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ABSTRACT 

This paper presents a new insight into the mathematical structure of 
asset share-type calculations. Asset shares are interpreted as accumula- 
tions of insurance cash flows, which, along with their related investment 
income, are treated as Stieltjes integrals. The result is a logical, system- 
atic, and general method of approaching the insurance and investment 
cash-flow elements. 

The techniques are developed within the context of individual life 
insurance asset shares, but may be applied to a much broader range of 
situations. 

I. INTRODUCTION 

T 
HE concept of an asset share is familiar to actuaries. Traditionally, 
an asset share is defined as "the estimated amount attributable 
to an individual [unit of coverage] if the accumulated net funds 

of a class of a large number of identical po l ic ies . . ,  is divided at some 
time t among all the [remaining units of coverage on a pro rata basis]. ''1 
The particular policy characteristics and ex'perience assumptions used 
reflect those factors that the actuary feels are relevant to the purpose of 
the calculation. 

The basic asset share calculation is comparatively simple in both 
theory and practice, requiring only a set of experience assumptions, a 
rudimentary knowledge of algebra, a calculator, and a fourteen-column 
worksheet. Asset shares have been used since the nineteenth century for 
a wide variety of purposes, including calculating and testing premium 
rates, setting nonforfeiture values, establishing dividend scales, testing 
solvency, and making projections of countless types. 

Early actuaries, with limited resources for complex calculations, made 
either subjective or approximate adjustments when introducing an 
unusual factor into an asset share. The increased availability and utiliza- 
tion of high-speed computers have led to a vast number of mathematical 
refinements to the asset share calcuiation, as recent students of the 
Society of Actuaries Fellowship examinations can confirm readily. How- 

t Charles H. Page, "Asset Shares and Model Omces," Society of Actuaries, Study 
Note 89-22-70, p. 1. 
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278 ASSET SHARE MATHEMATICS 

ever, there has been little reexamination of the basic mathematical " 
nature of the asset share. The asset share itself remains an exercise in 
algebra (albeit an increasingly complicated one), and it deserves to be 
examined from a more sophisticated viewpoint. 

II. ANALYSIS OF A SI~(PLE ASSET SHARE FOR.X{ULA 

Consider the following elementary asset share formula for an annual 
premium policy with a face amount of $1,000: 

1 
A ,  = ~ t [ A , _ ,  + G P ( 1  - -  EP,) - -  E~I(1 + i) 

(1) 
- , ,_,Cl,00o (1 + t, 

where 

t =  
At = 

G P =  
CV,  = 

E ~ =  
E l =  

i =  

qw~_ 1 

Policy year; 
Asset share per $1,000 unit of coverage in force at the end of 
policy year t; 
Gross premium ; 
Cash value available at the end of policy year t; 
Percent-of-premium expense rate in policy year t; 
Dollars-per-unit expense in policy year t; 
Interest rate; 
Probability of entrant to policy year t terminating because of 
death during policy year t; 
Probability of entrant to policy year t terminating because of 
withdrawal during policy year t; 
1 -- q~_, -- qT-* 

Probability of entrant to policy year t entering policy year 
t + 1 in force. 

Also, let 

/0 = Number of units of the policy initially issued at time t -- O; 
1, = l,-1 - -  d~-i  - -  d~ - t  

-- Number of units surviving to policy duration t; 
d~_.l = l,-lq~-i 

= Number of units terminating during policy year t because of 
death; 

= Number of units terminating during policy ),ear t because of 
withdrawal. 
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Concept of Asset Fund 
Formula (1) gives the asset share per unit in force. For reasons that 

will be discussed soon, it is preferable to deal in terms of Ft, the asset fund 
per/0 initially issued units, accumulated at interest to duration t. Thus, 

F ,  = l t A t  (2) 

= ( F , - I  + t , _ , [ a P ( 1  - FA) - E*,]} (1 + i) 
(3) 

+ +) -  
After the asset fund has been computed at duration t, conversion to 
the traditional asset share per unit in force may be effected, of course, by 
dividing the asset fund by the units surviving at the same duration (10. 

Conceptually, the asset fund represents a shift from the policyholder's 
point of view to the insurer's point of view. The asset share prorates 
funds among the policies so that each gets its share; the asset fund does 
not, thereby measuring the accumulated funds held by the insurer. The 
proration can produce misleading results. For example, consider two 
plans with premiums set so that the asset shares exceed the respective 
maturi ty values by $10. If both mature at the same policy duration and 
projected mortality and lapse experience is identical except in the first 
year, when one has a 10 percent lapse rate while the other has a 40 per- 
cent lapse rate, then the first policy is expected to add 50 percent more 
to company surplus than the second, although their asset shares are 
identical at maturity. The difference between these policies would be 
conspicuous using asset funds. 

I t  is not suggested that the asset fund is superior to the asset share. 
' Rather, the asset fund and asset share are complementary, alternative 

ways of viewing the development of funds held by an insurer. Each has 
advantages. One advantage of the asset fund is that it does not require 
a normalization process at the end of each policy year. As a result, the 
asset fund may be viewed as an accumulation of cash flows. The impact 
of a cash flow on the asset fund is independent of subsequent persistency; 
it affects the asset fund by its dollar amount plus accumulated interest. 
This is the advantage that will be explored in this paper. 

Treatment of Interest 
One aspect of asset share methodology that has been accorded little 

attention is the treatment of interest. In the formula under consideration, 
the asset fund at the end of the previous year plus the premium after 
expenses earn a full year 's interest. The benefit cash flows are charged 
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interest depending upon when they are paid during the year. Only the 
death benefit is assumed to be paid at a nonintegral policy duration. For 
the death benefit interest element, -{i(l,000d~_1) is a typical formulation 
and generally has been considered a reasonable and convenient approxi- 
mation. A more precise expression for this interest component, based on 
the assumption that deaths are distributed uniformly over the year, is 

- f [ ( 1  + 0 ~-o - 1 1 1 , 0 0 0 ~ _ l d s  = - - 1 1 , 0 0 0 d r _ , .  
o 

Alternatively, a midyear death assumption results in 

[(1 + i )  "~ 1 - -  - -  ] l , 0 0 0 d t _ l .  

The simpler -½i(1,000da_l) approximates both  well and also happens to 
be conservative. 

When cash-flow elements other than death benefits need to be intro- 
duced at  nonintegral policy durations, the actuary generally has to use 
improvised methods for treating interest. An al ternative tha t  simplifies 
the handling of interest is based on the following assumption:  

I N T E R E S T  ASSUMPTION: Cash flows within a policy year earn simple interest 
from their respective dates of incidence to the end of the policy year. The 
accumulated amount at the end of a policy year earns interest thereafter at 
the regular compounded annual rate. 

Tha t  is, a cash flow c at  moment  s within policy year  t accumulates to 
[1 + (1 -- s)i]c at  the end of policy year t. The corresponding accumula- 
tion under the s tandard compound interest formulation is (1 + i) l- 'c .  
Reconsidering the assumption of a uniform distribution of deaths, the 
interest component  simplifies to 

1 

--  f ( 1  -- s)i(1,0OO~_,)ds = -- ½i(1,000~_0 . 
0 

In  fact, the midvear death assumption also simplifies to become exactly 
the "approximation."  

Returning now to the asset fund formula (3), the terms can be rear- 
ranged to provide additional insight: 

F ,  = Ft_l (4a) 

+ iFt_l  (4b) 

+ t,_,[aPO - g~,) - E*,] - 1 , o o o ~ _ 1  - d,~_lCV, (4c )  

+ i{ l ,_ ,[GP(1 -- E~) -- EsL] -- ½(1,000~_,)} . (4d) 
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The end-of-year asset fund consists of the previous year-end's asset 
fund (4a), plus interest on that fund (4b), plus the year's net insurance 
cash flows (4c), plus interest on the year's net insurance cash flows, with 
due regard for their incidence (4d). The interest element associated with 
the current year's net insurance cash flows (4d) may be interpreted as 
an application of the Interest Assumption to each of the insurance 
cash-flow categories (premium, expenses, death benefits, and withdrawal 
benefits). 

I l l .  A STIELTJ'ES INTEGRAL INTERPRETATION 

The asset fund formula given in expressions (4a)-(4d) demonstrates 
that if the insurance cash flows (4c) in each year are known, along with 
their contribution to investment income (4d), then the asset fund is 
known. Each policy year's insurance cash flows and related interest can 
be calculated in a much more general way. The first step is to partition 
the insurance cash flows into a finite number of distinct categories. In the 
case of the simple asset share consider five such categories, as follows: 

1. Premium income = GPlt_l; 
2. Percent-of-premium expense = --E~GPI,_~; 
3. Dollars-per-unit expense = -Ell,_1; 
4. Death benefits -- -- 1,000da~_1; 
5. Withdrawal benefits = --CVLd~-v 

This partition is a matter of taste and convenience; items 1-3 could 
have been combined into a single category to give an "effective premium." 
The requisite characteristic is that the cash flows of a given category be 
generated by the same events. 

In each category, the cash flow is a product of an amount and a rate 
of payment. For example, premium income is the product of GP and 
1,-1; death benefits are the product of --1,000 and d~-l. If  it is assumed 
that deaths are distributed uniformly over the policy year, the product 
--1,000d~_~ is actually the sum of momentary cash flows over the policy 
year, that is, 

I 

f - 1,000d( _,s) = - 
0 

Considering premium income over the policy year, note that annual 
premiums are paid only at the beginning of the policy year. Defining a 
step function 

g(s) = O, s < 0 

= l t - 1 ,  $ > 0 ,  
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premium income also may  be expressed in an integral form, 

x 

f GPdg(s) -- GPI,_I . 
0 

The other cash-flow categories may  be expressed similarly. 
For any given category of cash flow, we are looking at a Stieltjes 

integral. Given functions f(s) and g(s) defined on the unit interval,  the 
Stieltjes integral of " f  over g" on the unit interval is denoted by 

1 

f r ( s )  dg(s) , 
0 

and is defined as the following limit (if it exists): 
n 

lira ~ f ( s i ) [ g ( t i )  -- g( t i - t ) ] ,  
I la l I -~o - .  

where A = (to, q, . . . , &) is an arbi t rary  part i t ion of the unit interval, 
s¢ is an arbi trar i ly chosen point in [t~-x, ti], and [IAi] is the largest interval 
ill-x, t~]. 2 Generally, the Stieltjes integral exists if f is continuous and g 
is of bounded variation, or vice versa. In  the cases considered in this 
paper,  existence is clearly satisfied. In  verbal  terms, f(s) is an "amoun t  
function," while dg(s) is an "incidence function." Tha t  is, f(s) describes 
the amount  of expected value of cash flow if  the event upon which it is 
contingent occurs, while dg(s) describes the expected incidence of events 
giving rise to cash flows. 

Let  {Ck} be an arbi t rary  parti t ion of the cash flows into a finite number  
of categories such tha t  each category may be described as a Stieltjes 
integral over the policy year (unit interval),  

1 

C~ = f f ~ ( s ) d g k ( s ) .  
0 

The total of insurance cash flows during the policy year is simply the 
sum of the individual integrals: 

1 

£ c ,  : £ ,rs, (,) d,, (s) . 
k = l  k = i  0 

Finally, consider I~., the investment  income associated with cash flow 
Ck. A cash flow fk(s)dgk(s) at  moment  s earns i(1 -- s)f,(s)dg~(s) during 

t Angus E. Taylor, General Theory of Functions and Integralion (New York: Blaisdell 
Publishing Co., 1965). 
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the balance of the year. Thus, category k generates 

1 

I~ = f i(1 -- s)f~(s)dg~(s) 
0 

1 

= i tCk -- f s f , ( s ) d g k ( s ) ]  . 
0 

By letting Tk denote the "first normalized moment of fk over gk," we 
have 

1 

f s f k ( s )  dg,(s) 
T ~ =  o C k # O  

C,  

= 0 ,  Ck - - ' 0 ;  

then Ik = iCk(1 -- Tk). 
Conceptually, Tk is the weighted average duration of incidence of 

cash-flow category k. The total investment income generated by the 
policy year's insurance cash flows is 

Ik = iY'~ Ck(1 - -  T ~ ) .  
kml k -1  

Restating formulas (4a)-(4d) in general terms, the asset fund formula 
becomes 

F, = F,_t + iFt_l + Ck -~ i E Ck(1.--  Tk) , (5) 
k ~ l  k ~ l  

where Ck and Tk are computed for policy year t. This generalized formula 
can be used for any type of insurance or annuity. 

IV.  A N  E X A M P L E  

To demonstrate the Stieltjes technique, consider the plan of coverage 
underlying the simple asset share, modified so that m premiums (GPC=)/ 
m) are payable each policy year. Assume that the d~_l withdrawals 
occurring in policy year t are distributed equally over eligible withdrawal 
dates (off-premium due date withdrawals ignored), and that with- 
drawals within the policy 3'ear receive the interpolated cash v~lue. Also, 
assume that deaths are distributed uniformly over the policy ),ear. The 
amount functions, incidence functions, cash flows, and average durations 
of incidence of the five cash-flow categories now may be developed. For 
convenience, dgk(s) will be given rather than gk(s). 
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1. Premium income: 

dD(s) = lt-t+~, 

= - 0 ,  

f l (s)  = G P ( " ) / m ,  

s = O/m,  1 / m , . . . ,  (m -- 1 ) / m  

otherwise. 

Note that l,-t+, = l , - 1 -  sda~-i-  u(s)d~_l provided that u ( s ) =  
(k -- 1)/m, where k is the smmllest integer such that s < k/m.  Calcu- 
lating C~ and T1, we have 

I 

C, = f ft(s)dg,(s) 
o 

r a - I  

1 G P  ¢") ~ l t - l+k/ . ,  
m k-O 

= a ~ , - , [ t , _ ,  (m - t) g_, (m - 1) a l l ] "  
2% 2~ ' 

1 

CiTt = f s f , (s)dD(s)  
o 

r a - t  

1 Gpo,,) ~_, __~ 1,_l+k/., 

= c e , ~ , [ - ~  ~ z , _ , -  ('~ - ~ ) ( 2 , .  - 1) ~_, 
6m 2 

( m -  1 ) ( 2 m -  1)~_~"1; 
6 m  2 .J 

m -  1 ( m -  1)(2m -- 1 )~ -1  
T' = [-~'~m l l ' - ' -  6m 2 

( m -  1)(2m -- 1)dL,l 
6m 2 J 

( m - - l ~ - i  m - - 1  ) - '  
x z,_, 2~ 2~ ~ - '  

2. Percent-of-premium ex'pense, assumed to be incurred at the time 
premium income is received: 

Hence 

f2(s) = -- E~GP(~)/m , dg,(s) = dg~(s).  

C2 = - -  E~Cl  , T2 = T a .  
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3. Dollars-per-unit expense, assumed to be incurred entirely at the 
beginning of the year:  

/~(~) = - E~ ,  

dg3(s) = l , - i ,  s ' =  0 

= 0 ,  o therwise .  
Then 

Ca = - -  EStlt-1 , T3 = 0 . 

4. Death benefits, assumed to be unaffected by withdrawals within the 
policy year:  

f4(s)  = -  1,000,  dg4(s) = d ( ~ _ t s )  . 

Hence 

C4 = -  1,000~_1 , T4 = { .  

5. Withdrawal benefits: 

f~(s) = - -  [CV,_x + s ( C V ,  - CV,_x)] ,  

Then 

dgs(s) 1 d'~ 

-----0~ 

1 

Cn = . f  f s (s)dgs(s)  
o 

1 2 m 
S = - -  - -  

9 n '  ~ ' ' ' ' '  

otherwise .  

= -  £ :  + - 

m + 1 V,_~)]~_~ ; = - [ c  v , _ ,  + - - 2 ~ - ~  ( c  v ,  - c 

1 

C5T5 = OF sfs(s)dgs(s) 
o 

= - - - ~  C V , _ ,  + I (C  V ,  - C V,_~) - - d  
. "m, 

F m + 1 (m + 1)(2m + 1) ( C V ,  - C V , _ , ) ] ~ _ ,  ; 
= - - L  2m CV~_I+ 6m ~ 

Fm + 1 (m + t ) ( 2 m  + 1) (CV, - CV,_ , ) ]  
T6 = b ~  C V t - 1  + 6 m  2 

m + l  - '  x Icy,_, + ~ ( c v , -  cv,_,)] 
(if C Vt-1 = C V,  = O,  T5 = 0 ) .  
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These cash-flow categories are not intended to represent a contempo- 
rary set of asset share elements. However, these techniques easily can be 
used to reflect many more factors. The purpose of this cash-flow element 
analysis is to demonstrate the Stieltjes techniques. Even in this simple 
example, manual calculation of the premium income and withdrawal 
benefit pieces would be unreasonable. The same calculations, however, 
can be performed very simply once programmed on a computer. 

The assumption of a uniform distribution of withdrawals over eligible 
withdrawal dates can be modified to an arbitrary disti'ibution without 
complicating matters greatly. Let H(s) be the portion of withdrawals 
during policy year t occurring by duration s. Retaining the prohibition 
against withdrawals at other than premium due dates, H(s) is a mono- 
tonically nondecreasing step function such that it is 0 for s < 0 and 1 
for s >_ 1, and is discontinuous only at s = k / m  for k -- 1 , . . .  , m. Also, 
let h ( s ) =  dH(s). Note that h(s) is zero everywhere except for s = 
1/m, 2 / m , . . . ,  m /m ,  and that f~ h(s)ds = 2. Thus, lL-l+, = l , -1--  
sd~_l -- H(s)d~-l.  

Using this more general representation of/,-1+,, the premium income 
and withdrawal benefit cash flows may be reevaluated. 

I*. Premium income: 

1 

C, = . f  ft(s)dgt(s) 
0 

m - ] .  

• = _ _ I  Gp (=  > ~ l , -~+ , l=  
Z*~ k . O  

"-'[ ] 
1 ap(,~ ~]  l,_, ~_,  a (k l , , , )~_ ,  

m - 1  
= " -  t 

2m 

Similarly, 

[ z m  6m 2 "-X H(k/ra)d~t_t] 
, , , -  i ( , , , -  11(2m - I ) a l , _ , -  ~ 

Tt = ~ l,-1 - -  

X [lt-1 

5*. Withdrawal benefits: 

, . - 1  ! ] - i  
" - ~ ~ - '  - ~ - d  H(k /m)g_ ,  . 

2 m  k.O 

dgs(s) = d[H(s)d'Tt_l . 
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Hence, 

1 

C5 = f fs(s)dgs(s) 
0 

287 

1 

= - , [ ' [ C V , _ t  + s ( C V ,  - CV,_t)ld[tt(s)d,~_t] 
o 

- - -  

k . l  '/~ 

k = I  

and 

m k 2 

X h ( k / m ) C V t _ l  + __k h ( k / m ) ( C V ,  --  C V , _ t  . 
. 7 t ~  

Note that 1" and 5* in fact reduce to 1 and 5, respectively, when with- 
drawals are assumed to occur equally at each eligible withdrawal date. 
A sample calculation of an asset share using the asset fund techniques 
and the five cash-flow categories whose integrals have been evaluated 
here is shown in Table 2 of the Appendix. 

V. CALENDAR-YEAR ASSET SFIARES 

Very little has been published about asset shares measured over other 
than policy-year intervals. There are many good reasons for this. For 
example, in calculating asset shares for rate-making it is the individual 
plan-age cell that is under consideration; hence, it is appropriate to 
measure the asset share from policy anniversary to policy anniversary. 
In addition, there is comparatively little difference between, say, the 
asset share measured at the twentieth duration and an intermediate asset 
share measured between the nineteenth and twentieth policy durations. 
Even when the use of a calendar-year asset share is dearly appropriate 
(in modeling applications, for.example), actuaries have continued to 
use aggregations of policy-year asset shares. Practical problems also 
arise: What is a calendar-year asset share? Is it an asset share for a policy 
whose issue date is June 30 or July 1? If so, when calculating the asset 
share at December 31, have one or two semiannual premiums been 
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received? Cash flows within a policy year tend to be skewed so that 
positive cash flows occur near the beginning of the year and negative 
cash flows occur near the end; hence, an interpolated cash flow cannot be 
used arbitrarily. Fortunately, Stieltjes integration techniques provide an 
answer. 

How is the calendar year-end to be interpreted with respect to an 
asset share? The June 30/July 1 issue-date assumption produces a less 
than satisfactory result. In Figure l, the first year of a policy issued in 
year y is designated as AB. Assume that policies are issued uniformly 
over calendar year y, that is, lodz units are issued at moment z within 
calendar year y. Then, in Figure 2 the first policy year of the issues of 
calendar year y becomes the area ABCD. Note that line BD is the end 
of calendar year y, while BC is the end of the first policy year. If the cash- 
flow amounts within ABD and their average durations of incidence 
within ABD are determined, the policy year's cash flows will have been 
split into pieces that can be used to generate calendar-year asset shares. 

a~ 

0 

1/t/y 

I 

A 12/31/y 

Calendar Time 

FIo. 1 

0 
A D 

l / l / y  12/31/y 

Calendar Time 

Fro. 2 
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A policy issued at moment z within calendar year y will remain in 
calendar year y until policy duration 1 - - z .  Considering an arbitrary 
cash-flow category, the cash flow generated in area A B D  is 

1 1 - s  

C' = f f f ( s ) d g ( s ) d z .  
o 0 

Reversing the order of integration and solving, 

1 1 - a  

C' = f f ( s )  f dzdg(s) 
o o 

1 

= f ( 1  --  s) f ( s ) d g ( s )  
0 

= c ( 1  - T ) .  

In other words, the portion of the cash flows occurring in calendar year 
y is 1 -- T, where T is intuitively the average duration of their incidence 
within the policy ),ear. For example, an annual premium policy will 
have T = 0 for premium income, so 1 -  T = 1, indicating that all 
premium income occurs in year y. 

Next, what is the investment income generated by cash flows within 
calcndar year y? Using the same arbitrary cash-flow category, we have 

I 1--s 

I '  = J "  J "  i(1 --  z - -  s) f ( s ) d g ( s ) d z  
o 0 

1 1--8 

= i l l ( s ) f  (1 --  z - -  s)dzdg(s)  
0 0 

where 

1 (1 - -  s) 2 dg(s) 
= i of f (~)  2 

= iC[½(1  - -  2 T  + M)], 

1 1 

u fs,i(s)dg(S)o / fI(s) g(s) 
is the "second normalized moment o f f  over g." As with T, M is measured 
over the policy year. Using again the example of the premium income 
associated with an annual premium policy, we obtain M = 0. As ex- 
pected, I '  = ½iC. 

Using either integration or algebra, we find that the cash flow and 
interest in calendar year y + 1 are C" -- C T  and I t' = /C[{ (2T  -- M)]. 
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Let ~#t denote the asset fund measured at the calendar year-end 
occurring during policy year t. Then the generalized accumulation 
formula corresponding to formula (5) is 

P, = P,_, + iP,_~ 

+ ~-1~ liCk(1 - - ,Tk)  + ,_,Ck , - lTk] 
k=l 

-( 
~-1 2 + ,-IC~ 

2t_tTk -- t-tMk) 
2 

(6) 

Calendar-year calculations are of greatest utility for modeling applica- 
tions. In addition, a calendar-year asset share can be computed. In order 
to convert F, to an asset share At per unit in force, L, the mean number 
of units of coverage in force at calendar year-end, must be computed 
from 

1 

l, = f l,_t+.ds . 
o 

Then fi, t is calculated as 

~, = P,/L. (7) 

Calendar-year reserves per unit in force also must go through a normal- 
izing process. For example, if for the policy in question V~m{ and V~ ") 
are the consecutive terminal reserves and p~,o is the net premium, the 
reserve per/o initial units is 

l 

V* = f {l,_,+,[X(V,_l + V, + P("')] - lt_a+,w(s)P("*)}ds, (8) 
o 

where w(s) = (m -- k ) / m  given that k is the largest integer such that 
( k -  1) /m < s. The term lt_t+,w(s)P o") represents the deferred net 
valuation premium, which is subtracted from the reserve. The reserve 
per unit in force thus becomes 

V,  = V * / i , .  (9) 

To summarize, calendar-year asset funds can be calculated directly 
from the policy-year cash-flow amounts and first and second normalized 
moments. This serendipitous result follows directly from the Stieltjes 
integration interpretation of cash flows. Asset shares can be computed 
in turn by dividing by the mean number of units in force at calendar 
year-end. Similarly, calendar-year reserves are calculated from an 
integral. 
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VI. AN EXAMPLE REVISITED 

TO extend the cash-flow formulas cited previously to the calendar- 

year case, it is necessary only to add "third moment" functions. The more 

general withdrawal distribution will be used. 

1. Premium income: 
l 

C,MI = f s2f(s)dg(s) 
0 

"-'(m)' _ l_J_ a P < " ~  l,.:,+kl,, 
- -  ~ k = 0  

- '  G - ) ' [  ] 1 ap<.)~_~ l,_, d~l_, It(k/m)d~,_, 
m k=O m 

Gp~,.)[.(m - 1)(2m - 1) (ra - l'~aa 
z,_,- t,--TA--~ ) '* ' - '  

rn--1 'l 

- ~ ~ (~)'~r(k/m)d':_,]. 
2. Percent-of-premium expense: 

M2 = M1 . 

o 

3. Dollars-per-unit expense: 
M3 = 0 .  

4. Death  benefits: 
1 

C , M ,  = f -  ~ ( i , O 0 0 ) d ( ~ _ , s )  
0 

= - ~ O , o o o g , _ l ) .  

Hence M,  = {. 
5. Withdrawal benefits: 

1 

CaMb = f -- [CV,_x + s (CVt  - CV,_Old[H(s)~_~] 
0 

= - c v , _ ,  + - -  ( c v ,  - c v , _ o  h ( k / , n ) g _ , .  
k . l  ~ ,  

The mean number of units in force is 

1 

i, = f l,_t+,ds 
0 

m - 1  

= 6 - 1 -  ½~-1 1 ~ H ( k / m ) g _ ~ .  
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The mean reserve per Zt units in force is 

1 

v *  = f {l,_l+,[½(v,_l + v ,  + P ( ~ ) ) ]  - Z,_l+.w(s)P(m)}ds 
0 

= ½(v,_1 + v ,  + P<'~))/, 
_ p t , , , ) [ m  - -  1 ( 2 m  - -  1 ) ( m  - -  1) ~ - t  

l ~  l~_1 - -  12m2 

ra--1 _ y : m - l - k  ] 
koo m2 H(k/m)~_~ . 

In Table 3 of the Appendix, the numerical example is extended to the 
calendar-year case. 

VII. CONCLUSION 

The expected cash flows of virtually any insurance product may be 
described in terms of amount functions and incidence functions. In some 
cases, it is necessary to substitute an expected value of claim pay- 
ments function for the amount function. An example would be a waiver 
of premium benefit, where a disabled life annuity may be used in place 
of the amount function; the incidence function, of course, would be the 
rate of disablement. Once the amount and incidence functions have been 
determined, C, T, and M can be determined readily. Once C, T, and M 
are available for each category of related cash flows, the asset share, 
asset fund, and model-office applications follow easily. 

The apparent precision of these formulas should not be allowed to 
obscure the inherent volatility of the experience under insurance con- 
tracts. Prospective asset shares, for example, are always estimates of 
future results. To the extent that future experience matches the ex- 
perience assumptions, the historical asset shares at future points in time 
will correspond to the prospective asset shares. The question of the 
predictive utility of prospective asset shares is a general one, not in- 
herently related to the use of Stiehjes techniques. A danger is that the 
complexity of the formulas produced bv Stieltjes techniques may lend 
an aura of spurious precision to the resulting asset shares. 

An important result of applying Stieltjes techniques to rate making 
is the differentiability between the asset shares of various plans. The 
asset shares of similar coverages should vary in a logical manner. The 
more precisely the amount and incidence functions are defined, the more 
refined becomes the differentiation in impact to both the policyholder 
and the company. The degree of refinement sought will vary from 
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application to application. The constraints within which the actuary 
must  work also will differ, depending on the purpose for which the 
calculations are being made. The Stieltjes methodology is equally 
applicable for prospective and retrospective calculations and can be 
utilized for other purposes, such as the calculation of GAAP unit reserve 
factors. Stieltjes techniques also can be adapted to calendar-year issue 
assumptions other than uniform and to new-money investment methods. 

In  any case, the techniques that  have been presented will enable 
actuaries to make their calculations in an easier and more systematic 
manner. In  addition, the mathematical structure underlying the asset 
share hopefully has been made clearer. 

APPENDIX 

To demonstrate the Stieltjes techniques, a whole life policy issued at age 35 
on the semiannual mode is used. The semiannual mode has been chosen so 
that manual verification of the results is feasible. The premium, claim, expense, 
and interest assumptions are not intended to reflect current experience. 

Assumptions 

1. Gross premium: $16.00 per unit, payable in two semiannual installments. 
2. Percent-of-premium expenses: 102 percent in policy year 1, 9.5 percent in 

policy years 2-10, and 4.5 percent in policy years 11--65, incurred on the 
premium due date. 

3. Dollars-per-unit expenses: $12.00 in policy year 1 and $0.50 in policy years 
2-65, incurred at the beginning of each policy year. 

4. Death benefit: $1,000; claims distributed uniformly over the policy year. 
5. Cash values: Minimum cash values based on 3~ percent interest and curtate 

functions; interpolated value payable at midyear. 
6. Statutory reserves: Net level fractional premium reserves based on 3~ x percent 

interest and immediate payment of death claims; P~) = 15.48563. 
7. Mortality: Modification of 1965-70 intercompany experience. 
8. Withdrawals: Linton B rates; withdrawals distributed uniformly over 

eligible termination dates within each policy year except the first, when 
two-thirds are assumed to occur at midyear. 

9. Interest: 5.5 percent 

Table 1 displays the plan data and experience assumptions in a more complete 
and graphic form. Table 2 presents the development of policy-year asset funds 
and asset shares. Ft is calculated by formula (5) and converted to A t by dividing 
by I, Table 3 develops calendar-year asset funds, asset shares, and reserves. Ft 
is computed by formula (6) and converted to At by dividing by it. V~' is com- 
puted by formula (8) and converted to Vt by dividing by it. 



TABLE 1 

PLAN AND EXPERIENCE DATA 

0 . . . .  

1 . . . . .  
2 . . . . .  
3 . . . . .  
4 . . . .  '. 
5 . . . . .  

16.. 
17.. 
18.. 
19.. 
~0.. 

/t-I 

,000.000 
799. 160 
702. 454 
631. 387 
574.979 

528.119 
489.196 
456.928 
429.416 
405.159 

383.746 
364.087 
345.988 
329.305 
313.893 

299. 642 
285. 807 
272.420 
259. 480 
246. 965 

d to d d d w GP ( ' )  E~ E $ i Death 
qt-i qt-J t-~ 1--~ t Benefit CVt V~ ~J 

0.00084 0.200 0.840 200.000 16.00 102.00 12.00 5.50 1,000 0 13.36 
0.00101 0. 120 0.807 95.899 16.00 9.50 0.50 5.50 1,000 0 27.10 
0.00117 0.100 0.822 70.245 16.00 9.50 0.50 5.50 1,000 11 41.19 
0.00134 0.088 0.846 55.562 16.00 9.50 0.50 5.50 1,000 25 55.62 
0.00150 0.080 0.862 45.998 16.00 9.50 0.50 5.50 1,000 40 70.37 

0.00170 0.072 0.898 38.025 16.00 9.50 0.50 5.50 1,000 55 85.42 
0.00196 0.064 0.959 31.309 16.00 9.50 0.50 5.50 1,000 71 100.77 
0.00221 0.058 1.010 26.502 16.00 9.50 0.50 5.50 1,000 87 116.41 
0.00249 0.054 1.069 23.188 16.00 9.50 0.50 5.50 1,000 103 132.35 
0.00285 0.050 1.155 20.258 16.00 9.50 0.50 5.50 1,000 119 148.58 

0.00323 0.048 1.239 18.420 16.00 4.50 0.50 5.50 1,000 136 165.10 
0.00371 0.046 1.351 16.748 16.00 4.50 0.50 5.50 1,000 153 181.87 
0.00422 0.044 1.460 15.223 16.00 4.50 0.50 5.50 1,000 170 198.90 
0.00480 0.042 1.58l 13.831 16.00 4.50 0.50 5.50 1,000 187 216.16 
0.00540 0.040 1.695 12.556 16.00 4.50 0.50 5.50 1,000 205 233.63 

0.00617 0.040 1.849 11.986 16.00 4.50 0.50 5.50 1,000 223 251.29 
0.00684 0.040 1.955 11.432 16.00 4.50 0.50 5.50 1,000 241 269.13 
0.00750 0.040 2.043 10.897 16.00 4.50 0.50 5.50 1,000 259 287.13 
0.00823 0.040 2.136 10.379 16.00 4.50 0.50 5.50 1,000 277 305.27 
0.00905 0.040 2.235 I 9.879 16.00 4.50 0.50 5.50 1,000 296 323.55 



TABLE 2 

POLICY-YEAR ASSET FUNDS AND ASSET SHARES 

2.. 
L .  
~.. 
5.. 

3.. 
) . .  
[0. 

11. 
[2. 
13. 
t4. 
[5. 

L6. 

Ct C~ C* C. C, Tt Tt T, T, Tt Ft . A t 

14,930 --15,229 --12,000 -- 840 0 0.23208 0.23208 0 .0  0.5GO00 0.00000 -13 ,835  '--17.31 
12,400 -- 1,178 -- 400 -- 807 0 0.24220 0.24220 0.0 0.5C000 0.00000 -- 4,157 -- 5.92 
1 0 , 9 5 5 -  1,041 -- 351 -- 822 -- 580 0.24351 0.24351 0.0 0.5(000 0.83333 4,141 6.56 
9,877 ,-- 938 -- 316 -- 846 --1,195 0.24429 0.24429 0.0 0.50000 0.79070 11,268 19.60 
9,012 !-- 856 -- 287 -- 862 --1,667 0.24480 0.24480 0.0 0.50000 0.77586 17,506 33.15 

8,294 t-- 788 -- 264 -- 898 --1,949 0.24531 0.24531 0.0 0.50000 0.76829 23,111 47.24 
7,698 -- 731 -- 245 -- 959 --2,098 0.24581 0.24581 0 .0  0.50000 0.76493 28,269 61.87 
7,201 -- 684 -- 228 --1,010 --2,200 0.24618 0.24618 0 .0  0.50000 0.76205 33,104 77.09 
6,774 -- 643 -- 215 --1,069 --2,296 0.24642 0.24642 0 .0  0.50000 0.76010 37,658 92.95 
6,397 - -  608 -- 203 --1,155 - 2 , 3 3 0  ~ 0.24665 0.24665 0 .0  0.50000 0.75870 41,996 109.44 

6,061 -- 273 -- 192 --1,239 --2,427 I 0.24676 0.24676 0.0 0.50000 0.75806 46,399 127.44 
5,753 -- 259 -- 182 --1,351 --2,491 0.24685 0.24685 0.0 10.50000 0.75714 50,568 146.16 
5,469 -- 246 -- 173 --1,460 --2,523 0.24695 0.24695 0.0 0 . 5 0 0 0 0  0.75641 54,549 165.65 
5,207 -- 234 -- 165 --1,581 --2,528 0.24704 0.24704 0 .0  10.50000 0.75581 58,368 185.95 
4,965 -- 223 -- 157 --1,695 --2,517 0.24713 0.24713 0.0 ~0.50000 0.75561 62,059 207.11 

4,739 -- 2 1 3 -  150 --1,849 --2,619 0.24708 0.24708 0.0 0.50000 0.75515 65,473 229.08 
[7 . . . . . . .  4 , 5 1 9 -  2 0 3 -  1 4 3 - - 1 , 9 5 5  --2,704 0.24704 0.24704 0.0 0.500001 0.75476 68,669 252.07 
[8.. ii 4,307 194i . . . . .  -- 136 --2,043 --2,773 0.24700 0.24700 0.0 0 .50000:0 .75442 71,676 276.23 
t9 . . . . . . . .  4,102 -- 185 - -  130 --2,136 --2,828 0.24695 0.24695 0,0 0.50000 0.75413 74,499 301.66 
!0 . . . . . . . .  i 3,903 -- 176 !-- 123 --2,235 --2,877 0.24690 0.24690 0.0 0 . 50000  0.75408 77,136 328.45 



TABLE 3 

CALENDAR-YEAR ASSET FUNDS AND ASSET SHARES 

1 . . . . . .  
2 . . . . . .  
3 . . . . . .  
4 . . . . . .  
5 . . . . . .  

6. 
7. 
8. 
9. 
10 

11 . . . . .  
12 . . . . .  
13 . . . . .  
14 . . . . .  
15 . . . . .  

1 6 . . . : .  
17 . . . . .  
18 . . . . .  
19 . . . . .  
20 . . . . .  

[ Mt Mt 

. . .  0.11604 0.11604 

. . .  0.12110 0.12110 

. . .  0.12176 0.12176 

. . .  0.12214 0.12214 

. . .  0.12240 0.12240 

. . .  0.12265 0.12265 

. . .  0.12290 0.12290 

. . .  0.12309 0.12309 

. . .  0.12321 0.12321 

. . .  0.12333 0.12333 

. . .  0.12338 0.12338 
0.12343 0.12343 

. . .  0.12347 0.12347 

. . .  0.12352 0.12352 

. . .  0.12356 0.12356 

. . .  0.12354 0.12354 

. . .  0.12352 0.12352 

. . .  0.12350 0.12350 

. . .  0.12347 0.12347 

. . .  0.12345 0.12345 

Ms 

0.0 
0.0 
0.0 
0.0 
0.0 

0.0 
0.0 
0.0 
0.0 
0.0 

0.0 
0.0 
0.0 
0.0 
0.0 

0.0 
0.0 
0.0 
0.0 
0.0 

M ~  

0.33333 
0.33333 
0.33333 
0.33333 
0.33333 

0.33333 
0.33333 
0.33333 
0.33333 
0.33333 

0.33333 
0.33333 
0.33333 
0.33333 
0.33333 

0.33333 
0.33333 
0.33333 
0.33333 
0.33333 

Mb 

0.00000 
0.00000 
O. 75000 
O. 68605 
0.66379 

O. 65244 
O. 64739 
O. 64307 
0.64015 
O. 63804 

0.63710 
0.63571 
0.63462 
0.63372 
0.63342 

0.63272 
0.63214 
0.63163 
0.63119 
0.63112 

Pt 

- 12,993 
-- 6,337 

2,522 
10,152 
16,760 

22,589 
27,874 
32,784 
37,407 
41,777 

46,175 
50,406 
54,423 
58,263 
61,960 

65,487 
68,764 
71,835 
74,717 
77,415 

v* 

9,585 
18,580 
25,953 
32,204 
37,604 

42,331 
46,599 
50,558 
54,238 
57,644 

60,814 
63,693 
66,313 
68,703 
70,882 

72,832 
74,450 
75,754 
76,751 
77,451 

932.913 
774.782 
684.482 
617.074 
563.049 

518.164 
480.889 
449.797 
423.084 
399.517 

378.521 
359.224 
341.452 
325.057 
309.906 

295.721 
281.971 
268.674 
255.817 
243.378 

/it 

- -  1 3 . 9 3  

- -  8.18 
3.68 

16.45 
29.77 

43.59 
57.96 
72.89 
88.42 

104.57 

121.99 
140.32 
159.39 
179.24 
199.93 

221.45 
243.87 
267.37 
292.07 
318.09 

Pt 

10.27 
23.98 
37.92 
52.19 
66.79 

81.69 
96.90 

112.40 
128.20 
144.28 

160.66 
177.31 
194.21 
2 t l . 3 6  
228.72 

246.26 
264.03 
281.96 
300.02 
318.23 



DISCUSSION OF P R E C E D I N G  PAPER 

PIERRE C. CHOUINARD: 

I read this paper with great interest. I t  presents a revolutionary ap- 
proach to the calculation of asset shares--revolutionary in the sense that, 
once the cash flows, tCK, and their average durations, tTK, have been 
determined, evaluation of the asset fund turns out to be a problem of 
interest only; ~TK and ,TK take care of the contingencies. 

This discussion has the following two purposes: first, to introduce some 
"distribution of issues" assumptions in the model, and, second, to 
present the results I have obtained in calculating calendar-year asset 
shares in a different manner. 

Distribution of Issues 

All formulas of Sections V and VI were derived assuming a uniform dis- 
tribution of issues during a calendar year. As stated in Mr. Huffman's 
conclusion, the model need not be confined to this hypothesis. 

A generalized distribution of issues could be incorporated in the model 
in the following way: 

1 l - I  

C' = f O F f(s)r(z)dg(s)dz., 
o 0 

1 I--S 

I '  = i f  f (a - ~ - ~ ) / ( s ) ~ ( z ) a g ( s ) a z ,  
o o 

where C' is an arbitrary cash-flow category generated in area ABD of 
Figure 2 of the paper, I'  is the investment income generated by this cash 
flow in the same area ABD, and r(z) is the annualized proportion of total 
policies issued at moment z during the year of issue. In actuarial terms, 
r(z) is nothing more than the force of issue at time z. Now let R(z) be the 
cumulative portion of policies issued by time z, such that  R(0) = 0 and 
R(1) = 1. Thus the differential of R(z), dR(z), represents the infinitesimal 
portion of total issues sold at moment z, that  is, r(z)dz. In the case of a 
uniform distribution of issues, 

R(z) = z and r(z)dz = dz. 

However, other distribution assumptions also could be used. For 
example, suppose that  sales increase continuously at an annualized rate & 
The issue functions r(z) and R(z) then can be shown to take the following 

297 
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forms: 

R(z) = ~_ I ' r(z) = ~ _  1" 

If we replace e ~ by (1 -b j),  where j is the effective rate of sales increase 
during the year, we obtain 

R(z )  = (1 q - j ) '  - -  1 r(z) = 8(1 + j ) "  
j ' j 

C' and I '  then become 
1 '1-*" 

C' = : f ( s )  : ~ (1 -F j)'dzdg(s) 

= - of , ~ : ( s ) a g ( s )  J 
$ 

= _ N C ,  
1 

where 
1 1 

- j  
- -  :,~:<s>,,<,>/::<,>,~<,> 

_J 
and ~ is the usual continuous forborne annuity-certain, at rate j, and 

I' = i 

= i  

1 I--S 

f f ( s )  f (1 -- z -- s) _ ~ (l  + jl'dzdg(s) 
0 0 ] " 

::(,>[(, - ,>,~ - (~s>~]; ds(,> 

= i  (s) [ ) ag(s) 

--,c(~-~+~). 
1 

One could verify that  

~ - (I - s) 
lira 
j-~O j 

(1 - s) 2 
2 

Another distribution of issues that could be assumed is one based on 
the fact that  some companies experience an increase in sales during par- 
ticular months. Let us suppose that  two-thirds of the total annual sales 
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of a company occur uniformly between July 1 and December 31. Further- 
more, let us also assume a uniform distribution of sales during the first six 
months. In this case, r(z) would be a two-step constant function 

r(z)=5, o<z_<½ 

which has been derived from 

1/2 1 

f r(z)dz = ½ and , f  r(z)dz = ~. 
0 1/2 

Thus C' and I '  take the following forms: 

1/2 l - z  I 1 - s  

C' =- f f ~f(s)dg(s)dz + f f ~f(s)dg(s)dz ; 
0 0 1/2 0 

1/2 1 -*  

I'  = i f  f ] ( 1  -- z -- s)f(s)dg(s)dz 
0 o 

1 1--# 

+ i f f  ~ ( 1  - z - ~)](s)gg(s)gz. 
1/2 0 

In general, if a company does not experience a uniform distribution of 
issues, it should try to fit a polynomial function P(z) to the cumulative 
sales values at various points in time. P(z)/P(1) = R(z) then would 
approximate the cumulative proportion of policies sold by time z, and 
r(z) would be the derivative of R(z). The general expressions for C' and 
r would involve the determination of moments of "]  over g" of third and 
higher degrees. 

Calendar-Year Asset Shares Revisited 

In Section V, Mr. Huffman states: "How is the calendar year-end to be 
interpreted with respect to an asset share? The June 30/July 1 issue-date 
assumption produces a less than satisfactory result." This implies that 
calendar-year asset shares cannot be derived with the traditional equa- 
tion of the type (4a), (4b), (4c), and (4d) without producing large errors. 
Although I consider the Stieltjes technique as giving the best results, I 
want to demonstrate here that it is very possible to derive a calendar- 
year asset, share in the traditional manner and nevertheless obtain satis- 
factory results. I will consider the same case as in the appendix to the 
paper, with the same basic assumptions except that, instead of assuming 
a uniform distribution of issues, I will use the June 30/July 1 issue-date 
assumption. In the other words, I will consider a single cohort of policies 
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all issued exactly at midyear. The tth calendar-year asset fund then be- 
comes the policy-year asset fund at duration t - ½. 

To calculate the fund midway between integral policy durations t - 1 
and t, I will take the fund at the end of policy year t - 1 (the fund 
traditionally evaluated by life insurance companies) and accumulate it 
for half a year. 

This is how the cash flows appear during the last six months of year y 
under our assumptions: 

1. Premium income: l~_x(GP(2)/2) will be received on June 30/July 1, y; 
lt_la(GPC2)/2) will be received six months later, at the end of calen- 
dar year y. 

2. Percent-of-premium expenses: The cash flows will be those of premium 
income times E~, with the same timings. 

3. Dollars-per-unit expenses: One cash flow of lt_xE~ will be incurred on 
July 1, y. 

4. Death benefits: Deaths are distributed uniformly between July 1, y, and 
June 30, y q- 1, so that, on December 31, y, benefits of $1,000d~_x/2 
will have been paid. On the average the benefit is paid on October 1, y. 

5. Withdrawal benefits: ½d~-l[CVt-i + ½(CV, - CVt-I)] will be paid at 
the end of calendar year y; ½d~_aCVt will be paid on June 30, y -I- 1. 

In the accumulation of the funds from July 1, y, to December 31, y, 
the only problem is the treatment of the cash flows occurring at the end 
of year y, namely, of the second cash flow of the premium income and of 
the first of the withdrawal benefits. Do they occur on December 31, y, or 
on January 1, y -k- 1? The solution is to consider these ambiguous cash 
flows as split into two parts as follows: one-half occurs one second before 
midnight of December 31, y, and the other half occurs one second after 
midnight of December 31, y. The calendar-year asset fund is evaluated 
between these two seconds, at midnight exactly. 

We then get the following formula for Pt: 

= l ['GP~2) 

Gpc2) 
+ ½(t,_x -- ½~_~ -- ½~_~) - 7 -  (~ -- F~') (1) 

+ + 

This splitting procedure could be used for any cash flow occurring at 
the end of a calendar year. 
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According to the midnight evaluation assumption, those who will share 
in the fund are 1,-1 a e 1 w -- ~d,-t -- xd ,-1, and not lt-1 ½d~_l - ~d~_l(which 

~d ~-x equals l t - x a ) ,  since x w withdrawals will occur one second after mid- 
night and they consequently have the right to share in the fund. Note 

that  I t - t -  • a _ 1 ,o 2dt-a ~dt-1 gives exactly the It of Mr. Huffman, except for 
the first year, where ~ must be replaced by ~ (see assumption 8 in the 
appendix). 

TABLE 1 

COMPARISON OF STIELTJES TECHNIQUE AND T R A D I T I O N A L  M E T H O D  

3. , .  
4. 
5. 
6. 
7. 
8 .  
9. 
10. 
11. 
12. 
13. 
14... 
15. 
16. 
17. 
18. 
19. 
20. 

POLICY- 
Y.~. It 

t ASSET 
FUND 

( t )  (2)  

. , .  - -  4 , 1 5 7  
4,141 

11,268 
17,506 
23,111 
28,269 
33,104 
37,658 
41,996 
46,399 
50,568 
54,549 
58,368 
62,059 
65,473 
68,669 
71,676 
74,499 
77,136 

Table  1 of this 

CALENDAR-YEAR ASSET FUND CALF-,NDAR*YEAE ASSET 

Stieltjes Tradi- Differ- Stieltje~ Tradi- 
tional ence tional 

(3) (4) (5) (6) (7) 

--12,992 + 1 -- 13.93 -- 13 93 
- 6,337 - 6 ,372 -35 - 8.18 - 8.22 [ 

2,522 
10,152 
16,760 
22,589 
27,874 
32,784 
37,407 
41,777 
46,175 
50,406 
54,423 
58,263 
61,960 
65,487 
68,764 
71,835 
74,717 
77,415 

2 ,494 
10,132 i 
16,746 
22,579 
27,868 
32,780 
37,406 
41,780 
46,179 
50,412 
54,432 
58,275 
61,973 
65,504 
68,782 
71,855 
74,740 
77,439 

--28 
--20 
--14 
--10 
- - 6  
- - 4  
- -  1 
+ 3  
+ 4  
+ 6  
+ 9  
-t-12 
+13 
-[-17 
+18 
+20 
+23 
-[-24 

3.68 
16.45 
29.77 
43.59 
57.96 
7 2 . 8 9  
88.42 

104.57 
121.99 
140.32 
159.39 
1 7 9 . 2 4  
199.93 
221.45 
243.87 
267.37 
292.07 
318.09 

discussi0ns~o'~vs the results of 

3.64 
1 6 . 4 2  
29.74 
43.58 
57.95 
72.88 
88.41. 

104.58 I 
122.00 
140.34 
159.41 
179.28 
199.97 
221.50 
243.93 
267.44 
292.16 
318.19 

SBAEE PEUCENT" 
AGE 

DIYFER- 
ENCE 

Differ- 
l IOOX 

ence [(5)/(3)]1 
( s )  (9)  

0.00 0.00 
-0 .04  0.55 
-0 .04  1.11 
-0 .03  0.20 
-0 .03  0.08 
--0.01 0.04 
-0 .Ol  0.02 
--0.01 0.01 
--0.01 0.00 
+0.01 0.01 
+0.01 0.01 
+0.02 0.01 
+0.02 0.02 
+0.04 0.02 
+0.04 0.02 
+0.05 0.03 
+0.06 0.03 
+0.07 0.03 
+0.09 0.03 
+0.10 0.03 

such calculations for the 
twenty years of the illustration. I t  also shows a comparison of the 
calendar-year asset fund (and asset share) obtained by the two methods. 
The asset shares differ only by a few cents per unit.  The percentage differ- 

ences are negligible. In  another illustration, the percentage differences 
obviously would not  have been the same; they could have been smaller 
or larger. 

I do not  th ink that  a mathematical  explanation of the differences 
(absolute or relative) would be worthwhile, because too many factors are 
involved. Nevertheless, the reader could verify tha t  the five categories of 

cash flows generated by  the two approaches are almost equal when not  
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identical. This verification is accomplished by comparing, at each dura- 
tion, (1 -- tT~) ,C~, of formula (6) of the paper with the cash flows men- 
tioned above and evidenced by formula (1) of this discussion. 

The same identity cannot be found in the investment income categories 
when comparing itCk(1 -- 2tTk + ,Mk)/2 of formula (6) with the invest- 
ment incomes generated by formula (1). For example, the withdrawal 
benefits do not generate any interest in formula (1), since they are paid 
at the end of calendar year y. In formula (6), however, they produce a 
small negative income of approximately 1-~i~Cs. As the withdrawal bene- 
fits occurring at duration t in year y are approximately equal to ¼tCs, we 
conclude readily that they are paid on the average one-fourth of a year 
before December 31, under the Stieltjes technique. Looking now at the 
death benefits, the traditional method forces them to occur one-fourth of 
a year before December 31; by the Stieltjes technique, they would occur 
one-third of a year before December 31, since C~ = ~tC4 and I~ = ~}itC4 
in formula (6). The dollars-per-unit expenses generate the same invest- 
ment income under both approaches, namely, ~itCs. Finally, considering 
the premium income, C[, and the percent-of-premium expenses, C~', we 
deduce under the Stieltjes technique that they are received on the average 
five months before December 31, because C~. ~ ~tC~" and I~ ~ i~itCi, 
where j - -  1, 2. On the other hand, by the traditional method, these 
flows are received on the average four months before December 31. 

In summary, I have not intended to show that the traditional approach 
is better. Neither have I wanted to show that the two methods are 
equivalent; they cannot be, because the assumption of a uniform dis- 
tribution of issues is not identical with the June 30/July 1 issue-date 
assumption even if they sometimes produce the same results (as in the 
case of policy-year asset shares). In fact, I am content just to observe 
that the traditional method could approximate the "exact" value 
satisfactorily. 

~ R X  V. I. ~-VANS: 

Mr. Huffman has displayed a very enlightening approach to the 
calculation of asset shares and GAAP reserves. One may wish to explore 
the possibility of assuming compound interest during the policy year. 
The motivation for this is twofold. First, the formulas using compound 
interest during the policy year are no more involved than those using 
simple interest during the policy year. Second, the compound interest 
assumption is theoretically more correct. 

The simple interest assumption may be justified on the basis that it is 
conservative. While it does overstate interest lost on death benefits, 
withdrawals, and other cash outflows not occurring upon policy anni- 
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versaries, it also overstates earnings on premiums not due on policy 
anniversaries. Thus there would be many situations, weekly industrial 
life insurance for example, where the simple interest assumption could 
overstate asset shares. 

In order to facilitate the development of asset share formulas assuming 
compound interest during the policy year, Mr. Huffman's l's, reflecting 
interest earnings on cash flows during the policy year, will be eliminated. 
Mr. Huffman's C's will be redefined to include interest earnings during 
the policy year. Otherwise the symbols used in the following development 
are consistent with those defined by Mr. Huffman. 

Redefine C~ as 
I 

c~ = f (1 + i)'-'f~(s)dg~(s) 
0 

Formula (5) becomes 

Ft ---- Ft_t + ' /F t_ l  + ~ Ck. 
k - - I  

Revising Mr. Huffman's policy-year example, 

Ca = 1 Gpt=)211,_1+k/,,,( l +i)t_k/= 
~/ ,  k . 0  

dO-) idC"° / ra ]  t " 
~dwy  j~  , 

C2 = - -E~Ct  ; 

C~ = - E ~ t , _ , ( 1  + i) ; 

1 

c, = f ( 1  + i ) ' - ' ( -  1,000)g,_,ds 
0 

i 
= - 1,000 ~ ~ - t  ; 

k CV,_~)]ld~t_~(l+i),_./,. c , =  - -~[CV,_,  +-~(CV,--  
k . l  

{ i r i  -- d(")'~ = -~_ , : ' " lcv ,_ , -~  + ( cv , -  c v,_,) L. ( - x - ~ J t  • 

Calendar-year asset shares can be developed easily assuming com- 
pound interest during the policy year. Except for the interest assumption 
during the policy year, the following development uses Mr. Huffman's 
assumptions. 
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Let tC~ represent the cash flows in policy year t and calendar year t 
accumulated with compound interest to the end of calendar year t for a 
policy issued in calendar year 1. Similarly, let ~C{ represent the cash flows 
in policy year I and calendar year t + 1 accumulated with compound 
interest to the end of calendar year t + 1 for a policy issued in calendar 
year 1. 

General reasoning suggests that 

,C~ + ,C{ = ~ ,Sk, 

where dk represents the cash flow during policy year t due to source k. 
This formula may be proved mathematically using the results that 
follow. 

Formula (6) becomes 

f ,  = f ,_~ + i f ,_ ,  + (,c~ + ,_~c{) , 
k=l 

where 
* *--I 

C a = . f  OF (1 + i ) ' - * - ' f ( s ) d g ( s ) d z ,  
0 0 

1 1 

C # = f f ( 1  + i )2 - ' -* f ( s )dg(s )dz .  
0 1--$ 

We have 

,, , . - t  (1  + i ) t - k t , ~  _ 1 

m ~-o 8 

2 m  ' 

m--I  
,C{ = 1__ apC..)~_~ l,-x+k:.. ( 1  3 I- i )  - -  ( 1  + i )  l - k l m  

(1 + i ) G P  (') Fl,_ 1 m - 1 
,} k 2m 

. ] ,  - -  (d,_, + ~_~) - ~ , c , ,  

_ 1 EVGp(. , )[ l ,_ ,  m - 1  ]t 
2 ~  (g -*  + d/,_~) , 

ta-7 a t ,c", = - E r a e " ' p , _ ,  "2m- ' (e'~-' + ~ - ' ) ]  - g,C,1 , 

,C3 = - E d , - 1  ~ , 
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,C~ = o ,  

1 I--Z 

,C: - f f (1 + i)t . . . .  (--  1,000d~t_Odsdz 
o o 

= - -  1 , O 0 0 ~ _ t  i - -  

l 1 

,C~ = f f ( 1  + i)' . . . .  (--1,O00df_Odsdz 
0 1 - s  

= - 1 , o o o ~ _ ~ ( 1  + i) ~ - d ~ ' 

,c: _- _ / :  [ ~ , _ . .  ~_ ( ~ , _  ~,_.)] ~_~_., . , ) . - , , - - ,  
~-i m 0 

' ~, ,[c~,-, + " * '  ~,-,)3t 

k ~ l  m 

ra  + 1 
( c v ,  - cv,_,> 3 - 1,c, t '-i i 

- -  - -  ¢) ~ _ l [ , . C  V t _ l  Jf- . ~ - ~ m  -~ • 

tRANK C. ~ETZ: 

My compliments to Mr. Huffman for presenting such a general and 
powerful approach to asset share mathematics. His paper is an extremely 
valuable and welcome addition to actuarial literature and most certainly 
should be included in the course of reading for Part  8. The ultimate 
utility of Mr. Huffman's approach is limited only by the ingenuity of the 
actuary applying it and by the reasonableness of the assumptions em- 
ployed. 

Several areas developed in the paper impressed me as being par- 
ticularly interesting and valuable. The ability to allow for skewness of 
withdrawals and the ability to calculate calendar-year asset shares are 
noteworthy attributes of Mr. Huffman's equations. The latter attribute 
should be very useful in modeling applications. The separation of in- 
surance cash flow and investment elements for each year is a novel and 
valuable feature that allows for the isolation of new-money cells in 
developing investment-year asset shares. 

In order to illustrate how the general concepts presented in the paper 
can be applied under a different set of assumptions, I have attempted to 
recast the equations in Section IV of the paper using rates rather than 
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probabilities and have allowed for skewness of the deaths as well as of the 
withdrawals. This modification of Mr. Huffman's  equations is not  an 
a t tempt  to be more precise but  is merely an illustration of how a par- 
ticular actuary might apply the logic and methodology presented in the 
paper to a different set of circumstances. The recast equations are 
prefaced by the set of definitions tha t  follows. The use of rates (denoted 
by J and H) rather than probabilities is for the sake of simplicity. 

q'~a_l --- Death  rate for policy year t; 
q~=_~ --- Withdrawal rate for po!icy year t; 

lo = Number  of Units of policy initially issued at time t -- O; 
l, =- l,_x(1 -- q]~a)(1 -- q'~x) 

Number  of units surviving to policy duration t; 
J(s)  = Proportion of death rate that  has taken effect by time s within a 

policy year, 0 < s _< 1 ; 
H(s) = Proportion of withdrawal rate tha t  has taken effect by time s 

within a policy year, 0 _< s < 1; 
j ( s )  = dJ(s ) /ds ;  
h(s) = dH(s) /ds .  

1. Premium income: 

A ( s )  = 

dgt(s) = 

G P ° " ) / m  ; 

l,_1+,, s = O / m , . . . ,  (m  -- 1 ) / m ,  

0 otherwise ; 

ouj~, ,= , ,c!¢-rs~'Cgtrs~ G p o .  ) , . - t  
"= = ~ E l t - l + k l m  ; C1 

m k~O 

/,-x+k/= - /t_x{1 k/,,, .  ,a , ~ ,  - -  So g(r)qt_t[1 - -  H(r)q,_x]dr 

klra tw td - -So  h(r)q,_,[1 -- Y(r)q,_, ldr} 

= /,_1[1 -- ](k/m)~l~_x -- H ( k / r a ) ~ _ x  

klm.  td /to + S o  3(r)q ,_ lH(r)q ,_ ldr  

klm /w td +so h(,)q,_~J(,')q,_~dr] 

/ t-I[1 = -- J(k/m)q~n_a H ( k / m ) q ~  
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.k -1  
+ ~[] • (~+1)/= ,a ,,o 

I t ( , /m)S~/ ,~  dJ(r )q , - tq ,_ l  
i-O 

k 
• l ira  t ~  pd 

+ ~., J (~ /m)S( ,_ , , / . . a t t ( r lq ,_ ,q ,_ , ]  
i = l  

if withdrawals are assumed to occur at the end of mthly intervals, that  
is, H(s)  = H ( ( k  - 1)/m), (k - 1 ) / m  <_ s < k /m .  

Under the assumption that  H ( k / m )  = J ( k / m )  = k / m ,  

( k ka ,d ,,~'~ lt-t+k/,~ = l,-t  1 -- mk q~a I _ q~-I + - ~  qt-tq~-l ] 

Thus 

m - 1  

GP('~> ~ l,_l+k/= = C1 

_ Gp(m)lt_t[ 1 m -- 1 m -- 1 ,,~ 
2 m  q't~-t 2m  qi-x 

+ ( m -  1 ) ( 2 m -  1) ,a ,w'l 
6m 2 qt- lqt- ld ; 

G p ( , .  ) , . -1  k 
C l T ,  = S ] s f , ( s ) d g , ( s )  = ~ ~ ~" l,_,+~/., 

( , .  - - 1 ) ( q f _ ,  + qT-,) 

( m  - 1) 2 . , , ,  .,d 3 

m - -  

T I - [  2 ~  1 
( m - -  1 ) ( 2 m - -  1) ,a ( r a - -  1 ) ( 2 m - -  1) ,~ 

6 m  2 qt-i  - -  6ra2 q,-1 

( m - -  1) 2 ,a ,,~-IF. 
+ "4m~" q'-'q'-'JL' 

m - - 1  , m - - 1  , w  

2 m  q~a-1 2m q,-i  

( r a - -  1 ) ( 2 m - -  1) ,a ,,.'1 - l  
6 m  2 q,-lq,-13 • 

2. Percent-of-premium expense, assumed to be incurred at the time 
premium is received: 

e GP cm) 
f 2 ( s )  - E ,  ; ag2(s)  --  a g , ( s )  . 

m 

Hence 

C2 = - -E~CI  , T2 = T1 .  
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3. Dollars-per-unit expense, assumed to be incurred entirely at  the be- 
ginning of the year:  

f~(s) - p.~; 

dg3(s) = I t - l ,  s = 0 

= 0 o therwise .  
Then 

$ 
C3 = ~ E t l t - t  , T a  = 0 . 

4. Death  benefits: 
f 4 ( s )  = - 1,ooo ; 

dg4(s) - l,_tj(s)q~_a[1 "~ ; --  t t (s)qt_x]ds 

H(s )  = O,  0 <_ s < 1 / m  

= H ( 1 / m ) ,  1 / m  <_ s < 2 / m  

/ 

= H((m--  1)/m), (m--  1)/m < s <  1; 

c4 = s~f4(s)dv(s) 

I • td tw -- -- 1,O00lt_~So3(s)qt_~(1 --  H(s)qt_x)ds 

{1  ~-2 k , .  1 x 1,000lt_l~_l k - 

If we assume Y(s) = s and H ( k / m )  = k /m ,  then 

C 4 -  --1,000/,_xq'~-,(1 m - - 1  , . )  2m qt-~ , 
and 

C,T ,  = S~sf,(s)dg4(s) 

,,, [ (4,,, + , ) ( , , ,  - , )  ,~ 3 - --1,000lt_l(½qt_l) I -- 6m ~ qt-t  ; 

2 L  lri -- (4m + 6m 21)(m -- 1) q'-I  A k.(1 m2m-1 q t -x )  ''~ .~-t . T4 

5. Withdrawal benefits: 

A(s)  = - [c v ,_,  + s ( c  v ,  - c v,_~)] ; 

tw td --  J ( s )q t_ , )ds  dg~(s) - l t_ ,h(s)q,_,(1 
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c~ = s'6( , )ago(s)  

-- I,_,S~{C V,_I  + s (C V ,  -- C Vt_t)h(s)q'7_,(1 -- Y(s)q~_,)ds 

m 

=-~,_,X Icy;_, + _k ( c v ,  - c v , _ , ) ]  
k=l  ~g~ 

X [17(k /m)  - H ( ( k  --  1)/m)Jq'7_l[1 -- j ( k / m ) q ' , a d .  

Under the assumption that t t ( k / m )  = J (k / ra )  = k,/m, 

, .  m +  1 
c~ - - t , _ , q , _ ~ t c v , _ ,  + ~ ( c v ,  - c v , _ , )  

,, r'm + 1 (m + l)(2m + I) (CV,-  CV,_,)]I ; -q'-'L---2-ff--m c v , _ ,  + 6ra2 

_ _~,_,¢_,t_~2~cv,_,  + (m + ~)(2m6,,,, + ~) ( C V , -  CV,_,) 

_ * ') * ( % " ) '  C " , - , ; l l ,  
and 

~m + 1 CV,_I + (ra + 1) (2m + 1) 
T s - -  t 2 m  6 m  2 ( C V t - -  CVt_I) 

(rn. + 1) 2 ( c  - _q~n__t[.(ra + 1)(2m6m 2 + I) CV,_, + ;t.---~i ,,_ V, CV,_,)]~ 

m + l  
X t C V,_, + --Tm-m (C V ,  - C V,_,) 

,~ rm + I _ (m + ~)(2m + ~) CV'-')'~-'-II 
-q,_,L-2-d-m C V,_l + 6m 2 ( C V t  --  . 

ROBERT R. REITANO: 

Mr. Huffman has presented an interesting model for asset share funds 
that seemingly has more potential as a vehicle for theoretical investiga- 
tions than as a device for numerical evaluation. Since neither the theory 
nor the application of Stieltjes integration has received much attention 
in the Transactions in the past, it would have been worthwhile if the 
author had explored some of their simpler properties and had been more 
rigorous in the development of his examples. 

The purpose of this discussion is to fill in this "gap" (my opinion) and 



310 ASSET SHARE M~ATITEM.ATICS 

to suggest alternative approaches to the handling of interest that can be 
used to approximate the fund, F~, as well as to construct upper and lower 

bounds for its exact value. 

Stieltjes Integration 

By definition, 

J'y(s)dg= = ilai~o ~-t y(s ')[g(sO - g(s,-l)l  (1) 

if the limit exists and is uniquely determined, where So = a, s t , . . .  , 
s= = b is a part i t ion of the interval [a, b]; s~ is any point in the i th  interval; 
and [ zX [ is the length of the largest interval determined by the parti t ion. 

Although this is an unwieldy definition, it turns out, as Mr. Huffman 
notes, tha t  the integral will exist if f ( s )  is continuous and g(s) is of 
bounded variation. This  means tha t  there is a constant  c such that ,  given 
any part i t ion of [a, b], the sum of I g(s3 - g(s~-x) l is less than c. M a n y  
functions encountered in applied mathemat ics  are of bounded variation. 
For example, any function with a continuous derivative is of bounded 
variat ion on every closed interval [a, b]. The  usual example of a function 
tha t  is not  of bounded variat ion is 

g(s)  = O,  s = 0 

= s i n ( i / s ) ,  0 < s <  1 ,  

which oscillates wildly near zero. 
Very often it is possible to calculate the value of a Stieltjes integral by  

reducing it to a Riemann integral or a sum of Riemann integrals. In  order 
to avoid questions of existence, we will assume throughout  this section 
tha t  f ( s )  is a continuous function. Also, for the sake of brevity,  the 
s ta tement  tha t  "g(s) has a continuous derivative on [a, b]" will mean tha t  
g(s) is defined on a slightly larger interval  ( a -  ,, b + ~) 'and has a 
der ivat ive tha t  is a continuous function on [a, b]. 

As a first example of this reduction, we have the result tha t  if g(s) has a 
continuous derivat ive on [a, b], then 

b b 

, )Ff(s)dg = J ' f ( s ) g ' ( s ) d s .  (2) 
a a 

This is because the mean-value theorem can be applied in equation (1) to 
obtain g(sl) - g(si-t) = g'(s~') (st - si-l),  where s~' is in the i th  interval. 
Mr. Huffman ' s  death  benefit cash flow is of this type. There, g4(s) equals 
the amount  of unit  death  benefits claimed by durat ion s and is g ivenby  
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g~(s) = cs, where c is the expected number  of deaths during one year at  
the given age. 

If  g(s) is piecewise continuously differentiable, the corresponding 
Stieltjes integral will become a sum of integrals as in equation (2), with 
a few adjustments.  The derivation of these adjustments is handled most 
easily by considering the simplest such g(s), which is a step function. To 
this end, let to = a, ix, . . . , tn = b be a partit ion of [a, b], and let 

g(s )  = c~,  to <__ s <_ t~ 

= c~, t ~ _ 1 < s ~ t ~ ,  i =  2 , . . . , n ,  

where the c~'s are constants. For this kind of function, the terms of the 
sum in equation (1) are evaluated easily. To see this, let the partit ion 
sl, • • • , s,~ be given as in (1), and consider the value of f(s~)[g(sl) - 
g(s~-t)]. If  s~-I and s~ are under the same "s tep,"  this value clearly is zero. 
On the other hand, if they are under adjacent steps, the value of this term 
is f(s~) (c j+l - c~) for some j. In the limit, it is clear that  these points s '  
will be forced to converge to t~ and, since f(s) is continuous, f(s~) will 
converge to / ( t i )  ; hence, 

b n - X  

f f ( s ) d g - ~  ) -~ f ( t i ) (c i+x-  ci) .  (3) 
t~ j - -1  

As an example, consider the premium cash flow in Section IV of Mr. 
Huffman's  paper. Since gl(s) represents the volume of unit premiums 
received by duration s, we have 

g~(s) = c~, s = 0 

= c ¢ ,  ( i  - -  2 ) / m  < s <_ ( i  - -  1 ) / r a ,  (4) 

i =  2 , . . . , m , m +  l ,  

where ct = 0 and c~ = ~ lt-l+~i-l)t=, the sum being from j = 1 to j = 
i -- 1. Applying equation (3) with gx(s) as given in (4) andfx(s) = GPC')/ 
m yields the expected premium cash flow. 

Withdrawal benefits are handled similarly, except tha t  ct = 0 on 
[0, 1 / m ] .  

Strictly speaking, it is incorrect to try to evaluate dg in general for 
functions of this type by means of the intuitive formula dg = g'(s)ds. 
Within each step, g(s) is differentiable, so d g =  g'(s)ds -- 0. However, 
across the " jumps ,"  dg has no representation in terms of functions and ds. 
Actually, dg has an interpretation as a special kind of measure, called a 
distribution (in the sense of Laurent  Schwartz), but  for the purpose of 
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asset shares this interpretat ion would be somewhat  artificial at  this stage 
and will not be pursued. 

Finally, the case where g(s) is an arbi t rary  piecewise continuously 
differentiable function is easily handled. Let  to, . . . , t, be a part i t ion of 
[a, b], and let 

g(s) = g l ( s ) ,  t0_<s_<tl 

= g ~ ( s ) ,  t~_l < s <_ t~, i = 2 . . . .  , n ,  

where g/s) has a continuous derivative on [ti_~, t~]. Combining the 
reasoning behind formulas (2) and (3), we obtain 

b a - 1  t i 

f f ( s ) d g  = ~'~.f(ts)[gi+t(ti) -- gi(tj)] + ~ f f(s)g~(s)ds. (5) 
Q i - i  i - I  t l_  l 

Equat ion (5) is valid as long as g(a) = gl(a) and g(b) = g,(b), whereas 
g(tj) for j -- 1 , . . .  , n -- 1 can be defined as either gi(ti) or gi+t(/J). A 
similar s ta tement  holds for equation (3). 

A pproximating Compound Interest 
Let  Gt be the value of the sum of all t th-year cash flows at  the end of 

the tth year. Then the fund, F, ,  can be expressed as 

F~. = F,_~(1 + i) + G~. (6) 

Since Gt is the sum of both positive and negative cash flows, let Gt = 
G+t - GT, where both G+t and G7 are sums. For example, 

1 1 

G~t = ~ d" (1  + i) '- ' f t ,k(s)dg,.k, (Ta) 
k - I  0 

. _ 
1 

a7 = f (1 + ,)'-'-7,,As)dg,,j, (Tb) 
/ = 1  0 

where j  = 1 m a y  represent death claims, k = 1 may  represent premiums 
received, and so on. 

The  most  common approximation to compound interest, and the one 
tha t  was used by Mr. Huffman,  is simple interest, tha t  is, 

(1 + i )  t - ' -  1 + i - - i s .  (8) 

As a function of s, this approximation overstates the true value every- 
where except at  s = 0 and s = 1. Hence, using this interest approxima- 
tion in asset share calculations will overs ta te  both the positive and nega~- 
t ive 'cash flows, and, since some of this overs ta tement  will cancel after 
subtraction, one expects a reasonably accurate result. Of course, the 
problem with this approach is tha t  it is difficult to determine how 



DISCUSSION 313 

"reasonably accurate" the approximation is, even to the extent of 
whether the error is positive or negative. 

Bounds for the fund F.  can be developed by using both an overstating 
and an understating approximation to h(s) -- (1 + 01-*. Then over- 
stating G + and understating G]- will produce an upper bound for F,, and 
reversing the approximations will produce a lower bound. 

1. L I N E A R  APPROXIMATIONS 

I t  should be obvious that of all linear upper bounds to h(s) = (1 + i) l- ,  
on [0, 1] the approximation in formula (8) is the best possible. Let us call 
this approximation hlm""(s). 

For a good linear lower bound it is certainly necessary that the line be 
tangent to h(s) at some point t E (0, 1); hence, 

h'~'"(s) = (1 + i) '- ' [1 -- a(s -- t)].  (9) 

The best fit will be produced by choosing that line in equation (9) with 
maximum integral over [0, 1]. If expression (9) is integrated with respect 
to s over [0, 1], the resulting function of t will be maximized when t -~ ½. 
Hence, the best possible linear lower bound is given by 

h~i"(s) = e~/2[(i + 6/2) -- as]. (10) 

Thus, for any cash flow with f(s)dg >_ O, 
1 

f ( 1  + i)~-'f(s)dg < (1 + i )C -- iD  , 
0 

(lla) 

where 

1 

f ( 1  + i ) l - ' f (s)dg > e~n[(1 + a/2)C -- aD] , (11b) 
0 

1 1 

C = , f f ( s ) d g ,  D = f s f ( s ) d g .  (12) 
0 o 

The notation here is slightly different from that presented in Mr. 
Huffman's paper in that the second integral in formula (12) was defined 
there as CT. This had the slight advantage that C could be factored from 
the resulting formulas but produces the distinct disadvantage of trying to 
define T when C -- 0. Setting T -- 0 when C -- 0 has the erroneous im- 
plication that cash flows that net to zero always will have simple interest 
accumulations that also net to zero. The same type of problem occurs 
with the integral that he defines as CM, which for a later use will be 
defined as E, where 

1 

E = f s ~ f ( s ) d g .  
0 



314 ASSET SHARE MATHEMATICS 

Combining (7a), (7b), ( l la) ,  and (l lb),  we obtain 

GT'" _< G, < G~ ~ , (13) 

where 

G~"* - [(1 + i)C-~-, -- iDa-t] -- e8/2[(1 + U2)C 7 - 8D7], (14a) 

G~'" -- eSn[(1 + 8/2)C + - 8/3~, ] - [(1 + i)C'~ - iD'~], (14b) 

and 
! 1 

= ~ J'f , .k(s)dg,. ,  (positive cash flows), 
k = l  0 

= ~_~ f s f ,  i(s)d~,.i (negative cash flows), etc. D7 
i - 1  0 

Combining (14a), (14b), and (6), we have 

F =t" < F < F m~', (15) 

where /~in (b'~ax) is defined by equation (6) using G~ in (G~ x) instead 
of Gt. 

From a programming point of view, it would be easier first to accumu- 
late C +, C7, D+t, and D7 separately at the appropriate interest rate from 
t = 1 to t = n. Then the bounds for F,  could be expressed as linear com- 
binations of these values, that is, 

F'~ ~" = [a(aC) + + b(a D) +] -- [c(AC)'~ + d(A O)~-], (16a) 

F~'" = [c(AC) + + d (AD)  +1 -- [a(AC)'~ + b(AD)~],  (16b) 

where 

a = 1 + i ,  b = - - i ,  c = e~n(1 + 8 / 2 ) ,  d = --Be ~n, 

(AC) + = ~ C~,(1 + i ) " - ' ,  etc. 

Applying (16a) and (16b) to Mr. Huffman's numerical example, the 
bounds produced are 

77,032 _< F20 < 77,212. (17) 

If only one linear approximation is to be used throughout, it makes 
sense to use a line with the same area as h(s) on [0, 1]. Any such averaging 
line will have the following form: 

hV(s) = - c ( s  - ½) + i / ~ ,  ( i s )  
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where we restrict c to values greater than zero in order to have a de- 
creasing function (as is h(s)). A reasonable goal for equation (18) is to 
choose c so tha t  the max imum value of the error function, 6(s) = I h(s) -- 
h~V(s) l, will be minimized. 

Since i /6  > h(½) it is clear that ,  near s = ½, ~V(s) > h(s) for any c. 
The  errors at  zero and 1, however, can be positive or negative. In any 
event, the absolute value of the larger of these two extreme errors will be 
minimized if the errors are equal. This produces c = i and 8(0) = 8(1) = 
1 + i /2  -- i /& For this choice of c, the max imum "inter ior"  error in 
absolute value will occur at  .~ = 1 - (1/6) In ( i /6) (standard calculus 
technique) and will be equal to 8(~) = - i / 2  + (i /6) In (i /6).  

A somewhat  lengthy calculation shows tha t  8(~) _< 8(0) for any 8, 
which implies tha t  any other choice of c will produce a max imum error 
larger than tha t  produced for c = i. Hence, the " o p t i m u m "  averaging 
line is given by 

h~'(s) = - i ( s  -- ½) + i / * .  (19) 

Using (19), we define G] ~ by 

G~" = ( i /2  + i /~ ) (C  + - C7) - i(D~, --  D'[) 
(20) 

= (i/2 + i/6)C, - iD,. 

Combining equations (6) and (20) produces F~ v, which for Mr. 
Huffman ' s  example and n = 20 produces P2~ = 77,118. 

2. QUADRATIC APPROXIMATIONS 

By introducing quadrat ic  approximations to h(s), the bounds in 
formula (17) can be sharpened considerably. Since it is reasonable to 
demand tha t  the approximating quadratics h2(s) will intersect h(s) at  
s = 0 and s = 1, we begin with the general form of ~(s) ,  which is 

h2(s) = bs(s --  1) -- is + 1 + i . (21) 

By considering the derivatives of h(s) and h2(s) at  s = 0 and s = 1, it 
is simple to show that ,  if 

i-- ~ < b < ~e 8 - i ,  (22) 

then h2(s) also will intersect h(s) at  some point  within the interval (0, 1). 
This  is because, for such b, h~(0) > h'(O) and h~(l) > h'(1), which im- 
plies tha t  h~(s) s tar ts  out from s = 0 above h(s) and ends up a t  s -- 1 from 
below h(s). 

To see this, let f ( s )  = h2(s) -- h(s). Then,  since i f (s)  is continuous, 
f~(0) > 0 implies tha t  i f (s)  > 0 on (--~,  ~), and i f ( l )  > 0 implies tha t  
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i f (s)  > 0 on (1 -- e, 1 + e), for some e > 0. Hence, s ince/(0)  = 0 and 
and / (1 )  = 0, we have 

f ( s )  = f f ' ( t ) d t  > 0 on (0, e ) ,  
0 

1 

f ( s )  = -- f f ' ( t ) d t  < 0 on ( 1 - - , , 1 ) .  
s 

As one might  expect, the extreme values of b in inequality (22) produce 
the closest fitting parabolas from above and below h(s) out of the one- 
parameter  family defined in equation (21). T h a t  is, setting b = i -- 
will produce the best quadrat ic  upper  bound, h~aX(s), and setting b = 
~e z -- i will produce the best lower bound, h'~i"(s). 

To see this, let 

h~=(s )  = (i -- ~)s 2 --  (2i -- 8)s + 1 + i ,  (23a) 

h~'n(s) = (8# --  i )s  ~ -- 8#s  + 1 + i .  (23b) 

One way of showing tha t  h'~aX(s) > h(s) on (0, 1) is to expand h~a*(s) -- 
h(s) as a Taylor  series in ~ about  ~ = 0, keeping s fixed. The  coefficients 
of the powers of ~ will be polynomials in s tha t  are strictly positive for 
s E (0, 1). The  same technique applied to h(s) - h~"(s)  will show tha t  
h~i"(s) < h(s) on (0, 1). These expansions also will show tha t  the error in 
each of these approximations is 0(33). 

Finally, if b > ~e s - - i ,  then clearly ~ ( s ) <  h~in(s). Similarly, if 
b < i - ~, then t~(s) > h'~*(s). Hence, the quadratics defined in equa- 
tions (23) have the minimal properties stated. 

Other properties include the following: 

a) h~"*(s) is t angent  to h(s) at  s = 1 ; 

b) h ~ " ( s )  is t angen t  to h(s) at  s = 0 ; 

c) If  
1 1 

s ,  = f ( h  W - h) (~)d~,  s ,  = f ( h  - h 'C'")(s)ds ,  
0 0 

then 
1 8 8 

(1) 8, = ~ + O(a ' ) ,  i = 1, 2, 

(2) 82 > 8x, and 

1 ~4 
(3) S~--St = ~ + 0 0 0  
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The two inequalities (11) now can be written in terms of C, D, and E 
using (23a) and (23b), that is, 

1 

f ( 1  + i)l-°f(s)dg < (1 + i)C - (2i - 8)D + (i - ~)E,  (24a) 
t) 

l 

f ( 1  + i)l-of(s)dg > (1 + i)C - ~,aD + (~e* -- i ) E .  (24b) 
0 

• From (24a) and (24b), G~ ~ and G~ in can be defined as in the linear case 
in (14a) and (14b), where Et + and E7 will have the obvious meaning. 
Developing F~ a* and F rain as in (16a) and (16b) and applying these 
formulas to Mr. Huffman's example, the following bounds are developed: 

77,116.85 <_ F20 _< 77,118.31 . (25) 

To obtain an averaging quadratic, it suffices to note that a function in 
(21) will have the correct area on [0, 11 if and only if b = 6(1 - i /6) + 3i. 
Defining h~V(s) and G~ v with this b, we have 

h~"(s) = [6(1 -- i/~) + 3i]s ~ -- [6(1 -- i/~) + 4i]s + l + i (26) 

and 

G~* = (1 + i ) C , - - [ 6 ( 1 - - i / ~ ) + 4 i ] D t + [ 6 ( 1 - - i / ~ ) + 3 i ] E , .  (27) 

The value of F~2~, for example, using equations (27) and (6) becomes 
77,117.57. 

It  is interesting to note that the value of F~[ obtained by using the 
linear averaging approximation was 77,117.89. The accuracy of this ap- 
proximation is due largely to the fact that the maximum error in h]~(s) is 
62/12 + O(6 s) and that a more "uniform" type of canceling takes place 
here than the canceling that takes place when simple interest is used. 
This uniformity is attributable to the fact that the averaging takes place 
over each cash flow separately (that is, overstated premiums during part 
of the year average with understated premiums during another part of 
the year, etc.) as compared with simple interest, which averages the 
overstatement of some cash flows against the understatement of different 
cash flows. 

Of course, some of the accuracy of the linear averaging approximation 
also may be due to the particular example itself, in that an equivalent 
amount of exactness may not occur in other examples. 

In applying the above approximations to calendar-year asset shares, it 
is recommended that the approximations not be made until after the 
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evaluation of the inner integral. Using Mr. Huffman's notation from 
Section V, 

1 1--~ 

I '  -I- C' = f f (1 + i ) t - ' - ° f ( s )dgdz  
0 0 

1 I--* 

= f f (t + O'-'-'dzf(s)~g (28) 
0 0 

1 , 
= - 6 0 f [ ( 1  + i) t -"  -- 1 ] f ( s )dg .  

By delaying the approximation until the last step in (28), one is able 
.to choose whether a linear or quadratic approximation will be used, 
thereby obtaining the most accuracy for the efforts involved. Approxi- 
mating linearly in the first step would produce a quadratic in the last step, 
which will involve the same efforts of calculation as any quadratic ap- 
proximation but generally with only "linear approximation" accuracy. 

Other applications of the above approximations include continuous 
and discrete insurance and annuity premiums and reserves. 

In any given application the choice of approximation, whether it is 
linear, quadratic, or of higher order, will depend on practical limitations 
inherent in developing the necessary factors (C, D, E, etc.) as well as on 
considerations of accuracy. 

JAMES A. TILLEY: 

The prir/cipal contribution of Mr. Huffman's paper is the systematic 
approach to asset share and model-office calculations. I feel, however, that 
the author has placed too much emphasis on the phrase "Stieltjes integral 
interpretation." Every actuary knows that asset funds are calculated by 
accumulating all cash-inflow and -outflow items with interest to an ap- 
propriate point in time. To perform the calculation, the actuary must 
make assumptions about both the amount and the incidence of each 
cash-flow item. If the cash flows occur at discrete points this accumula- 
tion can be expressed as a sum, and if the cash flows occur continuously 
the accumulation can be expressed as an integral. Even the discrete case 
can be represented as an integral if the "incidence function" is defined in 
terms of step functions with discontinuities at the occurrences of cash 
flow. 

Mr. Huffman focuses on the importance of identifying the various 
cash-flow items and their policy-year distribution functions. Under the 
assumption of simple interest from the occurrence of cash flow to the end 
of the policy year, any financial variable can be expressed succinctly as a 
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sum of terms involving at most the second moments of the various cash- 
flow distributions. As a minor technical point, the assumption of com- 
pound interest within a policy or calendar year leads to expressions 
involving all the moments of the cash-flow distribution. However, the 
higher-order moments do not result in significant corrections to the 
original calculation. In lieu of a moment expansion, integrals of the form 

1 

f ( 1  + 01-°f(s)dg(s) 
0 

can be evaluated directly. However, this would result in the author's 
treatment losing much of its simplicity with little gain in accuracy. 

I t  should be pointed out that the results of Mr. Huffman's paper can be 
obtained by traditional actuarial methods. In the calculation of policy- 
year asset funds, only the zero and first moments of the policy-year cash- 
flow distribution appear in the equations. Hence, the entire distribution 
for a particular cash-flow item can be replaced by a single spike of ap- 
propriate height (zero moment) at the appropriate duration (first 
moment). For example, deaths skewed slightly toward the end of the 
policy year can be lumped together at a mean fractional policy duration 
slightly after the middle of the policy year. This is the conventional ap- 
proach to policy-year asset share calculations. 

When it comes to computing calendar-year results, Mr. Huffman 
shows that investment income for a particular calendar year depends on 
the second moment of the policy-year cash-flow distribution, that is, on 
the dispersion of the distribution. Thus, when computing calendar-year 
results, it is not correct theoretically to replace a continuous distribution 
of cash flow by a single spike at a particular policy-year duration. The 
problem is that, in general, a policy year extends from one calendar year 
into the next. The end of the calendar year divides the policy year into two 
pieces: an "alpha" portion and a "delta" portion, borrowing standard no- 
tation from the theory of mortality table construction. The policy-year 
cash-flow item can be replaced by two spikes, one in each of the alpha and 
delta portions of the policy year, with each at the proper duration to pro- 
duce exact simple interest for calendar years. This is the approach used in 
mortality table construction to ensure the proper exposure to risk of 
death. 

(AUTHOR'S REVIEW OF DISCUSSION) 

PEYTON .]'. HUFFMAN: 

• Many thanks to Messrs. Chouinard, Evans, Metz, Reitano, and 
Tilley for their valuable and diverse discussions. 
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Professor Chouinard's comments on the distribution of issues provide a 
good introduction to a knotty problem. Modeling applications often in- 
volve nonuniformly distributed issues. Indiscriminately assuming a 
uniform distribution of issues can lead to timing differences and mis- 
leading results. 

The continuously increasing (decreasing) sales approach will work well 
for new sales forecasts, provided that "continuously increasing" is con- 
sistent with the expected sales pattern and provided that each year has a 
full year's sales. Difficulties arise in trying to adapt this approach to histor- 
ical issue patterns. The step-function approach produces integrals that 
are not evaluated conveniently on a computer. The polynomial approach 
appears to be the most promising. Unfortunately, the quadratic R ( z ) ,  

which requires only the addition of a third moment, will produce negative 
values somewhere on the unit interval whenever the average duration of 
the distribution under consideration is outside the range [7, ]]. 

A fourth candidate is the pair of functions R ( z )  = z k and r(z)  = 

kz k-l. The parameter k may be chosen so that the average duration of 
r ( z ) / R ( z )  matches that of the distribution being approximated by 
setting k = D / ( 1  - D), where D is the average duration of issue. The 
resulting integrals, unfortunately, are also difficult to evaluate. I t  ap- 
pears to me that an approach to nonuniform distribution of issues that 
will be suitable for automated modeling applications will require an ap- 
proximation of the cash flow (as well as the distribution of issues). At a 
minimum, the approximation would need to reproduce the cash flow's 
first and second moments. For example, the beta function, 

B ( p ,  q, t) = r(p + q) tp_l( 1 _ t)p-' 
r(p)r(q) 

may be so adapted by setting p = T ( 1 - - M ) / ( M - - T  2) and q =  
( 1  - -  T) (1 -- M) (M -- T2). Approximations, of course, must be tested 
thoroughly before being used. 

Professor Chouinard also demonstrates that traditional nonannual 
mode calendar-year asset shares are consistent with Stieltjes asset 
shares/funds. 

Mr. Evans applies the Stieltjes method using compound interest, 
rather than the interest assumption used in the paper. The resulting 
formulas are useful as a comparison with those in the paper. The formulas 
in the paper have two advantages. First, the withdrawals need not be 
distributed uniformly over eligible withdrawal dates. Second, the interest 
and insurance cash-flow elements are separated. The latter advantage is 
particularly useful for modeling applications where it is necessary only to 
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calculate the insurance cash flows and moments of a plan-age cell once, 
even though it is used for several issue years. As Dr. Reitano demon- 
strates, the difference between compound and simple interest is small. 

Mr. Metz demonstrates how an actuary might modify the paper's 
formulas to suit his particular circumstance. In practice, asset shares 
generally incorporate dozens of cash-flow categories. In applying the 
Stieltjes approach, the actuary can make modifications more easily to 
recognize the characteristics of the block of business under study. 

Dr. Reitano's exposition of Stieltjes integration is a welcome addition. 
The Stieljes integral was introduced first in 1894 in T. J. Stieltjes' Re- 
cherches sur lesfractions continues. I t  was a generalization of the Riemann 
and Darboux integrals and subsequently was itself generalized as the 
Lebesgue-Stieltjes integral. The Stieltjes integral carries with it con- 
siderable structure and is easy to apply. 

In the section of his comments entitled "Approximating Compound 
Interest," Dr. Reitano describes an interest treatment that reduces the 
"error" introduced by using the interest assumption in the paper rather 
than the standard compound interest approach, It  is extremely gratifying 
to see the mathematical structure of this paper used so elegantly. In 
addition, it is comforting to find that the resulting value of F20 (77,117.89) 
is close to the value of F20 shown in Table 2 of the paper (77,136). 

As Dr. Tilley points out, many of the results of this paper can be 
obtained by traditional actuarial methods. These methods, however, 
tend to be ad hoc and informal in nature and usually are based on general 
reasoning. The Stieltjes integral formalizes the structure of the cash 
flows and provides the actuary with a systematic method of approaching 
any cash flow. 

Dr. Tilley suggests that the cash flows of a given category within a 
policy or calendar year may be replaced by a single "spike" cash flow at 
the appropriate duration. For many purposes, this is acceptable. It  should 
be borne in mind, however, that the cash flows actually do not occur at 
that moment. In the case of cash-value surrenders, the average duration 
of cash flow and the average duration of termination are not even the 
same. The key point to remember is that the first and second moments do 
not describe the cash flows fully. A useful alternative to Dr. Tilley's spike 
approach is to allocate each cash-flow category C to the beginning and 
end of the year in the proportions 1 -- T and T. This approach is con- 
venient when new-money methods are used. Investment transactions can 
be limited to integral policy (calendar) durations. 

r 

The objective of this paper is to share a more general and more 
mathematical approach to asset shares. The paper is fully compatible 
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with existing methods. I t  provides a benchmark against which approxi- 
mate methods may be measured. 

The methods presented are thoroughly practical. They have been in 
use for over four years, during which they have been the basis of well 
over 100,000 asset shares, profit studies, and models of individual life, 
health, and pension coverages. Hopefully, others will find the Stieltjes 
asset share/fund equally useful. 

In addition to the five discussants, I wish to thank the actuaries of the 
Continental Assurance Company, especially Sam Gutterman and Linda 
Bronstein, and my wife, Maria Huffman, for their help with this paper. 


