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Abstract 

This pedagogical note presents several techniques for evaluating integrals: the 

exponential shift, the formulas sin (x) = Im{exp (ix)} and cos (x) = Re{exp (ix)}, and the 

transformation of an integral into a differential equation. These methods are applied to show 

that a moment sequence need not uniquely determine its distribution and to give a heuristic 

proof of the inversion formula for the characteristic function. 

1. Introduction 

Many students find the method of integration by parts tedious. However, if the 

integrand has a factor which is an exponential function, the integral may be obtained by 

means of differentiation; most students make fewer mistakes in differentiation than 

integration. Also, if the sine or cosine functions appear in the integrand, applying Euler's 

formula 

eix=cosx + isinx (1 ) 

may lead to simplification. In (1), x is a real number and i = ..J(-1). This paper gives some 

interesting applications of these techniques. 
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2. Exponential Shift 

Let D denote the differentiation operator, 

d 
D = dx . 

By the product rule 

D{eaxf(x)] = aeaxf(x) + eaxOf(x) = eax(a + D)f(x). 

The operator 0-1 may be called the indefinite-integral operator. It follows from (2) that 

(2) 

(3) 

for details see Agnew (1960, Sec. 6.8), Ayres (1952, Chap. 16), Bateman (1918, Sec. 12), 

Brand (1966. Sec. 36) or Friedman (1969. Sec. 6.1). 

If n is a nonnegative integer. then 

Evaluating the integral 

by the formula 

-ax 1 " = e 0 x 
(-a)(1 --) 

b 

= -e -ax ~ fix" 
£..J ·1 
j.O a! 

a 

e x dx J -ax " 

a 

b 

J -1 I b g(x)dx = D g(X) a 

a 

yields the same answer as integration by parts. Thus, we have the following relation 
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between the incomplete gamma and the Poisson 
x n n-1 -py n-1 -px j 

i ~ y e dy - 1 - L e (~x) 
(n - 1)1 - j _ 0 jl ' 

a special case of which is formula (11.3.25) of Bowers, et a/. (1986). Another interesting 

proof of the last formula can be found in Chao (1982). 

Note that, if a is a number with positive real part, then 

-
f -ax n nl 

e x dx = --;:; . 
o a 

3. Moment Problem 

We shall show that, for each nonnegative integer m, the integral 
_ 1 1 

f umexp(-u "4) sin (u"4) du 

o 

(5) 

(6) 

is zero (Widder, 1946, p. 126; Feller, 1966, p. 224; Neuts, 1973, p. 252). Thus, the family 

of probability density functions 

f;Ju) = [1 + ).sin (u 114)] exp (-u 1/4) 124, u ~ 0, A e [-1, 1], 

constitutes an example which shows that a moment sequence need not uniquely 

determine its distribution. This example was given by T.J. Stieltjes in 1894. 

Denote expression (6) by I. By a change of variable and equation (1), 

-
f ·X 4m+3 • 

I = 4 e x Sin (x)dx 

o 

-= 4 1m <J e-(1-i)xx 4m+3 dX} • 

o 
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It follows from (5) that 

{ 
(4m+3)1 } 

= 41m . 4(m+l) 
(1-1) 

{ 

(4m+3)1 } 
= 41m m+l 

(-4) 

= 0. 

Remarks 

(i) It follows from the Weierstrass approximation theorem that a distribution which is 

concentrated on some finite interval is uniquely determined by its moments. It had been 

proved by F. Hausdorff (Feller, 1966, p. 223, Theorem 2; 1971, p. 225, Theorem 1) that a 

sequence of numbers Ilo' Ill' ~, ... represents the moments of some probability 

distribution concentrated on [0, 1] if and only if Ilo = 1 and for m, n = 0, 1,2, ... 

(ii) Feller (1971, p. 227) shows that the log-normal distribution is not determined by its 

moments. 

4. Inversion Formula 

As pointed out by Kotlarski (1975), most books in probability theory no longer use 

moment generating functions, but instead use characteristic functions. A rigorous proof of 

the inversion formula for the characteristic function involves mathematics at a level more 

advanced than that normally assumed in an introductory probability or risk theory course. 

Books such as Hoel, Port and Stone (1971) and Neuts (1973) simply state the inversion 

formula without proof. We now give a heuristic proof of the inversion formula. 
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LeI f be a continuous probability density function wilh characteristic function 41, -
,(I) • J e

lty 
f(y) dy. 

If , is absolutely integrable,lhen Ihe inlegral -J e -It I ,(I) dt 

exisls and Ihe following inversion formula holds: -
f(x) • ~ J e -It I ,(I) dt • 

SubSlilUling (7) into (8) yields 

- -
f(x) • 2~ J e -ltx (J l' f{y)cly)dt • 

Inlerchanging Ihe order of integration in (9), we have 

f(x) • ;K J (J e·,(x-)')dt) f(y)dy. 

To verify the inversion formula (8) we shall show thaI 

is Ihe Dirac delta-function. 

Define 

-1.. J e .Jtw dt 
2K 

- .Jtw 
h(w) = J e_

il 
dt; 

Ihen Ihe derivalive of h(w) is (1 0). LeI 
2K 
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(7) 

(8) 

(9) 

(10) 



- Ix 

J=J7 dX ; 

then 

{

J/i 
h(w) = 

.JIi 

w>O 

w<O 

We shall prove that expression (10) is the Dirac delta-function by showing that the step 

function h(w) has a jump of height 2lt at w = 0, La., 

J = lti. (11) 

Equation (11) can be proved by contour integration (Friedman, 1969, p. 18); however, the 

following method (Agnew, 1960, p. 362; Apostol, 1974, p. 285; Parzen, 1960, p. 411) is 

more elementary. 

Since the cosine is an even function and the sine an odd function, by equation (1) 

For a ~ 0, define 

For a> 0, 

J .J sin x d =1 -- X 
X 

2· J sin x d = 1 -- x. 
X 

o . 

J sinx -ax 
w(a) = -x- e dx. 

a 

w'(a) = -J sin x e -ax dx 

o 

= - 1m <J aix 
e -ax dX} 

o 
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which implies that 

.. -Im((a - i)-l} 

- -{1 + il)-l, 

w(a) .. k - arctan (a). 

Since w(a) -t 0 as a -t -, the constant k is 1tI2. Hence, 

J - 2iw(O) 

- 2iw(0+) 

.. 2i (It!2 - arctan (0+)) 

.. Ki, 

proving equation (11). The step w(O) .. w(O+) can be justified by the theory of uniform 

convergence; cf. Apostol (1974, p. 286). 

Remarks 

(i) A rigorous proof of the inversion formula can be found in Rudin (1974, Chapter 9). 

(ii) There is an interesting way to derive (12). By equation (3) 

o-l(e- sin x) .. e-<IX (-a + Dt1 sin x. 

Since 

[)2 sin (bx) .. ....tJ2 sin (bx), 

we have 

(a + [)2)-1 sin (bx) .. (a - t>2t1sin (bx), 

provided a .. t>2 (Ayres, 1952, p. 99; Brand, 1966, p. 145). Thus, 
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1 . a+O. 
-- SIn x = -2--2 Sin x 
-a+O -IX +0 

a+ 0 . = -2--2 Sin X 
-a - 1 

= - (a sin x + cos x) / (1 + ( 2). 

By formula (4) 

- .... 
J ..... d e (a sin x + cos x) 1-0 e SInX x=- 2 
o 1+a 

(iii) A main result in Chapter 12 of Bowers et aJ. (1986) is the formula 

J
- ru e Mx(r)-1 

e [-1(I'(u)) du = - . 
o 1 + e 1 + (1 + e)Plr - Mx(r) 

(13) 

Denote the right-hand side in (13) by g(r). Integrating by parts yields 

J ru () d -",(0) + g(r) 
e "'U u= r . (14) 

o 

We wish to invert (14) and obtain an expression for the probability of eventual ruin ",(u). 

Compare (14) with (7) and consider x = u, r = it, f = '" and ~(t) = [-",(0) + g(it))/(it). It follows 

from the inversion formula (8) that 
i-

( ) 1 J -",(0) + g(r) -ro d "'U = - e r. 
2 . r 

1tI . 
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Observe that the point r = e is a removable singularity for the integrand in (15) since 

lim g(r) = _1 - = ",(0). 
, ... 0 1 + e 

(15) 

Let R denote the adjustment coefficient. For each real number a, a < R, it can be shown 

that 
a+i- .. 

",(u) = _1_ J -1(1(0) + g(r) e -ru dr. 

2lti a-i- r 
(16) 
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For u > 0 and b > 0, 

Hence, (16) can be simplified and we have the following integral expression for the 

probability of eventual ruin 'I'(u), u> 0, 
c+ ioo 

'I'(u) = _1_. J g(r) e -ru dr, 
21t1 . r 

C-ioo 

which is identical to formula (118) of Cramer (1955). 

5. The Poisson Process 

o <c< R, 

Equation (3) can be applied to solve the system of differential-difference equations 

which arises in the derivation of the Poisson process (Hogg and Craig, 1978, Sec. 3.2; 

Parzen, 1960, Sec. 6.5; Ross, 1983, Sec. 2.1): For n = 1,2, 3, ... , 

Pn(O) = 0, 

and 

By (17) and (19) 

Applying (3) repeatedly yields 

= A. n e->..x D-n 1. 
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(18) 
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By (18) 

= (Ax)" e-Ax I n I . 

6. The Laguerre Polynomials 

The Laguerre orthogonal polynomials have been applied to approximate the 

distribution of aggregate claims (Bowers, 1966; Gerber, 1980, Sec. 4.4) and the ruin 

function (Pfenninger, 1974; Seal, 1975; Taylor, 1977). Apart from a normalization factor, 

a Laguerre polynomial of degree n is 
-a x d" "+<l-X 

X e -" (x e). 
dx 

(20) 

It is not immediately clear that (20) is a polynomial. However, by repeated applications of 

equation (2), (20) becomes 

x-« eX e-x (D - 1)" xII+« 

which is obviously a polynomial of degree n. 

-10 -



References 

Agnew, R.P. (1960), Differential Equations (2nd ed.), New York: McGraw-HilI. 

Apostol, T.M. (1974), Mathematical Analysis (2nd ed.), Reading, MA: Addison-Wesley. 

Ayres, F., Jr. (1952), Schaum's Outline of Theory and Problems of Differential Equations, 

New York: McGraw-Hili. 

Bateman, H. (1918), Differential Equations, London: Glasgow University Press. Reprinted 

by Chelsea, New York (1966). 

Bowers, N.L., Jr. (1966), "Expansion of Probability Density Functions as a Sum of 

Gamma Densities with Applications in Risk Theory," Transactions of the Society of 

Actuaries, 18, 125-137; Discussion 138-147. 

Bowers, N.L., Jr., Gerber, H.U., Hickman, J.C., Jones, D.A., and Nesbitt, C.J. (1986), 

Actuarial Mathematics, Itasca, IL: Society of Actuaries. 

Brand, L. (1966), Differential and Difference Equations, New York: Wiley. 

Chao, A. (1982), "Another Approach to Incomplete Integrals," The American Statistician, 

36,48. 

Cramer, H. (1955), "Collective Risk Theory ," Skandia Jubilee Volume, Stockholm. 

Feller, W. (1966), An Introduction to Probability Theory and Its Applications, Volume II, 

New York: Wiley. 

Feller, W. (1971), An Introduction to Probability Theory and Its Applications, Volume II 

(2nd ed.), New York: Wiley. 

Friedman, B. (1969), Lectures on Applications-Oriented Mathematics, San Francisco: 

Holden-Day. 

Gerber, H.U. (1980), An Introduction to Mathematical Risk Theory, Homewood, IL: Irwin. 

-11 -



Hoel, P.G., Port, s.c., and Stone, C.J. (1971), Introduction to Probability Theory, Boston: 

Houghton Mifflin. 

Hogg, R.V., and Craig, A.T. (1978), Introduction to Mathematical Statistics (4th ed.), New 

York: Macmillan. 

Kotlarski, 1.1. (1975), "Some Deficiencies of Using Moment Generating Functions," The 

American Statistician, 29, 127-128. 

Neuts, M.F. (1973), Probability, Boston: Allyn and Bacon. 

Parzen, E. (1960), Modem Probability Theory and Its Applications, New York: Wiley. 

Pfenninger, F. (1974), "Eine neue Methode zur Berechnung der Ruinwahrscheinlichkeit 

mittels Laguerre-Entwicklung," Deutsche Gesellschaft fOr Versicherungsmathematik, 

11,491-532. 

Ross, S.M. (1983), Stochastic Processes, New York: Wiley. 

Rudin, W. (1974), Real and Complex Analysis (2nd ed.), New York: McGraw-Hili. 

Seal, H.L. (1975), "A Note on the Use of Laguerre Polynomials in the Inversion of Laplace 

Transforms," Deutsche Gesellschaft fOr Versicherungsmathematik, 12, 131-134. 

Taylor, G.C. (1977), "Concerning the Use of Laguerre Polynomials for Inversion of 

Laplace Transforms in Risk Theory," Deutsche Gesellschaft fOr 

Versicherungsmathematik, 13, 85-92. 

Widder, D.V. (1946), The Laplace Transform, Princeton: Princeton University Press. 

-12 -


