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Abstract

This paper addresses the stochastic modeling for managing asset
liability process. We start with developing a jump-diffusion process
for evaluating of the liabilities of the insurance company in general.
We then formulate the ALM process into a stochastic control prob-
lem. With this approach, we present a Bellman-Dreyfus Fundamental
type formula for ALM process in terms of the solution of a system of
algebraic equations and partial differential equations.
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1. Introduction

The theory aud techniques of ALM are of concern of both insurance industry
leaders and academician. With new products, unstable financial markets,
and the competitive nature of the industry, an ALM process become eritical
to the profitability. and more importantly, the solvency of the insurers. For
vears, the actnaries and investment professionals have been fascinated by
the state-of-the-art ALM modeling. A thorough description of the precise
theory in general is beyond the scope of this proposal. However, the following
examples illustrate the history of ideas on which the methods are based.

1.(1950’s) Redington’s theory of immunization (Redington, 1952).
The notion of equating the mean term of assets with the mean term of liabili-
ties has been used since then by a number of insurance companies worldwide.
Markowitz (1959) presented the variance minimization approach.

2.(1970's and 1980’s) Generalized theory of immunization. Starting
from carly 1970°s, the Redington’s theory of immunization has been extended
to handle more complicated situation. Fisher and Weil (1971) relaxed Red-
ington’s assumption of flat vield curves and tested their model empirically.
Shiu (1987) extended the Fisher-Weil immunization theorem to more gen-
eral case where the interest rate shocks are functions of time. Meanwhile,
the concept of immuanization within the framework of a stochastic model for
the interest rate is examined by Boyle (1978), Wilkie (1987), Page (1989)
and many others,

3.(1990's) Stochastic Modeling. Key-Rate (multivariate) immuniza-
tion is provided by Reitano (1991) and Ho (1990) where the term structure is
partitioned in maturity segments. Janssen (1993 and 1994), Anthony (1994)
and Swink (1994) have adopted stochastic method to model the ALM process
from different perspectives. In actnarial practice, the stochastic approach for
ALM processes has also been applied, sce Correnti and Sweeney (1994).

In general, maximizing surplus return while minimizing risk is the most
nnportant objective of an ALM process. An effective ALM process is contin-
gent. upon reliable cash flow estimation on the liability side. One is naturally
led to the following question:

Question How onc can make optimael investment decision on assets
to match the future liabilitics and the profit goal?
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2. Modeling ALM Process

In this research, the death process is assumed to be independent of the pro-
cesses ruling in the financial market. Furthermore, the insurance company
is assumed to behave as risk neutral concerning the mortality risk. Under
above assumptions, the main source of risk is due to the instability of the
financial markets. Therefore, one could use the same type of the stochastic
model used in modern finance theory to model the liabilities.

It is assumed that the stochastic volatility term structure describes the
behavior of the short rate r(¢) by a diffusion process

dr(t) = a(r,t)dt + o(r,t)dB, (2.1)
where cv is the instantaneous mean of the interest rate, ¢ is the instanta-
neous diffusion variance of the interest rate, and B(t) is a standard Brownian
motion.

We also assume that, in financial markets, there arc n sources of uncer-
tainty modeled by the components of the standard n-dimensional Wiener
process

Z=(Z({t) = (Zi(t), -, Zn(t)),0 <t < T). By letting Z,(t) = B(t) we
assume that uncertainty of the short rate is modeled by the first component
of the Z.

2.1 Liabilities

Since an effective ALM model start with reliable valuation of the liability, in
this part of the project, we would start with modeling of the lLiabilities of an
insurance company during the time period of [0, T7].

The valuation techniques for liabilities should vary due to the nature of
the liabilities for different line of business. For example, Albizzati and Geman
(1994) presented a valuation formula of a European surrender option in life
insurance policies in the context of stochastic interest rates while Lee and
D’Arcy (1989) studied the variable universal life insurance using the basic
economic concepts of marginal and average rates of return.

In general, we denote the liabilities for the m business lines of the insur-
ance company by L;(t), (i = 1,2, - -, 1) and suppose that L;(¢) arc governcd
by the following stochastic differential equation:
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where gy ; is the instantancous expected liabilities for the ¢ line of busi-
ness; of ;. is the instantaneous variance with which the 4™ source of uncer-
tainty affects L, (t), conditional on no extreme event; J = the jump magnitude
of the liabilities if the extreme event occurs, the distribution of J is Normal
with mean 17 and variancey; and ¢ = a Poisson process that is independent
of z with paramecter A defined as the mean number of the extreme event per
unit time.

Special hedge strategy, for example, reinsurance and insurance derivatives
could be used in the event of extreme case, see Cox and Schwebach (1992),
Nichaus and Mann (1992), and Guo (1995).

For the illustrative purpose, we now consider J =  and [ = 1. Hence

L(t) follows

mn

AL(t) = (v, OL()dt + Y oplr ) L(t)dZy, 0 <t < T. (2.3)

k=1
2.2 Trading strategies

Let us consider now an asset-liability manager with initial assets 4, who
invests the assets in the various securities.

We shall deal exclusively with a financial market in which n securities
(risky or risk-free) can be traded continuously. Markets are frictionless and
short-sales of assets are permitted. Asset payoffs are random variables which
are clements of a space of contingent claims. The price for one share of the

4 security is modeled by

T

dP;(t) = ay(r )P (t)dt + Z(Ij,k(‘r,t)Pj(t)([Zk, j=1,2,-- (2.4)
k=1

where o, gives the instantancous intensity with which the k™ source of

uncertainty affects the price of the 5% security.
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For example, if the j% security is a pure discount bond (zero-coupon

bond) maturing for the value of 1 at time s, ¢ < s. then (Beekman and Shiu,
1988)

ar ar 1, 9*pP
dP;, = [ — 4+ o,— + —a?,—— | dt + 0,,P;d7;. 2.5
! ( ot Tor 2o P (25)
We shall denote by A(t) the assets at time ¢, by z;(¢) the proportion of
the A(t) invested in the j™ security at time ¢ (1 < j < n).
Since short-sales of assets are permitted, one has the following short-sale
constrains:

;20 j=m+1,--nym>0 (2.6)

We shall now consider the surplus process S, (S = S(¢),0 < t < T)
defined as follows:

S(t) = A(t) = L(t); S(0) = S, S(T) = Sy. (2.7)

Consider a period model with periods of length At, where all incone is
generated by capital gains, and the assets A(t), the liability L(t) and P;(t)
are known at the beginning of period [¢,t + At]. Let N,(t) be the number
of shares of assets j purchased and held during period [t, ¢ + At] and u(t) be
the amount of cash/profit reserve per unit time during period [¢, ¢ + At].

At the beginning of the period [t,t + At],

n

At) = D7 N (t — At) Pi(t). (2.8)

J=1

The amount of cash reserve for the period, u(t) dt, and the new portfolio,
Nj(t), are simultaneously chosen, and if it is assumed that all trades are
made at current prices, then we have that

~ut)A = SN (1)~ Nyft — A8 Py(h) (29)

=1

Incrementing (2.8) and (2.9) by At we have that

T

—u(t + At)At = Z(Nj(t + At) = N;(t)) Pi(t + At)

J=1
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= SN+ A1) = N (O], (t + At) — Py(1)]

+Z A+ A8 = N () Py (2.10)

and

At + At) =) N;(t) Pt + At). (2.11)
g1
Taking the limits as At — 0, we have

—u(t)dt = 3" dN;(t) dP;(t) + ZdN (t) P;(t (2.12)
=1

ij=1
and
Aty = Z N; () Pi(t). (2.13)
J=1
Using [to's lemma and differentiate the above equation to get

(H-Z\' AP, + SOAN, P, + S dN, dP,

Jl =1

= Z N;(t)dP; — u(t)dt. (2.14)

Notice that x,(t) = N;(t)P(t)/A(t) and from equation (2.4) and (2.7),
we have the following equation for the surplus S(t):

dS =Y aja;Sdt — (L — Y wjag) Ldt — udt
j=1 J=1

7 n

+ 31 wo( S+ L) — opi L]dZ,. (2.15)
k=1 7=l

2.3 ALM model

The ALM process is now formulated as the problem of choosing optimal
portfolio selection and cash reserve rules, z(t) = {x;(t),) = 1,2, - -, n} and
u(t), for an Asset/Liability manager over the p(‘[‘l()d of [0, T, satisfying
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AL [y ) Eg[/ )dt + F(Sp,T)] (2.16)

subject to the budget constraint (2.15), and
w(t) > 0; S(t) > 0; S(0) =Sy > (. (2.17)

In equation (2.16), U(-) is assummed to be a strictly concave utility func-
tion. F(-,-) is assumed to be a strictly concave and continuously differentiable
on (0,0¢) for all t € [0,7), and Ej is the conditional expectation operator,
given S(0) = Sy as known.

3. Method

We now derive a Bellman-Dreyfus type formula (see Merton, 1990) for solving
the problem (2.16) — (2.17).
Without loss generality, we let m = 1 and consider

dL(t) = pp,(r,)L{t)dt + op(r,t) L(t)dZ,, 0 <t < T, (3.1)

AdP;(t) = «;(r, ) Py(t)dt + o;(r, ) P(t)dZ;, §j=1,2,-- - n; (3.2)

and the equation (2.15) becomes

dS = \;1 o, (SHL) — p,L — ) (12‘+Zz o; (S+L)dZ; — o, LdZ,,. (3.3)

7=1

Define
J(S,t) = maz E| /1 Ulu(s),s)ds + F(Spr,T)] (3.4)
Ji

where, as before, F; is the conditional expectation operator, conditional on

S(t) = S and

oJ J 1 ,.,0°T7
D(J) = A +[Z:II ;o (S+L) — pu L — ],S+—2-(J}{L2 552
; S
1 n 7 OZJ )
5 @505 (S + L)* Zla;L(S—!—L)]OSz. (3.5)
1i=1 y=1 Jj=1
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Where Q = [0, jluxn (0ij = pijoio;) is the variance-covariance matrix.

It is assumed that no assets can be expressed as a linear combination of
the other assets. so £ is nonsingular. Under our model assumption, there
exist a set of optimal rules, T and @ satisfying

D(J(u, ;5. t)) + Ui, t) = mawxg, .y {P(T (w215, t)) + Ulun, t)} =0
subject to

J(a, 7,8, T) = F(Sp, T) (3.7)
and

i.?,(f) =1 (3.8)
i=1

for t € [0, 7).

Equation (3.6) gives the stochastic Bellman equation for the optimal prob-
lemn (2.16). Let A denote the Lagrangian multiplier, 7 and u satisfy the
first-order optimal conditions

{”‘le(ﬂjf) - jﬂ(ni‘S,T) = ()7 (39)
and
A sl 30,008 + L) + 240, L(S + L))
1=1

= —Jsu(S+L) k=1.2---n (3.10)

From equation (3.8), {3.9) and (3.10), we now solve explicit for 7 and @
as functions of Jy, Jeg. S, and t.
Let G denote the inverse function of U, (G = (U,)™"). Then from (3.9),

= G(Ts, t). (3.11)
To solve for the z, define
5 oL —1 .
['= (02 I 3.12
Q+ 5 ) (3.12)
and ( -
o= (o, o)t e= (11, D)7 (3.13)
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Eliminating A from (3.10) using (3.8), the solution for # can be written as

T =yJs, St) = Ts(S+L)I'(T - ee'T) o —

le. .14
e!Te TTe ¢ (3.14)

Then one can substitute & and @ in equation (3.6) which now becomes
the following fundamental partial differential equation (PDE) for 7.

L7t + f(]%'*‘sva T)JS + g(JS'aS» t)JqS - 0 (315)

subject to the boundary condition

WJTs, S, T) = F(Sp,T). (3.16)
Where
F(Ts58) = (S + D y(Tsu S 00 ~ L~ G(Ts), (3.17)
oTs.S,0) = 5 [0F1? + (S + LY (y(Js, S0 (5. S, 1)
- %UIJL(S + L) y(Ts, S, 8], (3.18)
and

hW(Js. S, T) = J(G(Ts, T),y(Ts, S, ), S, T). (3.19)

Once the above fundamental PDE (3.15) — (3.16) is solved for 7, we then
derive the optimal rules as functions of S and ¢ from the equation (3.11) and
(3.14).

4. Concluding Remarks

This study has developed a stochastic model for the Asset-Liability manage-
ment (ALM) process. The main result is presenting the solution of general
ALM process by solving the fundamental PDE associated with a stochastic
control problem.

There are still some interesting theoretical open questions. For example,
we could derive the close-form solution for the PDE. Furthermore, we are
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also quite silent on the ruin analysis for the ALM process. We hope that
further research in this area sheds some light on these issues.

We remark that the numerical solution for the fundamental PDE is more
desirable than the analvtical solution formula in order for the method to be
actually implemented in actuarial practice. We plan to develop an explicit
finite difference algorithm and computer software for the theoretical model
solution.

5. Acknowledgments

The author would like to acknowledge financial support from the Conunittee
on Knowledge Extension Research, Society of Actuaries. The anthor would
also like to thank Elias S. Shiu for his helpful suggestions and comments.

438



References

1]

[2]

(6]

[10]

[11]

Albizzati, M. and H. Geman (1994), Interest Rate Risk Management and
valuation of the Surrender Option in Life Insurance Policies, Journal of
Risk and Insurance, 61, 616-637.

Beekman, J. A. and Shiu, E. S. W. (1988), Stochastic models for bond
prices, function space integrals and immunization theory, Insurance:
Mathematics and Economics, 7, 163-173.

Black, F. and Scholes, M., 1973, The pricing of options and corporate
liabilities, Journal of Political Economy 81, 637-659.

Boyle, P. P. (1978), Immunization under stochastic models of the term
structure, Journal of the Institute of Actuaries, 105, 177-187.

Cox, Samuel H and Robert G. Schwebach, 1992, Insurance Futures and
Hedging Insurance Price Risk, Journal of Risk end Insurance, 59: 628-
644.

Fisher, L., and R. L. Weil (1971), Coping with the risk of interest-rate

fluctuations: Returns to bondholders from naive and optimal strategies,
Journal of Business 44, 408-431.

Geiss, C. and R. Manthey, Comparison Results for Stochastic Differ-
ential Equations, Stochastic Processes and Optimal Control, edited by
Hans J. Engelbert, Ioanis Karatzas, and Michael Rockner, Stochastics
monographs; V.7. p73-81.

Guo, Lijia (1995), Pricing Catastrophe Futures Options with Jumnp-
Diffusion Processes, Working Paper, The Ohio State University.

Hardy, M. R. (1993), Stochastic Simulation in Life Office Solvency As-
sessment, Journal of the Institute of Actuaries, v120, Partl, 1.

Ho, T. S. Y. (1992), Managing Illiquid Bonds and the Linear Path Space,
Jowrnal of Fized Income, June, 80-94.

Janssen J. (1993), Asset lability management for banking and insurance.
proceedings of the ISI 49th Session, Firenze, 253-269.

499



[12)

13]

19]

[20]

21]

Janssen J. (1994), Operationality for the Asset Liability Management,
4th AFIR International Colloquium. Vol 2, 877-905.

Jazwinski A. H. (1970), Stochastic Processes and Filtering Theory, Aca-
demic Press, New York.

Kushner, H. J. and P. G. Dupuis, Numerical Methods for Stochastic
Control Problems in Continwous Tirme, Springer-Verlag.

Lee, K. C.and 5. P D’Arey, the Optimal Investment Strategy Through
Variable Universal Life Insurance, Journel of Risk and Insurance, 58,
201-217.

Markowitz, Harry H. (1987), Mean-Variance Analysis in Portfolio
Choice and Capital Markets, Basil Blackwell, 1987.

Merton, Robert C., 1990, Continuwous-tirne Finance, Basil Blackwell
Ine., Cambridge.

Niehaus, Greg and Steven V. Mann, 1992, The trading of Underwriting
Risk: An Analysis of [nsurance Futures Contracts and Reinsurance,
Journal of Risk and Insurance, 59: 601-627.

Redington, F. M. (1952), Review of the Principles of Life-office Valua-
tions, Journal of the institute of Actuaries 78, 286-315.

Sharpe, W. F.and Tint, L.G. (1990), Liabilities - A New Approach, The
Jouwrnal of Portfolio Mancegernent, Winter 1990,

Shiu, E. S. W. (1987), On the Fisher-Weil immunization theorem. In-
surance: Mathematics and Economics, 6, 259-266.

Smink, Metje {1994), A Numerical Examination of Asset-Liability Man-
agement Strategies, AFIR 1994 Proceedings, Vol 2, 969-997.

Wilkie, A.D. (1987), Stochastic investinent models - theory and appli-
cations, Insurance: Mathematics und Economics, 6, 65-83.

500



