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This article introduces actuaries to the concept of "copulas," a tool for understanding relationships among 
multivariate outcomes. A copula is a function that links univariate marginals to their full multivariate 
distribution. Copulas were introduced in 1959 in the context of probabilistic metric spaces. Recently, 
there has been a rapidly developing literature on the statistical properties and applications of copulas. This 
article explores some of these practical applications, including estimation of joint life mortality and 
multidecrement models. In addition, we describe basic properties of copulas, their relationships to 
measures of dependence and several families of copulas that have appeared in the literature. An annotated 
bibliography provides a resource for researchers and practitioners who wish to continue their study of 
copulas. This article will also be useful to those who wish to use copulas for statistical inference. 
Statistical inference procedures are illustrated using insurance company data on losses and expenses. For 
this data, we (1) show how to fit copulas and (2) describe their usefulness by pricing a reinsurance contract 
and estimating expenses for pre-specified losses. 
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I. Introduction 

As emphasized in the recent release of  the General Principles of Actuarial Science (1997), actu- 

aries strive to understand stochastic outcomes of  financial security systems. Because these systems are 

generally complex, outcomes are measured in several dimensions. Describing relationships among different 

dimensions of an outcome is a basic technique that actuaries use to help explain the behavior of  financial 

security systems to concerned business and public policy decision-makers. This article introduces the con- 

cept of a "copula" function as a tool for relating different dimensions of an outcome. 

Understanding relationships among multivariate outcomes is a basic problem in statistical science; 

it is not specific to actuarial science nor is it new. To illustrate, a fundamental contribution to understand- 

ing multivariate relationships was made by Sir Francis Galton in the late nineteenth century with his intro- 

duction of regression analysis. In one data set described in his 1885 presidential address to the anthropo- 

logical section of the British Association of the Advancement of  Sciences, Galton linked the distribution of 

heights of  adult children to the distribution of  their parents' heights. Galton showed that not only was each 

distribution approximately normal but also that the joint distribution could be described as a bivariate nor- 

mal. Thus, the conditional distribution of  adult children's height, given the parents' height, could also be 

described using a normal distribution. As a by-product of  his analysis, Galton also observed that "tall par- 

ents tend to have tall children although not as tall as the parents" (and vice-versa for short children). From 

this, he incorrectly inferred that children would "regress to mediocrity" in subsequent generations, hence 

suggesting the term that has become known as regression analysis. See Seal (1967) and Stigler (1986) for 

additional accounts of the works of  Galton and other early contributors to statistical science. 

Regression analysis has developed into the most widely applied statistical methodology; see, for 

example, Frees (1996) for an introduction. It is an important component of  multivariate analysis because it 

allows researchers to focus on the effects of explanatory variables. To illustrate, in the Galton data set o f  

family heights, regression allows the analyst to describe the effect of  parents' height on a child's adult 

height. Regression analysis is also widely applied in actuarial science; as evidence, it is a required compo- 

nent of  the two main educational actuarial bodies in the US and Canada, the Society of  Actuaries and the 

Casualty Actuarial Society. 

Although widely applicable, regression is limited by the basic set-up that requires the analyst to 

identify one dimension of  the outcome as the primary measure of  interest (the dependent variable) and other 

dimensions as supporting or "explaining" this variable (the independent variables). This article examines 

problems where this relationship is not of  primary interest; hence, we focus on the more basic problem of  

understanding the distribution of  several outcomes, a multivariate distribution. For an example in actuarial 



science, when two lives are subject to failure as under a joint life insurance or annuity policy, we are con- 

cemed with joint distribution of  lifetimes. As another example, when we simulate the distribution of a sce- 

nario that arises out of  a financial security, system, we need to understand the distribution of  several vari- 

ables interacting simultaneously, not in isolation of  one another. 

The normal distribution has long dominated the study of multivariate distributions. For example, 

leading references on multivariate analysis, such as Anderson (1958) and Johnson and Wichem (1988), 

focus exclusively on the multivariate normal and related distributions that can be derived from normal dis- 

tributions, including multivariate extensions of  Student's t- and Fisher's F-distributions. Multivariate nor- 

mal distributions are appealing because the marginal distributions are also normal. For example, in the 

Galton data set, the distributions of adult children's height and the distribution of parents' height are each 

approximately normal, in isolation of  the other. Multivariate normal distributions are also appealing be- 

cause the association between any two random outcomes can be fully described knowing only (i) the mar- 

ginal distributions and (ii) one additional parameter, the correlation coefficient. 

More recent texts on multivariate analysis, such as K.rzanowski (1988), have begun to recognize 

the need for examining alternatives to the normal distribution set-up. This is certainly true for actuarial 

science applications such as for lifetime random variables (Bowers et al., 1997, Chapter 3) and long-tailed 

claims variables (Hogg and Klugman, 1984) where the normal distribution does not provide an adequate 

approximation to many data sets. There is a wide literature in statistics dealing with nonnormal multivari- 

ate distributions, see, for example, Johnson and Kotz (1973) and Johnson, Kotz and Balakrishnan (1997). 

However, historically many multivariate distributions have been developed as mmaediate extensions of  uni- 

variate distributions, examples being the bivariate Pareto, bivariate Gamma and so on. The drawbacks of  

these types of  distributions are that (i) one needs a different farmly for each marginal distribution, (ii) ex- 

tensions to more than just the bivariate case are not clear and (iii) measures of  association often appear in 

the marginal distributions. 

A construction of  multivariate distributions that does not suffer from these drawbacks is based on 

the copula function. To define a copula, begin as you might in a simulation study by considering "p" uni- 

form (on the unit interval) random variables, u~, u2,... ,  up. Here, "p" is the number of  outcomes that you 

wish to understand. Unlike many simulation applications, we do not assume that u~ ,u 2,.., ,up are inde- 

pendent, yet that they may be related. This relationship is described through their joint distribution function 

c ( u , , u  . . . . . .  . . . . .  



Here, we call the function C a copula. Further, U is a (ex-ante) uniform random variable whereas u is the 

corresponding (ex-post) realization. To complete tile construction, we select arbitrary marginal distribution 

functions F I (x~),Fz(: % ) ..... Fp(xp). Then, the function 

C(F,(x,),Fa(x~) ..... Fp(Xp)) = F(x,,x, ..... xp) (1.1) 

defines a multivariate distribution function, evaluated at x~,x~ ..... xp, with marginal distributions 

FI,F~ . . . . .  s , .  

With copula construction in equation (1.1), we select different marginals for each outcome. For 

example, suppose we are considering modeling male and female lifetimes for a joint-life annuity product. 

Then, with p=2, we might choose the Gompertz distribution to represent mortality at the older ages, yet 

with different parameters to reflect gender differences in mortality. As another example, in Section 4, we 

consider a bivariate outcome associated with the loss and the expense associated with administering a prop- 

erty and casualty claim. There, we could elect to use a lognormal distribution for expenses and a longer 

tail distribution, such as Pareto, for losses associated with the claim. The copula construction does not 

constrain the choice of marginal distributions. 

In Section 2 we will see that the copula method for understanding multivariate distributions has a 

relatively short history in the statistics literature; most o f  the statistical applications have arisen in the last 

ten years. However, copulas have been studied in the probability literature for about forty years 

(Schweizer, 1991) and thus several desirable properties of  copulas are now widely known. To begin, it is 

easy to check from the construction in equation (1.1) that F is a multivariate distribution function. Sklar 

(1959) established the converse. He showed that any multivariate distribution function F can be written in 

the form of  equation (1. l), that is, using a copula representation. Sklar also showed that, if  the marginal 

distributions are continuous, then there is a unique copula representation. In this sense copulas provide a 

unifying theme for our study of  multivariate distributions. Sections 3 and 5 describe other desirable prop- 

erties of  copulas. 

Given that copulas are fundamental building blocks for studying multivariate distributions, we now 

turn to the question as to how one builds a copula function for a problem at hand. Despite Sklar's result 

that a copula function always exists, the following Example 1.1 shows that it is not always convenient to 

identify the copula. Example 1.2 will illustrate a useful way of building a copula, using the method of  

compounding. We describe this method of  constructing copulas in detail in Section 3.1. 



Example 1.1 MarshalI-Olkin (1967) Exponential Shock Model 

Suppose that we wish to model p=2 lifetimes that we suspect are subject to some common disaster, 

or "shock," that may induce a dependency between the lives. For simplicity, let us assume that Yt and Y: 

are two independent (underlying) lifetimes with distribution functions H) and H 2 . We further assume 

there exists an independent exponential random variable Z with parameter X that represents the time until 

common disaster. Both lives are subject to the same disaster so that actual ages-at-death are represented by 

X, = minIY ~ ,Z) and X~ = min(Y: ,Z) .  Thus, the marginal distributions are 

Prob(X, < _ x ) =  F , (x , )=  1 - e x p ( - X x , ) ( l -  Hi(x , ) ) ,  forj  = 1,2. 

Basic calculations show that the joint distribution is ) 

F(x,,  x: ) :  F, (x,)  + F: (x , )  - I + exp(k max(x, ,x,  ) ) ( I -  F, ( x , ) ) ( I -  F, (x , ) ) .  

This expression, although intuitively appealing, is not in the form of the copula construction (I .I) because 

the joint distribution function F is not a function of the marginals F,(x,) and F:(x,).  See Frees et al. 

(1996) and Bowers et al. (1997, Section 9.6) for further discussions in the actuarial literature of this bi- 

variate distribution. 

Example 1.2 Bivariate Pareto Model 

Consider a claims random variable X that, given a risk classification parameter T,  can be modeled 

as an exponential distribution That is, Prob(X <_ x]T) = l - e  -"  , As is well known in credibility theory 

(see, for example, Klugman, et al., 1997), if Y has a Gamma distribution, then the marginal distribution 

(over all risk classes) of  X is Pareto. That is, if T is Gamma(ct ,k) ,  then 

OL )" 

F(x) = Prob(X _< x) = .[ Pr ob(X < xlT) F ~ T  ~ 'e-~'d') ' 

;t 

: l - r e  -r" F--~)T ~ 'e-X'dT = I - ( |  + x / X ) - ' ,  (1.2) 

a Pareto distribution. 

' ~(x, . .~ , )  = ProD(X, _< x , . X ,  -< x , )  ~ ) - ProD(X, > x , ) -  P,  oD(X, > x , )  + r~ oh(x,  > x , . x ,  > . , ,)  

: 1 - ( 1 - F , ( x , ) ) - ( i -  F , ( x : ) ) +  exp(--X min(x , .x2 ) )exp(L(x  , + x , )Xl  - F,(x,))(I - F2(x,) ) . 

10 



Suppose, conditional on the risk class y ,  that X, and X 2 are independent and identically distrib- 

uted. Assuming that they come from the same risk class "), induces a dependency. The joint distribution is' 

F,<x, ) )  .... + ( , -  .... - 1] 

This yields the copula function 

C ( u t , u , ) =  u, + u  2 - I + [ ( I -  u , )  .... + ( l -  u , )  .... - I ] - ' .  (1.3) 

With this function, we can express the bivariate distribution function as H(x, ,  x~ ) = C(F, (x,), F: (x 2 )). 

Alternatively, we can consider the copula 

C . ( u , . u , )  = c ( 1 -  u , j -  u , )  : (u,  -'j° + u ,  -''° - ] ) - °  - 1  

and express the joint survival function as Pr ob(X, > x, ,X 2 > x2) = C.(S,(x,  ) , S , ( x , ) ) ,  where S = 1 - F. 

Because our motivating examples in Section 2 concern lifetime (positive) random variables, we will often 

find it intuitively appealing to work with survival in lieu of distribution functions. 

There are several methods for constructing multivariate distributions. See Hougaard (1987) and 

Hutchinson and Lai (1990) for detailed reviews. Example 1.1 illustrates the so-called "variables-in- 

common" technique where a common element serves to induce dependencies among several random vari- 

ables. This article focuses on the compounding method illustrated in Example 1.2 for two reasons. First, 

there is a long history of  using compound distributions for risk classification in the actuarial science litera- 

ture, particularly within the credibility framework. Second, Marshall and Olkin (1988) showed that com- 

pounding can be used to generate several important families of copulas. Additional discussion of  this point 

appears in Sections 2 and 3. 

Examples I. l and 1.2 each describe bivariate distributions through probabilistic interpretations of  

random quantities. We will also find it useful to explore (in Section 3) a class of functions called "Ar- 

chimedean copulas" that arise from the mathematical theory of associativity. An important special case of 

this class, due to Frank (1979), is 

F(*. .*.)  = ,  - . o h ( X ,  > x,) - Vrot(X. > ~,) + ~'.ob(X, > x , .× .  > .~) 

, - (, + ~ , ,  ~)-" - (, + ~ , ,  ~)-" + j" p,  ob(X, ~ '  " . . . . .  >×,Iv)P, ob (X ,>× , ly ) r (~ )v  ~ * 

--]-(|+Xl/~.)-'-(]+Xz/~.)-=+~-''e-r~=---~ le "dT 

,-(,-~ ~,; ~,)-"-(, +,,/~)-" +[,+(~, + ~ , ) ,  ~l ° 

11 



C ( u ' v ) = l l n (  1+ ( e ~ [ l ) ( e ~ V - l ) t e  ~ - 1  (1.4) 

Although Frank's copula does not appear to have a natural probabilistic interpretation, its other desirable 

properties make it well suited for empirical applications (Nelson, 1986 and Genest, 1987). 

The purpose of  this paper is to introduce the reader to copulas, their characteristics and properties, 

and their applicability to specific situations. Section 2 reviews empirical applications of copulas in ana- 

lyzing survival of  multiple lives and competing risks. Both are familiar topics to actuaries. Section 3 dis- 

cusses properties and characteristics o f  copulas. In particular, we show (i) how to specify a copula, (ii) 

how the association structure of  copulas can be summarized in terms of  familiar measures of  dependence, 

and (iii) how simulation of  multivariate outcomes can be easily accomplished when the distribution is ex- 

pressed as a copula. Section 4 provides an illustration of fitting a copula to insurance company losses and 

expenses. Section 5 reviews additional applications of  copulas. We conclude in Section 6. 

2. Empirical Applications 

As seen in the introduction, copulas are useful for examining the dependence structure of  multi- 

variate random vectors. In this section, we describe two biological science subject areas that are related to 

actuarial science and that have used copulas to understand empirical relationships among multivariate ob- 

servations. 

2.1 Survival of Multiple Lives 

In epidemiological and actuarial studies, it is often of  interest to study the joint mortality pattern of  

groups of  more than a single individual. This group could be, for example, a husband and wife, a family 

with children, or twins (identical or non-identical). There is strong empirical evidence that supports the 

dependence of  mortality of  pairs of  individuals. For example, statistical analyses of  mortality patterns of 

married couples are frequently made to test the "broken heart" syndrome. Using a data set consisting of  

4,486 55-year old widowers, Parkes et al. (1969) showed that there is a 40% increase in mortality among 

the widowers during the first few months after the death of  their wives, see also Ward (1976). Intuitively, 

pairs of individuals exhibit dependence in mortality because they share common risk factors. These factors 

may be purely genetic, as in the case of  twins, or environmental, as in the case of  a married couple. 

The first application of copulas in joint-life models arose indirectly through the work of Clayton 

(1978) in his study of  bivariate life tables of  fathers and sons. Clayton developed the bivariate distribution 

function given in equation (1.3) as the solution of a second-order partial differential equation. Clayton also 

12 



pointed out the random effects interpretation of the model that was subsequently developed by Oakes 

(1982). See also Cook and Johason ( 198 l). 

Random effects models are important in biological and epidemiological studies because they pro- 

vide a method of  modeling heterogeneity. A random effects model that is particularly suited for multivari- 

ate survival analysis is the frailty model, due to Vaupel, Manton and Stallard (1979) and Hougaard (1984). 

To describe frailty models, we first introduce some notation. In survival analysis, it is customary to con- 

sider the complement of  the distribution function, the survival function, and the negative derivative of  its 

logarithmic transform, the hazard function. Thus, for a continuous random survival time T, we define 

S(t) = Pr ob(T > t) = 1 - F(t) and h(t) = -0In  S(t) / ~ = f(t) / S(t).  

Actuaries know the hazard function h(t) as the force of  mortality (see, for example, Bowers et al., 1997, 

Chapter 3). 

To understand explanatory variables Z in survival analysis, one way is to use the Cox (1972) pro- 

portional hazards model which represents the hazard function as 

h(t, Z) = e~Zb(t), 

where b(t) is the so--called "baseline" hazard function and 13 is a vector o f  regression parameters. It is pro- 

portional in the sense that all the information contained in the explanatory variables is in the multiplicative 

factor ' /= e ~z . Integrating and exponentiating the negative hazard, Cox's proportional hazard model can 

also be expressed as 

s(tl,) exp(- I:b s, Z)ds) B(t , 

Here, B(t) = exp - b(s)d is the survival function corresponding to the baseline hazard. Frailty models 

arise when Z, and hence ' / ,  is unobserved. The factor 3, is called afrail~ because larger values of  ~/ im- 

ply a smaller survival function, S(t]T), indicating poorer survival. As demonstrated in Example 1.2, the 

marginal distribution for a single life T is obtained by taking expectations over the potential values of  T,  

that is, S(t) = E,S(tI'/). 

Oakes (1989, 1994) described how frailties can be used to model the dependencies among multiple 

lives. Other studies, such as Jagger and Sutton (1991), used a Cox regression model with known explana- 

tory variables Z to account for the dependencies among multiple lives. Multivariate frailty models are ob- 

tained when the investigator does not wish to attribute, or does not have knowledge of, specific characteris- 

13 



tics that may induce dependencies. For multivariate frailty models, we assume that "p" lives T, ,T 2 ..... Tp 

are independent given the frailty y . That is. 

Pr ob(T, > t  ...... T, > t,17) = Pr ob(T, > t,ly).-. Pr ob(T, > t,ly ) 

= S, ( t , l y ) . . . S p ( t , l y )  = B , ( t , )  . . . .  B p ( t ~ ) ' .  

The joint multivariate survival function is defined as 

prob(T, >t ...... v0 > t,)= E, {B,(t,)... ~,(t ,)}'  (2 ~ 

Example 2.1 Hougaard ' s  Copula Family 

To illustrate, an important frailty model was given by Hougaard (1986) who assumed that the dis- 

tribution of y could be modeled as a positive "stable distribution" with Laplace transform 

E~e-" = exp(-s  ~) and parameter ct. Recall that the Laplace transform of  a positive random variable "f 

is defined by ~(s) = Eye-" = 5  e - t d G T ( t ) '  where Gy is the distribution function of  y . This is also the 

moment generating function evaluated at -s; thus, knowledge of ~(s) determines the distribution. 

With a positive stable distribution for -~, using equation (2.1) we have 

probIT,~t ...... Tp>tp) :E.  oxp(.,u/B,(t,~. B ~ ( t ~ ) l ) - - e @ I - i n B , ( t , ~  . . . . .  'nBp(t .~l~)  

. ~ u s o  S,(t,)= o~p(- l - In", ( t '~ / ' ) '  wc ~an ~ t e  tho jol t  su~va,  ~ct~on as 

Pr ob(T, > t ... . . .  T, > tp )=  e x p ( - [ { - I n  S , ( t , )y  ~ + . . .  + {-  In S , ( t , ) } " ~ ] ~ ) ,  (2.2, 

a copula expression. In particular, for bivariate lifetimes with p=2, Hougaard proposed examining Weibull 

marginals so that B, (t) = exp(-  a , tb ' )and S i (t[)') = exp(-  a,ytb') . This yields the bivariate survivor func- 

tion 

~ '  - -  b I b a 

This is desirable in the sense that both the conditional and marginal distributions are Weibu[l. 

Equations (1.2) of Example 1.2 and (2.2) of Example 2.1 show that these frailty models can be 

written as copulas. Marshall and Olkin (1988) showed that these are special cases of  a more general result; 

14 



they demonstrated that all frailty models of the fonn in equation (2.1) can be easily written as copulas. 

Further, the copula form is a special type called m~ Archimedean copula that xvc will introduce in Section 3. 

In addition to the Clayton and Oakes studies, other works have investigated the use of copula mod- 

els in studying behavior of  multiple lives. Hougaard et al. (1992) analyzed the joint survival of  Danish 

twins born between 1881 and 1930. They usedthe frailty model arising from a positive stable distribution 

as well as Cox's proportional hazard model. Frees et al. (1995) investigated mortality of annuitants in joint 

and last-survivor annuity contracts using Frank's copula (equation 1.3). They found that accounting for 

dependency in mortality produced approximately a three to five percent reduction in annuity values when 

compared to standard models that assume independence. 

2.2 Competing Risks - Multiple Decrement Theory 

The subject of competing risks deals with the study of the lifetime distribution of a system subject 

to several competing causes; this subject is called multiple decrement theory in actuarial science (see, for 

example, Bowers et al., 1997, Chapters 10 and 11). The problem of competing risks arises in survival 

analysis, systems reliability and medical studies as well as actuarial science. For example, a person dies 

because of  one of  several possible causes: cancer, heart disease, accident, and so on. As yet another exam- 

ple, a mechanical device fails because one of its components fails. For mathematical convenience, the gen- 

eral framework begins with an unobserved multivariate lifetime vector (T~ ,T 2 ..... Tp); each element in the 

vector denotes the lifetime due to one of "p" competing causes. The quantities typically observed are 

T=min(T~,T 2 ..... Tp) and the cause of failure J. To illustrate, in life insurance, T usually denotes the 

lifetime of the insured individual and J denotes the cause of death such as cancer or accidental death. Sev- 

eral texts lay the foundation & t h e  theory of  competing risks. For example, see Bowers et al. (1997), Cox 

and Oakes (1984), David and Moeschberger (1978), and Elandt-Johnson and Johnson (1980). 

When formulating the competing risk model, it is often assumed that the component lifetimes T, are 

statistically independent. With independence, the model is easily tractable and avoids the problem of identi- 

fiability encountered in inference. However, many authors, practitioners, and academicians recognize that 

this assumption is not practical, realistic nor reasonable. See Carriere (1994), Makeham (1874) and Seal 

(1977). 

To account for dependence in competing risk models, one general approach is to apply copulas. In 

particular, the frailty model seems well suited for handling competing risks. Assuming that causes of death 

15 



are independent given a frailty ~ , we have 

Pr oh(T> tlV) = Pr oh(min(T~ . . . . .  Tp) > t)= Pr ob(T, > tlV) ..- Proh( L > tl~,) = B~(t) . . . .  Bp( t ) ' .  

Thus, similar to equation (2.1), the overall survival function is 

Pr ob(T > t) = E, {B, (t) .. - B p ( t )} ' .  (2.4) 

E x a m p l e  2 . 1  - Continued 

For a positive stable distribution for, t , the survival fimction is 

Prob   > t):  0xp(-[I--I. s, + +  s,(0/"° ] 
similar to equation (2.2). For bivariate lifetimes with Weibull marginals, we have 

Pr ob(T> t ) :  exp( - [ax t  b' + a , t b ' ] " )  . 

There have been several applications of frailty models for studying competing risk situations. 

Oakes (1989) discusses the number of  cycles of two chemotherapy regimes tolerated by 109 cancer pa- 

tients. Shih and Louis (1995) analyze HIV-infected patients using Clayton's family, positive stable frailties 

as well as Frank's copula. Zheng and Klein (1995) consider data from a clinical trial of patients with non- 

Hodgkm's lymphoma using gamma copula (as in Clayton's family). In a non-biological context, Hougaard 

(1987) describes how dependent competing risk models using positive stable copulas can be used to assess 

machine failure. 

3. Properties of Copulas 

This section discusses several properties and characteristics of copulas, specifically (i) how to gen- 

erate copulas, (ii) how copulas can sununarize association between random variables and (iii) how to 

simulate copula distributions. 

3.1 Specifying Copulas: Archimedean and Compounding Approaches 

As we saw in Section 1, copulas provide a general structure for modeling multivariate distribu- 

fioas. The t~,o main methods for specif~:ing a family of copulas are the Archimedean approach and the 

compounding approach, the latter being first illustrated in Example 1.2. 

The Archimedean representation allows us to reduce the study of a multivariate copula to a single 

univanate function. For simplicib,, we first consider bivariate copulas so that p=2 Assume that d~ is a 
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convex, decreasing function with domain (0,1] and range [0,~) such that d~(l) : 0. Use d?-' for the inverse 

function of ~b. Then the function 

C,(u ,v)  = ~b-'(dp(u) + dp(v)) for u,v ¢(0,11 

is said to be an Archimedean copula. We call dp a generator of the copula C , .  Genest and McKay 

(1986a, b) give proofs of  several basic properties of  C , ,  including the fact that it is a distribution function. 

As seen in Table 3.1, different choices of generator yield several important families of  copulas. 

Table 3.1. Archimedean Copulas and their Generators 
Dependence 

Famil~¢ Generator ~(t) Parameter (ct) Space 
Independence - In t Not applicable 

Clayton (1978), Cook- 
Johnson (1981), 
Oakes(1982) 

Gumbel (1960), Hou- 
gaard (1986) 

Frank (1979) 

Bivariate Copula C~(uTv ) 
uv 

t -~ - 1  c t> l  (u-* + v  -" -1 )  .... 

- ,  

A generator uniquely determines (up to a scalar multiple) an Archimedean copula. Thus, this representa- 

tion helps identify the copula form. This point will be further developed in Section 3.2. 

Examples 1.2 and 2.1 showed that compound distributions can be used to generate copulas of  in- 

terest. These examples are special cases of  a general method for constructing copulas due to Marshall and 

Olkin (1988). To describe this method, suppose that X i is a random variable whose conditional, given a 

positive latent variable 7 , ,  distribution function is specified by H, (x~7~) = H, (x) y' , where H~ (.) is some 

baseline distribution function, for i=l, ..., p. Marshall and Olkin considered multivariate distribution 

functions of  the form 

,x 2 ..... x~) = E K(H, (x , ) "  , . . . , H p ( x p ) " ) .  F(x, 

Here, K is a distribution function with uniform marginals and the expectation is over *t'~,Y 5,---,~/~. As a 

special case, take all latent variables equal to one another so that y~ = 7 a . . . . .  Yv = 7 and use the distri- 

bution function corresponding to independent marginals. Marshall and Olkin (1988) showed that 
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F . , . x  ...... x p ) = E ( . , ( x , )  . . . .  { I) O2) 

where F is the i ~ marginal distribution of F and x(-) is the Laplace transform of y ,  defined 

by x(s) = E~e-" . 

It is known that Laplace transforms have well-defined inverses. Thus, from equation (3.2), we see 

that the inverse function "r "1 serves as the generator for an Archimedean copula. In this sense, equation 

(3.2) provides a probabilistic interpretation of  generators. To illustrate, Table 3.2 provides the inverse 

Laplace transform for the generators listed in Table 3.1. Here, we see how well known distributions can be 

used to generate compound distributions. Because generators are defined uniquely only up to scalar multi- 

ple, any positive constant in the family of Laplace transforms determines the same class of  generators. (In- 

deed, this methodology suggests new copula families.) Thus, the inverse of  a Laplace transform represents 

an important type of generator for Archimedean copulas. 

Table 3.2. Archimedean Generators and their Inverses 

Family Generator ~(t) 
Independence - In t 

Clayton (t978), Cook- 
Johnson (1981), Oakes 
(1982) 

Inverse Generator 
(Laplace Transform) Laplace Transform 

x(s) = ~a(s) Distribution 
exp(-s)  Degenerate 

t ~ - 1 ( 1 + s) *~ Gamma 

Gumbel (1960), Hou- ( -  In t) ~ exp( -s~'~ ) Positive Stable 
gaard (1986) 

Frank (1979) e ~' - 1 c~-' In[l + e ' (e  ~ - 1)] Logarithmic Series Distribu- 
In e * _ 1 tion on the Positive Integers 

To summarize, assume that X~, X2,...,Xp are conditionally, given y ,  independent with distribu- 

tion functions H, (x) r . Then, the multivariate distribution is given by the copula form with the generator 

being the reverse of  the Laplace transform of  the latent variable y .  Because of  the form of the conditional 

distribution, we follow Joe (1997) and call t h i s a  mixture of  powers distribution. We remark that 

x(-  In H, (x)) = E, exp(-  ( -  In H, (x))y) = F, (x) so that H, (x) = exp(-  x-' (F, (x))), This provides a way 

of specif3fing the baseline function given the marginal distribution and the distribution of  the latent variable. 
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For the applications involving lifetimes in Section 2, we found it natural to discuss distributions in 

terms of survival functions. Marshall and Olkin (1988) pointed out that the construction as in equation 

(3.2) could also be used for survivor functions. That is, with the frailty model Pr ob(T~ > tly) = Bi(t) T and 

conditional independence of  T~ ,T~ .....  Tp, from equation (2.1) we have 

Prob(T, > t  ...... Tp > t p ) : E , { B , ( t , ) - . .  Bp(tp)}' =x(C '{S, (x , )}+. . -+  x-l{Sp(xp)}) (3.3) 

As before, -t(- In B, (t)) = S~ (t) = 1 - F, (t) and B, (t) = exp(- x-' (S, (t))). Assuming the mixing distribu- 

tion remains the same, the Laplace transform and hence the generator remains the same. However, it is 

interesting to note that the two constructions yield different multivariate distributions because 

Prob(T_< tie ) = l - B ( t ) '  ~ ( l -  r ( t ) ) ' .  We foHo,v Marshall and Olkin and first present the copula con- 

struction in equation (3.2) using distribution functions because it is useful for all random variables. How- 

ever, for positive lifetime random variables, the concept of frailty models is intuitively appealing; thus, us- 

ing survival functions in the construction is preferred for these applications. We finally remark, unlike the 

ganuna and positive stable families, that Frank's copula C,(u,v)  is symmetric about the point (1/2, 1/2) 

(for example, C, (u,v) = C , ( I / 2  - u, 1/2 - v)). Thus, it is invariant to the choice o f F  or S = 1- F inthe 

construction (Genest, 1987). 

3.2 Measures of Association 

Recall the copula representation of a distribution function in equation (1.1), F (x , ,x  2 ..... xp) = 

C(F,(x,),F2(x2) ..... Fp(xp)). With this expression, we see that F is a function of  its marginals and the 

copula. As pointed out by Genest and Rivest (1993), this suggests that a natural way of  specifying the 

distribution function is to examine the copula and marginals separately. Moreover, because the case of  

independence is a special form of  the copula C(u, ,u 2 ..... up) = u, • u 2 ..- up (regardless of  the marginals), 

this suggests that we examine the copula function to understand the association among random variables. 

Because we are concerned with correlation measures, we restrict our consideration to p = 2. 

Schweizer and Wolff (1981) established that the copula accounts for all the dependence between 

two random variables X, and X 2 in the following sense. Consider g, and g2, strictly increasing (but oth- 

erwise arbitrary) functions over the range of X, and X 2 . Then, Schweizer and Wolff showed that the 

transformed variables g , (X , )  and g2(X:)bave  the same copula as X, and X 2 . Thus, the manner in 
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which X, and X 2 "move together" is captured by the copula, regardless of the scale in which each vari- 

able is measured. 

Schweizer and Wolff also showed that ~vo standard nonparametric correlation measures could be 

expressed solely in terms of the copula function. These are Spearman's correlation coefficient, defined by 

p ( X , , X , )  = 1 2 E { ( F , ( x , ) - l / 2 ) ( F , ( x , ) - I  12)} = 12f~ {C(u ,v ) -uv}dudv  

and Kendall's correlation coefficient, defined by 

, ( X , , X z ) =  P r o b { ( X , -  X , ' , ( X  2 - X , ' ) >  0 } - P r o b { ( X  t - X t ' ) ( X , -  X , ' ) < 0 } = 4 ~ C ( u , v > d C ( u , v ) - I  

For these expressions, we assume that Xt and X 2 have a jointly continuous distribution function. Further, 

the definition of Kendall's tau uses an independent copy of (X~,X2),(X~' ,X2"),  in order to define the 

measure of"concordance." See Section 5 for more details. We also remark that the widely used Pearson 

correlation coefficient, Cov(X~, X2)/(VarX~VarX2) ~2 , depends not only on the copula but also on the 

marginal distributions. Thus, this measure is affected by (nonlinear) changes of scale. 

Table 3.3. Archimedean Copulas and their Measures of Dependence 
Family Bivariate Copula C¢(u,v) Kendall's tau Spearman's rho 
Independence u v 0 0 

Clayton (1978), 
Cook-Johnson [u ~ + v-" - 1] .... ct/(or + 2) 
(1981), Oakes (1982) / 

Complicated form 

Gumbel (1960), { '/~} 1 -c t - '  
Hougaard (1986) exp - [ ( - I n u )  ~ + ( - l n v )  ~ ] 

No closed form 

Frank (1979) l l n (  lq (e" - /Xe"  - l ) / e ' - I  ) 1 - 4 { D t ( - c t ) -  1 } c t  1 - 1-~2 {D 2 (-°t) - DI ( - ° t ) } o t  

Table 3.3 illustrates the calculation of these correlation measures. The correlations from Frank's 

copula rely on the so-called "Debye" functions, defined as 

k . t k 
Dk(x ) = ~'F~ I e-7~_ 1 d t '  

for k=l,2. To evaluate negative arguments of the Debye function Dk, basic calculus shows that 

D k ( -x)  = D~ (x) + kx / (k + l) .  An important point of this table is that there is a one to one relationship 

between each correlation measure and the association parameter ct. Further, Table 3.3 allows us to see a 
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drawback of  the Clayton/Cook-Johnson/Oakes and Gumbel-Hougaard copula families. Because of  the 

limited dependence parameter space as shown in Table 3.1, these families permit only nonnegative correla- 

tions, a consequence of  the latent variable model. However, Frank's family permits negative as well as 

positive dependence. 

Correlation measures summarize information in the copula concerning the dependence, or associa- 

tion, between random variables. Following a procedure due to Genest and Rivest (1993), we can also use 

the dependence measure to specify a copula form in empirical applications, as follows. 

Genest and Rivest's procedure for identifying a copula begins by assuming that we have available 

a random sample of  bivariate observations, ( X ,  .X2~ ) ..... (X~.,X2.) . Assume that the distribution func- 

tion F has associated Archimedean copula C, ; we wish to identify the form of  dp. We work with an inter- 

mediate (unobserved) random variable ZI = F ( X , ,  X a~ )that has distribution function K(z) = Pr ob(Z, _< z).  

Genest and Rivest showed that this distribution function is related to the generator of  an Archimedean cop- 

ula through the expression K(z) = z - d~(z) / d~'(z). To identify dp, we: 

1. Estimate KendaU's correlation coefficient using the usual (nonparametric or distribution-flee) estimate 

x, = )--' s ign[(X, i -  X, , ) (X2,-  Xaj)l 
i<j 

2. Construct a nonparametric estimate of  K, as follows: 

a. First, define the pseudo-observations 

Z , = { n u m b e r o f ( X , j , X 2 j ) s u c h t h a t X , i < X , i a n d X a ~ < X ~ , } / ( n - l )  for i=l  . . . . .  n. 

a. Second, construct the estimate of  K as K (z) = proportion ofZ,'s_< z. 

3. Now construct a parametric estimate of  K using the relationship K,(z)  = z - d~(z) / dp'(z). For exam- 

ple, refer to Table 3.1 for various choices of  dp and use the estimate x to calculate an estimate of  a ,  

say c t .  Use ctnto estimate dp(x), say dp.(x). Finally, use d~.(x) to estimate K , ( z ) ,  say K,.  (z).  

Repeat Step 3 for several choices of  ~b. Then, compare each parametric estimate to the non- 

parametric estimate constructed m Step 2. Select the choice of ~b so that the parametric estimate 

K,.  (z) most closely resembles the nonparametric estimate K. (z). Measuring "closeness" can be done by 

minimizing a distance such as J'[K,. (z) - K.(z)]2dK.(z)  or graphically. Graphical representations in- 
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elude (i) plots of K (z)and K,° (z) versus z. and (ii) the corresponding quantile plots. See Section 4 for 

an example. 

3.3 Simulation 

Actuaries routinely deal with complex nonlinear functions, such as present values, of  random vari- 

ables. Simulation is a widely used tool for summarizing the distribution of stochastic outcomes and for 

communicating the results of  complex models. The copula construction allows us to simulate outcomes 

from a multivariate distribution easily. 

There are two primary simulation strategies, corresponding to the Archimedean and compounding 

methods for constructing copulas. As we will see, each has relative advantages and disadvantages. 

We begin with the Archimedean construction. Thus, our goal is to construct an algorithm to gen- 

erate X,,X 2 ..... Xp having known distribution function F(x, ,x  . . . . . .  xo )=C(F , (x , ) ,F2(xz )  ..... Fv(xp)),  

where the copula function is 

C(u,.n ...... u,) +,(u,)) .  

For this construction, Genest and Revest (1986b) and Genest (1987) introduced the idea of  simu- 

lating the full distribution of (X i, X 2 ..... X v ) by recursively simulating the conditional distribution of  X k 

given X~ ..... Xk_t, for k=2 . . . . .  p, This idea was subsequently developed by Lee (1993) and is given as 

follows. For simplicity, we assume that the joint probability density function of X . X  z,,..,Xp exists, Using 

the copula construction, the joint probability density, function of X l , - . ,  X k is 

fk (x ...... x~ ) - d?-' (~(F, (x,))+...+~b(F~ (x k ))) 
Ox, ...0x k 

k 

_- qb-'(~) (~b(F, (x,))+...+¢(F~ (xk))) i- i  qb,,, (E  (x j)) F c, (x , ) .  

Here. the superscript notation "(j)" means the jth mixed partial derivative. Thus, the conditional density of 

X k given X._.,Xk_ ~ is 

f ~ ( x  . . . . . .  x ~ )  
f ,  (x~ Ix . . . . . .  x~_~ ) - 

fk-, (x ,  . . . . .  xk_ , ) 

= ¢(')(F~(x~ " '~ ( ' "  - ¢- ' ( ' -"(¢(F,(xt))+. . .+¢(F,(xk)))  
~) ~ ~ x , ,  ¢_,,,_,, (¢(F,  ( x ~ ) ) + . . . + ¢ ( v , _ ,  (×,_,)~)) 
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Further, the conditional distribution function of  X~ given Xt ..... Xk_ , is 

Fk(xkl× . . . . . .  x k  . . . . .  xk,)dx 

- , iN,  (dd(F, ( x , ) )+ . . . +~ (F  k ( x , ) ) )  _ d~ -'`'-') (c,_, + dd(F, (x  k )) 

- d#_,,k_,, (dd(F, i x ,  ) )+. . .+{(Fk_, (x~_,)) d~-'(k-')(%_,) 

where c k = ~(F I (x,))+...+qb(Fk (x t ) ) .  With this distribution function, we may now use the usual proce- 

dure of  solving for the inverse distribution function and evaluating this at a uniform random number (that 

is, use F- '(U) = X~). 

To summarize, the algorithm is (Lee, 1993): 

Algorithm 3. I Generat ing Multivariate Outcomes from an Archimedean Copula 

1. Generate U~, U2 ..... Up independent uniform (0,1) random numbers. 

2. Set X, = F,- '(U,) and c o = 0. 

3. For k=-2, ..., p, recursively calculate X k as the solution of 

~-"~-'~ +¢(L(x,))) 
U,  = V,(X,lx . . . . . .  x ,_ , )  - ~" ~c,_, (3.4) 

& - I t t - O  [e 
v ~, k-l) 

This algorithm was initially introduced in the context of Frank's copula for p=2. Here, pleasant 

calculations show that the algorithm reduces to: 

Algorithm 3.2 Generat ing Bivariate Outcomes from Frank ' s  Copula 

1. Generate U ,  U 2 independent uniform (0,1) random numbers. 

2. Set X I = F [ l ( U a ) .  

3. Calculate X 2 as the solution of  

(e-'e -~:''~- ] - e  -*ac×'~ 1)-' U~=e-~"~, + . 

That is, calculate X 2 = F~ -z (U. a) where 

O.. z - 

Genest (1987) gave this algorithm. 

U~e -~ - e -~ '  (1 - U.~ ) 

U~ + e - ~ '  (1 - U.~) 
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The algontlun can also be readily used to simulate distributions from Clayton's fanuly. From Ta- 

ble 3.2, we have d~-'(s)= ( l + s )  -'~ so that qb-'"~(s) = - a - ~ ( l + s )  -"''~-~ . This expression with p=2 and 

equation (3.4) show that 

.... - l+U,-"' - l ) -""'- '  

That is, calculate X~ = ~ ( U . 2 )  where 

U.. l = ( l+  UI-Im(U..I -Q'¢~+I) - 1))-". 

For the Gumbel-Hougaard copula, determining X: in equation (3.4) requires an iterative solution. 

Although straightforward, this is computationally expensive in that many applications require large num- 

bers of  simulated values. This drawback leads us to introducing an alternative algorithm suggested by Mar- 

shall and Olkin (1988) for compound constructions of copulas. 

To generate X,,X 2 ..... Xp having a mixture of powers distribution specified in equation (3.2), the 

algorithm is: 

Algorithm 3.3 Generating Multivariate Outcomes from a Compound Copula 

1. Generate a (latent) random variable "/ having Laplace transform x. 

2. Independently &Step  1, generate U~,U2 ..... Upindcpcndent uniform (0,1) random numbers. 

3. For k=l  . . . . .  p, calculate X k = Fk-~(U.k) where 

U ,  = ~ ( -~" ln t JK) .  (3.5) 

Recall that the marginal distribution function may be calculated from the baseline distribution function us- 

ing F k (x) = x( -  In H~ (x)). To illustrate for the Gumbel-Hougaard copula, from equation (3.5), we have 

The algorithm is straightforward for most copulas of interest that are generated by the compound- 

ing method. Like the conditional distribution approach, it can be easily implemented for more than two 

dimensions (p>2). It is computationally more straightforward than the conditional distribution approach. 

A disadvantage is that it requires the generation of an additional variable, ~.  For bivariate applications, 

this means generating 50% more uniform random variates; this can be expensive in applications. 

24 



4. Insurance Company Loss and Expense Application 

This section illustrates methods of  fitting copulas to insurance company indemmty claims. The 

data consists of  1,500 general liability claims randomly chosen from late settlement lags and were provided 

by Insurance Services Office, Inc. Each claim consists of an indemnity payment (the loss, X~ ) and an allo- 

cated loss adjustment expense (ALAE, X a ). Here, ALAE are types of  insurance company expenses that 

are specifically attributable to the settlement of  individual claims such as lawyer's fees and claims investi- 

gation expenses: see, for example, Hogg and Klugrnan (1984). Our objective is to describe the joint distri- 

bution of  losses and expenses. 

Estimation of the joint distribution of  losses and expenses is complicated by the presence of  cen- 

soring, a common feature of  loss data (Hogg and Khigman, 1984). Specifically, in addition to loss and ex- 

pense information, for each claim we have a record of  the policy limit, the maximal claim amount. With 

the presence of  the policy limit, the loss variable is censored because the amount of claim cannot exceed the 

stated policy limit. For some claims, the policy limit was unknown and, for these policies, we assumed 

there was no policy limit. 

Table 4.1 summarizes the data. Here, we see that only 34 of  1,500 policies had claims that 

equaled the policy limit and thus are considered censored. However, the censored losses cannot be ignored; 

for example, the mean loss of  censored claims is much higher than the corresponding mean for uncensored 

claims. Table 4. I also shows that our sample consists o f  only claims with positive losses and expenses. 

Separate models would be required for claims with positive losses but no expenses, or zero losses but posi- 

tive expenses. 

Table 4.1. Summa D, Statistics of Losses and Expenses 
Policy Loss Loss 

ALAE Loss Limit (Uncensored) (Censored) 
Number 1,500 1,500 1,352 1,466 34 
Mean 12,588 41,208 559,098 37,110 217,491 
Median 5,471 12,000 500,000 11,048 100,000 
Standard Deviation 28,146 102,748 418,649 92,513 258,205 
Minimum 15 10 5,000 10 5,000 
Maximum 501,863 2,173,595 7,500,000 2,173,595 1,000,000 
25th Percentile 2,333 4,000 300,000 3,750 50,000 
75th Percentile 12,577 35,000 1,000,000 32,000 300,000 

Figure 4.1 is a scatter plot of  Loss versus ALAE. The corresponding correlation coefficient is 

0.41. This statistic, together with the plot, suggests a strong relationship between losses and expenses. 
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Figure 4.1 Plot of ALAE versus Loss. Both variables are on a logarithmic gale.  Thirty-four 
Loss observations are censored. This plot demonstrates a strong relationship between ALAE 

and Loss. 

4.1 Fitting Marginal Distributions 

The initial step in our model fitting is to determine the appropriate marginals. Determining appro- 

priate parametric distributions for univariate data is well described in Hogg and Klugman (1984). For this 

data, this step was examined in detailed earlier by Khigman and Parsa (1995). Thus, for simplicity, we pre- 

sent here only the fit of  the univariate marginals using a Pareto distribution. With parameters ~, and 0 ,  the 

distribution function is 

The quality of  the fit of  the marginal distributions can be examined with a graphical comparison of  the fit- 

ted distribution function against their empirical versions, as displayed in Figures 4.2a and 4.2b. Because of  

censoring, we used the Kaplan-Meier empirical distribution function for the loss variable. 
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Figure 4.2a. Fitted Distribution Functions of 
~ .  The dotted curve is the empirical distribu- 
tion function. The smooth curve is a fit using the 
Pareto distribution. 
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Figure 4.2b. Fitted Distribution Functions of Loss. 
The dotted curve is a Kaplan-Meier empirical dis- 
tribution function. The smooth curve is a fit using 
the Pareto distribution. 
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4.2 Fitting a Copula to the Bivariate Data 

To fit the copula, we first identify the form of the copula in Subsection 4.2.1 and then estimate it 

using maximum likelihood in Subsection 4.2.2. 

4.2.1 Identifying a Copula 

We use the procedure developed by Genest and Rivest (1993) for identifying an appropriate cop- 

ula, outlined in Section 3.2. According to the procedure, we examine the degree of  closeness of the para- 

metric and nonparametric versions of  the distribution function K(z).  This procedure is based on estimates 

of  K(z), the distribution function of  pseudo-observations Z=F(XI, X2). The idea behind the procedure is to 

compare a nonparametric estimate of  K(z) to those based on a specific form of  the copula. To compare the 

two estimates of K(z), we examine quantiles from each estimated distribution. Scatter plots of the two sets 

of quantiles are widely known in statistics as quantile-quantile, or q-q, plots. For identification purposes, 

we ignore the mild censoring in the loss variable although we do accommodate it in the more formal maxi- 

mum likelihood fitting in Section 4.2.2. 

We now discuss identification for three widely used copulas, namely the GumbeI-Hougaard, Frank 

and Cook-Johnson copulas. The form of  the copula for each of  these families appears in Table 3.3. The 

comparison of the resulting q-q plots is displayed in Figure 4.3. Because of the close agreement between 

nonparametric and parametric quantiles, the procedure suggests the use of  the Gumbel-Hougaard copula. 

The quantiles based on Frank's copula are also close to the nonparametric quantiles although there is 

greater disparity at the higher quantiles, corresponding to high losses and expenses. We therefore identify 

both Frank's and Gumbel-Hougaard's as copulas that we will fit more formally in Subsection 4.2.2. 
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Figure 4.3 Quantile-Quantile (Q-Q) Plots, corresponding to the parametric and nonparametric distribution 
estimates of the pseudo-observations defined in Section 3.2. The dotted lines correspond to the quantiles of 
nonparametric and parametric estimates of the Archimedean generator ¢~. The smoothed lines correspond 

to the case where the quantiles are equal. 
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4.2.2 Fitting a Copula Using Maximum Likelihood 

Recall that our data consist of  losses (X~) and expenses (X2) and that we also have available an 

indicator for censoring ( 6 ), so that 8 = 1 indicates the claim is censored. Parameters were estimated using 

maximum likelihood procedures that were programmed using the SAS procedure IML. In the development 

of  the likelihood equation, we use the following partial derivatives: Fj(x~,xa)=~F(x~,x2)/~x~, 

F 2 (x~, x 2 ) =/~F(x,, x 2 )/c~x 2 , and f(x~, x 2 ) = c92F(x,, x 2 )/cax~x 2 . Similarly, the first partial derivatives 

for the copula will be denoted by C~ and C 2 ; the second mixed partial derivative by C~2. 

Using a one-parameter copula and Pareto marginals, we have a total of five parameters to estimate; 

two each for the marginals and one for the dependence parameter To develop the likelihood, we distinguish 

between the censored and uncensored cases. If the loss variable is not censored, then 8 = 0 and the contri- 

bution to the likelihood function is 

f (x , ,  x 2 ) = f, (x~)t"2 (x2)C,, (F, (x,), F~ (x 2 )).  (4.1) 

If the loss variable is censored, then 5 = l and the joint probability is given by Prob(X, >-x,,X~ -<x~) 

= F 2 (x 2 ) - F(xi, x 2 ). Thus. the contribution to the likelihood when the observation is censored is 

f2(x2) - Fa (x , ,x2) : :  f,  ( x , ) [ I -  C~(F, (x,),F2(x2))]. (4.2) 

Combining equations (4. I) and (4.2), for a single observation, the logarithm of the likelihood function is 

log L ( x , , x , , 8 )  = (I - 8)log f ( x , , x , )  +8{log f , ( x , )  + log[ l -  C)(F,(x,) ,F2(x,))]  } . (4.3) 

The parameter estimates are then determined by maximizing the likelihood for the entire data set: 

~ log L(x, , ,x , , ,8 , ) .  
i = t  

Results o f  the maximum likelihood estimation fitting the Gumbel-Hougaard copula, whose partial 

derivatives are derived in Appendix A, are summarized in Table 4.2. Here, we see that the parameter esti- 

mates of the marginal distributions are largely unchanged when we compare the univariate to the bivariate 

estimation. Standard errors are smaller in the bivariate fit, indicating greater precision of  the parameter 

estimates. The estimate of  the dependence parameter is significantly different from one; the estimate of  ot is 

approximately thirteen standard errors above one. This provides strong statistical evidence that losses and 

expenses are not independent. Using Table 3.3 for Gumbel-Hougaard copula, we can convert the depend- 

ence parameter into a more familiar measure of  association. Thus, the parameter value of  6. = 1.453 corre- 

sponds to an approximate Spearman's correlation measure of  31%. A 95% confidence interval for a is 

therefore given by ~. _+ 1.96 * se(~t) = 1.453 _+ 1.96(0.034) = (1.386,1.520). This corresponds to a 95% con- 
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fidence interval of (28%, 34%) for the Spearman's correlation. 

Table 4.2. Bivariate Data Parameter Estimates 
Using GumbeI-Hougaard's Copula with Pareto Marginals 

Bivariate Distribution Univariate Distribution 
Parameter Estimate Standard Estimate Standard  

Er ror  E r ro r  
Loss (Xt) ~.~ 14,036 1,298 14,453 1,397 

0~ 1.122 0.062 1.135 0.066 

ALAE (X~) L 2 14,219 1,426 15,133 1,633 

02 2.118 0.153 2.223 0.175 

Dependence cc 1.453 0.034 Not Applicable Not Applicable 

Results of the maximum likelihood estimation fitting the Frank copula are summarized in Table 

4.3. Here, the behavior of parameter estimates and standard errors is similar to the fit using the Gumbel- 

Hougaard copula For our parameterization of Frank's copula, the case of independence corresponds to c~ = 

0. In our case, the parameter estimate of ~. = -3.158 corresponds to an approximate Spearman's correla- 

tion measure of 32%, which is close to the estimate using the Gumbel-Hougaard copula. 

Table 4.3. Bivariate Data Parameter Estimates 
Using Frank's Copula with Pareto Marginals 

Bivariate Distribution Univariate Distribution 
Parameter Estimate Standard Estimate Standard  

Er ror  E r r o r  
Loss (X,) ~-, 14,558 1,390 14,453 1,397 

0~ 1.115 0.065 1.135 0.066 

ALAE (XT) ~'2 16,678 1,824 15,133 1,633 

02 2.309 0.187 2.223 0.175 

Dependence ct -3.158 0.174 Not Applicable Not Applicable 

It is difficult to compare the fit of the two copulas directly because they are non-nested models. 

However, we did compute Akaike's Information Criteria (AIC) for each model, given by AIC = (-2 In 

(maximized likelihood) + 2(5))/1500. The results are 15.02 and 15.06, for the Gumbel-Hougaard and 

Frank copula models, respectively. The smaller AIC value for the Gumbel-Hougaard model indicates that 

this model is preferred. 
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4.3 Uses of the Bivariate Fit 

This section describes two applications using the estimated bivariate distribution of losses and ex- 

penses. 

4.3.1 Calculating Reinsurance Premiums 

After having identified the joint distribution of (X~ ,Xa ), we can examine the distribution of any 

known function of X~ and X 2 say g(X b ,X2) .  To illustrate, consider a reinsurer's expected payment on a 

policy with limit L and insurer's retention R. Then, assuming a pro-rata sharing of expenses, we have 

i 0 if X~ < R 

g(X~,X2)=  X ~ - R + X x R X  ~ if R < - X t < L .  
- - i  

L - R + L L R X  2 if XI->L 

The expected payment E g(X~, X 2 ) could be calculated using numerical integration when the joint density 

of losses and expenses is available. However, simulation is a simpler, numerical evaluation tool. The pro- 

cedure for simulation is described in Section 3.3. 

The idea with simulation is to generate a sequence of bivariate data (x~,,x2~) from the bivariate 

distribution model. The procedure for the Gumbel-Hougaard copula is summarized in algorithm 3.3, using 

equation (3.6) for equation (3.5). In the procedure, the inverse of the marginal distribution functions is 

needed. In the Pareto case, it is not difficult to verify that F ' (x)  = ;~((1 - x) .... - 1) 

The simulation steps outlined in algorithm 3.3, using Gumbel-Hougaard copula, are repeated a 

large number of times. Let nsim be the number of simulations performed so that we generated the sequence 

of  sample (x~, ,x2, ) ,  i=l,...,nsim. Thus, the estimated value for the reinsurer's expected payment is given 

by 

with standard error 

1 mira 

~ ' ( L , R)  = nsim ~[ ]~  g(x .  ,x2.), 

/ns~mim ~ g ( x , , . x 2 . ) 2 -  g ' (L ,R)  2 

v '" 
We performed a simulation study of size nsim=100.000; the results are summarized in Table 4.4. 
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Table 4.4. Simulation-Based Reinsurance Premiums. 
Simulation Standard Errors are in Parenthesis. 

Ratio of Insurer 's  Retention to Policy Limit (R/L) 
Policy Limit (L) 0.00 0.25 0.50 0.75 0.95 

10,000 15,636 (640) 11,232 (480) 7,220 (320) 3,498 060) 684 (32) 
100,000 34,264 (6ss) 17,965 (493) 10,003 (328) 4,425 (164) 819 (33) 
500,000 49,367 (733) 17,457 (544) 9,234 059) 4,007 (179) 739 (36) 

1,000,000 55,683 (gls) 16,762 (s97) 8,740 (390) 3,716 093) 672 (38) 

The results in Table 4.4 provide the adjusted premiums the reinsurer would have assessed to cover 

costs of losses and expenses according to various policy limits and ratios of insurer's retention to policy 

limit. On a crude basis, these results appear to make sense. For example, from the summary statistics in 

Table 4.1, the average policy limit is 559,098 with an average of  losses plus expenses of  53,796. Without 

any reinsurance, our results indicate an adjusted premium of 49,367, with a standard error o f  733, for a 

policy limit of  500,000. Furthermore, the results are intuitively appealing because as expected we observe 

(i) higher premium for larger policy limits, and (ii) lower premium when the ratio R/L is higher, i.e. insurer 

retains larger amount of losses. 

Table 4.5. Simulation-Based Ratios of Dependence 
to Independence Reinsurance Premiums 

Ratio of Insurer's Retention to Policy Limit (R/L) 
Policy Limit (L) 0.00 0.25 0.50 0.75 0.95 

10,000 0.80 0.95 !.02 1.07 1.10 
100,000 0.89 1.24 1.36 1.44 1.50 
500,000 0.92 1.31 1.40 1.47 1.52 

1,000,000 0.93 1.31 1.39 1.47 1.53 

Because it is common in practice to assume independence, we provide Table 4.5 which gives ratios 

of  dependence to independence reinsurance premiums. The dependence assumption is based on the Gum- 

bel-Hougaard estimation results while the independence assumption is based on the estimation results when 

the joint distribution is assumed to be the product of the marginals. In previous sections, we argue that the 

estimation results using dependence is statistically significant. The table above shows that substantial mis- 

pricing could result if the unrealistic assumption of  independence between losses and expenses is made. A 

ratio below 1.0 from the table suggests an overvalued reinsurance premium; a ratio above 1.0 suggests un- 

dervalued premiums. According to the table, undervalued premiums result from higher retention by the 

retnsured. This undervaluation is more important for higher policy limits. The greatest overvalued premi- 

tuns are for large retention levels and policy limits. This is intuitively plausible; pricing in the tail of  the 
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distribution is very sensitive to model misspecification. 

4.3.2 Estimating Regression Functions 

As described in Section 1, the regression function is the most widely used tool for describing multi- 

variate relationships. To illustrate, in the context of  losses and claims we will examine situations where it 

is useful to estimate the expected amount of  expenses for a given level of  loss. Copulas can help us under- 

stand the full joint distribution and thus be used to address some important applications described in Sec- 

tions 2, 4.3.1, and 5. We can also use copulas to define regression functions, as follows. 

To be specific, let is assume an Archimedean form of  the copula as in Section 3.3 so that the con- 

ditional distribution of  X k given X~ . . . . .  X~_ 1 is 

F,(x lx ...... x ,_,):  
, -"~- ')  (c~_,) 

where c k = ~{F, (x,)}+...+~b{F~ (x k )}. Basic results from mathematical statistics show that the regression 

function can be expressed as 

E(X,  Ix ...... x,_,)  : ~o~l - F, (xlx ...... x,_.)) dx + ~ .  F~ (xlx ...... x,_l) a x .  

In certain situations, this expression is convenient to evaluate. For example, assuming k=2 and using uni- 

form marginals and Frank's copula, Genest (1987) gave the regression function 

E(X,IX, = x ) -  O -  e - ' ) x e - "  + e - ' ( e  -*~ -1)  
( e - "  - l)(e-* - e -~  ) 

In general, however, the calculation of  the regression function is tedious. As an alternative, copu- 

las are well-suited to the concept of  "quantile" regression. Here, in lieu of examining the mean of  a condi- 

tional distribution, one looks at the median or some other percentile (quantile) of  the distribution. Specifi- 

cally, define the pth quantile to be the solution xp of  the equation: 

p=V~(xp lx  . . . . . .  x~_,). 

For the case k=2, we have 

p =  V~ (x , lX  , := x , )  = C,(F,(x,) ,F2(xp) ) . (4.5) 

The first partial derivative for the case o f  the GumbeI-Hougaard copula is derived in Appendix A. For the 

case of  Frank copula, the first partial derivative is given by 

C~(u,v) - e ~ ( e  ~ - I) (4.6) 
e ~ - 1 +(e '~  - l)(e ~v - 1) " 

For a complete derivation of  partial derivatives of  the Frank's copula, see also Frees, et al. (1996). 
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Thus, for a specified proportion p and amount of loss x~, we can find the percentile of  the corre- 

sponding expenses by solving equation (4.5). For the case of the Gumbel-Hougaard copula, we use equa- 

tion (A.2) to get the pth percentile of the expense level which is given by 

x~ = I:f' (v~), 

where vp is the solution to the following equation: 

: P  

For various percentiles, Figure 4.4 graphically displays the result of regression curves that provide 

estimates of expenses conditional on the amount of loss using the Gumbel-Hougaard copula. We superim- 

posed these regression curves on the scatter plot of losses and expenses. This plot allows a manager to es- 

timate expenses for a pre-speeified loss amount. By providing several percentiles, the manager may choose 

the degree of conservatism that is appropriate for the business decision at hand. 

ALAE 

100000~ 

I0~O~0 

I OOtltl 

I000 

10 

95th percentile 

+ ,.,., / . / , /  
LOSS 

Figure 4.4 Scatter Plot of ALAE versus LOSS with quantUe regression curves superimposed. 

5. Additional Applications of Copulas 

We now discuss three different subject areas useful to the actuary where copulas have been ap- 

plied: stochastic ordering, fuzzy logic, and insurance pricing. Stochastic ordering refers to relationships 

among distribution functions of random variables. Fuzzy logic is an approach for dealing with uncertainty, 

analogous to probability theory. All actuaries are familiar with insurance pricing which involves premium 

calculation. 
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5.1 Stochastic Ordering 

In actuarial science and the economics of decision making, the comparison of the attractiveness of 

various risks is usually of  interest; therefore the subject of stochastic orderings is of  prime importance. To 

illustrate, we say the random variable X~ stochastically dominates the random variableX2with respect to 

a class of  functions, say U, if for any function u ~ U ,  we have 

Eu(X, ) >- Eu(X 2 ). 

Often, u is the utility ofwcalth function that defines risk preferences of decision makers. As special cases, 

we consider the well-known classes of  First (FSD) and Second (SSD) Stochastic Dominance. In FSD, the 

class U is taken to be the class of  increasing utility functions. In SSD, U is the smaller class of  increasing, 

concave utility functions, applicable to risk-averse decision makers. See Kaas, et. al. (1994), Heilman and 

Schroter (1991), and Gooavaerts, et. al. (1982). 

Copulas are used in the analysis for the demand of insurance coverage studied by Tibiletti (1995). 

The problem is to find the optimal insurance coverage for a decision maker where a proportion of  the 

wealth is uninsurable. Suppose that X I is the amount of  uninsurable asset and X 2 is the insurable loss 

with 0-< x 2 -< m,  i.e. m is the maximum value of  the insurable asset. In a two-period model, define the fi- 

nal wealth to be 

Z = X , + m - X  2 +6(X 2 -p) .  (5.1) 

Here, 6 is the coinsurance rate and p is the premium rate. In this insurance set-up, the questions typically 

explored are: (a) what coinsurance rate 6 maximizes E(Z), and (b) how this optimal coverage is affected 

whenever certain changes, called beneficial changes, increase expected utility. Tibiletti explored beneficial 

changes such as (a) a shi~ in the distribution of either X~ or X2, (b) a change in the dependence between 

X~ and X 2 , and (c) a change in both (a) and (b). Because dependence comes into play, copulas provide a 

natural tool in this situation. Most o f  the theorems described and proved use conditions that involve a cer- 

tain dependence ordering called more concordance. If (X,,X~) and (Yt,Y~) are pairs with associated 

copulas Cxand Cv, then the pair (Xt,Xz) is said to be more concordant than (Y~,Yz) if 

Cx(a,b)_>Cy(a,b ) for all (a,b) ~[0,1] 2 . 

The more concordant ordering is just one of  several types of dependence ordering used to order 

multivariate distributions. See Tchen (1980), Kimeldorf and Sampson (1987, 1989), and Metry and 

Sampson (1991) for alternative ordermgs. For example, another type is the so called more regression de- 

pendent ordering. Here, the random vector (Xj,X2) is said to be more regression dependent than 
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Pr(X 2 < x:lX , : x;) Pr(X 2 --<x21X , : x , )  1 
(Y,,Y2) if for an), x; > x,, we have pr(y  2 -< y21ym = x : )  >- I whenever we have pr(y  2 _< Y2 [Y, = x , )  >- " 

See Bilodeau (1989). Dependence ordering is particularly useful for determining the range of possible de- 

pendence in multivariate random variables. Other areas where stochastic orderings are useful include prob- 

ability theory, reliability, and operations research, see Mosler and Scarsini (1991). 

5.2 Fuzzy Sets 

Like probability theory, fuzzy set theory deals with uncertainty. To start, let U be a non-empty set 

whose subsets are of primary interest; in fuzzy set theory, it is called the universe of discourse. A fuzzy set 

is defined to be a pair (E, ti E ) where E c U and P-E: U -4 [0,1]. For any x in U, li E (x) denotes the degree 

to which x belongs to the fuzzy set, almost like a probability. 

Operations, such as unions and intersections, on fuzzy sets are common. To illustrate, if  we have 

two fuzzy sets (A,liA) and (B, liB), then their union is the fuzzy set (C, l ic) where 

lic (x) = max[la^ (x),liB (x)] and their intersection is the fuzzy set (D, liD) with 

lid (x) = min[li^ (x), lib (x)]. Other operations on fuzzy sets are performed using triangular norms. Tri- 

angular norms were considered originally in the context of probabilistic metric spaces and provide the link 

to copulas. 

Following Ostazewski (1993) and Klement (1982a, 1982b), a triangular norm, t-norm for short, T 

is a mapping T:[0,1] 2 ---~[0,1] with the following properties: (1) boundary condition: T(x,1) = x ;  (2) 

monotonicity: T (x ,y )<T(u ,v )  whenever x < u , y _ < v ;  (3) commutativity: T ( x , y ) = T ( y , x ) ;  and (4) 

associativity: T(T(x,y) ,z)= T(x,T(y,z)) .  In Schweizer and Sklar (1983), several results are given that 

relate triangular norms and copulas. Many copulas can serve as triangular norms as the following exam- 

pies illustrate. 

Example 5.1 Frechet Bounds T(x,y) = min(x,y)  and T(x,y)  = max(x + y - 1, 0). 

Example 5.2 Independence T(x,y) = xy.  

Example5.3 Frank T ( x , y ) = l n l l  + (rlx - 1 ) ( f l y - l ) ] / l n r l  where r l > 0 , r l ~ l .  
L 11-1 / 

Therefore, by considering familiar copulas, as well as newly constructed copulas, we can define 

new operations that can be performed on fuzzy sets. Fuzzy set theory has been applied in specific areas of 

interest to many actuaries such as risk economics, interest theory, and underveriting/classification of  risks. 
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See Ostaszewski (1993). LeMaire (1990), and Young (1993) for descriptions of these applications. 

5 . 3  Insurance Pricing 

The calculation of a premium to be assigned to an insurance risk X is a fundamental job of the ac- 

tuary. Recently, Wang (1996) developed a principle that exhibits several desirable properties of a premium 

principle. Wang (1997) uses the concept of a distortion function and extended this, using copulas, to a 

portfolio of dependent risks. 

Let X be an insurance risk with survival function S(x) = Pr(X > x).  A class of premium princi- 

be defined by r t (X)= S~g[S(z)] dz,  where g, called the distortion function, is increasing with pies can 

g(0)=0 and g( l )=l .  In the special case of the function g(t) = t ~t" with r I >_ 0, we have the class of propor- 

tional hazard (PIT) transforms. 

For the bivariate case, consider a random vector (Xt ,X2)  with distribution function 

F(x~,x2)=C(F, (x , ) ,F2(x2)  ) ,  then the function F ( x , , x 2 ) = g [ F ( x , , x 2 )  ] is another joint distribution 

function with marginals g(F~) and g(F2). The associated copula is therefore C2(uj,u2)= 

g rdg - ' ( u , ) , g - ' ( ua )~ ] .  Some illu'strations of distortion functions follow. 
t ~  JJ 

Example 5.4 Power Distortion Function Here, we have g ( t ) = t  ~/", where 11>-0. The independence 

structure is preserved under this distortion function. To see this, note that if C(u~,u2)=u~u2,  then 

u,u2 

1 - e -nt 
Example 5.5 Exponential Distortion Function Here, we have g ( t )=  1 -  e -n ' where r 1 > 0. Again, be- 

ginning with the independence copula C(u~ ,u 2 ) = u,u2, it is straightforward to show that we can generate 

Frank's family ofcopulas ( 2 ( u , , u 2 ) = l n I l +  ('q°' -l)(rlu:vl_l - l ) l / l n r l .  

Using the concept of copulas, Wang (1997) extends the PH-measure to a portfolio of risks. In 

many situations, for a portfolio of risks, the proposed measure is useful because individual risks are con- 

sidered dependent. Wang justified dependence of individual risks by stating that they are "influenced by the 

same underlying market environment." 
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6. Summary  and Conclusions 

In analyzing the impact of  fi,ture contingent events, actuaries are faced with problems involving 

nmltivariate outcomes. In this paper, we reviewed the problems of (1) estimating distributions o f  joint life- 

times of paired individuals, useful in the analysis of  survivorship insurance protection, and (2) investigating 

mortality experience, for the actuary who needs to distinguish among causes of  death. We introduced, and 

provided a solution for, the problem of dependence between an insurer's losses and expenses. Failures of  

ignoring dependencies may lead to mispricing Thus, it is important for actuaries to be able to adequately 

model multivariate outcomes. 

The tool used to stud), multivariate outcomes is the copula function; it couples univariate marginals 

to the full multivariate distribution The biological frailty models and the mathematical Archimedean mod- 

els can motivate copulas. A statistical mixture of  powers model serves as a bridge between these two sets 

of families. 

Because copulas are parametric families, standard techniques such as maximum likelihood can be 

used for estimation. Other statistical tools have been recently developed to help fit copulas. We described a 

graphical tool to identify the form of the copula. We discussed how copulas could be used to simulate 

multivariate outcomes, an important tool for actuaries. We also developed the connection between copulas 

and the regression function, a widely used tool for summarizing what we expect based on conditional dis- 

tributions. 

This article has focused on the connection between copulas and statistics, the theory o f  data. Yet, 

much of the development of  copulas has historically arisen from probability theory. To recognize this con- 

nection, we briefly reviewed topics in applied probability theory pertaining to copulas that are o f  the great- 

est interest to actuaries: stochastic ordering, fuzzy set theory and insurance pricing 

Our kalowlcdge of copulas has been rapidly developing recently. Many of  the articles cited in this 

review paper were written in the 1990's In another recent survey paper, Kotz (1997) cites three confer- 

ences in the last five years that were largely devoted to copulas. Copulas offer analysts an intuitively ap- 

pealing structure, first for investigating univariate distributions and second for specif)'ing a dependence 

structure Copulas offer a flexible structure that can be applied in many situations. We hope that this arti- 

cle encourages actuaries to seek new applications for this promising tool. 
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Appendix A 
GumbeI-Hougaard Copula and its Partial Derivatives 

in this appendix, we derive the formulas needed to evaluate the likelihood in equation (4.3) in the 

case where we apply the GumbeI-Hougaard copula as given in Table 3.1. First, we re-express the Gumbel- 

Hougaard copula as follows: 

[ - InC(u ,v ) ]  ~ = ( - l n u )  ° + ( - l n v )  ~. 

For simplicity, we denote C(u.v) by C Now, take the partial derivative with respect to u of both sides of 

the equation to get: 

Solving for 0C/0u, we have: 

Applfing symmetry., we get: 

( -  In C) ~ E OC ( -  In u)~-~ 

C c~u u 
(A.I) 

oc (lnu]°-' c (A.2) 
Ou \ l n C )  u 

OC _ ( l n v ] ~ - '  C 
~ - -  kin CJ T (A3) 

From equation (A 1 ), we can take the partial derivative with respect to v to get: 

( - l n C )  ~-' O2C OC 0(2 ( - l n C )  *-~ 1]=0. 
C 0u0v 0u 0v C 2 [(ot - I)(-ln C) -~ + 

Rearranging temas yields the second partial derivative of  the Gumbel-Hougaard copula: 

O2C _ t o~20C 1]. 

Equations (A.2), (A3), and (A.4) are used to evaluate the log-likelihood given m equation (4.3). 

(A.4) 
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Appendix B 
Table of One-Paramete r  Family of Copulas 

Family 

Ali. 
MikhaiI-Haq 

Cook- 
Johnson 

Farlie- 
Gumbel- 
Morgenstem 

Frank 

Gumbel- 
Hougaard 

Normal 03i- 
vanate) 

Plackett 

General Form of Copula 

uv[1 - ~ 0  - u×l - v)]-' 

o - ÷ , - _ , f "  

u~[i + ~0 - uXl - ~)] 

±~[1 + (¢- - lie" - I) l 
c~ L ( :  - 1) 

exp{-[(-Inu) ° +(-In v)=] TM} 

where H is the bivariate normal distri- 
bution function with correlation cc¢~- 
cient a and ¢*-' is the inverse of a 
univafiate normal distribution function. 

I i 
~-((x - i)- {x +(~ - IXu + v)- 

[(I-~ (~-I×u + v))' +4c~(, - . ) ] " ' }  

Parameeer 
Conitralnt Kendall's Tmu Spearman's Rho 

-1 < c~ < I - I - ln(I - a) Complicated form 
\ Q ) 3 \ (~2 

o~ 

a > 0 a +2 Complicated form 

2 1 
- 1 ~ 1  ~ ~ 

a ~ 0  l -  4[D~ ( - ~ ) -  I ] l -  ~- [D2(-¢) -  D,(-a)] 

No closed form 

2 6 
-I < a S l --arcsin(a) ~arcsin(a / 2) 

c~ ~ 0 No closed form 
( a+ l )  2aln rz 
( ~ - l )  ( a - l )  ~ 
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