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INTRODUCTION 

VOLUME II of these Transactions, Grace and Nesbitt examined the 
problem of determining the average age at death of the members of 
various segments of a stationary population and proposed a new 

method of solution for problems of this type. In the discussion which fol- 
lowed their paper, John Maynard demonstrated the validity of the 
authors' method by means of an impressive proof involving line integrals. 
Since the publication of that paper, Harry Gershenson has been teaching 
an extremely simple method for solving average-age-at-death problems, 
based on the results of Grace, Nesbitt, and Maynard. 

As might be expected, actuarial students have attempted to apply his 
simple, mechanical method of solving one type of problem to other sta- 
tionary population problems. Generally, total confusion has been the re- 
sult. Each year at least one question involving a stationary population 
is asked on the Society's examination on life contingencies. Problems of 
the type usually asked are not found in Jordan's textbook, and, although 
they can be solved using the general principles found in Jordan, they often 
cause students great diffmulty. Thus it would seem desirable to have 
available a simple, general method of solution which could be used on a 
large number of these problems. 

The results presented in this paper are the author's combination and 
generalization of known methods of attack, with application to a larger 
problem area than has been made previously. The presentation is pri- 
marily designed for students, and at times mathematical detail will be 
avoided so that the continuity of the explanation may be preserved 
Liberal use will be made of the results of the Grace-Nesbitt paper and 
Maynard's discussion. Those wishing a more complete development than 
is presented here are referred to those papers. 

SCOPE 

In the problems we will be encountering, we will wish to determine 
some fact(s) about those members of a stationary population who are cur- 
rently between two given ages. Those under observation will be considered 
as the l~.dr survivors (for all values of x between the two given ages) of 
the lo. dr births which occurred in the calendar period dr, x years ago. 
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234 STATIONARY POPULATION METHODS 

The determination of the desired fact(s) is done in two stages. First, a 
simple mathematical model (diagram) is constructed to illustrate the 
problem. This model is a generalized version of that  of Maynard,  where 
x = age, t = current calendar time, and r = calendar time at birth. The 
connecting relationship is r + x = t. An intermediate solution of the prob- 
lem is read immediately from the diagram. The final solution is then ob- 
tained from this result by an elementary substitution. Actually, once the 
illustrative model is drawn, the remainder of the problem may be done 
mentally. 

S K E T C H I N G  T H E  M A T H E M A T I C A L  M O D E L  

Consider a horizontal time (t) axis and a vertical age (x) axis: 

i 
' >t 

X 

The unit interval on each axis is one year. Imagine that  the entire sta- 
tionary population is standing on that  x-axis, in exact order according to 

a 

a+b 

FIo. 1 

age. As they move along in time, each of them proceeds along a line on the 
diagram which, because of the scale chosen, makes a 45 ° angle with the 
x-axis. Thus, if we wish to follow the segment of the population now be- 
tween ages a and a + b as they pass through time, our diagram appears 
as Figure 1. The area between the two diagonal lines represents the 
path, in time, of the Ta -- T~b segment as it ages. (A more mathematical 
description appears in Maynard 's  discussion.) 

The actual sketching of the mathematical model for any problem is 
relatively simple: 

(i) On the x-axis, mark off the age(s) at which the group being studied is 
initially observed. 

(ii) Mark off the age (and/or time) interval during which the study is made. 
(iii) Draw lines, at a 45 ° angle to the x-axis, from the age(s) marked off in (i). 
(iv) Draw horizontal lines from the ages marked off in (ii). (Vertical lines from 

any time points marked.) 
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(v) Shade in the area between the lines drawn in (iii) and (iv). This is the 
area of observation. 

This method will become clearer when we look at some examples. 

THEORY 

The solution of any problem which admits to solution by the methods 
of this paper may be expressed as 

f fa f (x)  .lx.drdx, ( 1 )  

where A is the area of observation described by the model, f(x) is a func- 
tion depending on the type of problem, and, as stated before, r + x = t. 

T A B L E  1 

Problem Type 

1. To ta l  deaths between two specified ages . . . . . . . . . . . . . . . .  
2. Tota l  ages a t  death for those dying between two specified 

ages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3. Tota l  pas t  lifetime since a specified age . . . . . . . . . . . . . . . .  
4. Tota l  future lifetime before or after  a specified age . . . . . .  
5. To ta l  future lifetime, before or after  a specified age, of thos 

members of the group under observation who will die before 
a specified age . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

6. Any of the above, with "specified date" substituted for 
"specified age" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Same as 

above 

Y(x) ~(x) 

1 T, 
1 T~ 

(r+x)~ t.l~+r, 

Same as 
above 

Proceeding along the same lines as Maynard, this double integral is 
transformed into a line integral 

f fa f (x ) . l , .drdx-  f g - - d  [ck(x) ].drdx ( 2 )  

=~c~(x)dr (3) 

= fc[ck(x)dt-ck(x)dxl, ( 4 )  

where C is the perimeter of the area of observation. The transformation 
from double integral to line integral is accomplished by means of Green's 
Theorem. 

Table 1 indicates some of the types of problems which are solvable by 
this technique, together with the appropriate forms of f(x) and ¢(x) in 
each case. 
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IN-AND-OUT M~ETHOD 

The perimeter of the area of observation defined by any diagram we 
will construct will consist of only three types of line segments--hori- 
zontals, verticals, and 45 ° diagonals. Maynard derives general solutions 
of equation (4), where the line integral is evaluated along a horizontal, 
vertical, or diagonal line. The "in-and-out" method, which will next be 
described, is simply a memory device which enables the student to arrive 
at Maynard's general solutions without recourse to calculus. 

Consider a general type of diagram (Fig. 2) which might arise as the 

d 

-- d 

\ \ 
FIG. 2 

model for a problem. Upper-case letters refer to specific ages, lower-case 
letters to the number of years between two points. 

Instead of evaluating a line integral (Maynard's technique) around the 
perimeter of the shaded area to obtain a solution, we will think of the 
observation area as a country. The borders of this country are of two 
types, land (horizontal and vertical lines) and water (diagonal lines). 
Migration in and out of the country is allowed only by land, never by 
water. Furthermore, migration into the country can take place only 
along the northern and western borders, and migration out of the country 
along eastern and southern borders, exclusively. 

Referring to Figure 2, let us look at the immigration situation first. 
Along the northern border everyone entering the country will be exact 
age B. At any point on this border, therefore, the number of immigrants 
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will be lB. The border is a units long. Thus, the total number of immigrants 
from the north will be a.ln. Along the western border, the number enter- 
ing is the number of persons between ages B and C at any moment of time, 
T n -  To. Applying the same reasoning to the emigration picture dis- 
closes (d -- c)lD emigrants along the southern border and Ts -- TD from 
the east. Therefore, the net migration at any time is 

a.ln + ( r n -  Te) -- ( d - c ) l D -  ( T s -  Tv) (5) 

or, simply, the number in minus the number out. In every problem, expres- 
sion (5) is the intermediate solution. Variations in problems will be due 
to variations in the numerical values of A, B, C, D, E, a, b, c, and d. In 
most problems met on exams, the observation area will have less than 
four "land" borders. Borders will disappear when a = 0, B ~ C, d -- c, 
or E = D (if E = D, d -- c = a -b b). The final solution will then be ob- 
tained from equation (5) by substitution of standard functions (depending 
on the problem type) for l. and T.. 

PROBLEM TYPES 

A. Total Ages at Death 
This is the type problem discussed by Grace and Nesbitt. Maynard 

goes deeply into the justification of the diagram, so I will merely illus- 
trate the "in-and-out" method. Suppose, for concreteness, that we are 
asked to determine the average age at death of those members of a sta- 
tionary population now between ages 20 and 70 who die between ages 
60 and 80. The traditional approach would yield 

f,of o-, , . , 0 , . 8 0 _ ,  
(Y' t- t l l ,+t• ,+tdtdy+J,  o J. (Y"btll.+,.u+tdtdy 

• I ~0  ~ ' 60 " - y  * 

fgoeO ~eo-y ,.7o ~ eo-: , (6 )  
J.o-. y + J.o Jo y 

which is the total ages at death for those in the group who die as required, 
divided by the total deaths between ages 60 and 80. Now let us bypass all 
those integrals and see how the "in-and-out" method enables us to obtain 
the total ages at death very easily. The initial observation ages are 20 and 
70. The group is being observed for deaths between ages 60 and 80. Fol- 
lowing the rules given for constructing the model, we obtain the diagram 
shown in Figure 3. 

The northern and western immigrants total 40.160 + (/'6o -- TTo), and 
there are 50-le0 southern emigrants. Thus the net migration is 

40.16o-]- ( / ' 6o -  T , o ) -  50.leo. (7) 

I t  is very convenient that equation (7) is not only the intermediate solu- 
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tion needed to determine the total ages at death but is also the total 
number of deaths in the observation area. This is evident from the fact 
that the population is stationary. Any segment of the population, as, for 
example, those in the area of observation, is also stationary. Therefore the 
number entering the area less the number leaving (which is certainly less) 
must equal the number dying in the area in order that ils population 
remain constant. 

In order to obtain the total ages at death from the intermediate solu- 
tion, we must substitute F~ for Ix and Gx for T~ in equation (7), where 

F~ = x. l .  + T~ (8) 
and 

G~ = x.Tx + 2Yx. (9) 

These substitutions form the core of the Grace-Nesbitt paper. The stu- 
dent should remember, however, that the entire "in-and-out" method is 

20 

60 
70 
80 

FIO. 3 

only a memory device. Draw a diagram, determine net migration, make 
a substitution, and in 15 seconds you have saved 15 minutes of tedious 
calculus. 

After making the indicated substitutions and dividing the resulting 
expression (i.e., the total ages at death) by the number of deaths, we ob- 
tain 

4 0 . F 6 o +  (G6o--GTo) - 50.F8o ( 1 0 )  
40.160 + ( 7'60 --/'7o ) -- 5 0.180 ' 

which is the same result which would have been reached if we had actual- 
ly carried out all the integration indicated in equation (6). 

B. Total Past Lifetime 

The statement of a typical problem which would be encountered under 
this heading would be: 

Determine the average past lifetime, or years of service, since age 20, of the 
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Ts0 -- T66 members of a stationary population who are now between ages 
30and65 .  

If, instead of age 20, we had been asked for the average lifetime since 
age 0, the problem would have been one of determining the average at- 
tained age of the group, another popular problem which comes under this 
general heading. 

The solution of the stated problem is obtained by dividing the total 
past lifetime since age 20 for the entire group by the total number in the 
group, T30 -- Tss. The "standard" method for determining the aggregate 
past life of the group is by evaluation of 

f3o85 ( y - (11)  20 )lyd y , 

which, when the integration is carried out, yields (30 Tso-}-Y3o)- 
(65 Te5-F Y65) -- 20 (T3o -- Te6). Now let us use the diagram technique. 

30  

85 

FIG. 4 

Here it is helpful to think of a continual census being taken of the entire 
population between ages 20 and 65. Thus everyone is "init~lly observed" 
at age 20. With these census data available we may proceed to study the 
past lifetime of those now between ages 30 and 65. Hence the diagram 
takes the form of Figure 4. 

Let us digress a moment to justify that this diagram actually illustrates 
the problem. The 180 people now at exact age 30 have lived 10 years since 
their twentieth birthday. This period is represented on the diagram by a 
horizontal line running from age 30 on the x-axis to the diagonal line. 
Similarly, for age 20 + t, the l~0+t persons at that age have lived exactly t 
years since age 20, and this is shown on the diagram by a horizontal line 
from 20 + t on the x-axis to the diagonal. The total years lived since age 
20 for those now between ages 30 and 65 could be obtained by a summa- 
tion of the lengths of all such horizontal lines in the shaded area, each 
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weighted by the appropriate number of lives. This summation would be 
equivalent to the integral shown in equation (11). 

If we apply the net migration method to the diagram in Figure 4, we 
obtain 10./30-J- (T30 -- T65) as the total immigration, and 45.165 as the 
total emigration. Thus, the net migration is 10-180-t-(Ts0- T65)-  
45-/65. In total-past-lifetime problems we will always pass from inter- 
mediate to final solution by substituting Tx for lx and Y, for T, in the 
intermediate result. Making this substitution, we obtain 10.T~0 
(Y30-  Y65) -- 45. T65, the same result as was obtained by the integra- 
tion of equation (11). 

2O 

60 

65 

80  

FIG. 5 

C. Total Future Lifetime 
To find, say, the total future lifetime between ages 60 and 80 for those 

members of a stationary population now between ages 20 and 65, we 
would normally take the following approach: 

f,0 s° f°~t /Y"°- ' I  ~':~-ldYnU Jeo "'~z':s~-~tdY (12)  

= 40 (Ts0--/'so) + ( Ye0- Y65) - -5  "Ts0 • 

If we want to apply the methods of this paper to the problem, we first 
need to construct a model. Since the group initially observed is between 
ages 20 and 65, these ages will be the first ones indicated on the diagram. 
The study is conducted when they are between ages 60 and 80, so these 
ages are next marked off. The resulting model is shown in Figure 5. 

This diagram may be explained in the following manner. Consider 
160+, persons entering the observation area at exact age 60 ~- s. We follow 
their progress up to age 80 along a diagonal line from point of entry to 



STATIONARY POPULATION METHODS 241 

point of departure from the shaded area. For any small time interval At, 
the contribution to the future lifetime of the 160+, immigrants is lt. At, 
where It is the number of survivors (in the small interval on the diagonal 
corresponding to z~t) of the le0+, who began the march through the ob- 
servation area. If, for all ages at entry, we add up these small time seg- 
ments, each weighted by the number alive at that time, the result is the 
total future lifetime (up to age 80) of all those entering the shaded area. 
This summation is equivalent to equation (12). 

Applying the "in-and-out" method to this problem, we obtain 40.160 -[- 
(Te0 -- T66) -- 45.180 as the net migration. In order to get the final solu- 

25 

65 ~----  40 ~ - ~  

FIG. 6 

tion, we make the same substitutions (T, for l~, and Y, for Tz) as in 
total-past-llfetime problems. Thus, our final result becomes 

40. T60 -t- (Y60 - Yes) - 45.. Ts0, (13) 

which agrees with the result obtained previously. 
The fact that  the same substitutions are used in both past- and future- 

lifetime-problems leads to the interesting fact that  when one model de- 
scribes both a past- and a future-lifetime-problem, the solutions to both 
problems are identical. To illustrate this fact, let us examine problem 7 
from the 1961 Part  4B examination. The student was asked to determine 
several facts about a certain company's stationary work force. The em- 
ployees all were hired at exact age 25 and retire at 65. Between those two 
ages the only terminations were due to death. In order to solve the prob- 
lem, it was necessary to determine the total period of employment for the 
existing work force. This is equivalent to finding the total past lifetime 
since age 25, for those now between ages 25 and 65, plus their future life- 
time prior to attaining age 65. In both cases Figure 6 is the illustrative 
diagram. Since the net migration is fixed by the diagram, and the same 
substitutions are made to obtain both past and future lifetime, the answer 
becomes 

2 (Y25-- Ye6-- 40.T66). (14) 
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D. Miscellaneous 

Occasionally a problem will occur which requires an indirect approach. 
A question which has appeared at least three times on past examinations is: 

Determine the total future lifetime of those members of a stationary popu- 
lation now between ages x and x + n who die before reaching age x + n. 

This problem is of a different nature than the ones we have been dis- 
cussing. A model may be set up to illustrate the problem (Fig. 7) and the 
correct solution arrived at by integrating a suitable function (see Table 1) 
over the area of observation. However, the author does not know of any 
way to apply the "in-and-out" method directly to this problem. Several 
methods have been suggested, but each of them involves an essentially 
different concept than has been presented in this paper. This problem 

X+N 

FIG. 7 

can be solved by use of the "in-and-out" method, but only indirectly. For 
those now between ages x and x + n, equation (15) must hold. 

before x + n = | before x + n before x + n 
of those ~ of entire -- of those . ( 15 ) 
who die \ group who live 

The two terms on the right-hand side of equation (15) are easy to evalu- 
ate. The first term, the total future lifetime before age x + n for all those 
now between ages x and x + n, may be quickly determined from Figure 7, 
using the "in-and-out" method, as 

Y x -  Y ~ , , -  n.T~_,,. (16) 

The second term of equation (15) is the total future lifetime before age 
x + n of those now between ages x and x + n who ultimately live to age 
x + n. Because the population is stationary, the present average age of 
this select group is x + ½n (a fact somewhat surprising at first glance, but 
easy to prove), and, therefore, their average future lifetime before age 
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X + n is ½n. From Figure 7 it may be seen that  Tx -- T~+, -- n. l~+. is the 
number of deaths bbfore x + n among those now between ages x and 
x + n. Thus, since there are T ~ -  T ~ ,  persons between ages x and 
x + n, if we subtract out those who will die before x + n, we are left with 
n . l ~ . ,  the number who will live to reach that  age. Since their average 
future lifetime before age x + n is ½n years, their tolal future lifetime 
before age x + n is 

(½n) (n . l x+, ) .  (1 7) 

Substituting equations (16) and (17) in equation (15), we obtain 

Yx - Y,+,, --  n .  T,+,, - ½n~. l~ , ,  , (18) 

which is the expression which would have resulted from the integration of 

. /~z+n r ' z + n - - Y  

J .  t .  Iv+,uu+,dtd  y , ( 1 9 )  
z 0 

which is the integral usually given as the solution. 

S U M M A R Y  

The problem-solving method presented in this paper may be sum- 
marized briefly: 

1. Draw a diagram to illustrate the problem. 
2. Determine net migration with reference to the diagram. 
3. In the expression for the net migration, make appropriate substitu- 

tions for l, and T.. The substitutions to be made will vary with the 
problem, as indicated in Table 2. 

TABLE 2 

PROBLEX TYPE 

I. Total  ages at d e a t h . . .  
2. Total past ]Lifetime . . . . .  
3. Total future lifetime . . . .  

SUBSTITUTION I~OZ 

Tx Yx 



DISCUSSION OF PRECEDING PAPER 

CECIL  ,I. I~SBITT: 

The theory of stationary populations is a fascinating but very special 
case of population mathematics which has often been a somewhat frus- 
trating maze for actuarial students, particularly in view of the variety of 
integration techniques that may be utilized. 

I am inclined to approach stationary populations on a fairly abstract 
postulational basis and to use a few simple single integrals rather than use 
a two-variable model. In this development, one must be familiar with the 
survivorship group interpretation of the mortality table, in particular, 
with Tx representing the total future lifetime of a closed group of lx per- 
sons aged x. Then one is led to consider a s tat ionary population as a 
continuous stream of infmitesimal survivorship groups or cohorts, in par- 
ticular T,, the total number of persons aged x or more at any time, is 
made up of infinitesimal survivorship groups, a typical one consisting of 
l ~ y  persons between ages y and y + dy. Problems concerning stationary 
populations normally concern a restricted group--in many cases a closed 
group from the present members. Such a closed group can be split up into 
its infinitesimal survivorship groups l ~ y ,  and the conditions of the prob- 
lem applied to these infinitesimal groups. 

To illustrate with the problem of Section D of the paper, one considers 
the l ~ y ,  x < y < x + n persons now between age y and y + dy. From 
these, there will be (l, -- l,+,,)dy deaths before age x + n, and the total 
future lifetime before age x + n of these persons who die is [Ty -- T~+~ -- 
(x + n -- y)l,.+,,]dy, where (Tt~ -- Tx+,,)dy is the total future lifetime up 
to age x + n for the whole ludy group and (x + n -- y)l,.+,,dy is the years 
lived by the l,+,,dy survivors to age x + n. One then simply integrates 

f ~ + " (  lu -- l ,+ , )  d y = T ~ -  T~-~ -- n l ~  
ffa 

to get the number of deaths and 

f ~ + " [ T ~ - -  Tx+,,-- ( x + n - -  y ) l ~ ] d y  

for the future lifetime to age x + n. 
By following such a procedure, one can develop solutions for a wide 

variety of problems and have relatively simple integrations to perform. 
Of course in some instances, as for average age problems (whether at 
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death or at present), it may be worthwhile to develop function pairs such 
as F= and G= to further simplify the work. However, I tblnk it is more 
important that the student should understand and be able to apply a 
basic, flexible procedure rather than be skilled in mechanical means for 
special problems. 

As an alternate for the basic procedure I have indicated, there is the 
two-variable diagram approach which appealed to Glover in his work on 
the United States Life Tables, to Maynard in the discussion of the paper 
by Grace and myself, and to the author. The diagrams have the advan- 
tage of concretely representing the details of a problem, while my ap- 
proach depends on a more abstract "mind's-eye view" of the problem. The 
diagrams, however, require more sophisticated integration techniques 
including double integration, Green's Theorem, and line integration, but, 

- , o  o Jo j. 
I / I I 

" = ' - ' - - -  4 ' 0  - 6 5 " - ' - - 4 0 - ' - - "  

X 

FIO. 6' 

as Maynard has indicated, the final integrations are usually simple ones 
along vertical and horizontal boundaries. (By the way, if variables t and 
x are used for the double integrals rather than r and x, the final integra- 
tions are along diagonal and horizontal boundaries but interpretation is 
not so clear.) 

Diagrams such as Veit's Figures 4 and 6 bring out the interesting prop- 
erty that they may represent either past or future lifetime of the group 
in question. I believe the reason for this is that, if the past lifetime were 
spotted according to the actual time it was lived, the resulting diagram 
would be a reflection in the x-axis of the given diagram. Thus for Figure 6 
one might use our Figure 6', the left diagram for past and the right dia- 
gram for future lifetime of those now between ages 25 and 65. At t = 10, 
there will be T~ - Ta survivors to live a moment dr; at t = --10, there 
were T~ -- Ta of the present group of T~ -- Ta  who lived a moment dt 

in the age range 25-65. 
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Now for the mathematical basis of the paper, I would be inclined to 
reason along the following lines. If the function to be double integrated 
over a diagram is Ix~,, the result is the number of deaths which occur 
within the diagram, and this can be calculated by (number of lives which 
enter the diagram) minus (number of lives which survive out of the dia- 
gram), since every entrant must exit by survival or by death. Lives enter 
on left-hand vertical segments with density l,, a < x < b, so that such a 
segment yields 

b 

f l , d x  = T,, - -  T b  

entrants; or they enter on top horizontal lines, say, at x = c, with fixed 
density lc, so that the number of entrants is l, X (length of segment). 
Lives survive out on right-hand vertical segments (with variable density 
l,), or bottom horizontal segments with fixed density/~, say. The number 
of deaths within the diagram is easily calculated and yields an expression 
of form 

i i 

where 

and 

~ °~ 1 lx - ~t~d y 

f oo Tx - lvd y.  

By the way, I think that the author should consistently speak of "number 
of deaths" rather than "net migration," as the notion of population of a 
diagram is not precise. 

If the function to be double integrated is hx, instead of l,v,, and if 

f° f° j~ = h~d y , kx = j u d y ,  
x 

then, after conversion of the double integration to line integration, one 
has that a vertical boundary segment yields in place of an expression in 
Tx, a corresponding one in terms of k., and a horizontal segment gives 
in place of an expression in l. the corresponding one inj. .  Thus integration 
of h. over the diagram produces 

i i 

One may then, as in the paper, use the solution for the number of deaths 
as an "intermediate" solution for the desired one. 

All very fine, but there is a hidden restriction, namely, that the func- 
tion to be double integrated must depend on attained age x only, and not 
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on x and r or t. Thus the method works well for average age at death 
problems which involve the integrand xl=u= or past or future lifetime 
problems of survivors of existing members which involve the integrand 
l=, but a problem such as in Section D has an integral which may be 
written as 

f a ( r + z ) l , ~ , d r d z ,  

where z is attained age at death. Here the integrand is not a function of 
attained age only. 

(x,o) ~,,.. . . . .  

• . ~ . - -  C Z  

FIG. 7 ~ 

(x+n,n) 

~=r+z 

Let us perform the integration to see what happens. Our Figure 7' is 
a revised Figure 7 of Veit, with (age, time) coordinates shown for the 
vertices, where 

Oz ( r + z ) l , + T , ] d r d z  

- f [ ( r+z) l=+T=]dr .  

Along the diagonal boundary (71, Ar -- 0 and the 

, - O .  

From (x + n, n) t o  (x + n, 0), &r - &t, and 

f z  ° z = (tl,~+T=+,,)dt- - -  ( t l , ~ + T , ~ ) d t  

= _(n_.~ l=+,,+nT,+,,). 
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(Note that, because of t in the integrand, the expression in parentheses 
is not simply nx [the integrand], as it is when the integrand is a function 
of attained age only.) Finally, from (x + n, 0) to (x, 0), t = 0 and 
Ar = --Az, so that 

f x ~ T  t /~x-l-n = - -  d z = J :  T . d  z = Y . - -  Y~+ , , .  

Collecting, one finds 

[ ( r + z ) l ,  + T ,  ] d r = Y ,  - -  Y ~ - ~  - -  n T ~  - -  - ~  l~+,,.  

Thus, with a little skill in line integration, the correct solution can be 
obtained by integration around the diagram--but the "in-and-out" 
method cannot be applied directly. Because of the restriction of the 
"in-and-out" method to cases where the integrand is a function of at- 
tained age only, I do not think it should be overemphasized for examina- 
tion or other purposes. As indicated before, I prefer emphasis on a basic 
approach such as my "stream of infinitesimal survivorship groups" idea, 
or alternatively such as the diagrams supplemented by the integration 
techniques. The latter approach has the advantage of being applicable 
to more general cases than stationary populations. 

HARWOOD ROSSER: 

Mr. Veit's elegant extension of the methods of Grace and Nesbitt, for 
solving stationary population problems, gives actuarial students a tem- 
porary advantage in the perennial contest of wits between them and the 
Examination Committee. I say "temporary," because, in my observation, 
no sooner does someone sharpen the knife used by the student than the 
Committee begins to serve tougher cuts of meat. This belief puts me in 
the minority group of those who concede that some of the examinations 
today may be more difficult than those we wrote. This is as it should be; 
with better texts, more searching questions can be asked. 

In the earlier paper, 1 Grace and Nesbitt raised a question as to the prac- 
ticality of such problems. In contrast, Mr. Veit's attitude is more like 
that of Sir Edmund Hilary toward Mount Everest. Whether on this 
ground or not, the English, who were the pioneers in this field, have re- 
linquished it to the Americans. Not since the first volume of Hooker and 
Longley-Cook replaced Spurgeon in the Syllabus of the Institute of Actu- 
aries, in 1954, has such a question appeared in their examinations. 

Mr. Veit will find many, I believe, to echo his statement as to the dil- 

l TSA,  II, 70. 
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ficulty students encounter with these problems. Dr. Fischer, in Table 22 
of his paper ~ presented this spring, indicated that, in the United States, 
life contingencies was considered by recent FeUows to be the most di~cult 
subject in the syUabus. Most actuaries, including me, would rank station- 
ary population problems as the most difficult group of this most difficult 
subject, or else right afte r multiple decrement tables. Stated another way, 
as tests of sheer reasoning ability, these problems have few equals in the 
actuarial syllabus, Hence we must admire the courage of Mr. Veit and 
his predecessors, in addition to applauding his success. 

He modestly calls his technique a mnemonic device. The same could 
be said, for instance, of the formula for the roots of a quadratic equation; 
but completing the square each time would be pretty laborious. While 
most of his beneficiaries will be inarticulate, they nevertheless owe him a 
great deal for a simple method of solution of some thorny problems that, 
practical or not, appear regularly on examinations. 

Passing to a minor criticism, inasmuch as Jordan is the official text, 
I would have preferred to see a slightly closer coordination between that 
and Mr. Veit's presentation. For instance, in the last paragraph of his 
section C, he seems to exhibit some surprise that the same answer repre- 
sents both a past lifetime and a future lifetime. Surely this is fore- 
shadowed by the definitions of Y=, on pages 245 and 248 of Jordan. 

For two reasons, I have applied Mr. Veit's principles to a slightly more 
complicated problem. One reason is to show the fuU power of his tech- 
nique, which he enunciates under "in-and-out" method, but fails to illus- 
trate numerically. The other reason will appear later. 

This more complicated problem consists of modifying his first example 
by adding the restriction: "within fifty years from now." The revised title 
would be: "A'. Total Ages at Death (within the Next Haif, Century)," 
His Figure 3 would be altered as follows: 
1. A vertical line would be drawn 50 units to the right of the x-axis, represent- 

ing the new time restriction. 
2. This would cross the diagonal from 20 halfway between the crossing points 

of the horizontal lines through ages 60 and 80. 
3. The triangle to the right of this vertical line would no longer be shaded. 
4. The shaded area is now a hexagon, instead of a pentagon. 

The denominator of (6) would become: 

~2080 [ -  50 , . 6 0  , ,-  80--P 

+ L L-, 
,,,. 70 / , .80--y  " 

+ J, O J 0 /~y'l"ll'u-I"dtd Y " 
T3A, XVI, 61. 
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The numerator will be the same as this revised denominator, except that 
(y + t) will be inserted, as a multiplier, into each integrand. 

By an inspection of the altered Figure 3, we may write, in place of (7) : 

40"/60 -}- ( r s 0  - -  rT0) - -  4 0 . / , 0  - -  (TT0 - -  T s 0 ) .  ( 7 ' )  

A corresponding revision will be made in formula (10). 
This version is more complicated than any of this type that have ap- 

peared on our examinations for at least the last twenty years. It  yields 
readily to Mr. Veit's technique. Students may not thank me for seeming 
to put ideas in the minds of the Examination Committee. On the other 
hand, if the Committee reads this, they will undoubtedly read his paper 
also and will be capable of making applications similar to the above. 

My other reason for introducing this more complicated problem is that 
it illustrates better my preference for an alternative interpretation of the 
diagrams. I would prefer to think that migration occurs only at horizontal 
borders. The western border would represent the existing at the outset of 
the study, and the eastern border, if any, the existing at the close. This 
would be much more in keeping with the concept of exposure formulas in 
the following examination. If there is any practical transfer value for this 
technique, once the Part 4 examiners have been satisfied, much of it 
would be in this area. 

Thus, in the revised Figure 3, the western border, extending from age 
60 to age 70, indicates those of the total group now between ages 20 and 
70 who are immediately exposed to the risk of dying between 60 and 80. 
Those under 60 will not be so exposed until some time has elapsed. Simi- 
larly, the eastern border, running from age 70 to age 80, represents those 
still exposed to this risk at the close of the study, fifty years later. All the 
rest have either died already, or have attained ages beyond 80. 

Perhaps this is an appropriate place to record for posterity the slightly 
inaccurate, but amusing, tale of the town with a stationary population. 
It seems that every time a child was born, some man either left town or 
was shot while trying to. 

JAMES C. HIC~MAN: 

Mr. Veit has performed a valuable service by introducing the Society's 
students to the bivariate representation of the stationary population 
model. After one has studied the bivariate representation, the usual reac- 
tion is one of amazement at the mental gymnastics required to solve prob- 
lems by the traditional univariate approach. 

The stationary population model is a rather artificial structure. First 
of all, it represents an age distribution of individuals by a continuous rune- 
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tion. Second, the probability that the conditions necessary for the main- 
tenance of a stationary population will be realized, even approximately, 
in a real world group is almost negligible. Yet, in spite of its artificiality, 
the application of this model can often lead to valuable insights in many 
actuarial problems. For example, in Trowbridge's papers on funding 
methods for pensions and group life insurance, the developments are made 
using the improbable assumption that the populations under study are 
stationary, a However, these developments are very successful in revealing 
clearly the fundamental characteristics of the various funding methods. 

I t  is of interest to expand the author's representation of a stationary 
population to a model with possibly an unstationary population. For this 
development we will need to make several definitions. We let y(t) be the 
number of "lives" at time in the population. The survival function, s(x), 
will be defined as in Jordan's textbook. 4 The initial age density function 
will be denoted by f(x). That is, 

y(O) fab f (x )dx  

will be the number of "lives" in the initial population y(O) between ages 
a and b. Note that f(x) >_ 0 and 

f o ~ / (  x )dx= 1. 

The renewal function r(t, y[t]) plays an important role in this develop- 
ment. The approximate number of new "entrants" (births) into the 
population at age 0 between time t and At is given by r(t, y[t])At. In these 
definitions the words "lives" and "entrants" have been inclosed in quota- 
tion marks to emphasize that as a matter of mathematical convenience 
we are studying a population of individuals using a continuous model. 

Using this notation, we have that 

~/( )s( + t ) / s ( x l d x  y(t) = y ( O )  x x 

£' + r(w, y[wl) s ( t - w ) d w .  

In this expression, the first integral yields the number of survivors from 
among the initial population. The second integral yields the number who 
have subsequently entered and have survived until time t. If the survival 
function is positive only for a finite time interval, as is certainly the case 

a C. L. Trowbridge, "Fundamentals of Pension Funding," TSA, Vol. IV, and "Fund- 
ing of Group Life Insurance," ib/d., Vol. VII. 

4 C. W. Jordan, Lif, Contingencies (Chicago: Society of Actuaries, 1952), chap. i. 
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with a human life survival function, the first integral ultimately equals 
zero and the population is composed of later entrants. 

The number of lives at time t, between ages a and b, would be given 
by 

b - - t  

y(O)~_t f ( x ) s ( x . - b t ) / s ( x ) d x ,  (if t < a < b )  

by 

~o b- t ~o t - a  y(O) [ ( x ) s ( x - b t ) / s ( x ) d x +  r(w, y [ w ] ) s ( t - w ) d w ,  

(if a < t <  b) 

and by 

/ t - a r ( w ,  y[w] ) s ( t - -w)dw,  (if a < b < t) .  
t--b 

We now consider the special situation where 

fo ~s (x )dx  = ~0< ¢o o 

This integral certainly exists for human populations where the survival 
function is positive only for a finite interval. Also suppose 

f(x) = s(x)/e'o and r(t, y[t]) = y(O)/~o. 

For these special functions we have 

If° f0' ] y ( t ) - - ( y [ O ] / b 0 )  t s(w)dw+ s(t--w)dw = y ( O ) .  

That  is, the population is stationary; it remains a constant y(O). Further- 
more, we observe that the first integral yields the number of lives above 
age t and the second integral the number below t. The number of lives 
at any time between age a and b may, in this situation, be determined by 
evaluating 

b 

( y [ O l / ~ 0 ) f ~  s ( z ) d x .  

We also note that, when 

r(t, y[ t ] )  = k/~o, k > 0,  
a population with an arbitrary initial age density function will become 
stationary with k members for any population for which the survival 
function is positive only for a finite interval. The approach to a stationary 
condition will only be asymptotic if 

y(O) f ( x ) s ( x - b t ) / s ( x ) d x > O  
for all finite t. 
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Upon occasion interest might turn to a nonconstant renewal function. 
For example, if we seek to maintain a constant population, we would 
determine r(t, y[t]) from the integral equation 

r(t ,y[tl)= - y ( O )  f ( x ) s ' ( x + t ) / s ( x ) d x  
t 

- - ~  r(w, y[wl)s ' ( t -w)dw 

= y ( O ) ~  f(x)tpx. .+tdx+ r(w, y[wl)t-,opo~-wdw. 

That is, we set r(t, y[t]) equal to the decrement rate from the population. 
This integral equation is called the renewal equation and has been exten- 
sively studied in the literature? 

PAULETTE TINO: 

By extending the F and O method to the solution of the main types of 
population problems, Mr. Veit gives the students a powerful and sys- 
tematic approach. The method is general. Even Problem D--for which 
the author does not give any substitutions---can be tackled using the 
same line of reasoning. The substitutions I shall suggest stem from geo- 
metrical considerations. 

This discussion, while referring to specific problems treated by Mr. 
Veit, gives the substance of a "would-be" actuarial note which was 
awaiting November for final review. In Part I, I introduce the geometrical 
model and, on an intuitive basis, derive the main conclusions. It is clear 
that a complete development would require the parallel presentation of 
the analytical approach and perhaps also the dimensional analysis of the 
main functions. As an illustration of the method, a direct solution of 
Problems B and C in Mr. Veit's paper is developed. In Part II, there is 
a geometrical interpretation of the F and G substitutions and the geo- 
metrical approach to the T, for l, and Y, for T, substitutions given by 
Mr. Veit. A substitution is suggested for the solution of Problem D. Part 
III presents (without demonstration) other applications such as the geo- 
metrical determination of the flow of lives through slanted lines and the 
dete~ination of the aggregate future (or past) lifetime represented by 
figures not restricted to the 45* angle. This leads to an interpretation of 
fractional 1", and Y,. 

s W. Feller, "On the Integral Equation of Renewal Theory," Annals of Mathematical 
Statistics, XII (1941), 243-67; A. J. Lotka, "Theory of Self-renewing Aggregates," An- 
nals of Mat~mat@al Statis~/cs, X (1939), 1-25. 
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I. THE GEOM:ETRICAL MODEL 

Past and Future Lifetime 
A. Figure 1 represents at any instant of time the stationary population 

given by the lx column of a mortality table. As is well known, the number 
of lives To is represented by the area under the curve marked off by 
PAoo. Similarly, Tx0 = area (XoAo~). 

B. Let this population develop in time (see Fig. 2). In order to be able 
to come back later to the familiar Maynard's diagram, each l, of the 
original population will be observed aging along a 45 ° slanting path. The 
"lives" age 0 (represented by [OP]) will evolve generating the area (OPQ). 
Similarly, the "lives" age X0 (represented by [XoA]) will evolve generat- 

lx 
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ing the area (XoAB). Note the perspective effect introduced by the choice 
of a slanting path. If the "lives" (XoA) would have been followed on a 
path perpendicular to the X-axis, the area scanned would have been equal 
to area (XoAo~) = T~°, but, in Figure 2, area (XoAB) = area (XoAo~)xv~. 
However, area (MNL), which represents at time t = to (to = X0) the 
survivors of the original population, is in this representation equal to 
T=o. (HI) are the survivors of (AXo). 

Main Results 
1. The equation of the surface (PoJQ) generated, for example, by curve 

(AB) as X0 varies between 0 and o~ is l(,, t) = l,. 

1 

P 

C A 

R 0 

E ~  x° 

X. 
Fro. 3 

J , f  

2. The volume (OPooQ) generated by the area (MNL) = Tx.~, when L 
varies between ~o and Q, represents the future lifetime of the population 
(OPoo) = To and is equal to Y0. Similarly, the volume (XoAo~B) repre- 
sents the future lifetime of the population (XoAo~) and is equal to Yx,. 

C. Let us trace back the population (OPo~) = To to the age 0 of each 
life composing that  population (see Fig. 3). Tracing back the "lives" 
(XoA) age X0 at time t = 0 along the 45 ° slanting path, we generate the 
rectangle (XoACD). It  can be seen also that  the "lives" constituting the 
area (OPR) were of age 0 at different instants of time. They all survived 
to constitute the population (OPoo) at time t = 0. Area (OPR) = To. 
Similarly, area (XoAE) = T,o = area (XoAco). 

Main Results 
1. The equation of the surface (PRo) generated, for example, by the 

horizontal line (CA) is l(,, t) = l,-t. 
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2. The volume (OPRco) represents the past lifetime of the population 
(OPco). That it is equal to Y0 can be seen by generating it by area 
(XoAE) - T~°, when X0 varies between O and co, and comparing this gen- 
eration with the generation of volume (OPcoQ) above: area (XoAE) and 
segment (Oco) of Figure 3 are, respectively, equal to area (M1VL) and 
segment (coQ) of Figure 2. The equality of the aggregate future and past 
lifetime of the population To is thus geometrically evidenced. The same 
line of reasoning yields the equality of future lifetime and past lifetime, 
since age X0 of a population Tx°: volume (XoAEco) of Figure 3 equals 
volume (XoAcoB) of Figure 2. 

D. By placing Figures 2 and 3 next to each other, Figure 4 is obtained. 
Let us now, for economy of drawing, retain only their projections on the 
x-t plane (Fig. 5), and we have Maynard's diagram. Since the third 
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dimension has been eliminated, it is essential to consider each point of the 
diagram as having a weight. In the case of past and future lifetime prob- 
lems, the weight of a given point is equal to the l-coordinate of the corre- 
sponding point of Figure 4. Other problems will call for other weights, as 
the solution of Problem D will illustrate. 

Now, in Figure 5, the identification of the familiar functions Ix, xTx, 
and Y, can be developed systematically. In the following the notation 
M( ) will be used, which denotes the weight of the segment or the area 
designated by the letters inside the parentheses3 Let us only recall some 
results already obtained and hint at the approach to other results: 

M(Xo~,) = M(gD) = T~. ; 

M(XoM) = Xol~. ; 

M(Xo~,B) = M(XE~,)= Y~.. 

The above illustrates the identification of segments and triangles. 
Parallelograms such as (XoMQB) are also very important figures. This 
particular area can be generated by segment (XoM) when X0 varies be- 
tween Xo and B. This generation parallels the integral 

Xol,dx f ~  . 
z o 

I t  follows that M(XoMQB) = XoT,,. 
I t  is thus possible to solve many problems at sight after having drawn 

the proper diagram. Problems B and C of Mr. Veit's paper can illustrate 
the point. 

Problem B (see Fig. 6a) 

(i) M(60 abc )=  40 (Teo -- r ,0 ) .  

(ii) M(60 ad 65) = M(~o60 f) -- M(~o65 e) -- M(adef) 

= Y 6 o - - Y ~ - - 5 T s 0 .  

(iii) = (i) + (ii) M(60 65 dbc) = 40/'60 -- 45 Ts0 + Y6o -- Yes. 

Problem C (see Fig. 6b) 

The diagram is here drawn in the t < 0 part of the plan. Identical 
results would have been arrived at, using Figure 4 of Mr. Veit's paper. 

(i) M(abc 3 0 ) =  ( T a o -  T65) X 10. 

6 The notation was suggested by Dr. C. J. Nesbitt, who also made much appreciated 
editorial comments on the text. 



258 STATIONARY POPULATION METHODS 

(ii) M(30  c 65) = M(d 30w) -- M(cde 65) --  M(65 eoo) 

= Y30 -- 35 Tes -- Y65. 

(iii) = (i) + (ii) M(ab 65 30) = 10T3o + Yao -- Y65 -- 45 T65. 

II. GEOMETRICAL INTERPRETATION OF TIlE F AND G SUBSTITUTIONS 

Other Substitutions 
1. The substitution F= for lx . - -Figure  7 represents the s ta t ionary  popu- 

lat ion To a t  any  given ins tant .  I t  is possible also to introduce the t ime 

element and to in terpre t  area (XoAC) as the fu ture  lifetime of the new 

en t ran t s  (AXo) = l,o to a popula t ion Tx0, and  area (XoBAb) as their pas t  

lifetime. Since the dea ths  have  forced the curve AC to slope down, they  

can be represented on the curve as infinitesimal quant i t ies  dlx, as shown 

on the figure. The aggregate  age of the dea ths  of the lx0 en t ran ts  is the 
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limit of the sum of elementary rectangles such as (rstu) or area (BACb). 
We have: 

M(BACb) - M(BAXob) + M(XoAC) = Xolx° + T,o := F~.. 

It  is important to keep in mind that (i) deaths and new entrants are 
equal in number in any interval of time and that (ii) the aggregate age 
of the deaths equals the sum of the past and future lifetimes of the new 
entrants. 

When we consider Figure 8 (Maynard's diagram), line (b'c') is the pro- 
jection of the elements of Figure 7. Note again the perspective effect due 
to the choice of a slanting path: (b'c') (Fig. 8) = (bc)x/2 (Fig. 7). In Fig- 
ure 8 the point X0 will be deemed to represent both the new entrants to 

e F o 

C' 

X 

Fio. 8 

~ f  

and the deaths of the population Tx0 which aged along (Xoc') (a projection 
of the infmitesimal quantities dlx of Fig. 7 on [bc] would be devoid of inter- 
pretation). The results obtained in the first paragraph above using Figure 
7 can be read also on Figure 8 along b'c' with due, recognition of the per- 
spective effect. The reading would be direct if the lives were observed 
aging perpendicularly to the X-axis. 

2. The substitution G= for T=.--Let X0 vary from X0 to o~, while (b'c') 
generates the area (b'c'ooe). It  follows that, since point X0 represents both 
the deaths of and the new entrants to the populationwhich aged along Xoc', 
(X0¢o) -- T,° represents both the deaths of and the new entrants to the 
population which aged in (Xoo~d). The aggregate age of these deaths 
(which is equal to the past and future lifetime of the new entrants) is 
represented by the parallelogram (eb'c'oo) and is equal to 2 Y,o + XoTx° - 
a~¢° • 
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3. The substitutions Tx for lx and ¥~ for T=.--Because a population is 
expressed in linear terms of l~ and Tx, the substitutions introduced by Mr.  
Veit to solve Problems B and C are easily interpreted on Figures 7 and 8, 
where it was seen that  the future lifetime of a population lx is T~ and tha t  
the future lifetime of a population T~ is Y~. 

4. The substitutions for Problem D . - -The  substitutions necessary to the 
solution of Problem D can be found as follows: The aggregate lifetime of 
the deaths T~ -- T~+n -- n. l~+n from time t = 0 is half their lifetime after 
age x. (This is true because it holds for the original population T~ -- Tx+, 
as shown in above is I, C, 2, and for the survivors n.l~+,~ because of the 
equali ty of triangles [a, x, x + n½ and [x, x + n, b½ of Fig. 9a, where the 
weight of all points is lx+,.) The substitutions for determining the total  
lifetime after age x are seen as follows: 

On Figure 9a: 
2Y~ for Tx [M(xce/) for M(xe)] , 

2Y,+, + n. r~+~ for T~+,, [M(adef) for M(x + n, e)] . 

On Figure 9b: 
T,+, + n.l,+, for l~ ,  [M(xBCd) for M(x + n, C)] , 

or, in condensed form, 
2Y, + (z -- x) T, for T , ,  

T. + (z -- x)l, for l , .  

The final answer is arrived at  by dividing by 2 the expression obtained 
! 2 after substitution, i.e., Y, -- Y,+~ -- n. T~_ , - -  2n l~+,. 

The direct approach is simpler: the area (x, x + n, b) which represents 
the future lifetime before age x + n of the population can be evaluated 
at  sight as representing Yx -- Y,+~ -- n. T,+,.  The future lifetime of those 
who survive is obtained by giving to each point of the triangle (x, x + n, b) 
the weight lx+,. This yields ]n  2. l,+,. The answer is the difference between 
the above two expressions or Y , -  Y ~ , , -  n.T, ,+,,-  ½n2.l~,. (See 
Fig. 9a.) 

I I I .  OTHER PROBLEMS 

The geometrical approach can be used to solve other problems. A first 
example is the determination of (1) the flow of lives through lines other 
than the horizontal and vertical and (2) the aggregate future lifetime of 
a given population from t = 0 to the time these lives reach the slanted 
line or die, whichever event occurs earlier. 

Line (OM) of Figure 10 is that  on which certain lives of the population 
(O00) = T0 will triple their age (tang 0 = ~). I t  can be proved tha t  the 
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flow of lives through (OM) is ~T0. The aggregate future lifetime repre- 
sented by the triangle (OMoJ) is ] Y0. 

As another example, Mr. Trowbridge's identities for the various fund- 
ing classes 7 can be interpreted through that method. The recognition of 
the paths along which only one of the functions l= and r' varies, leads to 
the redistribution of the weights and integration at sight. 

It  is my intention to expand the remarks above in an actuarial note. 
Concerning the geometrical representation, I would like to note that 

Mr. Max Bloch, a colleague, called my attention, after the material had 
been first organized, to the German text book Warscheinlichkeitsrechnung 
by Emanual Czuber published in 1910 in Leipzig, Germany. In this book 
a theory of the most general type of population is presented. While the 
approach is analytical, it is supported by geometrical representations in 
two and three dimensions. However, Mr. Czuber was not concerned with 
the study of a stationary population; he did not develop the appropriate 
multiple integrals through the generation method. It  would seem that the 
present analysis is sufficiently unrelated. 

Thanks are given here to Mr. Barnet N. Berin, FSA, who encouraged 
me to give shape to notes of past years and helped me through his very 
valuable comments. 

JOItN c. MAYNARD: 

It is not surprising that problems in stationary populations should be 

of continuing interest because of their ability to test reasoning power, 

understanding of actuarial symbolism, and mathematical technique. Mr. 
Veit has succeeded in his primary aim of writing an interesting paper 

about these problems. I am not so sure that he has succeeded in his sec- 

ondary aim of demonstrating that even a considerable number of them 

can be solved by reliance on a simple memory device. Indeed, I must con- 
fess to the hope that he has not succeeded in this, for it would cause an 

intriguing quality to disappear, and, what is worse, some illustrious actu- 

arial reputations would come tumbling down. Spurgeon would have 
missed it, and many examination committees since his time. 

Type B treats past lifetimes, but it is noted that the diagram used is 
drawn in future territory. This is justified, since it produces the proper 
result, but it does seem artificial. The explanation of the miscellaneous 

example of Type D seems hard to follow. It would seem that a good stu- 
dent in these situations would feel on firmer ground by setting down his 
expressions and solving them in the usual way. 

T C. L. Trowbridge, "Fundamentals of Pension Funding," TSA, IV, 17. 



DISCUSSION 263 

I t  has always seemed to me that the most useful technique for prob- 
lems of the present type is the mathematical diagram itself. By providing 
a working model for the movement of populations in time and age, it 
can bring a real understanding of the problem and help a great deal in the 
initial writing of the proper expressions. This is more than half the battle 
and seems to be quite enough of a contribution from the diagram without 
asking it to do the integrations that may be involved. The student who 
has drawn Figure 3 can use it to help him to write expression (6). The 
same can be said for Figure 5 and expression (12), Figure 7 and expression 
(19). In short, it would seem that a student who can use the diagram to 
write correct expressions, and has mastered double and single integration 
using actuarial symbols, should have a sure-fire approach to this kind of 
problem. 

I have also found that the same kind of two-dimensional diagram can 
be useful in more general problems involving nonstationary populations. 
For example, it can be used as a visual aid to the understanding of ex- 
posed-to-risk formulas. Or it can be used to illustrate changing relation- 
ships between segments of a population in a social security plan. 

(A~rHOR'S P.ZVZEW or mSCUSSION) 

K E N N E T H  P. V E I T :  

I would like to thank the various individuals who added their remarks 
to my paper. Taken together, the paper and discussions give the student 
a more complete treatment of this subject than has been heretofore avail- 
able in one source. 

I was glad to see that Dr. Nesbitt presented the more theoretical side 
of the picture. I agree with him that understanding is more important 
than skill in applying a mechanical procedure to a problem. But a problem 
solved by a tool is better than an unsolved problem. However, as Mr. 
Rosser noted, as soon as you make the solutions easier, the problems will 
become harder. 

Dr. Hickman briefly outlined some of the formulas involved where the 
population is a nonstationary one. This is an area which has much practi- 
cal application and one in which a simple diagrammatic approach to prob- 
lems would be very valuable. 

Mrs. Tino examined still another side of this interesting subject and 
arrived at what she terms "a geometrical approach." Her methods also 
depend on sketching a model of the problem and have much merit. Un- 
doubtedly, many students will find her approach more to their liking. 
Although the rationale of my Figure 4 is, I feel, sufficient to justify its 
use, I agree with Dr. Nesbitt and Mr. Maynard that it is better to plot 
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the past lifetime "according to the actual time it was lived." I must also 
admit that I personally feel more comfortable with Mrs. Tino's Figure 6b 
and her method of solution of "past-lifetime" type problems than my 
o w n .  

I must disagree with Mr. Maynard when he doubts that a simple 
memory device can be used to solve most problems one will encounter. 
When I was studying this subject in connection with the (then) Part 4B 
examination, I checked every population problem in every life contingen- 
cies examination since the plague, and, with the exception of nonstation- 
ary population type problems, the methods set out in my paper will solve 
them all. The paper was originally a study aid which I made up for my- 
self by sorting all prior examination problems by type and then devising 
for each a diagram which would "work." The mathematical proof was 
the very last step, and, like Mr. Rosser, I applied the methods to some 
very complicated problems to be sure it "worked." Ironically, by the time 
I checked out these complicated problems to be sure that the "method" 
answers were correct, I had become so familiar with the classical method 
of solution that I no longer needed the easier method[ (It did serve as a 
quick and useful check, however.) 

We have, then, for the student who feels that Jordan does not prepare 
him adequately on this topic: (i) Nesbitt's classical approach; (ii) May- 
nard's elegant method involving line integrals; (iii) the Tino geometrical 
solutions; or (iv) the "in-and-out" method. They are all different and yet 
all similar. The student may take his choice. 


