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A b s t r a c t  

The combination of mathematical theory, statistical theory, and 
conlputers will enhance the educational process of actuaries and equip 
actuaries to enter industry better prepared to analyze data. Some 
actuarial models can be studied analytically; now with the ease of 
working with computers, these models and others can also be stud- 
ied as stochastic processes by using simulated data. Actuaries in the 
workplace use spreadsheets on a daily basis. Classroom preparation 
on model building using spreadsheet packages would provide valuable 
experience. This paper suggests ways of presenting ideas from the the- 
ory of compound interest and actuarial mathematics using simulation 
on spreadsheets. 
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1 I n t r o d u c t i o n  

Actuaries ha~e bet't~ bi.~tozicallv ed~cated it~ the f~mdametltal.s of mathemat ical  aml statistical theory 
applied to risk ~vtting.~ in business. With an increasing prevalence of computers in mdnstry, in education, 
aod at home. the ed~watim~al process of actuaries can be enhanced by combining tt~e theory with the use of 
computers. Sorer actuarial models can be studied anaivticany; now with the ease of working with computers,  
the,se models and others caJJ be .',h~died using simulated data. 

Simulation is powerful tool that is widely used in business. Almost every topic in business can be 
approached thIo:lgb ~inlldation. Complex m,.)del~ often Call b(! simtllated alld Ibe reslllts aIlalyzed more 
quickly than from the mathemat ical  amdv~ical p~inciples. The mail~ beI~efits of simulalioli~, are (i) building 
a COlltputel ulodel of a lmsiness process [()ices one to tbmk catef~tlly ab(mt the plocess; (iii selecting itllmtS 
to the mt)del [oleos olle to think catefnlly about hypothetical conditioi~s; (iii) analyzing the o~timt of the 
smmlatiol~ pro~ides ilisigbt trite tilt opera~ional ebaractelistics of the basiness process; a~ld (iv} obtainiltg 
insight xesults m better decision making. 

The  mcrea.~ed statistical power of spreadsheets now permit easier use of simulation. Actuaries in the 
workplace ltse spreadslleets on a daib' basis. University education of actuaries includes ttle use of spreadsheets 
as part of the learning process. (~reater (!x]Josilre of university students to the practical ltse of contputelS to 
help solve problems would be invaluable and lead to a greater m~derstandmg of business processes. 

There  are many examples of problems that  could be better solved using statistical packages and using 
programming lm~guages. The  u~e of spr~adsbeets ~.s a first step in tim problem solution or as an initial 
exposure to the problem solutiot~ can be a worthwhile tool. The spreadsheet clearb' indicates where there 
are problems m formulas, ~nch as dividing by zero, or ~efere~tcmg a cell that does not exist, such a.~ in a 
table. Spreadsheet packages are not as w,rsatile m their selection of rm~dom mm~ber generation tools, s~tch 
as generation of an exponential deviate, nor their choice of types of plots, such as boxplots, but one can 
accomplish most task.,, with some creativity. For example, generation of exponential random numbers can be 
accomplished using a simple formula covered in most statistics texts and included in the Society of Actuaries 
Course 130 exam and Casualty Actuarial  Society's 4B exam. (See the example in Section 2.) 

This paper presents examples front the theory of compound interest and actuarial mathemat ics  u~ 
mg simulation on spreadsheets. These examples are extensions of examples or exercises presented in the 
Actuarial Mathematics [I] and The Theory of Interest [2] textbooks. The examples illustrate how students 
of the material  can gain a bet ter  tmderstanding of the material with hands-on computer  work: the theory 
presented lit the textbooks can come aliv* alld the ideas presented will be shown with lmlnhers and pictures 
rather than formtlla.s. 

The  outline of the paper is as follows. Section 2 briefly introduces simulation in spreadsheets using the 
software EXCEL 5.0)  Section 3 discusses possible ways of presenting the results. Section 4 provides the 
classroom examples and Section 5 discusses how one may incorporate the spreadsheet simulation technique 
into the classroom. Spreadsheets for the six examples presented in this paper are available upon request. 

2 S p r e a d s h e e t  S i m u l a t i o n  

Early spreadsheet packages contained only a function RAND(), or some version of this function, which 
would get,crate a uniforml~r' distributed deviate betwemJ 0 azM 1. The  reverse transform technique is one way 
of generating deviates from other distrib~ttion~. This technique uses the cunmlative probability distribntion 
function to generate a value from a particular distribution. Briefly the approach is to generate random 
mmlbers from an uniform distribution on the interval (0, 1) which is denoted a,~ L/(0, 1). These d ev i a t~  are 
then included m attother fonmda to geuerate values from the desired distributiom 

Define F a.s the cumulat ive distribution function, with density fimction, f ,  for the random variable V. 
The distribntio~ fm~ctio~ is coz4muous and positive on az~ i2tterval (a,b) such that F(b) - F (a )  = 1 for 
- oo  _< a < b % vo. If V has density f ,  then U = F(V)  is uniformly distributed on (0, 1). Thus if 
U ~ U(0. 1), lbeli F - i t / r  ) tlas density f. Tha t  is, if we generate a )lltiforiiJ deviate, then we can fiitd a 
deviate from ont desired c . d . f . f .  

IOthel spieadsheei software could have been used Some of the methods presented in lhe I)apel axe specified to [~'XCEL. 
but the functions could be tianslaled foi use in other software packages> 
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For example,  suppose t ha t  t" ~ E(A), ie.  an exponel,tial Jaie.lon, variable with p a r a m e t e r  A. The c.d.f. 
of V is: t, 'i,(v) = 1 - . - x , ,  fol ~, > (} The pIo~ess to gellelate a deviate  from an exponent ia l  distributimJ 
with pa ramete r  A is as follows: 

S t e p  1: Genera te  U ~ N(O, 1) and  call the result, u. 

S t e p  2: Set . = 1 - c - x ' v .  

S t e p  3: Solve for ~,. The vabm, v, is a deviate from an exponential  dis t r ibut ion with p a r a m e t e r  A. 

The RAND{ ) function can be dynamic .  By entering " = R A N D (  )" in a ceil alJd pressing enter,  the colitex*t> 
of the ce~l wili change  when changes  are made to the spreadsheet .  If one de.sites t h a t  the contents  of the 
cell not  change,  then in~lead of pressing enter, one would press the F9 key and a fixed value of al, uniform 
,andonl  imn*ber will be genmated .  Tile use of the dyna lmc vetsion allows multiple tr ials  of a sinmlation 
to be easily completed.  This  dynamic  velsion, coupled with a macro to copy values of successive runs to 
another  sheet, facilitates fu r ther  analysis  of the problem under  study. For large spreadsheets ,  the use of the 
dynamic  r andom fllllctlotl Illay be very t ime con.~uming to re-calculate a worksheet.  One  ma,,, prefer to set 
the calculat ion to 'manna l '  as opposed to ' au toma t i c '  to facilitate spreadsheet  design and  re-calculate the 
spreadsheet  only periodically. 

More recent versions of spreadshee t  packages have increased tile number  of available functions,  hi EXCEL 
5.0 two functions LOGINV and  N O R M I N V  have been added tha t  calculate the inverse of the lognormal  
cumulat ive dis t r ibut ion funct ion and the inverse of the normal  dis t r ibut ion fullction. These  two flnletiolls 
will be used in Example  2. O t h e r  techniques to simulate deviates exist, but  are beyond tile scope of this 
paper.  

The Analysis  Tools included in EXCEL 5.0 is ano ther  approach  to gmmrate  r andom numbers .  These tools 
include many  stat is t ical  functions,  among  them random number  generat ion.  The  type*s of r andom numbers  
quickly genera ted  include uniform, normal ,  bernoulli,  binomial,  pa t terned,  and discrete. Mult iple numbers  
of variables call be ca lcula ted  with mult iple n u m b e ~  of deviates, but  they must  be genera ted  from the same 
dis t r ibut ion wi th  one dialogue box. A random seed can be  included so t ha t  the  dev ia tm can  be reproduced  
at  later times. The numbers  p roduced  are fixed and  not dynanfic.  For more trials, more  numbers  will need 
to be generated.  

Tradi t ional  stat ist ics packages such as SAS and  MINITAB are more  versatile ill their  choice of ran- 
donl munber  fullctions and lllay provide be t te r  s tat is t ical  routines to genera te  those values. If a complex 
dis t r ibut ion is desired, E X C E L  would not  be the choice of package to do the s imulat ion.  

3 P r e s e n t a t i o n  o f  R e s u l t s  

Spreadsheet  informat ion  is displayed in a t abu la r  format .  For a large s imulat ion,  the  a m o u n t  of reforma- 
tion displayed may be overwhehning.  Thus  ways of summariz ing the informat ion to provide an ea.sy means 
of analyzing the results is crit ical.  

S u m m a r y  stat ist ics,  such as average.s, s t anda rd  deviations, ranges, and  percentiles,  provide some infor- 
mation.  These flmetions can  be coded right into the spreadsheet .  The advan tage  of using these functions 
is with tim dynamic  approach.  New samples  of deviates  from the  desired dis t r ibut ion would be  recalculated 
by pressing the F9 key and  new s u m m a r y  stat ist ics would be generated a t  the same time. 2 The  suminary  of 
all the s imulat ion trials can be saved on a separa te  worksheet  with the use of a macro  and  these stat ist ics 
summarized  a.s well. Some of the  f lmctions available include: AVERAGE,  C O R R E L ,  F R E Q U E N C Y ,  K U R T ,  
LARGE,  MAX, MEDIAN, MIN, MODE,  P E R C E N T I L E ,  QUARTILE,  SMALL, STDEV,  and  VAR. All of 
these fimetions are described in EXCEL ' s  HELP. 

The Analysis  Tools also provides a descriptive stat ist ics option. The  advan tage  of usiug the Analysis  
Tools is in its e~.se of use, bu t  the  mm~bers are fixed for the range  of information given in the  dialogue box 
for the descriptive s tat is t ics  menu. If the muaber  of variables and  trials is known in advance,  then this 
approach  is much faster than  the  dynamic  approach.  However, if multiple s imulat ions  are desired, then this 

2Note that this is a different use of the F9 key as described ear[ier. Here the formula RAND() is entered int~o the ce[] with 
the enter key Then, evely change of the spJeadsheet will change the value in the cell Or the cell's contents will change by 
pressing the F9 key. 
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apploach in m)t as eitieieE~t a.~ the dynamic  approach.  The sLlmmalv s tat is t ics  provided bv the Analysis "li)ols 
me shown in Example  3 

In addi t ion to s u m m a r y  stat is t ics ,  g laphs  of defined items may be benelicial. EXCEL includes many 
plot options ,such as b is tograms,  : ,catterplots,  and timeplots.  Noticeab}': missing i.s a boxplot  option. :* The 
above dis t inct ion regard ing  the dynamic  vs. Analysis Tools s u m m a r y  s ta t is t ics  can be made  here as well. 
The use of a frequency timer}on or lookup function would be valuable to help display s lunmary  statistics and 
provide tile illptlt for a co lumn char t  to pictorially display the results. The  h is togram timer}on z~ par t  of the 
Analysis Tools allows a cha r t  to be created as welL, but  recall t ha t  the results are fixed, and  if the m~mbers 
are t tpdated,  the histogEam will need to c~eated again.  

4 Classroom E x a m p l e s  

E x a m p l e  1: Theory  of Interest  Example  10.12: GIC b i .omia l  lat t ice 

Tliis example  is an extension of Example  10.12 from The Tbeors'  of interest  [21; the s~tbstance of which 
is as follows: 

The  i.~.',uer of a Gua ran t eed  Investment  Cont rac t  (G1C), witiz a guaran tee  of 8.5% ammal  
effective rate ,  will invest the proceeds in t t l ree-month ins t ruments .  The interest  ra te  for 
the lh'st qua r t e r  is 8.4,e4 convertible quarterly.  It is a.ssnmed tha t  fu ture  interest rates  move 
according to the  r a n d o m  walk model: tile probabil i ty  of an upward  movement  is 0.4 and of a 
downward  Enovelnellt is 0.6. TIE(! alllOUlEt of upward  alld downward  illOVelllellt ~, each qllarter  
are 0.5% and  0.4% convert ible quarterly,  respectively. W h a t  is the probabi l i ty  tha t  the issuer 
will lose money  on a one year  GIC7 

Tile solution given for the example  shows all enumeration of the eight possible illtere.~t ra te  paths  for 
three quar ters .  Tile probabi l i ty  of each path  is calculated a long with the quar ter ly  interest  rates and 
the ammal  a c c u m u l a t e d  value. Two pa ths  will result in a ra te  less than  the guarantee:  an  annual  ra te  
of 8.3% ha,s probabi l i ty  of 0.144, and  an ammal  rate  of 8.0% leas probabi l i ty  of 0.216. 

While  this technique  theoret ical ly  applies to any dura t ion  GIC, the ca lcula t ion  procedure  increases 
grea t ly  for even relat ively shor t  durat ions:  a 3-year  GIC would have 2,048 possible interest rate  pa ths  
(since there are 11 unknown  quar ters) ,  while a 5-year GIC would have more  t han  half-a-million paths.  
Therefore,  s imula t ion  is a useful a l ternat ive approaclL 

Table 1 shows the inpu t  da t a  and  Figure 1 shows the results from smmla t ing  1,000 ron.~ for a 3-year  
GIC. For each run,  a numerical  interest rate  path  is generated,  the result ing xmmerical values are 
retained on the worksheet  and used in subsequent  calculations.  To simplify the pr intout ,  the paths  are 
converted to indica te  Up (U) or Down (D) ra te  changes between quar ters ,  by using the Excel formnla: 
IF (Cur ren t  Quar t e r ly  Ra t e  - Previou.~ Quar te r ly  Rate  > 0 , "U" , "D" ) . 

De te rmina t ion  of the i~tterest rate, for a~ly quar te t ,  is s imulated by compari r lg  the L((O, 1) deviate with 
0.4, the  probabi l i ty  of an  upward  movement;  if less, there is an incree.se, otherwise a decrease in the 
quar ter ly  interest rate.  This  compar ison is accomplished using the IF function, and including the 
RAND()  funct ion  direct ly  in the IF fimction. The  cells for each quar te r ,  af ter  the initial period,  have 
the formula:  I F ( R A N D ( ) <  0.4, pr io:  quar ter  ra te  + increase, prior qua r t e r  ra te  - decrease).  

The  P R O D U C T  funct ion  gives the 3-yem accumulat ion,  and  the equivalent ammal  ra te  is calculated 
by a fornmla  for each of the 1,000 runs. For each run, the cumula t ive  number  of runs (from run 1 
th rough  the then cur ren t  run) with Ammal  Average Factor  less t han  the Target  Factor  is determined,  
and  divided by the to ta l  mmEber of runs up to tha t  point.  Tha t  is done by using the formula: 

C O U N T I F ( r a n y e ,  critcr~a) 

COU NT(r',trp~qe) 

where the range  covers the Annua l  Average [:actor cells from run 1 th rough  the run current ly  being 
processed, and  the cr i ter ia  is "< 1.085". 

~Note: There me ma(:lo packages developed by outside vendors fol EXCEL tha~ can generate boxplots 
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"lhble 1: I n p u t  D a t a  

First  quar ter ly  interest rate  0.021 
Possible increase in quar ter ly  la te  0.00125 
Probabi l i ty  of increase 0.4 
Possible declease in quar ter ly  rate  (use absohtte  vahm) 0.001 
"Ibtal ummlmr of qual ters  12 
Target  Ammal  Accmnula t ion  Fac tm 1.085 
(l + Annual  Eflective Rate) 

Figure 1: S imula ted  Interest  Paths ,  Average Annual  Accumula t ion  Factors ,  and  Percentage of Losses below 
Target  Ra te  

Qumer-> 2 3 4 ~ 6 2 8 9 /Q 11 12 AmAvg R~oof 
Faaor Rum<l.08.5 

100 U D D U D D D D U D U 1.082 0.500 
200 D U U U U D U U U D D 1.103 0.500 
300 U D D U D D D D D U D 1.080 0.527 
400 D D D U U U D D U D U 1.083 0.538 
5(~0 D U D D D U U D D U D 1.082 0.554 
6(I) U D D D U D D D D U U 1.080 0.553 
700 D D D D D U D U D D U 1.072 0.550 
800 U U D U U D D U D D D 1.095 0.541 
900 D D D D D D U D D D U 1.068 0,552 
1000 U U D U D D D U U D D 1.092 0.550 

lncre~e 
P, aio 0.42 0.42 0.40 0.40 0.40 0.39 0.38 0.40 0.42 039 0.42 Mi~a~(IA04 

"lhe a lx~ ~ 1000 sinaalafion rtr.s; pdnt-out sh:r,,,s eada 100~h rim. 
Fcr each rim, an L. te~ Rate P',lh for Quar~  2-12 is ~ a ~ d  as follov~ 

l) Each ~1, for those O~t~s~ us~ ~ fraction 
I F ~  Previous Q rae + Inc, Previous Qrale- 1:~) 

2) "II-e resuking mm~,ical values ( n~ shz~,n alx)ve), and the lsl Qrate, 
mxtuce ~ Avgam fact~ = ~ ; x x ~ r ( r m ~ )  ^(4q2) 

3) To sin~ify ~ l:tintouk the p a ~  are ~ to Up or D c ~  notation 
by u s ~  ~ F ( C ~ - ~  ~ ' ,  "~') 

qt~ Inorease Ratio, by Quart~, for all 1000 n~s is calta,~t~ using 
CIXNIlF(range,"U") 111300 

For all Quarters ~rt~ined, the 1Vean = AVERAGE (range) 
Also the proportion ofrtms 'Mill AvgAan Factor < 1.085 is calculated on a conillaliv¢ 
basis (from Ram I through the ~ Rm) ruing the follo, ,~ 

OOUN~F(range, "<I.08Y'I ! 03UNRran~) 
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For e x a m p l e  F igme 1 sh~*ws an intmest  ra te  pal h fm :mr 300. aml the resullin~ A imual Avmage I:actor 
for tha t  ~pecitic tun. ()n the ~ame line, the ra tm ~f the tllHIIb(~Y (}f llllLS t)lr~lta *, ta lget  of 8.5% is showl~ 
for the til~,t 3(}0 ~uns. 

As a check on the overall process, the rat io of increases in each quar ter ,  and  for all quar te rs  combilmd, 
is shown for the entire 1,000 run sample. In Figure 1, each of those items is close to the expected value 
of 0.4. The COUN'FIF ~ funct ion was also used for this, by applying it to the array of Up and Down 
indicators.  

In order  to show a pr in tout  of a reasonable amount  of data .  the rows with the in termediate  runs {as 
well as some other  por t ions  of the worksheet)  are hidtleh. [.Iecalculatiml of the ent i le  worksheet  take~ 
a considerable period of t ime tu geilelate another  1,000 |lilt siln,datiolt. }towevm, a single press of the 
F9 key aceomplishe> this wi thout  t~pening the hidden port ions of the worksheet.  

' r i te worksheet  format  can  easily be moditied to consider a (HC with a different d / l ra t ion  The  pl nnary  
change  is to insert the necessary nmabe r  of cohmlns and  copy the IF function where needed. Care  
tnust  be given to see t ha t  all needed reeopyiI).g is done. and  t ha t  the P R O D U C T  flmction cap tures  the 
appropr i a t e  taltge of cells. The ar ray  t~sed to determhle the rat io of increases also needs to be modified. 
Finally, since the number  of quar te r s  is a p a r a m e t m  ill the Input, Da ta  section it must  be changed:  tim 
other  Input  Da t a  i tems shown also a te  paramete rs  and  can  uimilarly be changed.  

E x a m p l e  2: Actuar ia l  Mathemat i c s  Example  4.2: Actual  versus expected accumla ted  fund for a g roup  
of 100 lives 

Sim(tlatiott runs caa  provide addit ionM insights into the attalytic results developed in Example  4.2 of 
Actuar ia l  Mathemat i c s  [11. The  subs tance  of tha t  example is as follows: 

One hundred  independent  lives are subject  to a cons tant  force of mortali ty,  # = 0.04; each 
life is insured for dea th  benefit of 10 units;  benefits will be paid  from an investlnent fund 
expected to earn 6 = 0.06. 

The  text  shows tha t  E[Z] = 4 and VurIZ]  = 9. Then,  using a normal  approximat ion ,  it is determined 
tha t  an  initial a m o u n t  of 449.35 would be required for a 0.95 probabi l i ty  tha t  the fund will be sufficient. 
Also, a single i lhts trat ion is shown of the run-out  of the fund, using a force of interest of 6°/c, and  selected 
t imes-a t -dea th  for the first two years.  

A single smmlat ion  run involves a generat ion of 100 uniformly dis t r ibuted random munbers ,  and those 
are converted into t ime-a t -dea th  deviates  (as described in Section 2 of this paper)  using p = 0.04. For 
each of the t ime-a t -dea th  deviates,  the present  value of the 10 ,mit  dea th  benefit is ca lcula ted using 
/5 = 0.06. Once a single run has been set-up,  new deviates can be generated by hi t t ing Fg; also the 
formulas can be copied to show multiple runs on a single worksheet.  

The  A V E R A G E  and  VAR function.', provide approx imate  vahtes of E[Z] and  VarIZ]; Table 2 shows such 
values for ten s inmlat ion runs. One  can see how close these results are to the analy t ica l ly  de termined  
values. Note t ha t  100 times each mean equals the  initial fired needed for the sample  in t ha t  run. In 
Table 2, only one of the  rtnls (with 4.6 mean) would require a fund in excess of the  95% minimum 
which wa.'~ calcula ted a t  449.35. Of  c o u r t ,  ten runs is not sufticient to draw any conclusiotm. By 
merely hi t t ing Fg, the  means  of many  runs can  be computed  quickly. Using this procedure,  100 runs 
were generated,  and  only 6 of  those would require an exc~sive  fund. This  example  shows the sampl ing  
var ia t ion using s i tmdation.  

Table 2: Simulation O u t p u t  for 10 Runs 
t [:~11II Ntl|ltber 

Stat is t ic  1 2 3 4 5 6 7 8 9 10 

Mean 3.4 4.0 4.1 4.6 3.8 4.2 4.3 3.7 4.0 4.1 
Var iance 8 4  9.9 8.5 9.1 8.4 9.4 9.2 9.8 8.4 8.9 
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The Hit ':QUI']NCY functimt yields the immbel of deaths i,t speciJic time intervals when applied to the 
data il, each si],ndatio]l lutJ. The lesults ate easily converted into a chalt;  fm example, l"igl,re 2 shows 
the results fm one luu. Deaths are grouped for later time pmiods. Unlike the smoothly decreasing 
nmnber of deaths per yem implied by analytic use of the constant force of mmtaii ty,  this rml he~s 1 
death in the tilst year, 2 in the second, 7 in tile third and exhibits a jagged curve. 

Figure 2: Frequency Output  for I Rm~ of 100 Deaths 
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Also. there are tile conllnon-sense, but occasionally overlooked, points such as (i) only all integral 
number of deaths can occur m ally tinte period (not 3.92 deaths in tile first year}, (ii) some years have 
no deaths as the groups are mnall (a significant consideration ill many small pension plans), and (iii) 
some people live a very long time raider tiffs mortality rule (trials often include values exceeding 2 0 0  

a.s a time-until-death). Solne of the latter point.,, are not obvious ill Figure 2, but they can be seen 
by examilling tile data  ill a simulation, especially if the data  is sorted into ascending tilne-llntll-death 
sequences. An extract of that  sorted da ta  is shown a.s rtlll 1 ill Figure 3; note tha t  the FREQUENCY 
ftlllCtiOtl cal l  process sorted or l l l l s o r t e d  data. 

To sort data, the spreadsheet software ill EXCEL requires that cells have fixed values, rather than 
forllltlLaS; otherwise the recalculation that occtlrS during tile sorting process generates zlew random 
deviates and the result is just a new unsorted sample. While celt contents call be directly converted 
from formulas to values, a better  approach is to copy thenl using the Edit-Pa.steSpecial COnlinand, so 
that  the original formula cells can contillue to be used to generate Ilew samples. 

Sorted data  for any r'tlZl Call be used to simulate tile run-out of all initial fulld, with stochastic tinle-at- 
death pattenls. Furtherloore, the rtlll-ollt call be done with various interest processes, inc]tldiog sollle 
stochastic concepts. 4 

aThe first edition of Actuarial Mathematics does not include analysis of stochastic interest processes; it is expected that wilt 
be covered in the next edition. Therefore, even though it is somewhat inconsistent to use stochastic interes! in the run-out of 
an initial amount that was based on COllStanl interest, the extension is ea.~V tO understand. 
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Figure 3: Run-out of initial  fund of-lO0 and death  benefit of tO with s tochast ic  fnoztality and three intmest 
rate  processes 

Time-at-Death using Rur~ 1 T=me-aI-Deafh using Run 4 
$lochastic Rale Fund.Valu~ with Int~:[e~L~s~g F g ~ t u e .  with Interest ~ s ~  

of I n | ~ e i !  Force at Log Random Force at Log Random 
TimQ-et~CiEth Log Random ~% (fixed) Normal W~k 6=% f(fixed] N £[[n ~j Wj~k 
R ~  R~L~4  f~o~mal W ~  400 
0 524 0525 1062 1 062 403 
1 503 0 592 1 062 1 062 417 
1 818 0 727 1 054 1 054 410 
2070 0.849 1.053 1 045 411 
2181 1103 1074 1057 404 
2 300 2 357 1067 1061 397 
2549 2729 1 077 1 075 393 
2565 2818 1054 1 068 383 
2 619 2 931 1 073 1079 375 
2 643 3 105 1 Q55 1 073 365 
3536 3233 1 059 1 070 375 
3 658 3757 1063 ~ 072 368 
3.814 4 223 1057 1068 361 
4 279 4602 1059 1065 362 

HIDDEN ROWS HERE 

400 400 
403 403 
417 417 
410 410 
409 408 
402 400 
396 393 
393 390 
353 351 
375 372 
365 363 
374 376 
367 369 
360 363 
360 364 

58368 55088 f075  0.927 1913 1341 -74 
59.043 55657 1040 0906 1982 1367 -79 
60476 57 739 1 067 0911 2150 1491 -79 
60880 69343 1~061 O 911 2193 1517 -86 
61359 59 813 1057 6906 2247 1548 -92 
64546 62 445 1,065 0909 2711 1880 -78 
64551 64.835 1064 0,910 2701 1871 ,88 
66497 66.940 1064 0912 3026 2100 -83 
69073 68318 1.065 0915 3522 2460 -76 
70566 68726 1.047 0901 3839 2625 -76 
70829 70254 1061 0901 3893 2658 -83 

400 400 400 
403 403 403 
394 394 394 
388 387 387 
380 380 379 
376 377 375 
396 399 394 
395 400 395 
387 391 387 
377 382 377 
373 378 375 
366 370 358 
368 372 371 
368 372 373 
365 368 370 

34f 182 -82 
343 176 -98 
379 192 -82 
407 201 -81 
409 196 -87 
469 221 -78 
531 247 -72 
593 271 -69 
634 295 -71 
639 251 -78 
691 298 -77 

Two simulations 
using RAND(} and 
inverse transform 
Values frozen 
and sorted 

71 228 80627 1 060 0900 3977 2711 -90 1277 536 -36 
79 662 97.419 1 059 0997 6587 4374 -46 1910 779 -27 
81 893 95.102 1 071 0905 7521 5088 ,47 3018 1310 -23 
104.810 203078 1066 0909 29735 2f926 -15 1964955 1290796 -10 

Fund runouts, using interest rate (from Specified process) for 
period between time-at-death (for the approDriate Run) 

One set of new R~ND/) val,ae$ is used as 
Probability for: 

Force of Interest generated by 
LOGINV(Probab~Ilty 006. 0.01L 

tnteresl rale 9eneratect by: 
NORMINV(ProbabI#ty. Priorl•tRafe. 0 01) 

80 



Figure 3 shows dala  flora (; lun-outs ,)f the from for two moItali tv luns iIsbhg ilLtelesl rates genelated 
from threediitelout interest plocesse~ Thotwc) mor~ai i ty~unseorrespomltoi i l lLl  a m l r u l n 4 o f T a b l e 2 .  
They were choSell because thei/ results wele the extJ'(?ll*e lilealt values ill that table, with applOXilliate 

initial from ~equiremeikls of 34(I aml 160 respeclively. 

The  three interest rate processes all start with 5 = 0.06; therafter they are delermine(I l>y either: 

l, The  6~{ constant force of interest. 

2. A tognormal generation of the fmce  of interest, using the function LOGINV, with a mean of 6(~, 
aim a stalidard deviation of I%. 

a. A ra,ldom walk gone, alien of the ilJletest late. itsillg the f, mctien NOI/MINV, wilh a llloall for 
each period e(ptal to the prioi period interest rate aim a 1% stalldard deviation. 

For processes (2) aml (3), a single itew lun of umformly distributed random muubeis is gelmtated. These 
serve as the probability input items fol tile LOGINV and NORMINV flmctions. A new simulation is 
generated eacll time tile worksheet is recalcldated; however, as noted above, tile mm tality run deviates 
me  [ixed. so they do not change with recalculations of the wo,ksheet. 

Igor convenience, interest rates are assumed to change immediately after each  b en e f i t  p a y m e n t .  
rather than ammally or at other fixed time intervals. Tiros. the length of t ime a particular interest ,-ate 
is used depends on the mortali ty of the group. The  three interest rate processes have the same aprio,i 
expected means but diflierent variances, so it ix not surprising that the simulated Hn-outs  produce 
quite different lesidual amounts. 

The  sinmlated run-outs use at* initial fired of 400 rather than the 95% minimum initial amomlt  of 
449.35. The final expected value of a large mm~ber of mortali ty simulations wouhl be zero for the 
eollstallt force of interest process. 

Rather  thm~ comparing the final fired amounts which are distorted by the large difference in times for 
tile last death (about 105 years for trial 1, and 20a years for trial 4), a comparison of values immediately 
after payment  of the pemfi~imate death benefits (which are respectively abort, 82 and 95 years in the 
flature) is shOWll in Table 3. 

Table 3: Comparison of Fund Vahle 
[ R,m Number ~ = 0.06 LogNormal RandomWalk [ 

1 7,521 5,088 - 47 
,1 3,018 1,310 - 23 

It is not suggested that these are estimates of averages for the possible population of rind-outs. These 
reflect only  two samples from the joint distribution of mortality and interest rate variables. The goal 
here, aside from learning the simulation concepts and ,'elated spreadsheet techniques, is to provide 
concrete illustrations which ca,, be dynamically revised of the actuarial material. 

E x a m p l e  31 Actuarial Mathematics Section 3.6: Assmnptions for fractioua[ ages 

Actuaries in their work generally assume expected mortali ty probabilities through the use e r a  life table 
which are displayed by integer ",,cat of age last birthday. To complete calculations at fractional ages 
and fi'actional durations, SllCb as  for vear-end reserves or to calculate functions fillCh as tile complete 
expectation of life fiom the life table.s, an assumption for the time of death within the yea," of age is 
made. 

Three  possible assulnptiolls are the uniform distlibution of deaths (UDD). constm*t force (CF), and Bal- 
ducci (BAL). Let qx Im the ammal  mmtal i tv  rate for a life aged (:r). Table 3.5 of Actuarial Mathematics 
(i] desc,ihes , q , ,  for 0 < t < 1 fm each of the asslt,tlptioILs: t q z  for UDD, 1 - exp [ - I '  " t] for CF, and 
l - ( l - ~ t q ,  for B A L  Note that t is restlicted between 0 and 1 aml that  tq~ does not integrale to 1, as 

it is not conditiomd on the death of I J). 
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We ('m~ u-e : IL(" a lJo \e  to  (h'filw t he c , lmlxla t  iv(' coildit lethal dis(i  ib~l~ ioI~ f~m(':loI~ ~()1 t~cat}l ()f (3 I, gi\'lHI 
d('atlL plic*: t,.)a~(, t+ + I). l,\,l ( I - , l  < t . l ' r ( l ' , : , l " :  I , + ) _ ~ l )  _,ZL S m ( e l ' + ( T ( : + ) < ~ : l  +q~. q~ 
then  f - b ( i I l , I  .- t/ =- ' h  / > " ( T i  .+) -< t i T : . ' )  +" 1 . t, ot 0 < t < 1. f '~ T(.+I 5- t i T ( , )  < II ~-l,(lO+l), 
as it is a ctzutrz/ative d i s t z ib , a i (m  ftll.ctioz:. 

Olle wa;'  It) i l l u s t l a t e  the  di t lerenec between: t he  a s s u m p t i o n s  is to g r a p h  the  c u m u l a t i v e  condi t iona l  

d i s h i b u t i o n  f lmet ion  ftll d e a t h  of (.r). g iven  d e a t h  prior to age  (J  + 1). T w o  m o r t a l i t i v  rate~ are  

i l lus t ra ted  m I"igulc 4. T h e  first  g r a p h  uses a ve lv  h igh  m o r t a l i t y  xate of  (I.50 which  c lear ly  shows 
the  i m p a c t  of choosii~g of the  th ree  a~sslmlptioib~. For example ,  the  p robab i l i ty  tha t  s o m e o n e  will die 
w i th in  the  lhsl  q : ta l te t  of tile v e a l .  g ivcil Ihat they div d u r i n g  tha t  year  of age is 0.25 .roller tbp UI ) I )  
a s s . r ep r i s a l .  0.:¢2 ql~del ( ' F ,  amt  0..t0 ~llld~'~ tL.'~L T}w nexl g r a p h  show ing  ~, 0,01 p robab i l i ty  ~f dy ing  

hk a g iveh  age, dt 'nLol.states im l i s t i ngu i shab l e  dilte~eiices be tween  the  t}lree a~sulnpt ions .  

"I ' l l( '  Ii[()[lle]lt~, fol th( 'se  cond i t iona l  tlistlib~llioits (:all be ca lcu la ted  as well. Fol example ,  the  m{~alt (';m 

be found ,tsiItl4 tl~e equa t ioh  jl)~(l - ~ : ) , : t ,  where  ~ is the  cmm~la t ive  d i s t l i l m t i o n  f l m e t i o n  "l'he Ineal~ q. 

hn BAL.  \Vi tb  ihe  i m u l a l i t y  : a t e  at (15. the  thet . ie t ica[  n~eans unde~ UI )D .  CV, and  B A L  a~e 0.5. 
0.4,127. aml  0 .3663  Othe~ m o m e n t s  can  be found  a~ well. All of these  ca lcu la t ions  and  g i a p h s ( : a ~  be 

eas i ly  c o m p l e t e d  on a s fneadshee t .  

T h e s e  s a m e  lesul t s  cab be i l lus t ra ted  bv s inmla t i (m.  Us ing  the  inverse  t r a n s f o r m  technique ,  unifo[In 
dev i a t e s  be tween  0 a n d  1 m e  gene ra t ed ,  k;ach of these  vah~es a le  mul t ip l i ed  by t h e  one- , :ear  mor ta l i ty  
ra te  to ~.olve for tile t i m e  of dea th  dtlriiw, the  yea r  llllder each of  tile th ree  a s s u m p t i o n s .  T h e  s teps  are:  
(i) G e n e r a t e  ( :  ~ H(O, 1); (ii) Set  U - 1:% ( l ' (~ )  < t( ir t:, ) < i);  (iii) For U D D ,  set t . q z  = qx " U, T h u s  

t = l"; (iv) For CF .  set  I - (1 - q . ) ~  = , I='U. T h u s  t = ~gU-q"  u ) '  [og(I_qr~ , (V) For BAL,  set  ~-(l-t~q~~ = q,: .U. 

T h u s  ~ = t '  ( : - q : )  ] -q~ [ '  , 

O n e  t h o u s a n d  va lues  are  g e n e r a t e d  for l: a n d  t i m e  unti l  dea th  va lues  for each of t he  th ree  a s s u m p t i o n s  
a re  ca lcu la ted  a . ssuming tha t  the  m o r t a l i t y  r a t e  is 0.,5. Desc r ip t ive  s ta t i s t ic~ for t he  g e n e r a t e d  va lues  
are  shown in Tab le  4. 

Tab le  ,1: D e s c r i p t i v e  S ta t i s t i c s  by Frac t iona l  

,Mean 0.5036 
Standard Error 0.0092 
Median 0.5012 
Mode 0.1591 
Standard Devialion 0.2903 
Sample Variance 0.0843 
|',iui t +)sis - 1.2289 
Skewness -0,0090 
Range 09935 
Minimum 0.0052 
Ma.ximum 0.9987 
Sum 503.8358 
Count 1000 
Confidence Level(95 ~10%) 0 0 1 8 0  

Age A s s u m p t i o n  Given  q:~ = 0.50 

UDD CF* BAL* 

0 4 4 6 8  0.3905 
0.0091 0.0089 
0.4162 0.3344 
0.1196 0.0864 
0 2 8 7 2  0 2 8 1 9  
0 0 8 2 5  0.0795 

-1.1625 -0.9724 
0.2230 0.4604 
0,9944 0 9 9 4 6  
0 0 0 3 7  0 0 0 2 6  
0.9981 0 9 9 7 4  

446.7720 390.5416 
1000 1000 

00178 0.0175 
*Depends on q(x) = 0.5 

No te  how closely the  s a m p l e  m e a n s  c o m p a r e  to tile theore t ica l  means :  all are  w i t h i n  one  s t a n d a r d  
error .  As a s ide pro]ec t ,  one could i l lus t ra te  the  concept  of s a m p l i n g  d i s t r ibu t ions ,  by r epea t ed ly  

d r a w i n g  samples  of 1,000 and  r ecord ing  the  s a m p l e  m e a n  for a m m d J e r  of tr ials .  T h e  d i s t r i b u t i o n  of 

t he se  s a m p l e  m e a n s  could be descr ibed .  T h e  m e a n  should co r respond  to the  theore t i ca l  m e a n  and the  
s t a n d a r d  dev ia t ion  to the  theore t i ca l  s t a n d m d  error .  

H i s t o g r a m s  based on these  s i m u l a t e d  va lues  are  .q~own m F i g m e  5. T h e  cha~ts show a level nmnbex  of 
va lues  bv cell for U D D ,  s o m e  skewness  fol the  CV. am[ gleate~ sllifti t lg to the  left for BAL,  
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l:igm{' 4: Compatisolt of I!I)l), CI:. ami I{AI. : '~s~mq,tio~ for Two Moltal i ty  Rates (}..~ az~d 0.01 

C ~  d L~ C= ard B'~.fcr ~ = 
05 

1£0 j . f  

QSD ~ ~ "  
Q~ ~ f  

.~ QeD ~ °LEO 

CF" 
3 o ~  I 

02D ~ f '  

QlO 

QQ] 0 ~  GIO 015 Q2D O25 (333 O35 04C Q45 C50 Q55 0~3 Q85 O7O Q?'50~ 085 Q~ O95 1 £0 

" r ~ m  

1£8 

_~ Qeo _ ~ . t l x )  

Q m  

Qal 
Q~ 005 010 015 Q33 Q25 Q30 Q35 Q~ 045 093 055 Q~ ae5 Q30 Cl75 QEO al95 090 095 1£0 
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'] 'he sI~aJehl has Nain('d a~J tmdo)stal=dm~4 of lhe thzee a~sumptiozJs thxCmAlL this exercise. 'l'h{' c~mc[u 
sitm can be zeach*,d thai Ih~' ~[t~i~,'(fl Ill, ha(ti(~t~a] at4e assunq)ti(,z~ is riot !'tilic;~l fi~l [,m" m,)rtaiitv 
i ; l t e s  

l"igure 5: fIisto~,iam of 1000 Deaths  Simulated J~ii~g UI)I), CI", ~ii[d HAL As.~umptions fur Moital i ty  t la te  
of 0.5 

LI3D 131.0 

106858382_534.0 ~ ~ ~ ' - ~ ' ~  

CF 
131.0. / 
58.3 

34.0 

BAL 131.o 
106.8 
82.5 
58.3 
340 

O0 (32 03 04 06 07 08 

E x a m p l e  4: Ac tua i i a l  Ma themat i c s  t"~xeicise 3.24: Fractional age assumpt ion  in the ealculatio~t of the 
median  age at  dea th  

Exercise 3.24 asks the  s tudent  to use the U.S. Life Table and  an a s sumpt ion  of umform dis t r ibut ion 
of dea ths  in each ,,'ear of age to find tire median of T, where T is the future  lifetime of a persol~ aged 
(01. This  problem is one tha t  is easier to do theoretically, but  the s imulat ion of the a:~swer ~equires a 
good working M~owledge of the em~cepts. To do the problem wi thout  s imulat ion,  one could jus t  look 
for where  50,000 people are aliw,, somewhere between ages 77 and 78. Using the uniform assumption.  
one could just  do a l inear interpolat ion to solve for the answer of 77.59 years, 

Figure 6 g raphs  the Ix aml d~r expected values from age 0 to 111. The  dea ths  at age 0 last b i r thday  
are high at 1 2 6  dea ths  per 1.000, but  then drop to around 0 5  dea ths  per 1.000. ()~e can calculate the 
q , ' s  a t  each age and  see tha t  lhey are all very .~mall except at  the very highe.,,t ages. Thus  the choice 
of Hie f ract ional  age assumpt ion  will not be signilicant. 

The s imula t ion  of this exercise uses the L O O K U P  fimction in EXCEL.  A probabi l i ty  density function 
and then the cumula t ive  dist~tibution fimction is created for each life aged (0). One hundred/4 ' (0 ,  11 
values are genera ted  to repleseltt  J.()0 ltlllLdted ltewbot'ns. The uniform devia te  is compared  agains t  the 
cumula t ive  distributiol* fimction to de termine  the integer age at  dea th .  The LOOI~UP function takes 
the value less than  or equal to the lookup value, olte llutst be careful to code the spreadsheet  formula 
colreet[y. It may be, depeuding  on the design of the spreadsheet ,  t ha t  one must add 1 to the value 
r e t m u e d  I,y t h e l , O O K l i P  fimction (?are must also beempIoved for t rea tment  at a g e 0 1 a s t  birthday. 
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This m pmticulm highlights the advantage of using as lneadshee t ,  as an eriol fol looking up a vahm 
will I,e oh'ally displaved ilJ the spreadsheet. The ftactiooM piobability piece is fou~M I,y subtiactilig 
the uniform deviate by the looklq~ value al~d dividii~g by the difference between the c.d.f.'s for the ages 
surrolmding the deviate. Then l ' l ) l )  deviates, or other flactimial age assumptioli, call be found as 
showz~ m Example 3. The  total time until death is fouml by adding the integer alid fractional pieces. 

The  simulation of 100 lives shows the dist.ribution of the time until death latIlez than just a numbm 
of 77.59 years f,~r the median. The minimum and m a x m m m  times mitil death can be found by using 
the MIN and MAX functions. The ditleteuces m time of death betweeIl individuals, even though they 
ale idemically dist:ibuted, can be dlamatic.  ]:el exan:ple, fol one trial of 100 liw,s assuming I:I)D. 
the median ti:ne until death is 77.!}l, tltc tnilimmtil is [L8N, alid tim maximum is t07.1S. Fm alaotlmt 
sample of 1011 lives, the medhm tilne ui*til death is 78.14, the mi:finlum is 18.61. and the Ina.xilnttln is 
101.8!). 

This is a challenging exercise to complete on the computer,  but very practical, as actumies commonly 
work with da ta  that is discrete and must make assumptions for il~terim time periods. The  exercise couhl 
be taken further to exanline tile dilt>rence m tim results for the choice of fractional age a.~s:nnptim*. 
Since the annual lllolt.alit 3+ tales ale small fol almost all ages, the spreadsheet leslllt.s co:lfirn, t h o s e  iI] 
the prim example, showing little diflerei~ces i~ the median age at death and other statistics. 

E x a m p l e  ,5: Actuarial Mathematics Exercise 8.7: .loint life probability m~d expectations using DeMoivre's 
Law with +, = 100, 

The  cumulative distribution funetiol: aml density function of orde* statistics has always been a dil:icult 
concept for students to understand. This exanlple aitd the next will show that  the use of simulation 
makes a difi~ctdt coticept easy axld a:lows one to qtfickIy get reliable answers. 

Exercise 8.7 of Actuarial  Mathematics assumes deMoivre's law with ~, = 100. The  problem asks the 
o o 

strident to calculate +~40:5o, c ~  and variances of the associated time until death random variables, 
and the correlation. It is a good problem, as the student needs to pay attention to the upper linfits of 
the integral because of w and the joint life assmnption. 

A spreadsheet is designed to separately input ~' and the two desired issue ages, in this case (40) a~;d 
(,50). For sake of comparison to the book answers, these are kept as 100, 40, and 50 respectively. The  
RAND()  function is used sepalately for each life to simulate the time until death, which implies that  
the two lives are independent. The actual formula coded is (~a - issue age) x RAND(),  which provides 
the flexlbi:ity for the input noted above. For each life, 100 deviates are generated. For each pair of 
deviates, the MIN flmctiou is used to choose the smaller of the two values and the MAX fimction to 
choose the maximum of the two values. The 100 values for the minimum is an approximation for the 
density of the first death, while the othm 100 values for the maximum is an approximation for the 
density of the second death. Table 5 shows the theoretically correct values for the average, variance, 
s tandard deviation for the time of death for each single life, the t ime of death for the tirst death, and 
the time of death for the second death. Also included in Table 5 are the results of two trials for the 
modeling of the distribution. Comparing each statistic for each trial to the theoretically true vahle, 
one can see that each trial will produce variation from the truth. This is one way for the student to 
unders tand bow a realization of a process may diflk~r from the expected average. Also this concept 
can be reinforced by iust examining each realization fl'om the 100, instead of the average of the I00 
realizations. 

Corresponding to the results in trials one and two, a [re(tuenc )' histogram is dynamically generated 
using the FREQUENCY flmction in EXCEL. See Figure 7 for a chart  of results. Of importance to 
note is tha t  the formnia is entered as an array' formula, which means tha t  C T R L + S H I F T + E N T E P ~  
must be entered with all the appropriate cells highlighted+ The bins of how to split up the counts into 
groups eau be defined separately or a default is used. The counts m each bin is the mlmber of cells 
that are less than tile mmiber for the bin and above the immediate prior IJin. So the filSt bin is the 
numbm of times of death less than or equal to 5, while the next bin is the mmtber between 5 and 10. 
The  ehall gives a feel re, the dilteteoce between the tlistributiotl~ of the mit, atal tile nlax of tim time 

8 5  



,mti[ deati~ ' l 'h> tt~(,1]Jt),l .h~v,',.. how ih(' di.q~ibuli,)h ,.a~i('- d,,l)Cl.im,e ~HL t}tI' MHIIlIIC~, 2~.S Ih(' (h&tlt i~ 
I l p ( ] ; i l , ' d  ( ) ] l  e /u} )  ] C('}ti( ' t l]itl  iOlj , l i  T }le ] ; l lJt]()ll i  ]J)l l l l[)( ' l  s 

Table  5: ( 'ompaiis,)l~ of Theo~(~lical a n d  Simuiati~m Results  for Ex(qcise S 7  

The,n e(ical llesuh s 
: $I atisl it's 'I (,lt)i T(5(}) min('i (.10),'I'(5011 max('l  (,I(11 T{501 } 

A,.<.I ag(' 5,() 0(} 25 (lit 18 ()(; 3 6 9 t  
\ a l  ialL< e :t(}0 tit} 2(t8 33 [ 60  11 1 N2 ?;3 
bid do~ 17 ;{:2 11.43 12 65 13 5(1 

" ('()I14 l ( 101 J ,5i) I 0 ll0 
('(~t I I nml,max ) - 049  

"11io.I One Simulatiml Resuhs 
S~atis, i,'s T,:.10) "i150) ~fin/T,il0),T(50i l txlT(40 ' I t5 ( ) )  ] 

T~ial Two Smmlatioll Resuhs 
Simplistic> I'(,1{) ) "i 1501 min(T(40),T{50 )) max(T(, t0 i."1'(50)) 

Average  29.74 26.66 18.23 3 8 A 7  
Vat iance 330 .76  189.51 I41 4 6  182.94 
Std dev  18.19 13.77 1 1 8 9  13.53 
Cou(T(40) ,T(50))  = 0.11 
Corr(min,max) = 044 

:\vm age '2st2 2,1.72 1751 36.10 [ 
Val i:mc(. 2s8.,17 19901 157,36 16(L95 ) S)d ch'v. 1698 t411 12.,16 12.92 
Cou(Ti40) ,T{50)} = 0 00 
( - ' O i l {  l t l i I ~  l l l ~ l X  I = 0.51  

E x a m p l e  6:  A c t u a r i a l  M a t h e m a t i c s  E x e r c i s e  8 .27:  Jo in t  life f rac t iona l  age  a s s m n p t i o n  

Exercise  8.27 combines  b o r e  concepts  of j o i I :  life functions and the  f lac t ional  age assumpt ion .  T h e  
p m b l e m s t a t e s :  " Let T ( r )  andT ' ( : / )  be independen t  and m~iformly d i s t r ibu ted  m the  nex t  vea r  of age. 
Given  tha t  both  (.r) and  (:/) die wi th in  the  next  year ,  d e m o n s t r a t e  t h a t  the  t ime-of-fa i lure  of (z,v) is 
not  uni formly  d i s t r ibu ted  over  the  year.  [tlint: Show tha t  P r  [r(:r!l) <_ t ] ( r ( z )  <_ 11 C~ (TO.I) <_ 1)] = 

2t - t2],, S tude, l t s  have  difficulties with ca lcu la t ing  the densi ty funct ion of  the  m i n i m u m  of two r a n d o m  
vmiables .  This  e x a m p l e  will show how ea,sy it is to rise s imulat ion to i l lus t ra te  the  concepts  of this 
exercise. 

First ,  to solve thi.~ p rob lem theoret ical ly,  one calcula tes  tile cmmf la t ive  denMty f lmct ion as: 

Pr [T(zy)<'-t (T(,r)< t ) N  (T(y}<< 11] = 1 - P r I T ( z ) > t , T ( ~ / ) > t ; ( T l z ) < _ I ) C ' ( T ( ? / ) < I ) ]  

= 1 - P r  { T ( z )  > t [ (T(x)  < 11]-t'," [T0/) > t : ( T ( ! / )  <_ 11] 

= t - ( 1 - t ) { 1 - t )  

= 2t t 2 

T h e  densi ty  funct ion of  the  m i n i m u m  is 2(1 - :), which is l~ot uniform f o r  0 < t < 1, Using the  den.sity 
f lmct ion we can find the  expec ted  v a h w  equal  to :~ and the var iance  equal  to 1 In addi t ion ,  one can 
note  t ha t  the  joint  survival  probabi l i ty  of su rv iv ing  past ~ime 0.1 is 0.81 ( 0 9  x 0.9), while if uniform,  
the  value should be 0 9 .  
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"T']w Mtllll]:lliOlI ~'XI'II'ISt' i* as ~';t.'~ ;is < icktllll~ ;t ~.t~l]Ltlln ~fl"/(0. ]1 t[oviale'~ f{~l / ( t  i all<] }t se~)a]alp sl,I 
f,!l l '(f/}, kt- lhl '  diqli l . l~i~l~ i> !~)[Ittil/I,lHl~l t)ll t '&(ll (~f ~}l,'il ~](' tlh~ iIl }}w IwX[ \'t'~t: ;llld I}W [[X~'S ;~,1(' 
iIMelmml{'nt. "|'h,' smalle~ c*f the {~.~.'l} IIIIIILIIUIN iN a de\'iat~' ~q ,e~ated  I[IOIIL | he  lllillillllllll. ~l l l l l l l l ; ' g ty  

stallSll(N, Ct }l is togtam, aml  a I! tal t  ('OI11illll 1]W StlIS\'~'~'I ill the ex~l,is~,. Table  (i sllti\vg {}1(? stllllllt~tly 
s ta t i s t ics  of olw tr ial  ~o I,e neat ly  idl'-ntwal I o  the t]~eolclical allswets.  Also, a hislogra~=, of the ws~tlts 
shown ill I"igure 8, >hews how {Iw indix'idual t imes tlltIil dea th  a l e  i l l l i f O l l l l ,  while {he frequelwy ~}f lhe 
Ill[ItillllllIl iS fief. 
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5 Classroom Incorporat ion  

Tile s imula t ion  e x a m p l e s  descr ibed in this p a p m  rallge fronl easy to complex .  'Fhe c lass room may  be a 
place to d e m o n s t r a t e  the  results ,  but is n¢)~ a place to crea te  tile raw spreadshee ts .  Ti le  incorpoia t ion  of  
s imula t ion  is most  a p p r o p r i a t e  in homework  ass igmnents  and more  lengthy  projects .  Th is  sect ion describes 
two exper iences  t h a t  have  been used. 

E x a m p l e  1 revolv ing  the  GIC,  cm~ be u.sed to in t roduce  the concept  and  t echn ique  of s imula t ion  to a 
theory  of in teres t  class, as well as to covet  var ious  uses of spreadshee t  sof tware .  Even though  the  example  is 
based ell m a t e r i a l  at  tile v m y  end of  tex tbook,  the  subs tance  of the  p rob lem and  its solut ion can be explained 
in genera l  t , ' rms  very  ear ly  in the  cou:se.  T h e  a d v a n t a g e  of this  is t ha t  s imula t ion  of in teres t  ra tes  can be 
con t immd t h r o u g h o u t  the  course,  such as in examin ing  var iable  ra te  n m r t g a g e s  v m s u s  tixed ra te  mol tgages .  
S tuden t s  nlay e l  Ilia}' llOt have  some  background  in probabil i ty  d i s t r ibu t ions  w h e n  t ak ing  interes t  theory,  so 
the level of exp lana t ion  l e g a r d i n g  simulat  ion will need to be tai lored to their  background .  

Most aettlacial studel*t* ill{! likely to have  Ilad some  spreads}wet experience, but rI lam' m a y  not have  used 
the  logic f lmct ions  or  o the r  special ized capabil i t ies  desc l ibed  in this paper .  In o~dm to a c c o m m o d a t e  the 
~ange of pr ior  knowledge,  the  following app roach  has been useful, 

First ,  s imply r e p l o d u c e  the  one-veaI  attalvsis hi the t ex tbook  over  the  eight  possible interest  ra te  paths.  
"l'bis ca,, be  done  with the  t ype  of sp leadshee t  formulas  a.ltd f ,u,ctions tha t  s t uden t s  a , e  likely to know ahead ; '  
or can  learn qui te  qu ick ly  l]~t,'testii~£lv, even it~ this ~r~'[ X" simple act ivi ty,  the Ie  nmv be Nel l ie  S l l l l ) l i S e s ;  e g .  
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whil*' '~ludet~ ~ , a l e x t ' t :  likNv to kum,,'!)t~,r E:<ct,l~a~ a ~ t ' M  f, mc t iom tt~ev ma~ :+~1 t~:l~m,, l[Jm<'l~ a q l m [ a t  
l ' l ' t ( ) l ) t~ ( 'T  fu~c t ioa 

Seco,L<l, a~ait j  t~'l>~od~l¢(' t]~*' ,qght )ruth an~alv@-, t low( 'v , ' , ,  mn~+'ad of  tai]otit.,~ t jw  f o l m u l a  il l ~'ac'}l ,::(q[ 

bn~,ed oil v.,}wI ]let th(> ]mtb ilwolv,~!'., all i]]c](!a'-,o in de<'le~.,~e, al~(, t]J(' ]1" fnzJcti<))l t (  ];l<>dTw<' that  i~,,,,it]l. Thin 
al)proach h~tro(hwe,', ~]w ~,llltl<,~ll to more  :~Oldlisth:aled ptl ,~t+mmling skilJs. 

Th i rd ,  in t roduce  a simulatioI~ analysis  uf the l-vea~ ( ; IC.  h~stead of specifvi~J~. ~be mtelosl  ~ate path ' ,  m 
adwulce,  lmihl oI~ the IF ' , t a t emen l  l)tact]~ed m st(']) 2. A la tge n u m b e r  of lows (e -.  100 <st 1000) can be set 
ll t) bv Co))v[l~ t}le fotttttL[~t, altd ~t tte',v I l l l t  (If ItLItt[c.)Itl p~tt[L~ ('all be  getle~ated, l)x t t i~geti t tg ,D. tecaleulatiott  
of the v:otk~,heet 

T h e  (7(.)I;NTII" frtttvliOlt ¢aIJ [)e tl'~('d to de t e tmi lw  how tn~l]tv of life i ldetesl  [Ate ))atlis l)i(](]iLc'e a [(>~,n: 
tlm( is. a full yea l  ~cumtdal i¢>~ ]e,,s (h+ut the ~umalJte(!. T h e  p)opoltiotJ ()f 1].( to ta l  i~imbe) of i)at[~', i', 
ali esLimate  o[ the  p tobabi l i lv  of h)',s, ahd can be ('Oil/pared ,,vit]l the valne (le1+.:miaw(] by steps i aI~d 2 
S t l t de l i l s see  thai  t]*e[e i:~ vatiatiol)  f)om +utl Io tun,  but  that  the ovelal] [eslllt i'- abotlt as expec ted .  

l ' ;x tendiug t[lis shmtb-di<m apt~l'oacl~ to a longer t ime  per iod is q~tite easy. l towever ,  it is ve~.' inlt)o~ta~t 
to e m p h a s i z e  tha t  a sigldticant chal~ge o(¢'tus: ill the 1-yeal  ease. tile correct  answel  based ot~ the eight patios 
is ah ' eady  k)lown al~d ~uHeasolmb}e sim,flatiu:~ t(,s~llts can be the  basis lot leexalt~ll:mg Ihe sp teadshee l  logic 
and  de tads .  For [}le }ollgei poli/)tl, l}l(, (Olleet allSWel iN ILOt klLOWll: of c()lllSe. ~}lat is IllOIe icaI[Ntic Nillce 
a i i lalor reasoll fol itSillg silnulatiolt is %V}IOIL cozllpJete oI ot l leiwise a c c u r a t e  ('a[culaliOllS a ie  llot feasible. 
O t h e r  ways of  checking the  feasibility of the )esnlts  will be needed. For example ,  simpb,, checking whe the r  tile 
p ropo r t i on  of q l lar te l lv  illeleases are  ileal the  ' t i l l e '  probabi l i ty  of all Jllcrease ha ,  leveliled el'IOIN. ~tudelltS 
need to leart~ tha t  they ca imot  trust  complex  sp readshee t s  to p roduce  reliable re-.Mrs tmless they  put  a lot 
of  effort into the  art  of developing check-vahtes.  

If stl tdellts }lave doue NOllle sp leadshee t  SillllllatiOIlS ill pl ioI  eOlllSe~-,, eveil grea:o~ elllt:,ba'.,is Call be put  eli 
soph is t i ca ted  tec lmiques  a)~d their  implications.  Thus  the complexi t ies  of the  L O O K U ' P  fmlct io~ should not  
be  a bar r ie r ,  and  the  ideas disetlnned in Example  4 regard ing  a l t e rna t ive  f ract ional  age rules can  be included.  

Whi t e  E x a m p l e  4 showed a siam}aLien of  Exercise 3.24 in Ac tua r i a l  M a t h e m a t i c s  ,,vbich refers to the  L1.S. 
Life Tab le  shown i:~ the  text ,  the  p rocedure  is appl icable  to o the r  life tables.  Ptather t han  having  s tuden t s  
t ype  in tile I l lus t ra t ive  Life Table  values (Append ix  2At ,  a p re l iminary  project  can be cons t ruc t ed  which 
is also i n s t ruc t ive  ill its OWn rig]it. For ages 13 and  above,  t ha t  cons t ruc t ion  mvolve~ appl ica t ion  of tile 
M a k e h a m  formula  as descr ibed on pages  71-72 of the  text .  T h e  113 value show~ m A p p e n d i x  2A should be 
used as the  s t a r t i ng  point  for the cons t ruc t ion :  thetL it is a smal l  task to t y p e  in values for y o t m g e r  ages. 

E x a m p l e  4 can  then be appl ied to the  [ lhtntrat ive Life Table.  Of  conrse,  tile ~,imulation re suhs  can be 
checked aga ins t  the table by s imply  de t e rmin ing  rite I rDD e s t i m a t e  fo~ l= = ,50,000. 

E x a m p l e  4 s imula t ions  can  also be etsed to i l lustrate  the  re la t ionship be tween  c~lrtate and comple te  t ime-  
un t i l -dea th  variable>, as discussed on pages 70-71 of  tile text .  and  in Exercise  340 .  Fo~ U D D  it is easy  to 
d e m o n s t r a t e  tha t  ave rage  of the  e u r t a t e  expec ta t ion  plus 0.5 provides  a reasonable  e s t i m a t e  of the  comple te  
expec ta t ion .  T h a t  half-year  a d j u s t m e n t  can be  justi t led by ana ly t ic  reasoning,  or }llstified by s imula t ions  a~s 
discussed in E x a m p l e  3 of  this paper .  
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