to improve by instituting 

a finite maximt~m for K. This ends up giving the larger classes higher 

credibility than the model assumptions would imply, and its efficacy suggests 

a failure of some hypothesis, perhaps the inverse relation between exposure 

and payroll, 
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Another suspect hypothesis is time homogenity, i.e., that the class 

averages are consistent over time. For Workers Compensation class frequency, 

predictive accuracy was improved by using, for each class, only the number of 

years of data needed to produce 95% credibility for that class, based on the K 

determined from the model. This is an ad hoc adjustment for time heterogenity, 

but it seems useful. 

Credibility Formulas Without Inverse Proportionality 

As above, consider the Buhlmann-Straub formulation, but without the 

inverse variance assumption. For convenience, specify the covariance 

relationship as follows: 
a 

Coy (Xa(t),Xb(U)) = s d(a,b)(l + d(u,t)(J + K/Pa(t)) ) 

The mixed Poisson case above is an example of this form. Carrying 

out the usual development with this relation yields the estimate: 

Xg(O) = m(1 - Zg(.)) +~tZg(t)Xg(t), 

where Zg(U) = Wg(U)/(l + Wg(.)) and Wg(U) = Pg(U)/(JPg(U) * K). 

For the models discussed earlier, a credibility factor could be 

applied to the class average experience over the observed time periods. In 

this formulation a separate factor is needed for each period. In the special 

case where all the years have equal exposure for a class, the formula 

simplifies somewhat. The estimate becomes: 

xg(o) = m(l-~g(.)) + Zg(.)xg(.), 

with Zg(.) = Pg(.)/(Pg(.)(l + J/n) + K). Here n is the number of years 

observed. 

Z 
To estimate s , J and K, let: 

Dla =~ Pa(t)(Xa(t) - x~F)) ~ 

D 2 = Pa(t)(Xa(t) - Xo(.)) 
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Then the covariance assumption yields, after some algebra, 

Z Z ~ Z Z 
E(Dla ) = (n-t)Ks * Js (tVa(t) - ma(.) )/Pa(.) 

z 2 
From this, the quantities (n-l)Ks and Js can be estimated as the 

2 
intercept and slope of a regression. Then s can be estimated by use of: 

E(D2) = Ks2 (Nn- l )  ÷ J s2 (  P a ( t )  - p . ( . )  ) / P . ( . )  ÷ 

s (Pa(.) - P.(.)Z)/P.(.). 

This will then yield estimates of J and K. 

Non-Linear Exponential Families. 

If X £s distributed according to a frequency in a linear exponential 

family, the credibility estimate has been shown to equal the Bayes estimate, 

under standard normalcy assumptions. This is essentially because for these 

families the observed mean is a complete sufficient statistic, and so an 

unbiased linear function of this mean will be the best unbiased estimator. 

If instead of X some transformation of X, T(X), follc~s a linear 

exponential family, then the mean of the transformed observations is a 

complete sufficient statistic. For several transformed linear exponential 

families, the inverse transformation of the transformed mean will be 

proportional to the (untransformed) mean. In these cases a constant tlmes the 

inverse transformation of the credibility estlmate of the transformed variable 

will then be an unbiased estimate, and hence the best unbiased estimate, of 

X. The constant is not necessarily determined by these considerations, but 

could be specified by requiring overall balance to a particular level. 

Socne examples will be useful. 

Suppose H is normal in N;S 2 and X/M is lognormal in M;T 2. Then the 

predictive distribution of X given observations X I .... X n can be shown to be 

lognormal in: (T2N + S2~inxi)/(T 2 , S2n); T2+T252/(T2+nS 2), with expectec 

value of: exp(T2(n+K÷l)/2(n+K)) exp (N(I-Z)+ZI~i) , where K = T2/5 Z and Z 

n/(n÷K). Thus the posterior expected value is proportional to the invers, 
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transformation of the credibility estimate of the transformed variable. The 

standard credibility estimate, for comparison, is given by Zl~i, + (I-Z l) exp 

(N+(S2+T2)/2) where Z l n/(n+Kl) and K I exp(S 2 
2 2 

, = = ) ( e x p ( T  ) - l ) / ( e x p ( S  ) - I ) .  

For another example, suppose B is distributed inverse transformed 

gamma in s:a;c with density f(b)=(a/c)exp(-(c/b)a)(c/b)sa+VF(s), and moments 

E(B n) =cnF(s-(n/a))/F(s), and X/B is distributed transformed gamma in r;a;B 

with density g(x)=(a/B)(x/B)ar-iexp(-(x/B)a)/F(r), with moments E(Xn/B)=BnF 

(r+(n/a))/F(r). These moment formulas hold for all real numbers n as long as 

n exceeds -at for the transformed gamma or n is below as for the inverse 

transformed gamma. 

The Bayes estimate can then be shown to be J((l-g)E(Xa)+gxia ) I/a 

where E(X a) = rca/(s-l), g = n/n+K, K=(s-l)/r, and J=(n+K)I/aF(s+nr-I/a) 

F(r+I/a)/F(s+nr)F(r)~ Again, this is proportional to the inverse 

transformation of the credibility estimate of the transformed variable. 

This approach to credibility requires that the transformation be 

known, i.e., the log or some known power of the variable should be felt to 

follow a distribution from a linear exponential family. The credibility 

estimate can then be done on the transformed data and the inverse 

transformation applied. The constant of proportionality can then be arrived 

at by finding the factor needed to balance to the observed mean of all classes 

combined. 
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Interpretation of Models 

For those who have philosophical difficulty with the conditioning 

models, the decomposition, or variance component models used above may 

provide a useful-alternative viewpoint for the interpretation of credibility 

formulas. 

Having difficulty with the conditioning formulation is not l~aited 

to those with a frequency view of probabilit 7. The line of reasoning below is 

sometimes heard from advocates of a subjective uncertainty perspective. 

The subjective viewpoint is sometimes categorized as asserting that 

probability is orderly opinion. This may be somewhat strong, especially if it 

is taken to impl 7 that all other forms of opinion are disorderly. 

For purposes of discussion, subjective probability will be defined 

as a three-way relationship among a statement, an observer, and a number from 0 

to 1 such that the number represents the observer's degree of confidence in 

the statement. 

For this definition, a statement is assumed to be, or at least seems 

to be, meaningful, but it does not necessarily have to be either true or 

false- Thus the statement, "Hamlet was a Gemini" can he assigned subjective 

probabilities by various observers. 

While some probabilities may be different from observer to observer, 

others may be quite stable. In other words, "subjective" does not necessarily 

imply "unreliable." As an example, "the trillionth digit of e is a 7" would 

be assigned a probability of .i by many observers. 

Taking the observer out and defining objective probabilities becomes 

problematic for some analysts. There is a point of view that would assign an 

objective probabllity of i to all true statements, 0 to all false, and not 

allow objective probability to apply at all to other statements. Thus, 

"Hamlet was a Gemini" would not be eligible for objective probability, while 
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"The trillionth digit of e is a 7" has objective probability of either 0 or I. 

Under this viewpoint, statements about the future have no special 

status. They are still either true, false, or neither. Thus "It will rain on 

my birthday" objectively would have probability either 0 or I, depending on 

whether the statement is true or false. This does not rely on the truth or 

falsity being determinable in advance, even in principle. 

From this point of view, it becomes difficult to interpret statements 

like: "A has a Poisson distribution for claim frequency, with the parameter 

following a gamma distribution." The problem is not with the gamma, because 

that can be interpreted as someone's uncertainty about something (the 

parameter). The problem is with the Poisson, which sounds like an objective 

probability, and thus should be either 0 or i. 

This philosophical difficulty may not be a problem for credibility 

applications, because the formulas themselves have simpler, less problematic 

interpretations. Resolving this difficulty would nonetheless help clarify 

thinking and discussions about the concept of probability and its role in 

credibility models. 
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