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A REGRESSION APPROACH TO INJURED WORKER MORTALITY

( REVIEW OF REPORT OF COMMITTEE ON MORTALITY FOR
DISABLED LIVES)

Loss reserves for workers compensation cases in the U.S. now are in the area of
$50 billion, much of which is ded up in long term cases. Typically standard
mortality is used to reserve these cases, but in serious cases a factor (e.g. 10) is
applied to the mortality rates on a judgment basis, as in Snader (1987). Some
disabled life tables have been calculated from other benefit systems, involving, for
example heart disease or cancer cases, but these are probably not appropriate for
injured workers.

Faced for the 25 years since the inception of workers compensation insurance with
the need for injured worker mortality tables, the CAS decided to take action, and in
1937 appointed a Committee of Three to investigate the feasibility of undertaking a
study. Coincidentally, the Committee of Three came up with three conclusions:

1. Very substantial results could not be expected from the data then available.
2. A start should be made in order to get carriers to keep appropriate records.

3. It was as feasible then as it would be at any later time to do a mortality
study based on the statistical system in place.

Thus, working with the National Council on Compensation Insurance, a call for
disability data was sent out in October 1938. The data used in the study was for
accident years or policy years 1930-1935, depending on how carmriers reported, and
the first year of disability was excluded from each case. Although the first year
after the accident was excluded, the data represented fairly new claimants, who
might be expected to display higher mortality than more stabilized cases. The
results of the study would thus be most applicable to such cases.

This review looks at the data from that study to see if there are any relationships
between disabled worker mortality and standard mortality that might endure to the
present. A regression methodology is used to explore this question. As the uniform
variance assumption of least squares regression is not met, a method for dealing
with this heteroscedasticity is developed.  The information matrix from the
(non-linear) regression is used to test goodness of fit and to develop prediction
intervals.

COMMITTEE REPORT

The report of the committee on mortality for disabled lives produced a mortality
table for lives disabled by industrial accidents. The table is based on permanent
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total cases and nondismemberment permanent partial cases involving 50% or more
disability. In total there were 8,598 life years of exposure with 285 claim
terminations. The 285 claim terminations included deaths and the few cases where
the injured person recovered. These claim terminations did not include cases where
permanent partial disability followed permanent total, the benefit period ended, or a
lump sum settlement was made. Since the mortality table in workers compensation
is primarily used to determine expected claim size it is appropriate to include
terminations due to either death or recovery. An alternative method is a multple
decrement model in which deaths and recoveries are measured separately. However
the committee chose to consider both types of terminations together.

In the original study, mortality rates for each age were calculated based on the
reported data. For those ages with sparse data, below age 22 and over age 73, the
reported mortality rates were weighted with the mortality rates from the 1930 U.S.
life tables for white males. The resulting mortality rates for ages 10 to 105 were
graduated using the Whittaker-Henderson technique. Mortality tables were then
constructed with these morntality rates.

The authors state that the mortality rate for these disabled lives is 144% of that for
white males in the 1930 U.S. Life Tables. This was determined by comparing the
expected number of deaths in the next year under the disabled workers table of
mortality rates versus the U.S. Life Table mortality rates. The expected number of
deaths is determined by multiplying the number of lives exposed for each age group
by the respective mortality rate and summing for all ages. It is clear from the data,
however that this 144% varies dramatically and systematically by age.

RELATIONSHIP BETWEEN DISABLED WORKER MORTALITY AND
STANDARD MORTALITY

We projected the mortality rates for disabled workers based on our hypothesis that
the ratio, g,/q,, between the mortality rate for disabled workers, q,; and that of the
U.S. population, q,, is a decreasing function of age. This is an alternate method of
graduation to the Whittaker-Henderson formula used by the committee. Initially we
set the mortality rate of disabled workers equal to a constant plus a power of the
mortality rate of the U.S. multiplied by a function of age;

qq = a + q,° x f(age)
We found that the constant, a, was insignificant. In all regressions attempted of q,
on q, and age our estimate of the power of q, was approximately one. Together

these suggest that the ratio of q,/q, can be adequately expressed as a function of
age.
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Let y, be the ratio of observed disabled worker morality to U.S. population standard
mortality at age r. A fairly simple model was found to fit quite well:

y, = be" + ¢ ; with b = 0.32 and ¢ = 84

The ratio of the parameter to its estimated standard deviation is 3.72 for b and is
10.83 for c.

Graph 1 shows three regressions of y, on be™ with the parameter ¢ set equal to 1,
40 and 84. The graph illustrates the importance of ¢ in the model.

In addition, in graph 2 a comparison of the ratio of q/q, to the confidence intervals
for the model indicates heteroscedasticity (the variance around the fitted line is not
constant over age). The observed q,/q, has a much greater variance at younger ages
where, on average, q,/q, is greater. Therefore rather than assume the constant
vadance of standard least squares regression it was assumed that errors were
normally distributed with mean equal to zero and standard deviation proportional to
the mean of the regression. This is referred to as the multiplicative error model and
is described further in Appendix 1.  The distribution of the error term g, is
approximated by a normal distribution:

€ = Y - be™ ~ N(0,b’e*"c”) where ¢° = constant of proportionality

In Appendix 1 it is shown that this model can be fit by a standard regression with
the "dependent variable” set equal to one , and y/be” as the independent variable.
Then the parameters b and ¢ are found to be, respectively, 0.35 and 88 which are
respectively, 6.86 and 13.08 times the eStimated parameter standard deviations.
Graph 3 shows the observed data along with the confidence intervals for this
multiplicative model. This illustrates the basis for the assumption that the standard
deviation of € is proportional to the mean, in that the model confidence intervals
more closely approximate the data variations. Table 1 compares the observed y, and
the values from the two fitted models.

To estimate the standard deviations of the parameters for this model we calculated
the variance-covariance matrix which is the inverse of the information matrix as
described on page 81 of Loss Distributions by Robert V. Hogg and Stuart A.
Klugman. The calculations of the information matrix and its resulting
variance-covariance matrix for both the constant variance and the proportional
variance model are described in Appendix 2.

A comparison of montality rates for 1930 and 1980 from the U.S. Life Tables and
the projected mortality rates for disabled workers based on the models is shown in
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Table 2. Since the committee used the 1930 U.S. Life Table for white males we
used the same 1980 table.

DISCUSSION

The hypothesis that the ratio between the mortality rate for disabled workers versus
the population, q,/q,, is a decreasing function of age is supported by the data
analysis described above.

It is possible that the ratio q,/q, is closer to one now than is reflected in the 1930’s
data. The improvements in mortality of the general population may be heavily
influenced by a disproportionately larger improvement in the mortality of disabled
people. It will require another study of disabled workers mortality to determine if
disabled worker mortality is now closer to standard mortality.

At an advanced age, there is a crossover point at which the mortality rate of
disabled workers becomes less than that of the general population (Table 2). With
the committee’s method this occurs at age 81. With the multiplicative error model
the crossover occurs at age 85. It is reasonable to assume that since these disabled
workers had recently been in the work force at an advanced age they were healthier
than the general population. The permanent injuries received were not necessarily
serious enough to increase the mortality, of these exceptionally healthy individuals to
the level of the general population at that age.

In fact a fairly minor injury may be "permanent” at an older age in that the person
may not return to work. This may contribute to the existence of a crossover point
since permanent disability benefits supplement retirement income for older workers
and could thus discourage return to work. Since on average today's workers retire
earlier than they did in the 1930’s the crossover point may be earlier now.

Below are the annuity values for certain ages calculated with the 1979-81 U.S. Life
Tables and with estimated disabled workers’ mortalities based on the proportional
variance model. These annuity values contain an interest rate assumption of 3.5%
and escalating benefits are assumed to increase at 7% per year.

61



Lifetime Annuity Values

U.S. Life Table Disabled Mortality
Age Nonescalating Escalating Nonescalating Escalating
25 22.756 136.298 20.272 111.229
45 17.776 58.464 16.631 52.366
65 11.009 21.442 10.507 20.364
85 4.606 6.117 4.811 6.486

These disabled worker mortalities are ecreated from the general population of
permanent total disabled workers and may not apply to the most severely injured
workers. As mentioned earlier since the mortality rates are based on recently
injured workers they may not be appropriate for claimants who have been disabled
for many years. The disabled worker annuity values do not change drastically from
those for the general population but they do decrease. However for advanced ages
the annuities under the disabled worker mortalities are actually greater than under

the U.S. Life Table mortalities.

CONCLUSIONS

1. A model which declines with age seems appropriate for q,/q,, the ratio
between the mortality rate for disabled workers and that of the U.S.

population.

2. At some age this ratio goes below unity and this may now occur at an
earlier age.

3. The impact of the disabled mortality rates on the annuity values was

moderate then and would probably be even less now.
4. These results may not be applicable to the first year of injury when

higher mortality rates are likely or to longer period after injury where
mortality rates closer to standard are expected.
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Table 1

Ratio of ) . . .
Observed Fitted Ratio  Fitted Ratio
Mortality Rate from from

to 1930 Constant Proportional

0.S. Standard Variaoce ariance

Age Mortality Rate Model (1} Model (2)
24 8.2541 10.6254 13.7001
25 9.6604 9,2373 11,8330
26 14.7013 8.1175 10,3362
27 8.0420 7.2020 9.1136
28 2.6410 6.4446 8.1185
29 2.1841 5.8113 7.2855
30 6.1 5.2764 6.5833
31 5.2512 4.8207 5.9914
32 4.9615 4.4293 5.4833
33 0.0000 4.0907 5.0453
34 8.4568 3.7956 4.6651
35 3.9529 3.3369 4.3329
36 1.1813 3.3088 4.0409
37 2.0035 3,1066 3.7828
38 4.4908 2.9264 3.5536
39 3.2170 2.7652 3,3489
40 2.1517 2.6202 3.1654
41 1.3040 2.4894 3.0002
42 1.2320 2.3709 2.8509
43 2.1564 2.2631 2.7154
44 2.9405 2.1648 2.5922
45 2.8654 2.0749 2.4796
46 1.7136 1.9924 2.3765
41 2.4 1.9165 21,2818
48 1.5980 1.8464 2.1946
49 2.3456 1.7816 2.1141
50 1.5227 1.7216 2.0396
51 2.8791 1.6658 1.9705
52 1.2275 1.6139 1.9062
53 1.3889 1.5654 1.8464
54 1.334% 1.5201 1.7905
55 1.5800 1.4778 1.7383
56 1.6526 1.4380 1.6894
57 1.6292 1.4006 1.6435
58 1.8961 1.3655 1.6004
59 0.5384 1.3324 1.5598
60 2.1415 1.3012 1.5215
61 1.6078 1.2716 1.4854
62 1.7536 1.2437 1.4513
63 1.3142 1.21712 1.4130
64 0.7567 1.1921 1.3884
65 1.144% 1.1683 1.35%4
66 0.9790 1.1457 1.3318
67 1.2446 1.1241 1.3056
(1] 0.6663 1.1036 1.2806
69 0.7997 1.0840 1.2569
10 0.2978 1.0653 1.2342
1 0.9891 1.0474 1.2126
12 1.5846 1.0304 1.1919
13 0.8659 1.0140 1.1721
74 0.9447 0.9984 1.1532
15 1.3963 0.9834 1.1351
76 0.8682 0.9690 1111
77 1.6805 0.9552 1.1010
18 1.1974 0.9419 1.0850
79 0.6338 0.9292 1.0697
80 0.4526 0.8169 1.0549
81 1.3872 0.9051 1.0407
82 1.1605 0.8937 1.0270
83 0.6815 0.8828 1.0138
84 0.3539 0.8722 1.0011
85 .2400 0.8620 0.9889
86 0.585¢ 0.8321 0.9770

B FES B S
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Appendix 1 Regression formulas

Regression with additive error structure
This is the standard least squares regression method.

Model is P Y=g (X geeXpe) + €,
where: ¥¢ is the dependent variable
X,...X are the independent variables
.‘ is the function with parameters to be estimated

€, is ~ N(0,0?)

The additive error structure is sppropriate when it can be assumed that the
conditional variance = var{y, | g(xj;¢...Xxe)} = constant = o?. In other words the
variance o is independent of t. This is an assumption of least square regression

referred to as homoscedasticity.

Assuming a normal distribution of the disturbance term ¢,

the maximum likelihood estimates for the parameters of g minimize:
Sod = 3 b - ]
t t

The regression function used is: g(xy,) = be®’®

where x,, = t = age

Our model becomes : Ve = be®’® + €,

where Yy, is the observed ratio of injured worker

mortality to standerd mortality at age t.

The regression finds b and ¢ which minimize: E l_y, — beelt}’
t
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Appendix 1 Regression Formulas

Regression with multiplicative error structure.

Model is ! Verm B(XieXpe (14 €) mm g(XyeoeXpe) + € 2N e0Xye)
where ¢, is ~ N(0,0D

Thus the disturbance term increases in size with the function.

This multiplicative error structure is sppropriste when
it can be assumed that the var{ v, | g(x,¢.c.Xue))™ (X1e.eXpe)?0?
i.e, the variance increases with the square of the

function (the conditional mean).

Ye - 8(Xie0Xue) - Ye -1
(X, (eeeXay) (X, goeeXay)

Also, €y

This ¢, satisfies the assumptions of standard least squares
regression, that is : ¢,~ N(0,02), so the maximum

likelihood estimates of the parameters of g minimize:

=i
n &(X - eXne)

An alternative model (which we did not use) is : y =m=g(x;e...Xx,) + e,.lg(x,,...x“)

2
Which requires minimization of : E ————-y‘—- —  JglxgeXne)
t -ll\xn---xke)

varl ¥o | @(Xyeee-Xned)= 8(XyeeneXnedo?
Here the variance increases linearly with the conditional mean.



Appendix 1 Regression formulas

Both of these error structures ere examples of heteroscedasticity, s common

violation of the assumptions of least squares regression.

A multiplicative model was used and eventually chosen as the model that best "fit”

our data .
The regression function used is: g(x,e) = bes’t
where x,, = t = age
Our model becomes : ve = be®f(1 + ¢,)
For this model , the regression minimizes: E Ye —
n bec/t

This is equivalent to minimizing the sum of the squares of the proportionsa] errors.
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Appendix 2 Significance of Parameters

Regression can be regarded as fitting a distribution (often a normal distribution) to

the error terms ¢, by the method of maximum likelibhood.

Variances and covariences of the regression parameters can thus be estimated by
the inverse of the information matrix as described in  LOSS DISTRIBUTIONS by
Robert V. Hogg - Stuart A. Klugman (Page 81).

If fle;8) is the density function for the error terms, and 8 is a vector listing the

parsmeters to be estimated, the ijth element of the jnformation matrix is:

2%1n [(¢;9)
8,,(8) = “"E[_a?fas-,‘} , Here n (s the number of
observations.

This is typically estimated by:

3n feB)
~ Z 39,38, ~ 55, ‘“n““"”

Where 8 is the vector of parameter estimates and
¢, = observed deviation from the model for observation t.
Thus the information matrix is estimated by the second partials

of the negative loglikelihood.

Additive error structure

2
a 4 2 -/
For our model: y, = be "y € 8 = <bc,o™> and [(e,;0) = —l——ﬁ_ e 20
so that D€ =y, — be®’" Since ¢, ~ N(0,0%) onen
Thus In (e;0) == “ln2x — thoe — e’
2 20t
2
- —%anR — lno — [y, - be°,‘] 2—;5 Since ¢, = [y, — be"']
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Appendix 2 Significance of Parameters

Taking the partial derivatives of Inf(e;) with respect to b,c and o? (after some algebra)

yields the following estimates of the a; :

12: 20/¢
Q) mm &—zt e’

/v
1 e° e/t
Q,, == 8, ==-i 2be —
12 n =5 E{ T [ Ve ]
a b ee/t[Zbec/t —y J
22 0"‘7 St -y t

Ay = 8y = a—l; E ac/'[}’e - be‘:/'] - o—?;Z e’ ¢,
t t

e/t e/t
873 == 83 = ;bz eT [Yz = b‘dt] - %S et €
t

For the data used the sum is from t=24 to t-86.
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Appendix 2 Significance of Parameters

For our example the maximum likelihood estimates of the parameters are:

b=.2, &=84 andc?-2.34 yielding the
Information Matrix:
2664.4519  28.7613 9412
28.7613 3271, .0104
9412 .0104 5.0397

Taking the matrix inverse gives us the Variance-Covariance Matrix:

.0074 -.6493 0
-.6493 60.1556 -.0028
0 -.0028 1984

Our final step is to check the significance of our parameters. We do
this by observing the ratio of the estimated parameter values to their

standard deviations.

Standard error of parameter b : *] 0074 = .086 .32/.086 = 3.72
Standard error of parameter c¢: «160.16 = 7.76 84/7.76 = 10.83

Parameters b and ¢ appear to be significant.
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Appendix 2 Significance of Parameters

Multiplicative error structure

8 m=<b,c,0?>
€, = observed deviation from the model for observation {

el .2
1_,-¢/20

Again: f(€4;0) == and
oy2x
In (ey;0) “lin2x — 1 €t
n ll€g - j" —Ino — 2—0-2-
_1 Ye 1 Ye
= ~zIn2® — Inoc — — 1] =5 ,Since €, = —1
2 [be:/t 202 ¢ [bec/t }

Taking the partial derivatives of In f{e,;0) with respect to b,c and o? yields the

following estimates of the a,; :

a,, _#E (e +1 )3 +1)
t

—en = L > g2+ 1)

82

83 =iy, _B#E (e +1)e
822 - L?E {15(1,4»1)(2:,4-1)

[+ 4
t

Bpy= B3, == ;,I—‘ E %(e,+1)e‘
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Appendix 2 Significance of Parameters

For our example: b= .35 , ¢ =88 and c;z - .15 yielding the

Information Matrix:

2953.559  20.9673  17.3212
20.9674 1709 .1104
17.3812 1104 1348.404

Taking the inverse of this matrix gives us the Variance-Covariance Matrix:

.0026 -.3218 0
-.3218 45.3341 .0004
[ .0004 .0007
Standard error of parameter b : 4 0026 = .051 .35/.051 = 6.86
Standard error of parameter c: 445.33 - §.73 88/6.73 = 13.08

Parameters appear to be significant.
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Error Structure

Constant Variance

y, = f(t) + €,

Proportional Variance

y. = 1O + €)

Proportional Standard Deviation

y, = f(t) + f(t)"g,
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Proportional Variance Model

& = Yt/ f(t) — 1

Thus minimize:

E(Yt/f(t) — 1

Minimize sum of proportional errors
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28

Disabled Worker Mortality
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Age vs. Ratio of qd/qu
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Parameter Estimation Error

Information Matrix (parameters 0)

a, = —n| In f(e;6)/00,06 ]

Estimated by:
a, =— D [9n f(e:6)/2090 ]

(Second  partials of negative
loglikelihood)

f 1s normal density for €
0 is b,c,0°

E.g., a,, = b'10'22(8t+1)(28t+1)/t
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