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ABSTRACT 

A portfolio of different insurance policies such as temporary, endowment and whole- 

life insurance policies is studied in a stochastic mortality and interest environment. 

The first two moments of the present value of the benefits of the portfolio are derived. 

The riskiness of the portfolio as measured by the variance of the present value of the 

benefits can be divided into an insurance risk and an investment risk in two different 

ways. One way leads to a more natural interpretation of the two risk components. A simple 

portfolio is used to illustrate the results. 
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1. INTRODUCTION. 

Our goal is to extend the theory on valuation of insurance liabilities to an 

environment where future rates of return on the assets backing those liabilities are 

stochastic. Although the extensions suggested herein are derived in a specific framework, 

they are believed to be insightful for other more general situations. 

In the actuarial literature, stochastic mortality and interest rates models for one 

policy only have been proposed by Panjer and Bellhouse (1980, 1981), Devolder (1986), 

Dufresne (1990), Norberg (1990, 1991) and Beekman and Fuelling (1990, 1991) among others. 

Generalizing the results to portfolios is usually a complicated task. Some work has 

been done in this area, see for example, Waters (1978), Frees (1990), Norberg (1993) and 

Parker(1994a,b). 

In this paper we study, in a stochastic mortality and interest environment, the 

moments of the present value (or interchangeably, the discounted value) of the cash flows 

arising from the benefit obligations of a general portfolio of life insurance policies. 

Here, a general portfolio is one containing different types of policies as opposed to one 

containing identical policies only. 

We focus our attention on the first two moments of the present value of the benefits 

of a portfolio provide actuaries with useful information when time comes to price or 

value a portfolio. This kind of information would certainly also be useful when 

determining a contingency reserve or assessing the solvency of a portfolio of life 

insurance policies. 

Note that we only consider the benefit obligations which would correspond to single 

premium contracts or paid-up contracts. We do not explicitly include expenses and lapses 

in our model. One could always assume that the rate of return used in the model is net of 

expenses. To adequately include expenses and lapses explicitly into the model would 

require the use of more elaborate processes that would capture the dependence between the 
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rate of return, the expenses and the lapses. This is beyond the scope of this paper as 

even if a generally accepted multi-factor model existed, it would not necessarily lead to 

simple results. 

When considering valuation models for insurance liabilities, we agree with the views 

expressed in the overview section of Frees (1990) on financial models. Frees argues that 

the application of valuation theories in finance (e.g. Capital Asset Pricing Model, 

Arbitrage Pricing Model, etc.) to the insurance problem is highly suspect. His 

argumentation is primarily based on the fact that key assumptions of the financial models 

such as frictionless trading, efficient markets, existence of a secondary market, etc. 

are not satisfied in the insurance context. We would like to go further and suggest that 

even if all the key assumptions were satisfied, the financial models would not 

necessarily be suitable for the valuation oi" insurance liabilities. They might be 

acceptable for putting a price tag (or market value) on the liabilities but they would 

not be acceptable for measuring the riskiness of a portfolio of policies or assessing the 

solvency of an insurance company. Consequently, for the problem at hand, we find it more 

appropriate to generalize existing actuarial techniques to the case of random mortality 

and interest than to use financial models. 

The random survivorship group approach (see, for example, Bowers et al (1986)) will 

be used to model mortality. This will imply, assuming mutual independence of the future 

lifetimes of the lives insured, that the number of policies payable over the years will 

have a multinomial distribution. The distribution of each curtate-future-lifetime is 

given by a usual non-parametric life table. The lives insured may have different 

mortality rates, for example, the portfolio may have smokers, non-smokers, females and 

males. 

The approach we will follow for the investment component of the model is that assets 

are invested according to some investment strategy in order to support the liabilities. 
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The assets can be invested in virtually any investment vehicles available on the market 

including T-Bills, bonds, common shares, mutual funds, etc... The assets invested in 

instruments with maturity dates are not necessarily kept until maturity. The investment 

manager may want to sell some fixed income assets if higher returns become available in 

the future (perhaps with capital gains or losses) or may have to sell them if, for 

example, the mortality is higher than expected. 

The assets and liabilities may and would typically be partially matched. Note that 

in practice full matching of insurance liabilities is not possible because of the very 

long term nature of some insurance policies and the randomness of the liability cash 

flows. Further, some company may not be interested in achieving the highest degree of 

matching possible. One reason may be that low-risk investment strategies associated with 

it usually produce lower expected returns. The degree of matching does not require a 

different investment model in our framework but would call for different parameters of 

the process for the rate of return. 

It is generally understood that the insurance risk (due to mortality) is one that 

decreases as the number of policies in the portfolio increases. However, the investment 

risk (due to the rates of return) does not follow this rule because of the highly 

dependent investment rates of return involved. 

The results of Norberg (1993) and Parker (1994a) are generalized using the approach 

found in the later. The portfolio under consideration and the assumptions made are 

described in section 2. 

We derive expressions for the first two moments of the present value of the benefits 

of a portfolio in sections 3 and 4. 

In section 5, we then present an alternative expression for obtaining the variance 

of the present value of the benefits of the portfolio which summarizes useful information 

needed when only minor modifications to the existing portfolio need to be investigated. 
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Using the variance as a measure of risk, we suggest two ways of dividing the 

riskiness of a portfolio into its insurance risk and investment risk components in 

section 6. 

For illustrative purposes, the instantaneous rate of return will be modeled by an 

Ornstein-Uhlenbeck process. The main results for this process are given in section 7. 

A simple, hypothetical, portfolio is then used to illustrate the results in section 

8. Finally, we use the results of Parker (1993) to approximate the cumulative 

distribution of the present value of the benefits of the portfolio chosen for our 

illustrative purposes. 

2. A PORTFOLIO OF POLICIES, 

Consider a portfolio of c insurance policies where each policy is being issued to 

one of c independent lives. The portfolio consists of temporary, endowment, pure 

endowment and/or whole-life insurance contracts. We propose to study such a portfolio by 

grouping the policies in m groups with similar characteristics. Here we use the following 

grouping characteristics: age at issue, term of the policy, face amount and mortality 

table. 

The notation that is used throughout the paper is the following: 

rn 

ci: Number of policies in group i. Note that ~c i = c. 

i=l 

Pi: Proportion of policies in group i, Cl/c. 

ni: Term of each policy in group i. 

bi: Benefit (or face amount) payable at the end of the year of death for each policy in 

group i. 

e :  Endowment benefit payable at n i. If 0, the contract is a temporary one. 

Kij: Curtate-future-lifetime of the jth (j=l,2,...,Ci) life insured of group i. 
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xi: Age at issue of each life insured in group i. 

li~. Probability of death in the k th year after issue (at age xi) using the mortality kl%," 
table appropriate for group i. 

Zi~i: Random variable denoting the present value of the benefit that is payable with 

respect to the jth 0=1,2, . ,C) policy of group i. 

Then Z may be defined as: ~d 

(1) 

I _Y(Ki+l ) 
zi ~ = b e Ki=0,1 ..... n-I  

e e -y(ni) i Ki j=n i ' " "  

where 

(2) y(k) = ~ 8 s ds 

i.e. the integral of the total instantaneous rate of return (i.e. interest income plus 

capital gains and losses), 5 .  J 
We point out that the discounting function, e -ytk), used here should not be mistaken 

for the current market price of a k-period zero coupon bond. 

In order to study Z. ,  we need to make the 
td 

assumptions were made by Frees (1990) and Parker (1994a)): 

following assumptions (similar 

AI The random variables {K.)  are independent and, for i fixed, they are td 
identically distributed. 

A2 Conditional on knowing the values of {y(k)}k= 1, the random variables 

{Z .} are independent and, for i fixed they are identically distributed. 
Id 

A3 - The random variables IK..} and {y(k)} k i are mutually independent. 

A4 - The moments of the random discounting function, e -ya~. are finite. 

188 



Note that the random variables {Z.} are not independent since they all use the 
i,d 

same random discounting factors. 

We will use a general approach to study Z.. in the sense that all we require for 
l d  

now is that the moments of the present value function, e ye'), and some products of 

present value functions (such as e "y(k)'y(t)) be known. 

The m th moment about the origin of Z.. may be obtained in the following way: 
Id 

(3) 

where 

n i - i  

k----O 

Io)m 

_o) (4) P[K,j=k ) = i , [ ,  ' . 

Let Z be the random variable representing the total present value of all the 

benefits to be paid with respect to the entire portfolio of c policies. Then Z may be 

defined as 

C 
i m 

(5) z =7. [ %- 
i= l  j = |  

3. EXPECTED VALUE OF g. 

The expected value of Z is simply the sum of the expected values of all the Z .. We 
I,I 

then have: 

(6) E [ Z l  = E Z j = = c i 

j= i=] j=l i=l 
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since, by assumption, E[Zi,i] is the same for all j=l,2,...,c i 

This corresponds to a sum of traditional actuarial present values with expected 

discounting factors being used instead of the deterministic discount function (see Bowers 

et al (1986)). 

4. SECOND MOMENT OF z. 

The second moment of Z can be obtained by generalizing the corresponding result for 

a portfolio of identical temporary insurance policies derived by Parker (1994a, section 

4). The result is given in the following theorem. 

THEOREM: The second moment of Z under assumptions A1 to A4 is given by: 

(7) 

where 

m m m-I m 

E[e] = 7:, E[~,,, ~] + [c:~-l)  E[~, ~: ,  + 2 [ [ c c E ~ ,  ~,,], 
i=l i=l i=l r=-i+l 

ni-i ni-i 

kilo k2~  

ni-i 

k---o 

and 
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(9) E [Zi, l  Zr, l ]  = 

ni- i  nr-I 

Z bibr E [e-Y(kl+l)-y(k2+l'] k 11 q~i,i k2 I qxt(r) 
k =0 k--0 

1 2 

ni- i  nr-I 

k---O k---'~ 

+ e e E[e'Y(nr)'y(ni) ] P(Kif'n i) P(Kr4>n ). 

(10) 

Proof: To prove (7), we start by expanding Z 2 into a double summation, that is: 

E, Eli [i! ] =E [ [ ~o~,,= 
- j=l g=l 

m m Ci Cr 

i=l I'=-1 j=l I=l 

(11) 

The expected value o f  (Zid'Zt , , , )  depends on whether the two 

concern the same life insured (when i=r and j=s) or not. We then have 

m Ci Ci m m Ci Cr 

E'Z2] = Z Z ~ E[~ij Zi,,] "1" Z ~. Z ~ E[ZiJ Z,,$]' 
i=l j=l I=l i=l r=l j=l I=l 

The triple summation is given by 

random variables 

(12) 

m Ci Ci m Ci m Ci Ci 

z xz~ [~,,q ;x ~ ~[~,:1 +zz z ¢ , q  
i=l j=l s=l i=l j=l i=l j=l s=l 

,#j 

Using A1 to A4, we have, for j#s, 
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(13) E [Zi,.i Zi,,] = E[E[Zi, J Zi,,I {y(n)}~]] = E [E[Zi,.i [ {y(n)} n~-~].E[Zi,~l {y(n)}~_~:]] 

= E[E [Zi,, [ {y(n)}?-:]-E [Zi,21 {y(n),~;:]] = E [E [Z,, Zi,2[ ,y(n),~:~]] 

= q 

Similarly, one can show that, for i~r, 

(14) 

And equation (7) immediately follows by substituting (12), (13) and (14) into (11). 

Note that 

(15) 

Since, by assumption A1, Ki, I and Ki, 2 are independent, their joint probability 

function is the product of their probability functions. Equation (8) therefore 

follows immediately from equation (15). The derivation of (9) is similar. [] 

5. VARIANCE OF Z. 

We will use the variance of Z as a measure of the riskiness of the portfolio. The 

variance of Z may be obtained from 

(16) V[Z] = E[Z 2] - E[Z] 2. 
This way of obtaining the variance is relatively easy to program to study the 

riskiness of any portfolio. If the riskiness of different portfolios needs to be 

determined, the program can be run for each portfolio. In practice, the actuary may want 

to know the impact on the riskiness of the portfolio of higher or lower sales of a 
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particular contract or of introducing a new insurance product on the market. In this 

case, the different portfolios to be studied carry many of the same conlracts. When using 

(16) to determine the riskiness of the different portfolios, one could redo the entire 

calculations. Although this is not very time consuming even for portfolios with many 

groups (200 to 300 groups), it is more efficient to store some intermediary results and 

use them in the various calculations. The next formula provides a useful way of 

summarizing the intermediary results needed for studying different portfolios. It is 

based on the fact that the variance of a sum is the sum of all variances and all 

covariances, that is: 

= ! ~. + 2 cic r COV(Zi,I,Zr,1). (17) V[Z] V Zi J 
i= =1 i=l r=i+l 

Alternatively, using the coefficient of correlation b e t w e e n  Zi, 1 and ZrA which is 

(18) 
c°v(Zi 1' Z j)  

p (Z j  Z j )  - JV[Z,~] V[Z j ]  " 

we can write the variance of Z as 

(19) Eel VlZl = }~ V Z Zi,i + 2 Z ~cic, P(Zit'Zr,), , jv[zi,,] vtz ] ,  
i=l =1 i=l r=i+l 

The useful intermediary results which concern the interaction between the different 

groups in the portfolio can then be summarized in the covariance terms in (17) or in the 

correlation terms in (19). Assuming that the variances for the different portfolios that 
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the actuary wants to consider all require the same correlation coefficients, then (19) 

could be used to find them in an efficient way. 

In particular, this approach should be considered when the company wants to evaluate 

the riskiness of its portfolio with more (or less) contracts of certain types (larger or 

smaller ci's ) or some new types of contracts (larger m). 

For example, assume that a company is considering selling a new contract (group m+l)  

and expect to sell c÷z  of them. Then the riskiness of the new portfolio, say V[Z°], can 

be obtained by adding the variance of the additional group and its interaction components 

to the existing riskiness, V[Z]. Algebraically, we have 

(20) 
Cm+l ] 

v [ z ' ]  = V[Zl  + v z /r oq 
L ~ J 

m 

+ 2 ~ CiCm+ l 9(Zi,CZm÷l.1) JV[Zij ] V[Zm+1j] 
i=l 

Unfortunately, although the intermediary results needed can be summarized in 

covariance or correlation terms, those intermediary results would need to be recalculated 

every time the mortality assumptions or the parameters of the rate of return process 

change as they are often quite sensitive to these assumptions. This can be seen in 

appendix A where some correlation coefficients are presented for different parameters. 

It is of interest to consider the variance of the average cost per policy, Z/c, when 

the number of policies, c, becomes very large while keeping the proportion of policies in 

each group constant. Recall that the proportion of policies in group i is Pi=C/c. 

It can be shown, under assumptions A1 to A4, that the limiting variance of the 

average cost per policy as c tends to infinity is: 
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(21) I,]-i li~om V p~.E[Zi,t.Zl,21 
.= 

m m m 2 

i=l r=i+l i=l 

We get the above result by substituting (6) and (7) into (16), then dividing by c 2 

and taking the limit as c tends to infinity. 

This represents the minimum variance one could obtain by selling infinitely more 

policies in the same proportion that they are found in the existing portfolio. Since at 

that point there would be no variability due to the times of death of the policyholders, 

this limiting variance could be considered as a measure of the average investment risk 

per policy associated with the portfolio. Other ways of looking at the insurance risk (or 

mortality risk) and the investment risk (or interest risk) are presented in the next 

section. 

6. INVESTMENT AND INSURANCE RISKS. 

Suppose one would like the total riskiness of a finite portfolio, V[Z], to be split 

into its two components that are the insurance risk and the investment risk. Here Z is a 

function of two sets of random variables. An efficient way of obtaining the variance of a 

random variable which is a function of other random variables is to use conditional 

moments. For example, if Z is a function of X and Y, then it is well known that 

V[Zi = E[V[ZIX]] + V[E[ZIX]] = E[V[ZIY]] + V[E[ZIY]]. 

This provides us with two natural ways of writing the total variance of Z as the sum 

of two components. Since Z is a function of {Ki$} and {y(k)}, we may use 

(22) 

o r  

(23) 

VIZ] = E[V[Z[{Ki , i } ] ]  + V[E[Z[ {K i j } ] ] ,  

V[Z] = E[V[ZI Iy (k ) } ] ]  + V[E[Zl{Y(k)} ] ] .  
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In (22), conditioning on {Ki,i} corresponds to fixing the benefit cash flows of the 

portfolio. In the conditional expectation of Z given the benefit cash flows the averaging 

is done over the stochastic rates of return. So, V[E[Z[{Kij}]] is a measure of the 

variability in Z caused by the stochastic benefit cash flows in a context where the 

effect of the random rates of return has been averaged out. This term is therefore a 

candidate for the insurance risk of the portfolio. 

The other term in (22), E[V[Z[{Ki,;}]], is an average over the benefit cash flows of 

the variability in Z caused by the stochastic rates of return. It is then a candidate for 

the investment risk. 

In (23), the conditioning is on {y(k)} and this corresponds to fixing the future 

rates of return. By a similar reasoning, we can see that V[E[ZI{y(k)}]] could also 

represent the investment risk and EIVIZ]{y(k)}]] could represent the insurance risk. 

Note that an approach that one may be tempted to use and consisting of 1) fixing the 

benefit cash flows and studying the variability due to the rates of return as a measure 

of the investment risk and 2) fixing the discounting factors and using the variability 

due to the benefit cash flows as a measure of the insurance risk is inappropriate. It is 

essentially saying that VIZl = V[E[Z I {K,j}I] + VIElZI{y(k)}]] which is of course wrong. 

Without further knowledge it is not clear which of (22) or (23) should be used to 

split the total riskiness of the portfolio into an investment risk and an insurance risk. 

We will see in the coming sections that (23) is perhaps more suitable. 

Before looking more closely at each of the four conditional expressions appearing in 

(22) and (23), we will introduce some definitions and obtain some results that will be 

useful. 
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6.1 Cash Flows. 

Let n be the maximum term for all the contracts in the portfolio (n=max ni) and CF r 

be the random cash flow payable at time r with respect to the portfolio. 

Let Di. r be the number of deaths between r-1 and r among the policyholders of group 

i and let Si~ be the number of survivors at time n i from this same group. Then we have 

that 

Ill m 

(24) C F  = ~Dij  b i l(ni>r)+ ~Si.ni e i l(°i= 0. 
i=l i=l 

The indicator functions 1>,) and 1 take the value 1 if n_~r and n | = r  
. -  (ni=r) i " 

respectively, and 0 otherwise. These functions are present to ensure that no cash flows 

are generated beyond the term n i of each policy of the particular group i. 

s) o, Since fDi," P L) i~ i is multinomial (ci; q ~ ) '  ' [qx i  . . . . .  n i - I  [¢qxi '  
~, J r = l  ' " 

we can use the results in section 4.4.2 of London (1988) to find the expected value of 

the cash flows and their autocovariance. The expected value of the cash flow due at time 

r is: 

(25) 

where 

(26) 

m m 
_( i )  _ ( i )  

EICFI = ~bic i , ,1%,  ~ l(ni>,)+ ~ e i c  i niPx i l(oi= o, 
i=l i=l 

ni-I 

-, ' ,-1- [klq ', 
niPxi - -  

k=0 

The covariance between the cash flow due at time s and the one due at time r is, for 

s<r<...ll, 
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(27) 
m m 

cov(CF¢ CF) = •b2i cov(Di . D u) 1,>,, + [bie ̀  coy(D,. S )  1 --- • (hi=r) 
i=l i=l 

m m 

(i) d )  _ ( i )  _ ( i )  

~-b~ c i .-:lq~i ,-llqxi 1>,) + ~-bieic i , - l ]~ i  .iVy, l{.i=,)' 
i=l  i=l 

s < r .  

and for s--r<_n, cov(CF, CF) = V[CF], which is 
III m 111 

(28) V[CF] = ~b 2, V[DJ 1,>,,._ + [e~ vlSml 1=,, + 2 ~ b e  coy(D/  Si~i) 1 • • . . (ni=r) 

i=l  i=l i=l 

m m 

i~f I ~,)) _~,~f, _.,) ~b 2i c i , . l [ q x  i [ - r _ l ] qx i J  l,~r, + ~e: c .f,~ [.- y,,j 1,=, 
i=l i=l 

m 

i=l  

6.2 Conditioning on the times of death. 

Now that we have the necessary information about the cash flows we can look at the 

first suggested way of dividing the total riskiness into insurance and investment risks. 

As already argued, the first term of (22) may be chosen to represent the investment 

risk while the second term could represent the insurance risk. Then the investment risk 

would be 

(29) E[V[Z I {Ki,i}]] = e'Y(r)[  E CF { Kij } = E CFCF cov -yl0,e-y(,) 
|=1  

n n 

r=-I s=l 
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We can find E[CFCF,] from (25) and (27) (or (28) if s--r) since 

(30) E[CF CFI  = coy(OF, CF)  + E[CF] E[CF]. 

And the insurance risk term in (22) would be 

(31) e -y(~) K E -y(~) V[EIZIIKjI]I  = V CF r I{ ij} = V C F  

n n 

: z COV' 'r, C''.  

Finding the limiting variance of Z/c by dividing (22) by c 2 or dividing the two 

components (29) and (31) by c 2 and taking the limit as c tends to infinity would of 

course be equivalent to (21). Note that both the average investment risk per policy, (29) 

divided by c 2, and the average insurance risk per policy, (31) divided by c 2, depend on 

c, the size of the portfolio. As c tends to infinity, the average insurance risk tends to 

0 whereas the average investment risk tends to the limiting variance of the average cost 

per policy. 

6.3 Conditioning on the rates of return. 

Another way of dividing the total variance of the portfolio into an insurance risk 

and an investment risk is proposed in (23). The first term would correspond to the 

insurance risk and the second to the investment risk. The insurance risk may be obtained 
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as follows: 

(32) [v[!, ] E[VlZlly(k)tl]  = E CF r e-y(rllly(k)] = E e -y")-y(S) cov(CF, CF)  

$=1 

n n 

= ~ ~EIe-Y('~-Y(s)I cov(CF, CF). 

r = l  $=1  

(33) 

The investment risk is given by: 

V[E[Z[ (y(k)l]] = V e-Y(°[ {y(k)] = V e -y(r) 

a n 

-- ~ ~ E[CFr] E[CF] cov(e "y(r), e-Y(')). 

r=-I s = l  

Again, the limiting variance as c tends to infinity is the same as (21). The average 

insurance risk, (32) divided by c20 tends to 0 as c tends to infinity. An interesting 

fact is that the average investment risk, (33) divided by c 2, not only tends to the 

limiting variance but is constant for portfolios of all sizes. 

Since, for all c, V[E[Z/cl[y(k)J]] is also the limiting V[Z/c] as c-~o, adopting this 

definition for the average investment risk means that this risk cannot be diversified by 

selling more policies. 

Because it seems natural to us that the average investment risk should not depend on 

the size of the portfolio, we suggest that the two risks, insurance and investment, be 

defined by (32) and (33) respectively. 

Another important feature of (23) is that it allows us to determine the riskiness of 

the portfolio in a more efficient way. Suppose we have the expected value and 
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autocovariance function of e "y(0, t=l,2,...,n and the same for CF r, r=l,2,...,n for a 

portfolio. If we add a m+l 't group to the portfotio, then generally the discounting 

factors would not be affected and only the cash flows' dynamic would change. The expected 

cash flows will become, where * indicates the new portfolio with m+l groups, 

(34) E[CF: ]=  E [ C F I +  bin. I , . I [ q ~ I  ) I  +i>_ o + e . ,  ~P~i ' l ( '+ ,=O"  

This is simply adding the expected cash flows of the new group to the existing 

group. 

The new autocovariance function will become, for s<r, 

(35) cov(CF~, CF~) = cov(CF t, CFr) - b 2 (m+,) (re+t) 

And the variance will be 

(36) VICF~I -- VtCF,] + b 2 (m-,-1)I1 _(m.,)) o.1 c..1 ,_, )%+, l "' t%.. J 1(.,.+,~o 

ptm+J)[1 _(m+l)) 1 - 2 b e c iq ~, (i) 1 
+ e2 -nm+llJXm+ 1 m+l m+l m+l r-I rPxi (nm+l=r)" m+l Creel n i Xm+ 1 J (nm+l=r) 

Using the same expected values and autocovariance function of the discounting 

factors, we can recalculate (32) and (33) in very little time. This would give us the 

insurance and investment risks respectively. The total riskiness of the portfolio is 

simply the sum of these two risks. 
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7. A M O D E L  FOR THE  RATE OF RETURN, 

The results about the riskiness of a portfolio of insurance contracts which have 

been presented so far are fairly general in terms of potential models for the rates of 

return. They only require that the expected value and autocovariance function of the 

discounting factors be known and finite. 

Selecting a stochastic model for the rate of return is not an easy task. It depends 

on the investment strategy being followed and on the use one wants to make of it. For 

example, if all the assets are invested in short term fixed-income securities with no 

default risk, then a model such as the Cox-Ingersoll-Ross (1985) which does not allow 

negative rates might be acceptable. 

When the goal is to find the market value of some security or to study different 

investment strategies (for optimal expected return under some constraints or for 

immunization) then term structure models would be suitable. Such models can be found in 

Ho and Lee (1986), Heath, Jarrow and Morton (1990) and Ritchken and Boenawan (1990) among 

others. 

Here we consider that the market values have been determined and it is those values 

that are used to implement the investment strategy which has been adopted. The assets can 

be invested in many different financial instruments and trading may take place on a daily 

basis. Thus, negative returns are possible. Assets and liabilities may be partially 

matched. 

Given this context, we choose to model the instantaneous rate of return by an 

Ornstein-Uhlenbeck process or equivalently, the model suggested by Vasicek (1977), for 

our illustrations. The main results concerning this process are recalled below for 

completeness. The reader is referred to Parker (1994a, section 6) for more details. 

Let 8 be defined such that 
t 
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(37) d8 t = -or(St-8) dt + o dW t 

where tz, a and 8 are constants with ~ and t~>0, and W is the standard Wiener process 
I 

(see, for example, Arnold (1974, p.134)). 

Note that the parameter ct is a friction force bringing the process back towards its 

long term mean, 8. The diffusion coefficient is tx 

Then 8 is normally distributed with mean 

(38) E[8] = 8 + e ~ t  (80-8) 

and autocovariance function 

(39) cov(8,8)  = 2-6 °~ ea(t+s) ( j a ,  _ I) S<t. 

Consequently, its variance is 

(40) V[8] = cov(8,8) = 2-602 (1 - e2°tt). 

For estimating the parameters of the Ornstein-Uhlenbeck process from past data, the 

reader is referred to section 6.4 of Pandit and Wu (1988). Note that the past data used 

here is assumed to reflect the whole investment strategy of the company with respect to 

the portfolio including the allocation of assets and the degree of asset/liability 

matching. 

To illustrate our point, consider the extreme case of a single benefit cash flow to 

be paid at time 5 with probability one. If the strategy is to buy (and hold) a 5-year 

zero coupon bond with no risk of default, then 8 o and 8 should be set at the equivalent 

instantaneous market yield to maturity of this bond and t~ should be set at 0. This 
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portfolio would be fully matched and there would be no investment risk. Our results would 

indeed produce an investment risk of zero since (~=0. 

The function y(k), defined by (2), is an Ornstein-Uhlenbeck position process with 

mean 

(41) Ely(k)] = E 8 ds = IE[5]  ds 

0 

= G k + (G0-G) [ 1 ~ }  

and autocovariance function 

(42) cov(v(s),y(k))= ~ min(s,k) + - -  2+2e-m+2eCCk_e-ctl k-~l_e-cc~'*,) 
2cc3 

So the variance of y(k) is 

(43) o_: , [  ] 
V[y(k)]= cc 2 k + - -  3+4e-ak.eaak . 

2oc 3 

Finally, it is well-known that the expected value of the discounting factor is 

(44) Ele-re'~] = exp(-E[y(k)] + .5 Vly(k)]}. 

And it can be shown that the expected value of the product of 2 discounting factors 

is given by 

(45) E[e-r(')Y(k)] = exp(-E[y(s)]-E[y(k)] + .5[V[y(s)]+V[y(k)] + 2 cov(y(s),y(k))}}. 

The autocovariance function of the discounting factor is obtainable from 

(46) cov(e "y(s), e "y&)) = E[e -y(')-yf~)] - EIe -yI')] EIe-Ye")]. 
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With these explicit results, we can now use the results of the previous sections to 

analyze a portfolio. 

8. ILLUSTRATIONS.  

8.1 A Portfolio. 

We will use the simple, hypothetical, portfolio described in table 1 in order to 

illuswate the results presented in this paper. Note that the face amounts are in 

thousands of dollars and so are the monetary values presented in this section. 

Table 1. Description of the illustrative portfolio. 

group age 
i x 

i 

1 30 
2 35 
3 50 
4 30 
5 40 
6 40 
7 45 
8 55 

face amount m o r t a l i t y  table b 
i 

1 50 
1 100 
1 150 
2 50 
2 100 
3 75 
4 25 
2 50 

t e r m  n u m b e r  

e i n i c i 

50 10 
50 5 

0 10 
0 10 

100 10 
0 5 
0 5 

50 10 

1 0 0 0  
2500 
2000 
1 500 

500 
2500 
3000 

500 

This portfolio of 13500 policies is divided into eight groups with similar 

characteristics. For example, the 1000 lives insured in group 1 all bought 10-year 

endowment insurance policies with a face amount of 50 (or $50000), they are all aged 30 

and their mortality rates axe those of mortality table 1. 

The entire portfolio uses four distinct mortality tables. Note that we will use the 

same mortality table for the first three groups. In our notation, we will then have qO)= 

q~2)= qO). Similarly, we have qC4)= q¢5)= qtS). The four mortality tables used here are, 

in order, the CA 1980-1982 male ultimate (see appendix B) times 1, .9, .8 and .75. One 

could think of these mortality tables as being male smoker, female smoker, male non- 

smoker and female non-smoker tables. 
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8 . 2  M o m e n t s  o f  Z .  

The first two moments of Z were calculated with the Ornstein-Uhlenbeck process as 

the model for the rate of return. Its parameters were arbitrarily chosen to be 8=.06, 

50=.08, ot=.l and a=.01. 

Some useful intermediary results for the portfolio under consideration are displayed 

in Table 2. Part A) presents some results for each group. Part B) presents some results 

about the interaction between the various groups. 

Table 2. Summary of intermediary results. 

A) Each group. 

Group i E[Z i t]  E [ Z  2] i E[Z i Z 2] 

24.  5202 
34.  6825 

9. 3730 
.4627 

49 .2734 
.6463 
.3409 

25. 4843 

613.127 
1224.47 

951.585 
16.016 

2480.68 
38.632 

6.789 
672.588 

611.192 
1206.31 

88.200 
.215 

2467.23 
.418 
.116 

658.501 

B) Interaction between groups, E[Zi, .Zr, 0. 

i i r 
' 1 " 2 " 3 " 4 5 6 7 8 

1 855.40 231.63 11.428 1228.0 15.892 8.3822 634.37 
2 855.40 - -  326.12 16,096 1718.8 22.448 11.840 888.67 
3 231.63 326.12 - -  4.3529 465.42 6.0673 3.2002 240.59 
4 11.428 16.096 4.3529 - -  22.963 .29949 .15797 11.871 
5 1228.0 1718.8 465.42 22.963 - -  31.934 16.844 1274.6 
6 15.892 22.448 6.0673 .29949 31.934 .22048 16.513 
7 8.3822 11.840 3.2002 .15797 16.844 .22048 8.7101 
8 , 634.37 888.67 240.59 11.871 1274.6 16.513 8.7101 - -  

206 



The values in Table 2 were then used to compute the first two moments of Z using the 

results of sections 3 and 4. Table 3 presents the first two moments and the standard 

deviation of the average cost per policy, Z/c, for our illustrative portfolio. It also 

presents the corresponding results for other portfolios differing only in size (c). Note 

that they all have the same proportion of contracts in each of the eight groups. 

Table 3. Moments of Z/c for different sizes of portfolio. 

c 

10 12.6432 
100 12.6432 

1000 12.6432 

13500 12.6432 

27000 12.6432 
67500 12.6432 

i n f i n i t y  12.6432 

E[Z/c]  E [ (Z /c )  2] sd[Z/c]  

175.094 
162.247 
160.962 

160.830 

160.824 
160.821 
160.819 

3.9042 
1.5476 
1.0537 

.9890 

.9863 

.9847 

.9836 

From Table 3, it appears that the average cost per policy of our portfolio of size 

13500 should have a distribution relatively close to the limiting one (since the standard 

deviation of .9890 is relatively close to the limiting value of .9836). This suggests 

that the insurance risk of the portfolio is small compared to its investment risk. We 

will use this fact to approximate the distribution of Z in section 8.4. Note that the 

limiting distribution of Z/c is that of a weighted sum of correlated lognormal variables. 

The next table presents the correlation coefficients between the present value of 

the benefit of two contracts of different groups. These values could be used along with 

those of Table 2A) to obtain Table 3. 
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Table 4. Correlation between groups, p(Zi,l.Zr, l). 

1 2 

.31053 
.31053 
.01774 .00764 
.00601 .00260 
.78993 .29349 
.00210 .00114 
.00265 .00144 
.57209 ,  .21493 

r 
3 l 4 5 6 8 

.01774 .00601 .78993 .00210 .00265 .57209 

.00764 .00260 .29349 .00114 .00144 .21493 
- -  .00014 .01675 .00005 .00007 .01219 

.00014 - -  .00567 .00002 .00002 .00413 

.01675 .00567 .00198 .00251 .53982 

.00005 .00002 .00198 .00001 .00146 

.00007 .00002 .00251 .00001 1 .00184 

.01219 , .00413 .53982 .00146 .00184 I 

8 .3  I n v e s t m e n t  and  Insurance  Risks .  

We now consider equations (22) and (23) as ways of dividing the total riskiness of 

the portfolio into two components, namely the insurance and investment risks. The results 

in Table 5 summarize the two approaches for portfolios of different sizes. Note that 

Table 5 presents results for the average cost per policy, Z/c, instead of Z. 

Table 5. Insurance, Investment and Total Riskiness of portfolios. 

o f  con  tracts 

13500 .96761444 .01052335 
27000 .96758908 .00526168 
67500 .96757385 .00210467 

infinity .96756371 0 

.97813780 

.97285075 

.96967853 

.96756371 

.01057409 

.00528704 

.00211482 
0 

.96756371 

.96756371 

.96756371 

.96756371 

The second and third columns correspond to equation (22). For each value of c, they 

add up to V[Z/c]. As indicated earlier, E[V[cZ-I{Kij}]], which would correspond to the 

investment risk varies with c. What would be the insurance risk, V[E[~I{Kij}]], tends to 
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0 as c tends to infinity. Here the insurance risk is relatively small compared with the 

investment risk. 

The last two columns correspond to equation (23). They also add up to V[Z/c]. The 

V[E[ZIIy(k)}]I, is the same for all values of c and the insurance risk, investment risk, 

E[V[~-] {y(k)}]], tends to 0 as the size of the portfolio approaches infinity. 

Using (23), we find that the investment risk of the portfolio is 176 338 486 (i.e. 

.96756371 • 135002). The insurance risk is .01057409 x 135002 or 1 927 112. 

As mentioned earlier, a method which is occasionally encountered to study the 

riskiness of a portfolio consists of i) fixing the interest process and estimating the 

variance of Z (or Z/c) and adding this variance to ii) the variance of Z (or Z/c) when 

the times at death are fixed. This essentially considers the sum of V[E[cZ-I{Kij}]]_ and 

V[E[~-[{y(k)]] as the total riskiness which is unacceptable since the two risk components 

do not add up to the total riskiness of the portfolio. For our illustrative portfolio, 

the difference between this approach and (22) or (23) may be considered small but for 

other portfolios (particularly small ones) the difference could be quite significant. 

8.4 Limiting Distribution of  Z. 

Assuming that the insurance risk is negligible, one is left with the investment risk 

of the portfolio which can be studied by considering the expected cash flows of the 

portfolio (see, for example, Frees (1990, proposition 5) and Parker (1994b, section 3). 

We will now study the moments and the distribution of the present value of those expected 

cash flows. Since the insurance risk of the illustrative portfolio may be considered 

small, the following results may be considered good approximations of the corresponding 

results for the present value of the benefits of the portfolio. 
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Table 6 presents the expected cash flows for our portfolio. They were obtained by 

using (25). Note that here n is equal to I0. 

Table 6. Expected Cash Flows, E[CF]. 

Time,  r 1 2 3 4 5 6 7 8 9 10 

E[CFr] 3297 3591 3924 4290 128575 3651 3965 4308 4670 124233 

Let ~ be the discounted value of the expected cash flows generated by the portfolio. 

Then, ~ is given by 
n 

(47) ~ = [EtCFrl e -y~r~. 
r= |  

The first two moments about the origin of the present value of these ten cash flows 

may be obtained from equations (3) and (5) of Parker (1993) which are: 
I0  10 

(48) E[~] = E[~E[CF r] exp{-y(r)}] = ~E[CF] E[exp{-y(r)}] 
r=l ~ |  

and 

(49) 
10 I0 10 

E[~] = E[~E[CF]  exp{-y(r)}12]--E[~ ~ E[CF r] E[CF s] exp{-y(r)-y(s)}] 
r=l t=-I s=l 

10 10 

= ~ ~. E[CF r] E[CF] E[expl-y(r)-y(s)} ]. 
r=l s=l 

Note that (48) is also c E[Z/c] and that E[~]-E[~] 2 gives the same result as (21) 

and (33). 
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The expected value is 170684 and the standard deviation is 13279. These values can 

be checked using the entries of table 3. The expected value is equal to 13500,12.6432 and 

the standard deviation may be obtained by multiplying the number of policies by the 

fimidng standard deviation of the average cost per policy, that is 13500x.9836. Since 

the exact standard deviation of Z for our portfolio is 13352 (13500x.9890), the standard 

deviation is underestimated by 73 when the expected cash flows are studied instead of the 

random cash flows. 

Using the method described in section 5 of Parker (1993), the cumulative 

distribution of the discounted value of all future expected cash flows was approximated. 

Basically, the cumulative distribution function of ~ is obtained from 

(50) F~(z) = f g  (z,y) dy, 

where the function g (z,y) is approximated by recursion using the integral equation 

(51) g(z,y)--ff(,)(y,y(r-l)--x) gt.i[z - E[CFr] e'Y, xl dx. 

(52) 

The starting value being 

ga(z'Y) -'- l O[(V[y(1)]) J 

if z2-E [CFlle-Y 

other wi s e 
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where ¢(.) is the probability density function of a zero mean and unit variance normal 

random variable. 

In Figure 1, the cumulative distribution function of ~ is illustrated. The numerical 

results by using the trapezoidal rule with 41 points to approximate the integral in (51) 

and using linear interpolation to obtain the values of gr-] at the required 41 points. 

1 

0 . 8  

0 . 6  

0 . 4  

0 . 2  

Figure 1. Cumulative Distribution of ~, F~(z). 

t . . . .  1 . . . .  I , L J L I a ~ ~ t I ~ ~ ~ L l J h ~ ~ L 

I00 125 150 175 200 225 250 
z ( x  1 0 0 0 )  

Table 7 presents the probability that the discounted value of the expected cash 

flows will be smaller than a given value z, F~(z), for different values of z. 
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Table 7. Distribution of ~, the discounted value of the expected cash flows. 

z F;(z) z F;(z) 

131952.58 
137485.60 
143018.62 
148551.64 
154084.67 
159617.69 
165150.71 
170683.73 
176770.05 
182856.37 

0.000559 
0.003562 
0.013687 
0.037561 
0.112221 
0.207236 
0.337487 
0,528920 
0.680995 
0.800400 

188942.70 
195029.02 
201115.34 
207201.67 
213287.99 
219374.31 
225460.64 
231546.96 
237633.28 
243719.60 

0.900325 
0.951095 
0.976627 
0.989101 
0.994144 
0.996282 
0.997338 
0.997950 
0.998441 
0.998882 

The values in Table 7 can be used to estimate the contingency margin that should be 

added to each single premium in order for the portfolio to be profitable with a given 

probability. For example, the net single premium of each policy in our portfolio could be 

loaded by about 14.3% ( ~ - ~  - 1) if we want it to be profitable with a probability of 

at least .95. Recall that the 14.3% slightly underestimates the true contingency margin 

that should be added, because the expected cash flows were used instead of the random 

cash flows. It should also be mentioned that the company could decide to use a smaller 

premium loading and put aside, perhaps in some kind of appropriated surplus, the 

difference between 195029 and the total premiums collected from the policyholders. 

8.5 Adding some contracts. 

Suppose the company wants to sell two more groups of contracts. The characteristics 

and the sale's forecast are as follows: 
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Table 8, Additional conla'acts to the portfolio. 

group age mo r t a l i t y  table face amount term number 
i x b e n c 

i i l i i 

9 30 4 100 0 20 1000 
10 35 3 50 25 10 10 00 

The moments of Z" (or Z*/c) can be obtained from those of Z (or Z/c) and the 

additional results that are presented in Table 9, 

Table 9. Summary of additional intermediary results. 

A) Each additional group. 

Group i E[Zi,I] E[Zi,12] EIZi, t Zi2] 

9 1.6751 85.938 2.861 i 
10 12.5537 168,103 160.138 

B) Correlation between groups, p(Zij, Z,]). 

r 

1 2 3 4 5 6 7 8 9 

9 .02211 00771 .00045 .00015 .02086 .00005 .00007 ,01507. - -  
10 .45002 .16724 .00955 .00323 .42461 .00113 .00143 30754 .01188, - -  • 

10 

.01188 

The expected value of Z* was obtained by adding c i E[Zia], i=9,10, to the expected 

value of Z found in Table 3. The variance of Z" was obtained from (19). The moments of 

Z*/c are presented in the next table. 

Table 10. Moments of Z'/c. 

c 

15500 
infinity 

E[z '~I E[(Z*/c) ~] sd[Z'~] 

11.9298 143.273 .9756 
11.9298 143.265 .9712 
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The expected cash flows of the new portfolio (see Table 11) were obtained by adding 

the expected cash flows of the two additional groups of contracts to those of the old 

portfolio (see Table 6). Note that with the two additional groups, the maximum term 

becomes n=20. 

Table 11. Expected Cash Flows, E[CF~]. 

T i m e ,  r 1 2 3 4 5 6 7 8 9 10 

E[CF~] 3457 3755 4094 4469 128765 3854 4184 4546 4930 149069 

T i m e ,  r 11 12 13 14 15 16 17 18 19 20 

E[CF*] 165 181 200 222 246 273 303 336 372 410 

The average riskiness of the new portfolio and its breakdown into average investment 

and insurance risks according to (22) are 

(53) V[Z] = EIV[ZJ {Kij}]l + V[E[Z I {Kij}]] 

.95171107 = .94335618 + .00835489. 

(54) 

And according to (23), they are 

v[z ]  = ElV[Z I (y(k)}]] + V[E[Z I (y(k)}]] 

.95171107 = .94331078 + .00840029. 

The cumulative distribution function of the discounted value of the expected cash 

flows of the old and new portfolios are illustrated in Figure 2. 
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Figure 2. Cumulative Distribution of ~ and ~'. 

0 . 8  

0 . 6  

0 . 4  

0 . 2  

i00 125 

. . . .  F~(z) 
- -  F c ( z )  

150 175 200 225 250 
z (X i000) 

Table 12 presents the probability that the discounted value of the expected cash 

flows will be smaller than a given value z, F~,(z), for different values of z. 

Again, if we want the new portfolio to be profitable with a probability of about 

.95, we can use the values in Table 12 to determine the contingency margin that would be 

needed. We could load the single premium of each contract by 14.9% [ ~ j ~ - 1 ] .  
d 

Alternatively, we could load the premiums by a lesser percentage and set aside the 

difference between 212512 and the premiums collected. 
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Table 12. Distribution of ~', the discounted value of the expected cash flows'. 

z F~,(z) i z F~.(z) 

141004.37 
147276.97 
153549.57 
159822.18 
166094.78 
172367.39 
178639.99 
184912.59 
191812.46 
198712.32 

0.000501 
0.003352 
0.013155 
0.037652 
0.109458 
0.206725 
0.336306 
0.524506 
0.679079 
0.800788 

205612.19 
212512.05 
219411.91 
226311.78 
233211.64 
240111.51 
247011.37 
253911.23 
260811.10 
267710.96 

0.898259 
0.950357 
0.975756 
0.986637 
0.991023 
0.992864 
0.993777 
0.994298 
0.994748 
0.995563 

Adding the two new groups to the existing portfolio would increase the average 

riskiness per policy from 14.3% to 14.9%. In dollar amount, the contingency margin 

required for a 95% chance of solvency would increase to 27599 (212512-184912) from 24345 

(195029-170684). Recall that these margins underestimate the true ones because we are 

assuming no insurance risks when in fact there are some. 

9. REMARKS AND CONCLUSION. 

In this paper, we have presented a method for finding the expected value and 

variance of Z, the present value of the benefits of a portfolio containing different 

kinds of insurance contracts. 

Using correlation coefficients between the present values of the benefits of pairs 

of contracts, we derived a way of updating the first two moments of Z which can be used 

when a few group sizes are changed or when some new types of contracts are added to the 

portfolio. 

Two expressions were suggested from splitting the total riskiness of a portfolio 

(measured by the variance) into an insurance risk and an investment risk. It was 
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suggested that equation (23), the one conditioning on the process for the rate of return, 

should be preferred. It appears to be more consistent since its average is constant over 

all portfolios differing only in sizes. The multinornial distribution of the random cash 

flows generated by the portfolio was used to obtain the two risk components. 

Finally, a thorough analysis of a simple portfolio was done to illustrate the 

results and methods found in the paper including some potential applications. 

The methodology used here could be extended to portfolios of level premium insurance 

contracts and to portfolios of annuities. Another extension would be to include lapses 

and expenses in the model. For this, the model would need to consider some correlation 

because lapses and expenses with the process for the rate of return. In this case, beyond 

the problem of modeling the correlations just mentioned, finding the moments is likely to 

be considerably harder and approximating the distribution of Z would be even more 

difficult. 
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APPENDIX A 
Correlation between insurance contracts. 

In this appendix we present the correlation coefficients between the discounted 

values of the benefits of two insurance contracts. We will consider 5 different 

contracts, they are 

Table A.1. Five Insurance Contracts. 

contract age at issue type of contract 

1 30 5-year temporary 
2 30 25-year temporary 
3 50 5-year temporary 
4 30 5-year endowment 
5 30 25-year endowment 

The mortality table used is the CA80-82, male (see appendix B). 

Two important points are to be taken from the following tables of correlation 

coefficients. Firstly, they vary with the mortality rates and with the parameters of the 

process for the rate of return. Secondly, different correlation coefficients vary 

differently to the same change in mortality rates or parameters of the process for the 

rate of return. 

A change in the mortality rates can be studied by looking at the correlation 

coefficients between contract 2, 4 or 5 with contract 1 and the corresponding correlation 

coefficients with contract 3. 

Note that for ~ tending to 0, all correlation coefficients would tend to 0. This is 

because we have assumed mutual independence between the times at death of the different 

lives insured. If t~ is 0, we have no more randomness in the future rates of return and 

therefore no correlation between the discounted values of the benefits for two different 

contracts .  
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Table A.2. Correlation coefficients between zi, t and Zr. f 

i) Omstein-Uhlenbeck with 5--0.06, ~io=0.08, a--0.1 and o=0.01 

i \ r  

1 
2 
3 
4 
5 

1 2 3 4 5 

0.000065 
0.000065 
0.000012 
0.001990 
0.000720 

0.000167 
0.031798 
0.034156 

0.000012 
0.000167 

0.001990 
0.031798 
0.005119 

0.005119 
0.001861 0.358930 

0.000720 
0.034156 
0.001861 
0.358930 

ii) Ornstein-Uhlenbeck with 6---0.06, /50--0.04, ct--0.1 and G=0.01 

i \ r  

1 
2 
3 
4 
5 

1 2 [ 3 4 5 

0.000072 [ 0.000012 
0.000072 
0.000012 
0.002120 
0.000837 

0.000187 
0.035532 
0.042340 

0.000187 

0.005442 
0.002160 

0.002120 
0.035532 
0.005442 

0.415199 

0.000837 
0.042340 
0.002160 
0.415199 

iii) Ornstein-Uhlenbeck with ~----0.06, 80=0.08, ct=0.5 and o=0.01 

. \ r  
1 

1 

4 
5 

1 2 3 4 5 

0.000012 0.000005 0.001168 0.000159 
0.000012 0.000032 0.009213 0.004248 
0.000005 0.000032 0.002987 0.000407 
0.001168 0.009213 0.002987 0.119874 
0.000159 0.004248 0.000407 0.119874 

iv) Ornstein-Uhlenbeck with 8=0.06, 80--0.08, ct=0.1 and o=0.03 

i \ r  

1 
2 
3 
4 
5 

1 2 3 4 5 

0.000540 
0.000540 
0.000106 
0.006233 
0.002348 

0.001395 
0.092933 
0.151530 

0.000106 
0.001395 

0.016028 
0.006072 

0.006233 
0.092933 
0.016028 

0.409221 

0.002348 
0.151530 
0.006072 
0.409221 

223 



APPENDIX B 

Mortality Table CA80-82, male 

X 

0 

1 
2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

qx 
.01092 

.00081 

.00063 

.00048 

.00047 

.00039 

.00030 

.00022 

.00019 

.00019 

.00022 

.00027 

.00035 

.00049 

.00069 

.00092 

.00112 

.00128 

.00139 

.00147 

.00153 

.00157 

.00158 

.00157 

.00153 

.00148 

x q~ x q~ x q~ 

26 .00143 51 .00694 76 .06442 

27 .00139 52 .00768 77 .07002 

28 .00136 53 .00848 78 .07607 

29 .00134 54 .00933 79 .08251 

30 .00132 55 .01026 80 .08941 

31 .00132 56 .01127 81 .09683 

32 .00134 57 .01239 82 .10483 

33 .00139 58 .01360 83 .11338 

34 .00145 59 .01488 84 .12243 

35 .00153 60 .01628 85 .13203 

36 .00163 61 .01781 86 .14227 

37 .00175 62 .01951 87 .15319 

38 .00189 63 .02138 88 .16475 

39 .00205 64 .02339 89 .17692 

40 .00223 65 .02556 90 .18975 

41 .00245 66 .02790 91 .20332 

42 .00271 67 .03046 92 .21767 

43 .00301 68 .03317 93 .22325 

44 .00334 69 .03601 94 .22003 

45 .00372 70 .03907 95 .22234 

46 .00414 71 .04243 96 .24450 

47 .00461 72 .04617 97 .30086 

48 .00512 73 .05024 98 .41245 

49 .00567 74 .05460 99 .56973 

50 .00628 75 .05930 100 .74112 

101 .89506 

102 1.00(X~ 
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