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AB S T R AC T  

Traditionally, the study of the interest-rate sensitivity of the price of a 
portfolio of assets or liabilities has been performed using single-variable 
price functions and a corresponding one-variable duration analysis. This 
unique variable was originally defined as the yield to maturity of the portfolio 
and later generalized to reflect "parallel" changes in the underlying yield 
curve, that is, changes in which each yield point moves by the same amount. 
More recently, this parallel shift model was generalized to linear shifts, 
reflecting changes in both the level and slope of the yield curve, as well as 
to other mathematical models of the manner in which a yield curve is as- 
sumed to move. 

In general, the ability of such a model to predict price sensitivity is de- 
pendent on the validity of this underlying yield curve assumption. For gen- 
eral yield curve shifts, large errors are possible. In practice, this happens to 
a greater extent when the portfolio contains both " long"  and "short" po- 
sitions, as is the case for surplus or net worth. A classical duration analysis 
can greatly understate price sensitivity to nonparallel yield curve shifts in 
this case. Consequently, surplus changes can appear unpredictable, and du- 
ration-matching strategies unsuccessful. 

In this paper, a general multivariate duration analysis is introduced that 
does not depend on a mathematical formu!ation of the way in which a yield 
curve moves. Consequently, complete price sensitivity information is de- 
rived that is equally applicable in virtually all yield curve environments. In 
addition, this model is practical and relatively easy to apply. 

To motivate the multivariate approach, simple examples are presented that 
demonstrate the limitations of the traditional model when yield curve shifts 
are not parallel. Multivariate models are then developed in detail and shown 
to readily overcome these limitations. Examples are utilized throughout to 
make the theory more accessible. The last section focuses on applications 
of these models as well as on a variety of practical considerations. 

I .  INTRODUCTION 

The concept of duration has generated a great deal of interest and research 
activity during its relatively short history. Bierwag, Kaufman and Khang [3] 
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and Ingersoll, Skelton and Weil [13] present interesting historic summaries of 
this activity through 1977, while the newer Bierwag [1] provides additional 
information on more recent developments. In addition, these sources contain 
extensive references to the literature, which are only highlighted here. 

The notion of duration was independently discovered by at least four 
authors. The earliest source is Macaulay [16], who coined the term "dura- 
tion" in 1938 as a refinement of maturity for quantifying the length of a 
payment stream, such as a bond. His focus was on better defining the mean 
time to prepayment, and his measure reflected a weighted average of the 
times to maturity. At about the same time, Hicks [10] developed the same 
duration formula, calling it the "average period," analyzing the price sen- 
sitivity of an income stream to changes in the underlying interest rate. Spe- 
cifically, the Macaulay duration equalled the elasticity of the price of a bond 
with respect to v = (1 + 0  -1. 

A number of years later, Redington [17] and Samuelson [25] discovered 
a very similar formula analyzing questions in what has come to be known 
as immunization theory. Redington sought to "immunize" a liability stream 
with an asset stream. This meant that the value of each was to be equally 
responsive to changes in the underlying interest rate. This was accomplished 
by equating first derivatives of the associated price or present value func- 
tions, thereby introducing the approach to duration that was later generalized 
in the development of what has come to be known as "modified duration." 
Similarly, Samuelson's focus was on immunization, analyzing the sensitivity 
of a firm's net worth to changes in the underlying interest rate. 

For the above formulations, the price function and the corresponding du- 
ration measure were defined in terms of "the interest rate," which was 
typically taken as the yield to maturity. This approach was also followed in 
Vanderhoof [27], [28], which adapted the Redington model and became, to 
many actuaries, an introduction to this field of thought. Fisher and Weil [9] 
later generalized the notion of duration so that the price function could reflect 
a complete yield curve. In this context, a change in yields was modeled in 
terms of a parallel yield curve shift, whereby each yield rate is changed by 
the same amount. This duration measure has sometimes been referred to as 
D2, to distinguish it from the Macaulay duration, denoted D1. Corresponding 
to other models of yield curve shifts, other duration measures have been 
defined (see [1]-[4], [14], and [15], for example). In [4], it is also shown 
that losses associated with choosing the wrong model can be substantial. 

More recently, Stock and Simonson [26] have analyzed after-tax adjust- 
ments to price sensitivity, while Chambers, Carleton and McEnally [6] have 
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explored the notion of a duration vector in immunizing default-free bond 
portfolios. In this latter paper, the various components of the duration vector 
correspond to cash-flow-weighted moments of the adjusted times to maturity. 
The first component is similar to D2, while the second reflects a measure of 
the average time squared, then average time cubed, and so on. The adjust- 
ment made to the time values is a reduction of one period. 

In this paper, a general multivariate approach to duration analysis and 
price sensitivity is developed that is applicable to virtually any model of 
yield curve movements. Of course, multivariate models have been used 
elsewhere ([1] and [12], for example). The purpose here is to explore the 
general mathematical theory and its applications in some detail. In particular, 
two general multivariate approaches are analyzed that are relatively easy to 
apply, yet provide a clearer understanding of the yield curve risks inherent 
in the portfolio being analyzed. 

Common to both approaches is a discrete representation of a yield curve. 
Although this curve is usually visualized as a continuous function, in practice 
it is typically generated by yield values at well-defined pivotal points. These 
"yield curve drivers" usually correspond to semiannual yields at the actively 
traded commercial paper, note, and bond maturities. For example, one might 
base a yield curve on observed market yields at maturities of 0.25, 0'.5, 1, 
2, 3, 4, 5, 7, 10, 20, and 30 years. Given these observed yields, the re- 
mainder of the yield curve is then generated by interpolation. Consequently, 
these other yields are functionally dependent on the observed values. That 
is, the yield curve continuum is in practice equivalent to an m-point "vector" 
of observed variables. Naturally, other discretizations are possible in theory, 
and many are common in practice. 

Price functions can therefore be modeled in terms of these m external 
variables. The actual units of these observed yields are irrelevant for our 
purposes, as is their basis. Semiannual bond yields are as usable as effective 
spot rates. All that is assumed for these models is that the price function of 
the portfolio can be evaluated based on the yield variables used. Whether 
this price calculation is performed directly, such as by taking the present 
value of fixed cash flows, or with an option-pricing or other model is again 
not important for our purposes. 

Given this m-point representation, two duration approaches are developed. 
The "directional duration" approach models yield curve shifts in terms of 
an arbitrary direction vector N. That is, the initial yield curve vector, i o, is 
modeled as moving Ai units in the direction of N. The price function, 
P(io + A/N), viewed as a function of ~ / ,  then reflects the price sensitivity 
in this direction. Of course, when N =  (1, 1 . . . . .  1), the parallel shift vector, 
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this directional duration analysis reduces to the classical modified duration 
model. 

A closely related model is also developed using a "partial duration" 
calculus. Here, the yield curve shift, Ai, is explicitly modeled as multivar- 
iate, and the price function P(io+ Ai) is analyzed in terms of its partial 
derivatives. 

To motivate the use of these multivariate models, a simple example is 
analyzed using the traditional one-variable approach. This example reflects 
positive and negative cash flows, as is usually the case for the surplus or 
net worth portfolio. For example, a duration-matching program that uses a 
"barbell" or "reverse barbell" strategy (that is, intermediate liabilities funded 
by long and short assets, or the reverse) always produces a net worth position 
with " long"  and "short" net positions at various points of the yield curve. 
In such a case, the traditional modified duration measure provides useful 
information about parallel yield curve shifts, as expected. However, non- 
parallel shifts produce price changes that are orders of magnitude larger and/ 
or of an opposite sign compared with the price changes the modified duration 
measure would suggest. 

The multivariate duration approaches are then developed, and this example 
is revisited and shown to behave quite understandably by using these more 
general models. Section 5 then explores practical considerations and two 
applications to yield curve slope sensitivity. 

This paper has been written at a level that assumes some familiarity with 
traditional duration analysis theory and applications. However, the examples 
used throughout have been kept simple and intuitive in an attempt to make 
the general theory accessible to even beginning practitioners. The reader is 
referred to Reitano [18] for a more introductory approach to the models 
developed here. In particular, the one-variable model and its properties are 
more fully developed and exemplified. 

For a variety of applications of the multivariate models developed in this 
paper, see Reitano [19]-[24]. 

2. THE ONE-VARIABLE MODEL AND ITS LIMITATIONS 

a. Definitions 

Let P(i) denote the price function that assigns to each interest rate i_>O, 
the value of a given portfolio of future cash flows. The actual rate i can be 
defined within any system of units--annual, semiannual, continuous, and 
so on--and generally follows from the context of the problem. The future 
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cash flows can be positive or negative, fixed or dependent on i. We assume 
that P(i) is twice differentiable and has a continuous second derivative. 

Definition 2.1: 

Given a price function P(i), the (modified) duration function, D(i), is 
defined for P(i) 4= 0 as follows: 

D(i) = "~ P(O. O (2.1) 

Using the standard first-order Taylor series approximation, we have: 

P(i)/P(io) = 1 - D(io) Ai, 

where A i = i - i o .  

(2.2) 

Definition 2.2: 
Given P(i), the convexity function, C(i), is defined for P(i) 4:0 as follows: 

d2p / . 
C(i) = - ~  P(t). [] (2.3) 

Using the second-order Taylor series approximation: 

P(i)/P(io) -~ 1 - D(io) Ai + 1/2C(io) (Ai) 2. (2.4) 

In applications, there are two common approaches to using this model. 
With the yield-to-maturity approach, io is taken as the (not necessarily unique) 
value such that P(io) equals the given initial price. Equivalently, the yield 
curve is assumed to be flat with value io. P(io + Ai) then reflects the price 
when the yield to maturity is changed by Ai. The parallel-shift approach 
allows cash flows to be initially valued on the actual yield curve, producing 
the value P(0). Then P(A/) represents the price when the yield curve is 
changed "in parallel" by amount A/, that is, when each yield point is 
changed by this common amount. Unfortunately, the use of one-variable 
models is not without its limitations, as the following example demonstrates. 

Assume a simple portfolio of three fixed cash flows equal to 20, - 20 ,  
and 11, at time 0, 1, and 2 years, respectively. Also, assume that the one- 
year spot rate is 0.105 and the two-year spot rate is 0.10. For simplicity, 
such a spot rate curve will be denoted (0.105, 0.10). At these rates, the 
current price is easily calculated to be 10.99136. 
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b. Yield-to-Maturity Approach 
Using the yield-to-maturity (IrfM) approach, the price function P(i) is 

modeled: 

P(i) = 20 - 20v + l lv  2, v = (1 + i)-t.  (2.5) 

The equation P(i)=10.99136 has two solutions: 0.00445 and 0.21565. 
Choosing the smaller YTM of 0.00445, the duration of P(i) is calculated to 
be 0.172, and the convexity equals 2.308. 

Using the linear approximation in (2.2): 

P(i)/P(O.OOa45) = 1 - 0.172(i - 0.00445). (2.6) 

If the yield curve increases uniformly by 0.01 to (0.115, 0.11), the use 
of 0.01445 = 0.00445 + 0.01 for i in (2.6) would yield a very poor approx- 
imation. The actual portfolio decrease in this case is 0.0067%, while this 
linear approximation and i value would predict a decrease of 0.17%. Making 
the adjustment for the convexity value of 2.308 improves the approximation 
slightly to a predicted decrease of 0.16%, still orders of magnitude from the 
correct answer. 

The problem here is one of units: yield curve units versus YTM units. 
The proper value to use for i in (2.6) is not 0.01445, but the YTM corre- 
sponding to the yield curve (0.115, 0.11). A calculation shows this value 
to be 0.00485. That is, the 0.01 change in the yield curve corresponds to 
only a 0.0004 change in YTM, so it is obvious why the above initial ap- 
proximation was so poor. Using the new YTM in (2.6) produces a predicted 
decrease of 0.0069%, which compares quite favorably to the actual decrease 
of 0.0067%. Here, the convexity adjustment is 0 to four decimal places (in 
percentage units). 

If the larger YTM value of 0.21565 had been chosen, its negative duration 
of -0 .117  can also be interpreted as a problem of units. That is, an increase 
in spot yields corresponds to a decrease in YTMs, thereby correcting for 
both the wrong sign and the wrong order of magnitude. Specifically, the 
yield curve increase of 0.01 corresponds to a YTM change of -0.0006.  

Consequently, one could correct for the "units" problem inherent with 
the YTM approach if an appropriate conversion formula can be developed 
(Section 3c). However, the YTM approach also has the uncorrectable prob- 
lem of nonexistence of solutions. For example, the yield curve (0.109, 0.110) 
produces a price for the above cash flows of 10.8936, which is below the 
minimum value in (2.5) of 10.909. Hence, no YTM exists, nor does an 
estimable Ai. 
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c. Parallel Shift Approach 
Using the parallel shift approach, the price function for the above cash 

flows is: 

P(Ai) = 20 - 20v + l l w  z, v = (1.105 + Ai) -1, 

w = (1.10 + Ai)- ' .  (2.7) 

The equation P(z~/) = 10.99136 now has the obvious solution of Ai = 0. A 
calculation produces D(0) = 0.0136 and C(0) = 1.404. Using (2.2), P(Ai) is 
linearly approximated by: 

P(Ai)/P(O)-- 1 - 0.0136 Zk/. (2.8) 

For a parallel yield curve increase of 0.01 to (0.115, 0.11), the approxi- 
mation in (2.8) predicts a portfolio decrease of 0.0136%, which overstates 
the actual decrease of 0.0067%. The convexity adjustment improves the 
approximation from 0.0136% to 0.0066%. 

The primary limitation of the parallel shift approach is that yield curve 
shifts are often not parallel, and the above model can provide poor approx- 
imations. Consider, for example, an increase in yields from (0.105, 0.10) 
to (0.1075, 0.1075), that is, an increase of 25 basis points in the one-year 
spot rate and 75 basis points in the two-year value. Because the duration of 
the portfolio is positive at 0.0136, one expects that an increase in yields 
should decrease the portfolio value. In this case, this does indeed occur, and 
this nonparallel increase in yields causes a decrease in the portfolio value of 
0.745%. 

However, this decrease would not have been predicted from the first- or 
second-order approximations for P(~i)/P(O), choosing Ai to be equal to 25 
or 75 basis points. The best of the four approximations would predict a 
portfolio decrease of only 0.010%, a very poor estimate. It appears that for 
this nonparallel yield curve change, the portfolio is far more sensitive than 
the duration and convexity values imply. This problem has little to do with 
the size of the yield curve shift. 

For example, assume that the yield curve had increased only slightly from 
(0.105, 0.10) to (0.1052, 0.1001). This shift is positive and nearly parallel, 
so again a portfolio decrease is expected. However, the portfolio value ac- 
tually increases in this case by 0.015%. Both linear and quadratic approxi- 
mations predict decreases at both 1 and 2 basis points. The best of these 
approximations calls for a decrease of 0.0001%. As before, the sensitivity 
of the portfolio to this nonparallel shift appears much greater than D(0) and 
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C(0) imply. Unlike before, not even the sign of the sensitivity is accurately 
predicted. 

As was the case for the YTM approach, the problem here is again a 
problem of units. The above approximation formulas for P(Ai) reflect the 
sensitivity of price to parallel shifts of the yield curve of Ai. This parallel 
shift is really a vector shift of Ai, where Ai = (Ai, Ai) represents a yield 
change vector that moves the yield curve from io = (i,, iu), to io + Ai = (il + A/, 
iz+Ai).  Looked at this way, the shift vector Ai encompasses a "magni- 
tude," Ai, and a "direction," N =  (1,1): 

Ai  = Ai(1 ,1) .  (2.9) 

The various approximation formulas for P(Ai) can be interpreted as reflect- 
ing the change in price due to a change in yields of Ai, where this change 
is in the direction of the vector N = (1,1). 

Decomposing the various shifts exemplified above, we obtain: 

(0.01, 0.01) = 0.01 (1,1) (2.10a) 

(0.0025, 0.0075) = 0.0025 (1,3) (2.10b) 

(0.0002, 0.0001) = 0.0001 (2,1). (2.10c) 

Of course, these decompositions are not uniquely defined. The approxima- 
tion formulas worked well for shift (2.10a) because the direction of change 
was N=  (1,1), the direction explicitly assumed in the derivation of these 
formulas. Nonparallel shifts (2.10b and c) caused poor estimates because 
their direction vectors were not equivalent to (1,1), and for the cash flows 
underlying P(Ai), this difference in directions was very important. 

For notational convenience here, let Dtm) denote the duration as defined 
in (2.2), with the underlying direction vector N = (1,1) explicitly displayed. 
For the example above, we have Do,l) = 0.0136. In the next section, duration 
and convexity are formally defined with respect to directions other than 
(1,1). With those definitions, one can calculate: 

Do,l) = 0.0136 C(1,1 ) = 1.404 (2.11a) 

DO,3) = 3.0212 Co,3) = 34.214 (2.11b) 

D(2.~) = - 1.4767 Ctu.1) = - 6.688 (2.11c) 

These duration and convexity values reflect the price sensitivity to yield 
curve shifts in various directions. They are seen to differ greatly. 
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Once such directional durations and convexities have been defined and 
calculated, one can develop the corresponding approximation formulas, such 
as the counterpart to (2.4): 

P(io + AiN)/P(io) = 1 - DN(io) A i  + 1/2C, v(io) (Ai) 2. (2.12) 

Utilizing (2.12) and the directional values in (2.11), the following improved 
estimates are obtained: 

Shift First Order Second Order Exact Value 

(0.01, 0.01) - 0.0136% - 0.0066% - 0.0067% 
(0.0025, 0.0075) - 0.7533% - 0.7446% - 0.7447% 
(0.0002, 0.0001) +0.0148% +0.0148% +0.0148% 

(2.13) 

This multivariate approach to duration and convexity is explored in detail 
in Section 3. 

3. MULTIVARIATE MODELS 

a. Directional Durations and Convexities 

Let io = (iol,/02 . . . . .  i~)  represent an m-point yield curve on which the 
portfolio is valued. For example, the components of this yield vector could 
correspond to yield curve pivotal points, such as yields for terms: 0.25, 0.5, 
1, 2, 3, 4, 5, 7, 10, 20, and 30 years. These yield curve drivers are then 
the defining variables of the price function, since other yield values are 
typically interpolated and therefore dependent on these values. Also, let 
N = (nl . . . .  , n,,) be a direction vector, N :/: 0, and [N[ = (2:~) u2 denote its 
length. In general, vectors will be identified with column matrices when 
used in matrix calculations, with the exception of the total duration vector 
(Section 3c), which will be identified with a low matrix. 

Consider P(t)=P(io+tN),  where P(i) is a multivariate price function, 
assumed to be twice continuously differentiable. Clearly, this function de- 
fines the price of the portfolio as the initial yield curve io is shifted t units 
in the direction of N, that is, where iol is shifted tnl units, io2 is shifted mE 
units, and so on. Using a Taylor series expansion, P(t) can be approximated 
to first and second order in t as follows: 

e(t) -~ e(o) + e'(o)t ,  (3.1a) 

P(t) = P(O) + P'(O)t + 1/2P"(O)t 2. (3.1b) 
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In order to calculate the derivatives of P(t) needed in (3.1), let Pj(i) denote 
the j-th partial derivative of P(i), and Pjk(i) denote the corresponding mixed 
second-order partial derivative. We then obtain: 

P'(t) = ~njPj (io + tN), (3.2a) 

P"(t) = Z~]ninkPjk(io + tN). (3.2b) 

Evaluated at t = 0, the expressions in (3.2) are seen to be the first- and 
second-order directional derivatives of the price function P(i) evaluated at 
io; that is, 

OP ] = ~njPj(io), 
e ' ( o )  - io 

P"(O) ~-~ io ~,, ~nynkPjk(i o)- 

(3.3a) 

(3.3b) 

In anticipation of combining (3.1) and (3.3), the following definitions are 
motivated: 

Definition 3.1: 
Let P(i) be a multivariate price function and N :~ 0 a direction vector. The 

directional duration function in the direction of N, D,v(i), is defined for 
P(i) 4= 0 as follows: 

OP / p  i DuO) = -~G/ ().  []  (3.4) 
Ol'~ / 

Definition 3.2: 
Given the assumptions of Definition 3.1, the directional convexity function 

in the direction of N, C,v(i), is defined for P(i) 4:0 as follows: 
asp / . 

cN(i) = [ ]  (3.5) 

Substituting (3.3) into (3.1), the following counterparts to (2.2) and (2.4) 
are produced: 

P(io + AiN)/P(io) = 1 - Du(io) Ai, (3.6) 

P(io + AiN)/P(io) = 1 - D,v(io) Ai + 1/2CN(io) (Ai) 2. (3.7) 
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As an example, consider the price function in (2.7) explicitly expressed 
as a multivariate function: 

P(il,i2) = 20 - 20v + l lw  2, (3.8) 

where v = ( l + i l )  -1, w = ( l + i 2 )  -1. The various partial derivatives of 
P(il, i2) are easily calculated to be" 

P~(il,i2) = 2Ov2; P 2 ( i l , i 2 ) = - 2 2 w  3 (3.9a) 

P~(i~,i2) = -40v3; P22(i~,i2) -- 66w4; P~2 = P2~ - 0. (3.9b) 

Evaluating these derivatives on io -- (0.105, 0.10) and performing the nec- 
essary weighted summations in (3.3), the directional durations and convex- 
ities displayed in (2.11) can be readily verified. 

Before continuing, note that: 
(1) If N = (1, ... , 1), the parallel shift direction vector, D~(io) equals the 

traditional value of D(0), and C~io)= C(0), where these latter values 
are calculated utilizing the parallel shift approach. Below, these tra- 
ditional values will also be denoted D(io) and COo ). 

(2) Formulas (3.6) and (3.7) are consistent even though there are infinitely 
many ways to specify the direction vector N. For example, given N, 
let N ' =  1/2N. The corresponding shift magnitudes satisfy: A i ' =  2Ai. 
The estimates in (3.6) and (3.7) will then be the same for N and N', 
since D~,= 1/2D~¢, and C~,= 1/4CN by (3.3). 

To be uniquely defined, one can normalize the model by requiring 
the direction vector N to satisfy INI--1. The magnitude variable, Ai, 
is then uniquely defined as the length of the shift vector AiN. However, 
regardless of whether N is normalized, consistent estimates are produced. 

(3) A variety of the duration measures developed in the past and referenced 
in the introduction are special cases of directional durations, because 
they reflect explicit models of assumed yield curve shifts. 

In addition, "key rate" durations of Ho [12] are also directional 
durations. In this model, the yield curve components in io are spot 
rates, often on a monthly basis. A collection of "pyramid" direction 
vectors, Nj, are then defined, such as: 

Nj = (0 . . . . .  0, 1/2, 1, 2/3, 1/3, 0, 0 ...). 

The actual spot rate corresponding to the component 1 in Nj is the "key 
rate," and the various key rate durations are equivalent to the direc- 
tional durations D,v(io). 
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The collection of pyramid direction vectors used in the Ho model 
form a "partition" of the parallel shift vector: 

£ N i = (1, 1, .., 1). 

In Section 4a, this property will be seen to have an important corollary. 

Proposition 1: 
Let P(i) be a multivariate price function and N a direction vector with 

P(io+AiN):/:0 for IAiI<-K. Then 

P(i°+AiN)/P(i°)'~ e x p [  - iDjv ( i °  + o  tN)dt], (3.10) 

for I,xil<_K. 
Proof: Define f(t) = lnlP(io + tN)]. Then -f'(t) =D,v(io + tN), which can 

be integrated and exponentiated to produce (3.10). []  

From (3.10), the following first-order exponential approximation is 
transparent: 

P(io + ~/N)/P(io) ~ exp[-D,v(io) Ai]. (3.11) 

To develop a second-order exponential formula, we must expand the ex- 
ponent function in (3.10) as a Taylor series in Ai. To do this, let: 

Ai 

f(Ai) = J DN (io + tN)dt. (3.12) 
o 

We then have: 

f '(Ai) = DN(io + A/N), (3.13) 
f"(Ai) = D~io + A/N) - CN(io + A/N). 

The second-derivative formula is readily verified by taking directional de- 
rivatives of the identity, aPDN = -DjvP. 

Approximating f(Ai) by a second-order Taylor series about Ai = 0 and 
substituting into (3.10), we obtain: 

P(io + A,Tq)/P(io) --- exp{-D~io) A/ + 1/2 [CN(io) - DN2(io)](A/)2}. (3.14) 
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b. Properties of the Directional Duration Approximations 

In this section, properties of the various approximations above are ex- 
plored. We begin with an error analysis of the first-order estimates. 

Proposition 2: 

Let P(i) be a price function which is nonzero at i o. Then for Ai sufficiently 
small: 

exp[--DN(io) Ai] < P(i)/P(io) C > D 2 

1 - ON(io) Ai < P(i)/P(io) < exp[-D~io)  Ai] 0 < C < D 2 (3.15) 

e(i)/P(io) < 1 - D,,(io) A i  C < 0 

where i = io + A/N, D =D~(io), and C = C~(io). 
Proof: The bounds in (3.15) correspond to the linear and first-order ex- 

ponential approximations in (3.6) and (3.11). For small Ai, the sign of the 
error in these first-order approximations equals the sign of the second-order 
terms in the respective expansions in (3.7) and (3.14). For the linear ap- 
proximation, this term has the sign of C~io), while for the exponential 
approximation, this term has the sign of C~io) -D~(io). The bounds in (3.15) 
follow from this and the observation that 1 +x_<e ~ for all x. I-1 

Next, we investigate the conditions under which the various approxima- 
tions for P(i)/P(io) are exact. Using the identity in Proposition 1, it is natural 
to expect that such exactness is related to the behavior of D(i) near io. 

Proposition 3: 

The various approximations for P(io + AiN)/P(io) will be exact if and only 
if DN(i) assumes one of the following functional forms: 

Exponential Approximation Model for D~i) 

(3.11) 1st Order D 
(3.14) 2nd Order D + [D 2 - C] Ai 

Polynomial Approximation Model for D~i) 

(3.6) 1st Order D/(1 - DAi) 
(3.7) 2nd Order (D - CA/)/(1 - D A i  + 1/2C(Ai) 2) 

where i = io + A/N, D =D~io), and C = C~io). 

(3.16) 
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Proof: The models for DN(i) in (3.16) can be derived by equating the 
exact value of P(io+ AiN)/P(io) as given in (3.10) to the respective approx- 
imations, and solving for DN(i). Although integral equations are encountered, 
these are easily solved by first taking logarithms, then differentiating with 
respect to Ai. []  

Note that the underlying model for D(i) in (3.6) can be counter-intuitive. 
A calculation shows that this function is an increasing function of Ai, while 
DN(i) is an increasing function locally only when it has a positive directional 
derivative. Based on (3.13), this occurs only when D~io) exceeds CN(io). 
While somewhat more complicated, the model for D,v(i) underlying (3.7) 
does not have this potential problem, in that it too will be an increasing 
function locally only when D~(io) exceeds CN(io). 

AS a final investigation, it is next shown that each of the exponential 
relationships in (3.10), (3.11), and (3.14) equals the limiting case of apply- 
ing the linear approximation in (3.6) to ever finer subdivisions of the segment 
from io to i. The formula that results depends on the assumption made about 
the values of DN(i) in this approximation. 

To this end, let i o and i = io + AiN be given and define a subdivision of 
the corresponding segment by: 

ij = i o + J-" A/N, j = 0, n. (3.17) 
n ° " ~  

Clearly, we have that: 

e(i) _ f i  P(ij) 
P(io) - jo ,  P(ij_l)" (3 .18)  

Applying the linear approximation in (3.6) to each term in this product, let: 

K,, = f i  [1 - D,v(ij_l) (Ai/n)]. (3.19) 
j - I  

Proposition 4: 

Let Kn be defined as in (3.19) above. Then: 

[i ] lim(Kn) = exp - DN(io + tN)dt , (3.20) 

as n - ~ .  
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Proof: Because P(i) is twice continuously differentiable by assumption, 
D~v(i) is bounded on the segment [io,i]. Hence, an initial value of no can be 
chosen so that for n>-no, K, equals the product of positive factors. For such 
an n, In(K,) is therefore well defined. Because In(x) is a continuous function, 
as is its inverse e',  K,, will converge if and only if ln(K,) converges. 

NOW, 

ln(K.) = ~ ln[1 - D~ij_l) (A//n)] 
j=l (3.21) 

= - - ~  D~iy_,) (Ai/n) + tO(l/n) 
j=l  

Taking limits in (3.21), we see that the summation converges to the Riemann 
integral of D#(i) as in (3.20). []  

As is easily seen, if D~(ij_l) in (3.19) is set equal to D,v(io), or approxi- 
mated linearly by D,v(io) + [D2(io) - C ~ i o ) ] ( j -  1) Ai/n, the corresponding 
limits are equal to the approximations in (3.11) and (3.14), respectively. 

c. Partial Durations and Convexities 

As shown in Section 3a, the classical duration and convexity analysis of 
Section 2 can be readily generalized to include yield curve shifts that are 
not parallel. An alternative model would be one that more explicitly rec- 
ognizes the multivariate nature of yield curve changes, that is, a model that 
estimates P(io + Ai) directly, where io is the initial yield curve vector and 
Ai = (A/1 . . . . .  A/m) is a yield change vector. 

To this end, consider the following m-dimensional versions of the first- 
and second-order Taylor series: 

P(io + A i ) =  P(io) + ~Pj(io)A/y, (3.22a) 

P(io + Ai) = P(io) + ~,Pj(io) Aij + 1/2X~Pjk(io ) Aij Aik. (3.22b) 

These approximations naturally motivate the following definitions: 

Definition 3.3: 
Given a multivariate price function P(i), thej-th partial duration function, 

denoted Dj(i), is defined for P(i) #: 0 as follows: 

Dj(i) = -Pj(i)/P(i), j = i ,  ..., m. []  





MULTIVARIATE DURATION ANALYSIS 351 

because of the corresponding property for mixed partial derivatives. Con- 
sequently, C(i) is a symmetric matrix in this case, that is, 

C(i) = C(i) r. (3.32) 

Again returning to the example in (3.8) with io = (0.105, 0.10), the partial 
derivatives in (3.9) imply: 

D~(io) = - 1.4902, D2(io) = 1.5038, (3.33a) 

Cl1(io) = -2.697, C22(io) = 4.101, C12 = C2~ = 0. (3.33b) 

Hence, the first-order approximation in (3.27) becomes: 

P(io + Ai) = 10.99136(1 + 1.4902 Ail - 1.5038 Ai2). (3.34) 

Noting the functional form of (3.34), it is little wonder that for nonparallel 
yield curve shifts, Ail 4: Ai2, this price function changed in ways not antic- 
ipated by the traditional approximation (2.8). Namely, this price function is 
relatively sensitive to movements in Ail and A/2 separately. However, be- 
cause these sensitivities are of opposite sign and similar magnitude, the 
traditional approximation, which assumes A/~ = A/2, produces an apparent 
sensitivity of only 0.0136. Similarly, the traditional convexity value of 1.404 
disguises the greater sensitivities implied by the partial convexities in (3.33b). 

In this example, the partial durations are seen to sum to the modified 
duration, while the partial convexities sum to the traditional convexity value. 
The following proposition formalizes this result: 

Proposition 5: 
Let io be a yield curve vector and D(io) and C(io) denote the duration and 

convexity values calculated using the "parallel shift" approach. Then: 

D(io) = ~ Dj(io), (3.35) 

COo) = ~ C~k(io). (3.36) 

Proof: Let M =  (1, ..., 1), the parallel shift direction vector and define 
the price function P(i)=P(io +iM). Then: 

P'(i) = ~ Pj(io + t2Vl), (3.37a) 

P"(i) = ~ Pjk(io + iM). (3.37b) 

Evaluating (3.37) at i = 0 and dividing by P(0)=P(io) completes the proof. 
[]  
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Turning next to the exponential models, we have the following: 

Proposi t ion 6." 

Let r(t) be a smooth parametrization of yield curve vectors defined on 
[0, 1] so that r(0) = io, r(1) = io + Ai. Also, assume that P[r(t)] 4 = 0 for 0-<t-  < 1. 
Then: 

1 

P(i o + Ai)/P(io) = exp - D[r( t)] .  r ' ( t )dt  , (3.38) 

where r'(t) denotes the ordinary derivative of this vector valued function. 
Proof:  Define f ( t )=lnlP[r( t )]  I. A calculation shows that f ' ( t ) =  

-D[r(t)]-r'(t), which can be integrated and exponentiated to complete the 
proof. [ ]  

In the special case in which r(t) is linear, r(t) = io + t Ai, the more general 
formula in (3.38) is easily seen to reduce to the directional derivative coun- 
terpart in (3.10), with Ai  here corresponding to AiN above. 

From Proposition 6, the following approximation results: 

P(io + Ai)/e(io) -- exp[-D(io) ' r ' (0)] .  (3.39) 

To develop the second-order exponential approximation, partial deriva- 
tives of the various partial durations are required. Analogous to (3.13), we 
have: 

= D k D  i - Cjk, (3.40) 
Oik 

which is derived by differentiating the identity P j =  - P D i ,  with respect to ik. 
Proceeding as before, one can expand the exponent function in (3.38) as a one- 
variable Taylor series by replacing the upper limit of integration with s, say, 
then substituting s = 1 into the second-order Taylor expansion to obtain: 

P(io + Ai)/P(io) = exp { -  D(io)-r'(0) 

+ 1/2[r'(0)r[C(io) - D(io)rD(io)]r'(0) - D(io)'r"(0)]}. (3.41) 
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In the special case in which r(t) is linear, r ' ( t )=Ai  and r"(0)=0. Con- 
sequently, (3.39) and (3.41) reduce to the directional derivative counterparts 
in (3.11) and (3.14), respectively. 

d. YTM Approach Revisited 

As before, let io be a yield curve vector, and Io the equivalent YTM so 
that P(io) =P(Io). Expanding into the respective first-order Taylor series, 

P(io + A i ) - - P ( i o ) [ 1  - D(io) 'Ai] ,  (3.42a) 

P(Io + AI) -~ P(Io) [1 - D(Io) AI]. (3.42b) 

Equating these values, we can solve for A/when D(lo) 4: O, obtaining, 

A / - -  D(io)" Ai (3.43) 
D(lo) 

When Ai is a parallel shift, the numerator of (3.43) reduces to D(io)Ai since 
D(io) = ZDj(io) by Proposition 5. 

As an example, recall the price function (2.5) of Section 2b, where the 
initial yield curve, io = (0.105, 0.10), was seen to be equivalent to the yield 
to maturity, Io = 0.00445; that is, both produced an initial price of 10.99136. 
Consider first the parallel yield curve shift of 0.01 exemplified there. To 
apply (3.43), recall that D(Io) = 0.172 from (2.6), while D(io) = 0.0136 from 
(2.8). We then obtain A/--0.0008, compared with the exact value of 0.0004. 
Consider next the small nonparallel shift, Ai = (0.0005, 0.001). Using (3.43) 
and the partial durations in (3.33), one approximates the associated change 
in the yield to maturity, A/=0.00442. Estimating A/directly proves this 
result to be a little understated, in that A / =  0.00455. 

By expanding the Taylor series in (3.42) to include second-order terms, 
A/can  be estimated using the quadratic formula: 

A I  = {D - ~/[D z - 2CD" Ai + c A i r c A i ] } / C ,  (3.44) 

where D =D(Io), C = C(lo), D = D(io), and C = COo). This formula simplifies 
greatly for parallel shifts since D. Ai =D(io)A/, and AircAi  =C(io)(Ai) 2. 
In (3.44), the negative square root is chosen to satisfy the initial condition 
that A / =  0 when Ai = 0. 

Using (3.44), the parallel shift of 0.01 is seen to be equivalent to a YTM 
shift of 0.0004, which is exact to four decimal places. For the nonparallel 
shift, Ai = (0.0005, 0.001), the estimate for A / i s  also improved compared 
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with the linear estimate, reproducing the exact value of A / =  0.00455 to five 
decimal places. Note, however, that it is possible to obtain a negative quan- 
tity within the square root in (3.44), for example, the shift Ai = (0.005, 
0.01). In such a case, there is no real number, A/, for which the one-variable 
second-order Taylor series equals the multivariate series reflecting Ai, D(i), 
and C(i). 

e. Parallel Shift Approach Revisited 
Consider next the parallel shift analysis of Section 2c. Recall that it was 

shown that nonparallel shifts could be accommodated by redefining duration 
and convexity to reflect these nonparallel yield curve directions. Another 
interpretation is possible whereby nonparallel shifts are first translated to 
"equivalent parallel shifts," and the traditional Section 2a formulas are then 
applied. This notion is more fully explored in Section 4b and seen to provide 
an intuitive basis for new yield curve risk exposure measures. 

To this end, the first-order expansion of P(io+ Ai) in (3.42a) must be 
used twice, once for the general Ai and once for the parallel shift vector, 
Ai = AiM, where M =  (1 . . . .  , 1). Equating these approximations, we can 
solve for Ai when D(io):/: 0, obtaining: 

Ai = D(io)" Ai 
D(io) (3.45) 

Unlike the YTM counterpart formula in (3.43), here Ai is seen to be a 
weighted average of the various component Aij values since XDj(io)=D(io). 

Using the partial durations in (3.33a), we can apply (3.45) to the non- 
parallel shifts in (2.10), to obtain: 

Ai "Equivalent" Ai 

(0.0025, 0.0075) 0.5554 
(0.0002, 0.0001) -0 .0109 

Interpreted this way, we see that the traditional formulas can provide poor 
estimates for nonparallel shifts because the units of the equivalent parallel 
shift, Ai, can be orders of magnitude larger, and/or of a different sign, than 
may be inferred from the various nonparallel shift values of Aij. This cannot 
happen if all Dj(io) values have the same sign. In such a case, the equivalent 
Ai will be within the range of Aij values (Proposition 13). 

A second-order counterpart to (3.45) can also be developed. A calculation 
shows it to be identical to (3.44), only with D =D(io) and C = COo ). 
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4. ADDITIONAL PROPERTIES OF MULTIVARIATE MODELS 

a. Duration and Convexity Relationships 
In this section, relationships between the various duration and convexity 

measures defined in the previous sections are investigated. 

Proposition 7: 
Let Pl(i)and P2(i) be price functions with corresponding total duration 

vectors Dr(i), D2(i), and total convexity matrices C~(i) and C2(i). Let 
e(i) =e,(i) +e2(i). Then for e(io) 4: 0, 

D(io) = [P~(io)D~(io) + P2(io)D2(io)]/P(io), (4.1) 

COo ) = [P~(io)C~(io) + P2(io)C2(io)]/P(io). (4.2) 

Proof: As is the case for the traditional values, this result follows directly 
from the additive property of derivatives. [ ]  

Proposition 8: 
Let N:~0 be a direction vector. Then: 

D#(io) = N.D(io), (4.3) 

C~io) = NrC(io)N. (4.4) 

Proof: Both formulas follow directly from (3.3) and the definitions of the 
various duration and convexity values. []  

A simple corollary to Proposition 8 is possible concerning the "key rate" 
durations of Ho [12]. As noted in Section 3a, the collection of direction 
vectors, Nj, form a partition of the parallel shift vector, (1, 1 . . . .  , 1). 
Consequently, key rate durations sum to the traditional duration measure 
since: 

DN(io) = ~ Nj'D(io) 
= ( 1 ,  . . . ,  1 ) ' V ( i o )  

= D(io), 

by Proposition 5. 
This result has been independently derived by Ho. 
The following proposition summarizes a number of earlier results regard- 

ing derivatives of the various duration functions. 
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Proposition 9: 
Let N :# 0 be a direction vector. Then: 

dD(io) = D2(io) - C(io), (4.5) 

0 
0--N DN(io) = D~(io) - C~io), (4.6) 

0 
O-~s Dk(io) = Os(io) Dk(io) - Csk(io), (4.7) 

a 
O(io) = D(io) Ds(io ) - ~Cs~(io ). (4.8) 

Proof: Relationship (4.5) is derived by differentiating the identity, 
P'(i)=-P(i)D(i),  solving for D'(i) and substituting i=io. Similarly, (4.6) 
is derived from the identity, P.,v(i)= -P(i)D~i),  where P~i) denotes the 
directional derivative of P(i). Here, however, it is the directional derivatives 
that are taken. 

Differentiating the identity, Pk(i)= --P(i)Dk(i) with respect to i s leads to 
(4.7), while summing this result with respect to k and using (3.35) produces 
(4.8). []  

Turning next to bounds for directional derivatives, we have: 

Proposition 10: 
Let P(i) be a price function and D(io) its total duration vector evaluated 

on io. Then for all direction vectors, N, 

-[D(io)[ [N[ < D~io) -< [D(io)[ [N[, (4.9) 
where ] I denotes the length of the given vectors. Further, the upper bound 
in (4.9) is achieved for all positive multiples of the unit vector: 

No = D(io) /ID(io)[, (4.10) 

while the lower bound is achieved for all negative multiples. 
Proof: This proposition is an immediate consequence of the Cauchy-Schwarz 

inequality, since by Proposition 8, Du(io) is an inner product. Specifically, 
the absolute value of an inner product is less than or equal to the product of 
the vectors' lengths, with equality if and only if the vectors are parallel. []  
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Note that by Proposition 10, if Dj(io)=D(io)/m for all j ,  the corresponding 
price function is most sensitive to parallel yield curve shifts, since then 
No = (1, 1 . . . .  ,1) .  Proposition 11 shows that given D(io), the range of price 
sensitivity displayed in (4.9) is minimized in this case. 

Proposition 11: 
Let D(io) be a total duration vector with associated duration D(io). Then: 

ID(io)l > ID(io)l/V , (4.11) 
where m is the dimension of D(io). Further, the lower bound in (4.11) is 
achieved if and only if D~(io)=D(io)/m, for all j .  

Proof: Although this is a familiar calculus result, a simple noncalculus 
proof is possible. Changing notation, let A be the vector with aj=D(io)/m, 
for all j ,  and let B also have the property that Zbj=D(io). Then C = B - A  
satisfies EG=0, so IBIS= IAI + ICl Hence, since Icl ___0, IBI is minimized 
when C = 0. []  

Bounds for directional convexities are considered next. While the follow- 
ing result and proof reflect known extremal properties of quadratic forms 
and use well-known techniques, they are included here for completeness. 

Proposition 12: 
Let P(i) be a price function and C(io) its total convexity matrix evaluated 

on io. Then: 

X,INI 2 _< cu(io) _< kmlN] 2, (4.12) 

where ~.1 and k,, are the smallest and largest eigenvalues of C(io), respec- 
tively. Further, the bounds in (4.12) are achieved for all multiples of the 
associated eigenvectors, N1 and N,,. 

Proof: From (4.4), it is clear that: 

C,u(io) = a2Cu(io), (4.13) 

and hence (4.12) need only be established for INI = 1. By (3.32), C(io) is a 
symmetric matrix, so all eigenvalues are real numbers. In addition, C(io) 
must have m independent unit eigenvectors, N~, ..., N,,,, which are mutually 
orthogonal and in which basis C(io) is a diagonal matrix. 
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Let P be the change of basis matrix with the Nj as column vectors. For 
convenience, we enumerate the eigenvectors so that N1 is associated with 
the smallest eigenvalue, and Nm the largest. Because the columns of P are 
mutually orthogonal, P - ' =  pr,  where pr  is the transpose of P. 

Changing coordinates, let N = Px, so the components of x equal the co- 
ordinates of N in the {Nj} basis. From (4.4), we obtain by substitution, 
recalling that (px)r= xrpr: 

C~(io) = xrprC(io)PX = ~ X,x 2, (4.14) 
i = l  

since p r c p  is diagonal as noted above. In addition, expressing IN] 2 as NrN, 
the constraint INI ~ - 1  =0  becomes: 

I N [  2 - 1 = xrprpx - 1 = ~ x~ 2 - 1 = 0. 
i=1 

(4.15) 

Substituting x ] = 1 - ~ x 2 into (4.14), we obtain: 
i=2 

C,v(io) = hi + Z (h, - k , )x  2. (4.16) 
i=2 

Because the summation in (4.16) is non-negative, the minimum CN(io) is 
obtained when xi = 0 for i_>2, and x, = 1. That is, Cu(io) has minimum value 
h,, when x=(1 ,  0, ..., 0), and hence N = P x = N , .  

m-1 

Substituting x 2 = 1 - ~ x 2, an identical argument completes the proof. []  
i=l  

From Proposition 12, it is clear that the directional convexities of a price 
function need not have the same sign. In particular, all Cu(io) will be positive 
only when all hj are positive, that is, only when COo ) is a positive definite 
matrix. Similarly, all Cu(io) will be negative only when COo ) is a negative 
definite matrix. In general, C,v(io) will take on both signs for different values 
of N. 

The simple example in (3.8) has directional convexities of both signs. By 
(3.33), C(io) is a diagonal matrix. Consequently, its eigenvalues equal the 
respective diagonal elements, and we have by (4.12): 

-2 .697  INI _< CN(io) < 4.101 INI (4.17) 
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with corresponding unit eigenvectors: N1 = (1,0) and Nm = N2 = (0,1). 
This observation concerning the sign of C,v(io) is important because it is 

often tacitly assumed that "positive convexity," or CN(io)>0 when N =  
(1 . . . . .  1), is always good, and more is always better. See Reitano [22] for 
a more detailed analysis of this issue. 

A fast way to estimate the potential size of the interval in (4.12) is to 
calculate the "norm" of the total convexity matrix, IC(io)l, using any sub- 
multiplicative norm. This is because Ihjl -< IC(io)l for all eigenvalues hi. 
Consequently, (4.12) can be rewritten: 

IC,,(io)l-< IC(io)l INI 2. (4.12)' 
Though not a sharp estimate like that produced by the interval in (4.12), 

the above interval is easily calculated. For example, one possible norm is: 

IC(io)l = max y. ICdio)l. 
j i 

For the above example, we see from (3.33) that [C(io)l = 4.101 using this 
norm, and (4.12)' simply symmetrizes the interval in (4.17). In general, 
however, the estimates may differ significantly, especially when (4.12) is 
highly asymmetric. 

b. Durational Leverage and the Durational Multiplier 
In Section 3e above, the notion of an equivalent parallel shift was intro- 

duced in (3.45). Here, we formalize this concept and investigate its properties. 

Definition 4.1: 
Let P(i) be a price function and io a yield curve vector so that D(io) 4= 0. 

For a yield curve shift Ai, the equivalent parallel shift, Ai ~, is defined: 

A/~ = D(i°)'Ai []  (4.18) 
D(io) " 

Clearly, A/e is a function of both io and Ai, though for notational con- 
venience, this dependence will usually be suppressed. The relationship be- 
tween Ai ~ and the length of Ai is of immediate importance. As noted in 
Section 3e, we have the following: 
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Proposition 13: 

Assume D(io) ¢ 0 and all Dj(io) have the same sign. Then for all Ai: 

min(Aij) _< Ai E < max(A/j). (4.19) 

Proof: By (4.18), Aie = Y.hiAi j where Zhj = 1. By assumption, all hj satisfy 
0_<hj_<l, implying (4.19). []  

In the more general case, the relationship between Aie and Ai is somewhat 
more complicated. To this end, we have: 

Definition 4. 2: 
Given io and Ai, the directional leverage of P(i) in the direction of Ai, 

denoted L(Ai), is defined: 
A/Z 

L(Ai) = JAil" (4.20) 

The durational leverage of P(i) at io, denoted L(io), is defined: 

L(io) = max L (Ai). [ ]  (4.21) 

As for Ai e, the dependence of L(Ai) on io will usually be suppressed. 
From Definition 4.1, we see that L(Ai) is truly a function of direction alone, 
since for any h>0, L(hAi)=L(Ai). Consequently, L(Ai) achieves all its 
values on the unit sphere, IAil =1. Since L(Ai) is clearly a continuous 
function, it attains a maximum on this sphere and L(io) is consequently well 
defined. Because L(Ai) is an odd function, that is, L ( - A i ) =  -L(Ai) ,  we 
have that: 

- L ( i o )  IAil - Ai~ _< L( io)IAi l  . (4.22) 

Proposition 14: 
Given the definition above, we have: 

-ID(i°)----!l < L(Ai) _< [D(io)___! (4.23) 
[D(io)l - [D(io)l" 

Further, the upper bound in (4.23) is achieved if and only if Ai =cD(io), 
where sign c = sign D(io). 
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Proof: This result is an immediate consequence of (4.18) and Proposition 
10, since D(io)x Ai =Dtu(io) by Proposition 8. []  

Corollary: 

ID(io)l V1 
L(io) = lD(io) r 

From the above analysis we see that the total duration vector D(io) provides 
the direction in which L(Ai) is maximized. Further, its length, in units of 
D(io), quantifies the relationship between Aie and Inil  . Consequently, if 
ID(io)l is large relative to lD(io)l; that is, if L(io) is large, even small non- 
parallel shifts have the potential to produce large equivalent parallel shifts 
and hence large changes in price. 

Proposition 15: 

For any price function, P(i), 

L(io) >- 1/V~, (4.24) 

with equality if and only if Dy(io)=D(io)/m for allj. 
Further, if all Dj(io) have the same sign, 

L(io) -< 1. (4.25) 

Proof: Inequality (4.24) follows'from the above corollary and Proposition 
11. For (4.25), note that: 

L(io) 2 =  ED~./(EDy) 2 

= ED~./(ED? + 2 • Di Dj), 
i<.i 

which is clearly less than or equal to 1 if all Dj have the same sign. []  

For the example in (3.8), we have from (3.33a) that L(io)= 155.7. That 
is, given any restriction on IAil, one can find yield curve shifts of that length 
so that A/E= -_-155.7[Ai[. By Proposition 14, all such critical shifts are pro- 
portional to D(io) = ( -  1.4902, 1.5038). For example, the shift Ai = ( - 0.00070, 
0.00071) has a length equal to about 10 bp, with AiE= 0.155. Changing the 
signs in Ai produces Ai E = -0.155. 
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The leverage concept above has intuitive appeal, because it provides a 
method of relating the sizes of nonparallel shifts with those of the corre- 
sponding equivalent parallel shifts. The basis of this correspondence is that 
the durational effect in (2.4) and (3.27) is the same for each shift. Note, 
however, that the units used to measure the shifts are different. For Ai, the 
unit basis is vector length, IAil, while for Ai E, the unit basis equals the 
amount of the parallel displacement. In particular, if Ai e is the parallel shift 
vector corresponding to Ai E, we have I iEI--x/ lAi  I. This difference in 
units causes the value of L(io) and the inequalities in (4.22) to disguise 
somewhat the potential for yield curve risk. 

We proceed to quantify yield curve risk in a manner that overcomes this 
difference in units. Given a yield curve shift Ai, we seek a relationship 
between its durational effect and that produced by a parallel shift of the same 
length and orientation. By "orientation," we mean as given by the sign of 
Ai E. So if Aie>0, we compare the durational effect of Ai to that of a 
positive parallel shift of the same length, and conversely. 

To this end, the durational effect of Ai is D(io)'Ai, while the durational 
effect of the parallel shift of the same length and orientation is ___D(io)lAi[/ 
V"~. Here, we choose the sign consistent with the sign of Ai e. The "di- 
rectional multiplier" is defined as the ratio of these durational effects. By 
the above orientation convention, this ratio is always positive, so absolute 
values are used to simplify notation. 

Definition 4.3: 
Let P(i) be a price function and io a yield vector so that D(io) ¢ O. For a 

yield curve shift Ai, the directional multiplier of P(i) in the direction of Ai, 
denoted M(Ai), is defined: 

V lD(io) . il 
MCAi) = ]D(io)] I i[ " (4.26) 

The durational multiplier, denoted MOo ), is defined: 

MOo)= max M(Ai). I-1 

As was the case for L(Ai), M(Ai) is a function of direction alone since 
M(XAi)=M(Ai) for h>0.  Moreover, M(Ai) is an even function in that 
M ( - A i )  =M(Ai). Consequently, MOo ) is well defined, though this maxi- 
mum is achieved at two points. In addition, note that M(Ai) = V'~ IL(Ai)I, 
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and so MOo ) = ~ L(io). Consequently, the above propositions apply im- 
mediately to M(Ai). 

Also, note that: 

M(Ai) = IAiEI/IAil, (4.28) 
where Ai e is the vector corresponding to A/e. 

For the example in (3.8), we have MOo ) = 220.2. That is, the durational 
effect of a yield curve shift can be 220 times greater than the effect of a 
parallel shift of the same length and orientation. By Proposition 14, this 
multiplier is realized when Ai equals any multiple by D(io). 

In addition to providing intuitive measures of yield curve exposure, L(Ai) 
and M(Ai) can be used to quantify an effective duration measure. To this 
end, let Ai be given, and let A/equal the value of the parallel shift of the 
same length and orientation. As noted above: 

A/ = sign (A/E) IAil/v . (4.29) 

From (3.27), we have: 

P(io + Ai)/P(io) 1 - L(Ai )D( io ) ta i l .  (4.30) 
Consequently, L(Ai)D(io) quantifies an effective duration measure in units 
of IAil, while L(io)D(io) equals the maximum effective duration in these 
units. Equivalently, 

P(io + Ai)/P(io) -- 1 - M(Ai)D(io)A/, (4.31) 

where Ai is given by (4.29). M(Ai)D(io) quantifies an effective duration 
measure in units of parallel shifts A/, while M(io)D(io) equals its maximum 
value. 

In practice, (4.31) is easier and more intuitive to use because it is a 
straightforward generalization of (2.2). This is because M(Ai) = 1 for parallel 
shifts by (4.28). Also, because M(Ai)> 0 by definition, this effective du- 
ration measure has the same sign as D(io), reflecting only the muliplier effect 
of nonparallel shifts of the same length and orientation as Ai. In this light, 
M(io) is indeed a durational multiplier in that, in units of parallel shifts Ai, 
the effective duration can be as great as M(io)D(io). Consequently, M(io)D(io) 
can be viewed as a proxy for potential yield curve risk. 
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c. Compound Duration Functions 

In this section, the concept of the duration of duration is defined and used 
to restate the second-order approximations in an intuitively natural way. 

Definition 4. 4: 

Given a directional duration function DUO), the compound directional 
duration, DNDu(i), is defined for DN0) 4= 0 as follows: 

ODN / 
DNDN(i) = ~ DUO). (4.32) 

When N = (1, 1, ..., 1), the parallel shift vector, this compound duration is 
called the duration of duration and denoted DD(i). [ ]  

Definition 4.5: 
Given a partial duration function, Dk(i), the compound jk-th partial du- 

ration, DjDk(i), is defined for Dk(i):~ 0 as follows: 0o / 
DjDk(i) = Dk(I ). [ ]  (4.33) 

From Proposition 9: 

DD(i) = C(i)/DCi) - D(i), (4.34) 

DNDu(i) = CN(i)/Du(i) - DA,(i), (4.35) 

DjDK(i) = Cjk(i)/Dk(i) -- Dj(i). (4.36) 

Substituting the first-order Taylor series approximation: 

DN(io + tN) = DN(iO) [1 -- D~DN(io)t] (4.37) 

into the exponential identity (3.10) and integrating with respect to t produces: 

e(io + AiN)/e(io) -- exp {-AiDu(io) [1 - DNDu(io) Ai/2]}. (4.38) 

A simple calculation shows that (4.38) is equivalent to the second-order 
exponential approximation in (3.14). Note, however, that this approximation 
can be interpreted as the corresponding first-order approximation in (3.11) 
with an adjusted directional duration value. The adjustment corresponds to 
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a yield change of Ai/2 and resembles the classical linear duration approxi- 
mation (2.2), using DuD~io). In particular, from (4.37) this adjusted direc- 
tional duration equals an approximation for Du(io + NAi/2). 

For example, consider the price function in (2.7) and the parallel shift of 
0.01 in (2.10a). Letting N=(1,1), we have from (2.11a) that DN(io) =0.0136, 
and DNDu(io)= 103.2. For Ai =0.01, the adjusted duration equals 0.0066, 
which when used in (4.38) reproduces the second-order estimate in (2.13). 
For the nonparallel shifts, N = (1,3) and N = (2,1), the corresponding values 
of DNDN(io) are easily calculated to be 8.3 and 6.0, respectively. 

By definition, the second-order approximation in (3.7) can also be restated: 

P(io + A/N)/P(io) -- 1 - A/Ou(io) 

× {1 - [D~Du(io) + DN(io)] Ai/2} (4.39) 

Again, this approximation utilizes an adjusted duration value, where the 
adjustment reflects (2.2). Here, however, D,vD~(io) +DN(io) or CN(io)/DA,(io) 
is the adjusting factor. 

For the partial duration counterparts, the approximation: 

Dk(io+tAi)=Dk(io)[1-t~,D.flgk(io)Aij],j (4.40) 

can be substituted into the exponential identity (3.38), with r(t)= io +tAi,  
and integrated to obtain: 

P(io + Ai)/P(io) 

This exponential approximation is equivalent to (3.40) with r(t)= io + tAi. 
By definition, the second-order approximation in (3.28) can also be restated: 

P(io + Ai)/P(io) = 1 - ~ A/k Dk(io) 
k 
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5. APPLICATIONS 

a. Partial  Duration and Convexity Estimates 

In general, the various derivative-based definitions can be applied directly 
only when cash flows are fixed and independent of interest rates, and when 
the yield vector used reflects the corresponding spot rates. For example, 
assume a fixed vector of annual cash flows, K =  (cl, ..., c,,), and the as- 
sociated spot rate vector, i=  (il, . . . ,  ira). Naturally, the price function is 
given by: 

e(i) = ~ jv: ,  (5.1) 

where vj= (1 +ij) -1. A simple calculation produces: 

Dj(i) jcjv~+ X 
= P(i)' ( 5 . 2 )  

J(J + 1)cjv~÷2 Cjk(i) = 0, j 4: k. (5.3) 
C°(i) = P(i) ' 

These partial durations clearly sum to the modified duration, and the 
partial convexities sum to the traditional convexity value. In addition, be- 
cause C(i) is a diagonal matrix, the second-order formulas simplify. For 
example, (3.28) reduces to: 

P(i + Ai)/P(i) = 1 - EDj(i)Aij + 1/2ECz(i)(Aij) 2. (5.4) 

In the real world, however, many financial models contain options that 
make cash flows interest-sensitive. Assets can be prepaid (that is, "called") 
at the option of the borrower for a fixed price. Liability streams associated 
with guaranteed interest contracts (GICs), single-premium deferred annuities 
(SPDAs), savings accounts, and so on often contain put options (that is, for 
withdrawal) and call options (that is, for additional investment). In addition, 
complex portfolios typically reflect hundreds of spot rates, potentially re- 
quiring hundreds of partial durations and convexities. The total duration 
vectors therefore are quite large, contain generally very small values, and 
provide little insight on the portfolio's yield curve sensitivities. 

For interest-sensitive cash-flow streams, the formal derivatives of the price 
function involve both derivatives of the interest factors, as in this paper's 
examples, and derivatives of the cash-flow stream itself. Typically, cash- 
flow sensitivity cannot be modeled directly in closed mathematical form, 
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precluding differentiation. Rather, "option pricing" models are commonly 
used ([5], [7], [8], [11]). With them, P(i) and P(i) are not defined directly 
in terms of discounted cash flows, but are defined indirectly in a manner 
that reflects the effect of options on the value of the cash-flow stream. Such 
option-pricing models produce a price that is very much a function of the 
yield curve assumed, and the price function can therefore be discretely 
estimated. 

While the spot rate basis is workable, it often produces large numbers of 
very small partial duration and convexity estimates. A preferable approach 
is to "group" yield curve sensitivity into a smaller number of yield points, 
producing more meaningful estimates. A natural basis for this is the observed 
yield curve drivers on a typical bond yield curve. Such a curve may reflect 
yields at maturities 0.25, 0.5, 1, 2, 3, 4, 5, 7, 10, 20, and 30 years, for 
example. From these yields, other values are interpolated before this yield 
curve is transformed into the corresponding spot rate curve, which is then 
used as input to an option-pricing model or used directly for discounting 
fixed cash flows. Consequently, all yield curve sensitivities emanate from 
these basic ten or so variables, and this is the basis recommended for use 
as the yield curve vector. 

By using such a yield curve basis to model P(i) and an option-pricing 
model or direct calculation, D~io) and C~io) can be estimated discretely by 
central difference formulas: 

D~io) = - [P( i  o + eN) - P(i o - dSl)]/2cP(io) , (5.5) 

C~(io) = [P(io + oN) - 2P(io) + P(io - eN)]/dP(io). (5.6) 

Forward difference formulas are also common, though they tend to be "biased" 
in that they better reflect sensitivity to an increase in interest rates. 

To estimate e, one commonly uses judgment and some trial and error. 
Theoretically, the error in these estimates can be displayed by expanding 
P(io + eN) and P( io-eN) into Taylor series in e and substituting into the 
respective formulas. This produces: 

O~io) - Djv(io) = -P~)(io) ~2/6P(io) + c0(e'), (5.7) 

C}(io) - C,(io) = P~)(io) eV12P(io) + cO(e4). (5.8) 

As can be seen from these formulas, the duration and convexity estimates 
improve quickly as e decreases. However, the third and fourth directional 
derivatives of P(io) are generally not known, so the direct application of 
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(5.7) and (5.8) to select an ~ with a given error tolerance is not practical. 
Logically, an c is desired that makes D~,(i) close to D~i )  in the sense that 
using ~/2, say, improves the estimate little. In practice, good results can 
often be obtained with ~ equal to 5 to 10 basis points, when INI equals the 
length of the parallel shift vector (1 . . . . .  1). 

Alternatively, to calculate the various directional derivatives and convex- 
ities, it is sufficient to estimate only the partial duration and convexity values 
by Proposition 8. The above formulas generalize to: 

D ~  ( io)  = - [P(io + cj) - P(io - ¢~-]/2cjP(i Q), (5.9) 

C~jk(io) = [P(io + Cj + Ok) -- P ( i o -  ¢ j +  Ck) -- P(io + cj  - ok) 

+ P(i o - cj - Ck)]/4¢jckP(io). (5.10) 

Here, %=¢j(0, .. . .  1, . . . ,  0), where ~y is the j-th coordinate, and ¢= (¢1, 
-.., ~m)- AS was true for the one-variable model, judgment and trial and 
error are needed to determine an appropriate set of values for % which could 
be chosen to be equal for simplicity. Error estimation formulas generalizing 
(5.7) and (5.8) can again be developed by using multivariate Taylor series 
expansions, to produce: 

Dj(io) - Dj(io) = _eye3)(io) e~/6P(io) + ©(e 4) (5.11) 

C~k(io) - Cjk(io) = [el ~3.1)(io) + ¢~ ~.3)(io)]/6P(io) 

"l- ©(Cj, Ek) 4. (5.12) 

In (5.11), p/3) denotes the third partial derivative with respect to ij, while 
in (5.12), the (3, 1) and (1, 3) notation denotes the corresponding mixed 
fourth-order partial derivatives with respect to j and k. In practice, 5 to 10 
basis points will often suffice. 

Given m yield points, 2rn + 1 price calculations are required for the partial 
durations in (5.9), and 2m(m - 1) additional calculations are needed for the 
partial convexities in (5.10), totalling 2m 2 + 1 price calculations in all. Here 
we assume that Cij(io) in (5.10) is estimated with e /2  when ej is used for 
(5.9). 

If desired, the total number of calculations can be reduced by almost half, 
to m 2 + m + 1, in the following way. Let Nj =%. above and Nik = ¢ik(0, ..., 
1, . . . .  0, 1 . . . . .  0), w i t h j < k  and Njk non-zero in the j-th and k-th compo- 
nents. Using the Nj vectors, D.j(io) and Ci/(io ) can be estimated as in (5.5) 
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and (5.6) with c = 1 and a total of 2m + 1 price calculations. This is equiv- 
alent to the above estimates with (5.9) and (5.10). With an additional m(m - 1) 
calculations and (5.6), CN(io) can be estimated for each Njk. Using (4.4), we 
then obtain: 

c k(io) = 1 /2  [ c N ( i o )  - c (io) - ( 5 . 13 )  

where N = Njk. Also, by (3.31), C~(io) = Cjk(io). Consequently, the total number 
of price calculations needed is m 2 + m + 1. 

As a final comment, note that the partial duration and convexity estimates 
above should be "normalized" to satisfy Proposition 5. That is, these values 
should be scaled so that they sum to the estimated duration or convexity 
values, respectively. In practice, relative discrepancies are typically well 
under 1 percent before scaling. 

b. Price Sensitivity--Direct Yield Curve Approach 

Once the partial durations have been calculated, the first exercise is one 
of observation. Because modified duration equals the sum of the partial 
durations, one can observe to what extent parallel price sensitivity as mea- 
sured by D(io) decomposes along the yield curve. In general, price sensitivity 
to nonparallel shifts is greater if the partial durations are large, with some 
positive and others negative, rather than relatively uniform of size D(io)/m. 

Beyond this informal exercise of observation, price sensitivity can be 
calculated a number of ways. By definition, the duration value, D(io), re- 
flects sensitivity to parallel yield curve shifts, while the various partial du- 
rations, Dj(io), reflect sensitivity to changes in the yield curve point by point. 
Similarly, for a given direction vector, N, the directional duration D~io) 
can be calculated from (4.3). This value then reflects price sensitivity to 
yield curve shifts that are proportional to N. 

One direction vector of note is No as defined in (4.10). Recall that No 
was parallel to D(io), only with unit length. As demonstrated in Proposition 
10, this vector represents the yield curve shift that produces the maximum 
value of D~v(io) and, consequently, the greatest relative change in the price 
function given INI = 1. Similarly, yield curve shifts proportional to No also 
provide extreme values of DN(io) and hence represent yield curve directions 
of maximal relative price sensitivity. By Proposition 10, the length of the 
total duration vector, ]D(io)l, quantifies the amount of this maximal relative 
price sensitivity. 

Another notion of interest is the directional leverage function, L(Ai), and 
in particular, its maximum value, L(io), the durational leverage. This latter 
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value quantifies the maximum value of the equivalent parallel shift, A/E, 
given any restriction on Iail, the length of the original shift. As noted in 
Section 4b, L(io) equals the ratio of ID(io)l to [D(io)l, and this maximum is 
achieved when Ai is parallel to D(io). 

A final related notion of interest is the directional multiplier function, 
M(Ai), and in particular, its maximum value, MOo ), the durational multi- 
plier. This latter value provides a simple quantitative measure of yield curve 
risk. In particular, the durational effect of a nonparallel yield curve shift can 
be MOo ) times greater than for a parallel shift of the same length and ori- 
entation. That is, the effective portfolio duration can be as large as M(io)D(io). 
As was the case for L(io), the direction in which M(Ai) is maximized is 
parallel to D(io). 

Given any of these yield curve risk measures, ID(io)l, L(io), or M(io), it 
is clear from Propositions 11 and 15 that risk will be lessened if the partial 
durations are of uniform size, rather than both positive and negative. In 
particular, all these measures are minimized if the partial durations are equal, 
and none can be too great if the partial durations are at least of the same 
sign. In this regard, "barbell" and "reverse barbell" duration matching 
strategies can be quite risky, because the resultant partial durations often are 
large, with some positive and others negative. Correspondingly, the above 
risk measures also tend to be large. 

c. Price Sensitivity-Yield Curve Slope Approach 

One relatively common generalization of the "parallel shift" model is the 
"linear shift" model, that is, where the direction vector, L =  (ll . . . . .  l,,) is 
defined by: 

lj = amj + b, (5.14) 

where mj denotes the maturity value of the pivotal yield curve point ij. For 
example, one might have ml =0.25, m2=0.5, m3 = 1, and so on. 

For such yield curve shifts, the associated directional duration and con- 
vexity functions are readily calculated by Proposition 8. For example, the 
directional duration is given by: 

DL(io) = aXmjDj(io) + bD(io). (5.15) 

That is, the directional duration naturally splits into two first-order compo- 
nents. The first component, XmjDj(io), reflects price sensitivity to yield slope 
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changes, while the second component, D(io), reflects price sensitivity to 
parallel yield changes as expected. 

Similarly, the directional convexity is calculated to be: 

CL(io) = a2Y-Em,,'nkCjk(io) + 2abEZmFjk(io ) + b2C(io). (5.16) 

Here we have used the symmetry of COo); that is, Cjk = C~. Unlike duration, 
the directional convexity splits into three components, reflecting quadratic 
sensitivities to slope and level changes, as well as a mixed slope/level sen- 
sitivity term. Analogous to (5.15), the pure parallel shift component is sim- 
ply convexity, while the slope terms reflect weighted sums of partial 
convexities. 

An alternative "slope" model involves a reparametrization of the yield 
curve. Rather than interpreting the yield curve as the vector i = (il . . . . .  i,,), 
a yield slope vector, s = (sl  . . . .  , Sm), is defined as follows: 

s l  = i 5  sj  = ij - i j _ l , j  = 2 ,  . . . .  m .  (5.17) 

Clearly, sj reflects the increase (or decrease) in the yield curve between the 
(j'-1)-st and the j-th rate. This change is often referred to as the "slope" 
between the respective yield points. 

From (5.17) we have that s=Ai,  where A is a linear transformation and 
s and i are column matrices. This transformation is given by: 

1 0 0 . . .  0 0 / 
- 1  1 0 ~ 0 0 

0 - 1  1 0 0 0 
A ~ . . • 

o o o o  - i i  
That is, A = (ajk), where 

(5.18) 

1 j = k ,  

ajk = - 1  j = k + 1, (5.19) 
0 otherwise. 

Because A is linear, shifts in the yield rate vector readily translate into shifts 
in the yield slope vector. That is, 

= A Ai. (5.20) 



372 TRANSACTIONS, VOLUME XLIII 

Also, A is invertible, with: 

A - |  

1000...00 ~ 
1100...00 
1110...00 

1 1 1 1 . . . 1 1 1  

(5.21) 

That is, A - I = B ,  where: 

{~ j > k 
byk = otherwise. (5.22) 

Based on this transformation, the various approximation formulas in Section 
3 can be converted from functions of Ai to functions of As. 

For example, we have from (3.28): 

P(io + Ai)/P(io) = 1 - D(io)Ai + 1/2 AirC(io)Ai. (5.23) 

Here, the duration term is rewritten in matrix form rather than as a dot 
product, with D(io) treated as a row matrix. Substituting Ai r =  [A-1As] r and 
using the property of transpose that (XY) r = y r x r ,  we get: 

P( io  + A i ) / P ( i o )  = 1 - D,(io)As + 1/2 AsrCs(io)AS, (5.24) 

where As is given by (5.20) and: 

D,( io)  = D(io)A -1, (5.25) 

Cs(io) = (A-1)rC(io)A -1. (5.26) 

Here, Ds(io) and Cs(io) are the total duration vector and total convexity 
matrix, respectively, defined in the context of the yield slope vectors. 

A calculation shows that the total duration vector is given by: 
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That is, the relative sensitivity of the price function to the j-th slope, Asj, 
is the sum of the partial durations from the j-th to the m-th value. The 
sensitivity of the price function to As1 equals the duration D(io), since 
z ~  = Ail, and for this yield curve parametrization, Ai~ determines the 
change in the "level" of the yield curve. 

Analogously, the total convexity matrix reflects sums of partial convexi- 
ties as follows: 

(C~(io))jk = ~] ~ C.b(io), (5.28) 
a=j bffik 

where the jk-th term quantifies the sensitivity of the price function to the 
product of thej-th and k-th slopes, that is, ~.~jASk. The sensitivity to (Z~I) 2 
is the convexity C(io). 

The total duration vector and convexity matrix defined in (5.27) and (5.28) 
could have been calculated directly from Definition 3.5 by defining the price 
function directly in terms of s. In particular, given P(i), let the price function 
R(s) be defined by: 

R(s) = P(A-Is). (5.29) 

Then Ds(io) as defined in (5.27) is just the total duration vector of R(s) 
evaluated at so=Aio. Similarly, Cs(io) is the total convexity matrix of R(s). 

6. SUMMARY 

The traditional fixed income model for price, and its summary sensi- 
tivity measures of duration and convexity, assume parallel yield curve shifts. 
When the yield curve moves accordingly, this model works well. For other 
types of shifts, this model can fail to predict the magnitude of the price 
change, and even its direction. Such events provide a sobering insight to 
classical hedging and immunization strategies, which rely on this parallel 
shift assumption. 

As a first step toward generalizing the classical theories, this paper has 
developed the subject of multivariate duration analysis, whereby a model 
for price sensitivity to arbitrary yield curve shifts was defined and its prop- 
erties were investigated. 

For any fixed yield curve shift assu.mption, which is identified with a 
vector N, the price function is easily modeled, and familiar approximations 
to the change in price, AP, result. Instead of traditional duration and con- 
vexity, however, these approximations reflect "directional" duration and 
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convexity measures. In addition, zXP was seen to satisfy an exponential 
identity (Proposition 1) that provided alternative approximations to zXP that 
could be used alone, or in combination with the more traditional approxi- 
mations (Proposition 2), for additional insight to the magnitude and direction 
of the change in price. 

This identity also provided a methodology for investigating under what 
conditions various approximations would be exact (Proposition 3), and pro- 
vided a framework for investigating the limiting result when the traditional 
formulas were applied to ever finer subdivisions of a given yield curve shift 
(Proposition 4). 

A more general model was then investigated in which N was not fixed 
and the yield curve shift, Ai, was explicitly modeled as multivariate. Partial 
durations and convexities then provided natural first- and second-order sen- 
sitivity measures, and the traditional parallel shift measures were shown to 
be summations of the corresponding partial measures (Proposition 5). Also, 
the earlier exponential identity and associated approximations were seen to 
have natural extensions to this environment (Proposition 6). In this general 
setting, the shortcomings of the traditional model exemplified earlier were 
easily analyzed and understood. 

The total duration vector, or vector of partial durations, and corresponding 
total convexity matrix are easily calculated for a portfolio (Proposition 7) 
from its component instruments. The resulting measures provide a natural 
characterization of the yield curve sensitivities developed earlier. For ex- 
ample, the directional duration and convexity values are readily calculated 
from the corresponding partial values (Proposition 8), while sharp bounds 
for the resulting directional values also reflected these values (Propositions 
10, 11, 12). In the process, the length of the total duration vector, IO(io)l, 
was seen to provide a summary measure of potential duration risk (Propo- 
sition 10). 

The concept of equivalent parallel shift, Ai r , was then introduced as an 
alternative approach to understanding and investigating duration risk, while 
the durational leverage, L(io), provided an alternative summary measure of 
this risk in this context (Proposition 14). When L(io) is large, even small 
nonparallel shifts can be leveraged into large equivalent parallel shifts, with 
correspondingly large price effects. The durational multiplier, MOo), pro- 
vided a technical adjustment to L(io) to correct for the inherent difference in 
units between nonparallel shifts and traditional parallel shifts. 

Applications were pursued in Section 5. Using fixed cash flows and a 
spot rate yield curve for illustration, the classical duration and convexity 
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formulas decompose in an intuitive way into the corresponding partial du- 
ration and convexity counterparts. 

For interest-sensitive cash flows, where the price function is implicitly 
estimated using an option-pricing or other model rather than explicitly de- 
scribed by mathematical formula, the derivative-based formulas for duration 
and convexity cannot be used directly. However, finite difference approxi- 
mations to the various duration and convexity measures were shown to be 
natural generalizations of common approximations for the traditional measures. 

While any yield curve basis is workable in theory, throughout this paper 
the recommended basis was the collection of yield curve drivers on a typical 
bond yield curve, that is, ~elds at 0.25, 0.5, 1, 2, 3, 4, 5, 7, 10, 20, and 
30 years. Other bond yields are typically interpolated from these market- 
based observed variables, and all spot rates correspondingly derived from 
this completed yield curve. Consequently, the price function can be modeled 
in terms of these 10 or so variables, and all observed price changes related 
to changes in these values. 

Finally, a number of the implications of this multivariate duration analysis 
for portfolio yield curve sensitivity were also developed. 
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DISCUSSION OF PRECEDING PAPER 

ELIAS S. W. SHIU" 

I have read this paper with great interest. As a professor, I have always 
encouraged my students to take more mathematics courses. Learning math- 
ematics is like rowing a boat against the current--if one does not go forward, 
one will be pushed backward. Requiring students to take first-year calculus 
is not much more than trying to ensure that they master high school math- 
ematics. Similarly, asking students to study multivariate calculus is to get 
them to review and, perhaps, understand calculus of one variable. I am in 
perfect agreement with Ralph Boas [3], who suggests that "the students 
always have to be taught what they should have learned in the preceding 
course . . . .  The average student does not really learn to add fractions in 
arithmetic class; but by the time he has survived a course in algebra he can 
add numerical fractions. He does not learn algebra in the algebra course; he 
learns it in calculus, when he is forced to use it. He does not learn calculus 
in the calculus course, e i t h e r ; . . . "  I am certainly glad to see this paper 
appearing in the Transactions, because I can point to its title when I tell my 
students to take another course in calculus. The following are some com- 
ments on the paper. 

My major difficulty with this paper is the assumption that the (market) 
price of a fixed-income security is a function of several "external" variables, 
because this assumption violates the principle of no arbitrage, which is the 
basis of modern financial theory. Let S denote the surplus (assets minus 
liabilities) value of a portfolio, and as postulated in the paper, let us assume 
that S depends only on several variables, that is, 

s = S(x), x 

If x becomes x + h, S(x) changes to S(x + h), which, by the multivariate 
Taylor expansion formula [Formula (3.22b) of the paper], can be expressed 
as  

S(x) + hTS'(x) + 1/2h S"(x)h + . . . .  

where S' and S" are the gradient (vector) and Hessian (matrix) of the function 
S. Now, if the assets and liabilities are struciured in such a way that the 
gradient of the surplus, S', is the zero vector and the Hessian of the surplus, 
S", is positive definite, then, for each small h, 

S(x + h) > S(x), 

377 
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which means that any small change in the external variables will automati- 
cally yield a free lunch. Thus the model in the paper is not internally con- 
sistent, because arbitrage opportunities exist in the model. 

The error arises because of the supposition that, given certain observed 
yields, "the remainder of the yield curve is then generated by interpolation." 
It is perhaps appropriate to quote Rich's discussion on Redington's paper 
[8, p. 319]: " I m m u n i z a t i o n . . .  was an outstanding example of the differ- 
ence between actuarial theory and practice. How delightful it would be if 
the funds of a life office could be so invested that, on any change in the 
rate of interest--whether up or down--a profit would always emerge! But 
how difficult it would be to carry out to the full the investment policy implied 
by the theory of immunization." 

The paper suggests that the yield rates "for terms: 0.25, 0.5, 1, 2, 3, 4, 
5, 7, 10, 20, and 30 years" are independent variables and "the other yield 
rates a r e . . ,  dependent on these values." Interest rates should not be neg- 
ative. It is important to bound the movements of these "pivotal" rates so 
that the implied forward rates are never negative. These pivotal rates cannot 
be really independent of each other; that is, they are not exactly independent 
variables. 

Section 5 of the paper gives the impression that multivariate analysis can 
be readily applied to the case of interest-sensitive cash flows. To price 
interest-sensitive cash flows, one develops an arbitrage-free interest rate 
evolution model, such as a binomial lattice, projects the cash flows along 
each path in the model, discounts the values of the cash flows using the 
one-period risk-free interest rates of the path, and averages them with the 
risk-neutral probability measure on the paths. 

To be more specific, let us consider the valuation of mortgage-backed 
securities. Here, we would probably need 360 time periods, each time period 
corresponding to one month. In such a binomial-lattice model, there are 2360 

paths. Because of computational cost, we would sample only several thou- 
sand paths, which are a very very small fraction of all available paths, for 
estimating the security'price. Because of the sample size, I would doubt the 
accuracy and stability of the calculated price. Furthermore, we have to worry 
about the appropriateness of the interest rate evolution model and the validity 
of the prepayment function. Because the values of P are unlikely to be 
correct, I do not have much faith in the higher-order partial derivatives as 
calculated by approximation formulas (5.6) and (5.10). Without some error 
estimates on P,  error estimation formulas such as (5.7), (5.8), (5.11), and 
(5.12) are not quite meaningful. 
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The concept of directional duration may not be easy to apply. Consider 
Figure 1, in which the horizontal line is assumed to be the current yield 
curve, which is generated by io (with linear interpolation), and the slanted 
line is the anticipated new yield curve, which is generated by io + toN (with 
linear interpolation). Equating the direction duration, Ds, of the assets to 
that of the liabilities of a portfolio would mean immunizing the portfolio 
against all (admissible) yield curves generated by 

io + tN, t E R ;  

see Figure 2. Some may find Figure 2 surprising. 

HGURE 1 

FIGURE 2 
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Formulas (3.39) and (3.41) bother me; it is not that they are not "cor- 
rect." However, the parametrization function r is arbitrary, implying that 
the value of P(io + Ai)/P(io) can be arbitrary. How does one determine the 
"right" parametrization? 

The paragraph in Section 1 on D1 and Dz confuses me. The Vanderhoof 
paper [9], which "became, to many actuaries, an introduction to" immu- 
nization theory and duration analysis, uses the symbol D1 to denote duration 
and D2 to denote convexity. Also, Macaulay had the idea that "the price 
function could reflect a complete yield curve." However, he did his work 
before electronic computers. On p. 52 of [6], he remarked on "the insu- 
perable difficulties connected with any attempt to discover the real rates of 
discount for each half-yearly period in the future." He further wrote: "The 
difficulties connected with the problem of arriving at a completely satisfac- 
tory concept of 'duration' are, indeed, extremely great." 

I certainly agree with Dr. Reitano's criticism on the parallel yield shift 
assumption. Indeed, Macaulay [6, p. 50] had noted that "the yields of long 
term bonds tend to fluctuate much less violently than the yields of short term 
bonds or the rates on short term loans." 

Dr. Reitano has pointed out that multivariate models can be found in the 
books by Bierwag [2] and by Ho [5]. (A review on [2] can be found on pp. 
772---776 in Volume XLII (1990) of TSA.) I would like to add two actuarial 
references, which are Albrecht [1] and Milgrom [7]. Assuming continuous 
trading, frictionless markets and the existence of several state variables that 
are prescribed by stochastic differential equations and whose current values 
completely specify all relevant information for investors, Albrecht [1] gen- 
eralizes Redington's theory of immunization in the context of an intertem- 
poral equilibrium asset-pricing model. In Milgrom's paper [7] there is an 
eloquent exposition on the principle of no arbitrage. Also, in his discussion 
of Vanderhoof's paper, Milgrom [9, pp. 194-195] has presented some di- 
rectional duration formulas. 

I have always found duration analysis and immunization theory a fasci- 
nating subject. In reading the references listed in the paper, I see that Dr. 
Reitano has related papers forthcoming. I look forward to studying them as 
they appear. 
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ANTHONY J. ZEPPETELLA: 

Dr. Reitano's paper presents the mathematics behind a very useful and 
practical generalization of the concept of  duration. The purpose of this dis- 
cussion is to point out that the directional duration can be regarded as a 
special discrete case of a "functional duration." 

Consider a yield curve io(s) that is a function of  s representing the term 
structure of interest rates. If q~(s) is an arbitrary function, we can think of 
io(S) + cq~(s) as an arbitrary shift in the yield curve, where e is thought of  as 
some small number. If P is a price function that depends possibly upon the 
full yield curve io(S), the functional duration with respect to ~p(s) can be 
defined as 

D =  - dP(i° + etP) I d e  , ° o / P ( i ° ) "  

The numerator, 

dd~ (io + e~)Lo, 
is the functional derivative of P with respect to q~ and is usually denoted dP/ 
d~. The duration D is a functional that depends upon the functions P ,  io and 
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The directional duration is a special -case in which the price function P 
depends only on the yield curve values at discrete points sl, s2 . . . . .  s,,,. Then 
io = (io(sl) ,  . . . .  io(S,~)) and A i N =  (~o(s~), ~o(s2) . . . .  , ~¢(s,,,)) correspond to the 
vectors in Dr. Reitano's paper. 

Much of the discrete theory carries over to the continuous case. For in- 
stance, the analogue of Proposition 1 is 

P(io + etp)/P(io) = e x p  - D( io  + tcp)dt . 

As a practical matter, the discrete case covers most every situation. How- 
ever, the continuous theory can be an aid to analysis. 

(AUTHOR'S REVIEW OF DISCUSSIONS) 

ROBERT R. REITANO" 

I thank Dr. Shiu and Dr. Zeppetella for their stimulating discussions. 
Dr. Shiu begins his discussion extolling the virtues of taking more math- 

ematics courses; I could not agree more and commend him for so encour- 
aging his students. I am happy that my paper may provide some motivation 
for them. Regarding a number of his other comments, however, I tend to 
agree somewhat less. 

Risk l e s s  A r b i t r a g e  

Dr. Shiu's discussion of no riskless arbitrage appears to have some lim- 
itation in theory, while in the cases in which it is correct, its practical 
implications are certainly overstated. Reviewing his argument, the casual 
reader may wonder how Dr. Shiu relies on the assumption that m, the number 
of yield points, is small or that some yield points may be interpolated from 
others. It may well appear that his demonstration would hold for any m, in 
which case it would be difficult to see how a discretization of the yield 
curve, however fine, leads to a riskless arbitrage, yet the corresponding 
continuous yield curve model does not. 

For example, taking m = 30 x 365 x 24 x 60 x 60, the resulting 30-year 
spot rate curve could price zero-coupon bonds with delivery times to the 
second; could it really be a bad model for continuous yields and defy the 
"basis of modern financial theory"? What if delivery times were further 
refined? 
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To understand this apparent inconsistency, it is necessary to investigate 
Dr. Shiu's assumptions. His first assumption is that one can trade in the 
financial markets to achieve a total duration vector D(io) = 0, and total con- 
vexity matrix COo), which is positive definite, say C(io)= I, the identity 
matrix, for specificity. Assume that we are given n zero-coupon bonds with 
various maturities. Using Proposition 7 of the paper, to accomplish the 
assumed trade, one needs to solve: 

~ akD/k = 0 i = 1 . . . .  , m .  
k = l  

ak C k = ~ j  i , j  = 1, . . . ,  m (D.1) 
k = l  

~ ak = 0 
k = l  

where ak, k = 1 . . . . .  n denotes the amount invested in each security; D k = WOo ) 
and C k = Ck(io) denote the corresponding total duration vectors and convexity 
matrices, respectively; ~ij is the Kronecker delta: 

~o = i : ~ j ;  

and the last equation ensures that the trade is cash-neutral. 
Because the total convexity matrices are symmetric, (D.1) contains m + 

l/2m(m + 1) + 1 = 1/2m(m + 3) + 1 equations in n unknowns. Consequently, one 
can only hope to solve these equations if n, the number of zero-coupon 
bonds in the economy, exceeds 1/2m(m + 3) + 1, where m equals the number 
of yield points used to generate the prices of these n bonds. If we choose 
m = n ,  (D.1) has no solution, in general. Clearly, the theory in my paper 
does not require m to be small relative to n. 

Consequently, the paper's models do not necessarily allow (D.1) to be 
solved. 

Of course, in theory one might maintain that n is infinite, and hence one 
cannot choose m =n.  In the real world, however, n must clearly be less than 
the 30 x 365 x 24 x 60 x 60 noted above, while on Wall Street, one would 
doubt the existence of more than 30 x 365 yield quotes on any day. 

On the other hand, if one chooses to recognize only a handful of pivotal 
yields (m=10), such as the yield curve driver model recommended and used 
successfully by the author and others, one can indeed expect to solve (D. 1). 
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However, this is not enough. For a riskless arbitrage to exist, the resulting 
portfolio must also earn no less than the instantaneous risk-free rate of in- 
terest, no matter how the yield curve shifts. In other words, the inequality 

S(io + Ai) > S(io) (D.2) 

does not ensure that a risk-free arbitrage exists. What one needs is that if 
Ai(t) is a yield curve shift during [0, t], 

S(io + Ai(t)) _> (1 + r(t))' S(io), (D.3) 

for some t, for all possible Ai(t), where rio is the risk-free rate during this 
period. The immunization implications of my paper do not ensure this. 

However, even if (D.3) could be satisfied in theory using a specific yield 
curve driver model, the immunization implications would likely be minor in 
practice. That is, if the conditions of the forthcoming immunization propo- 
sitions (see [24] of paper) were satisfied, one would indeed be immunized 
if the pivotal yields, io, shifted to io + Ai, and all intermediate yields shifted 
in the assumed interpolated way. However, to the extent that intermediate 
yields behaved differently, immunization may not be fully achieved. The 
above arbitrage argument would imply that this latter case must be possible. 
However, logic and experience dictate that the observed intermediate shifts 
would not be far from any reasonable interpolation model. In practice, then, 
such an immunization exposure would probably be minor, especially com- 
pared with the large partial duration exposures that can exist in many com- 
panies that follow only a duration management discipline. In other words, 
Dr. Shiu is perhaps allowing the perfect to be the enemy of the very good. 

Although my paper argues in favor of the use of yield curve drivers as a 
practical expedient, it does not rely on this model. Certainly Dr. Shiu mis- 
understands my motivation for preferring this model by suggesting that the 
paper implies that yield curve drivers are "independent." Rather, the mo- 
tivation is that for most practitioners, these values are well-defined and 
readily observable market variables and are adequate to develop a useful 
yield curve model. 

Interest-Sensitive Cash Flows 
As for the applicability of the multivariate analysis to interest-sensitive 

cash flows, I maintain my original position. What is required is a well- 
defined pricing function, P(i), which is twice continuously differentiable. 
When valuing embedded options on bonds, say, using the Ho-Lee binomial 



DISCUSSION 385 

lattice or other direct methodology, no implementation problems are en- 
countered. However, Dr. Shiu notes that the pricing methodology for mort- 
gage-backed securities, due to sampling error, provides only estimates of 
the price function, and these may not be stable. 

Certainly, these shortcomings of the pricing methodology are not short- 
comings of the multivariate analysis. One possible solution though, until 
computer speeds or sampling methods improve significantly, is to value 
P(io + Ai) on the same sampling of paths that are used to value P(io). That 
is, identifying each path with a bit string of l ' s  (for up states) and O's (for 
down states), choose the same sampling of bit strings to define the evolution 
of the shifted yield curve, io+ Ai, as was used for the evolution of io. This 
approach will at least eliminate sampling error associated with choosing 
different bit strings to evolve io + Ai than io. Using this approach, the partial 
duration estimates will be consistent with the initial price estimate, though 
all will depend on the initial sampling of bit strings. 

Before leaving this point, I would be remiss to not gently chide Dr. Shiu 
for not recognizing the irony of his use of a discrete yield curve pricing 
methodology, given his earlier comments. 

Other Issues 

On another point, contrary to Dr. Shiu's experience I have had no more 
difficulty communicating the concept of a directional duration than I have 
had with duration itself. The primary difficulty in each case is convincing 
the listener to consciously accept that every duration measure reflects a very 
specific assumption about yield curve movements, which may or may not 
be experienced in practice. Because the traditional duration has been so 
"oversold" as a risk proxy for yield curve risk, many forget its limitations. 

Regarding Dr. Shiu's Figure 2, I do not find it surprising given the choice 
of N in Figure 1. Indeed, it is not difficult to find shifts in the treasury yield 
curve during the last two years that look very similar to his N. 

Unfortunately, Dr. Shiu misunderstands approximations (3.39) and (3.41) 
of my paper. Both formulas stem from Proposition 6 and (3.38), which show 
that no matter what path the yield curve travels from io to io + Ai, the price 
function on io + Ai is recoverable from P(io), the values of the total duration 
vector on these intermediate yields, and the "shape" of the path as implied 
by r'(t). Given that, (3.39) and (3.41) are simply the first- and second-order 
Taylor series expansions of the function in the exponent of (3.38). Certainly 
the r'(0) and la'(0) in these approximations are not arbitrary as Dr. Shiu 
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worries. The assumption in (3.38) is that r(0) = io and r(1) = io + Ai. As with 
any Taylor series expansion, one has no assurance that f ' (0) and/or f"(O) 
give any valid information whatever about f(Ax), unless Ax is very small. 

I was careless not to note Vanderhoof's notational convention for duration. 
In the finance literature, the convention I noted was common at one time as 
authors enumerated the various duration measures by their chronological 
appearance. However, today there are as many counterexamples as exam- 
ples. In Bierwag's recent book, for instance, he abandons this sequencing 
in favor of alphabetic subscripts: M =  Macaulay, A = additive shift (Fisher- 
Well), and so on. 

Continuous Yield-Curve Models 
Dr. Zeppetella introduces an interesting notion in his discussion, that of 

a functional duration, which generalizes the directional durations of my 
paper. In a subsequent communication, he relates that the idea of a functional 
derivative comes from the calculus of variations, though he could not provide 
a specific reference that could be consulted for further properties. 

As he notes, the discrete case of my paper covers most every situation in 
practice. Nonetheless, the theoretical appeal of this notion compels further 
analysis. Below, I sketch some of the implications of this model and defer 
technical details and further generalizations to a future paper. 

To be able to relate the discrete and continuous models, it seems necessary 
to assume that the price functional, P, is continuous on the Banach space 
of continuous yield curve functions C([0, 1]). That is, if q~,,(s) is a sequence 
of continuous functions that converge in norm to q~(s) (in other words, they 
converge uniformly), <O,(s)--->q~(s), then P[~p,(s)]--->P[q~(s)]. Here, for nota- 
tional convenience, we parametrize all yield curves on the interval [0, 1]. 

Next, note that given a partitioning of [0, 1] by "yield curve driver 
maturities," 0 = to < tl <. . .  < tm = 1, and the assumption of linear interpola- 
tion, there is a one-to-one correspondence between direction vectors, N = (no, 
nl . . . . .  nm), and piecewise linear functions tp(s) partitioned by the {tj}, where 
qo(ti) =np and q~(s) is linear on the segments: [to, tl], [tD t2], [t2, t3] . . . . .  
Consequently, for piecewise linear (p(s) and initial yield curve function io(s), 
we have the functional duration, D~(io), introduced by Dr. Zeppetella, equals 
the directional duration, D,v(io): 

D~(io) = D~(io) 

= ~ D'~(io) tp(tj), (D.4) 
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where {/3~j (io)} are the partial durations implied by the above partitioning of 
the yield curve maturities, and the assumption of linear interpolation of yield 
changes between these pivotal yield changes. 

For later use, we standardize m + 1 "pyramid" functions, given the above 
partitioning: 

q~'(S) = tl 
O < s < _ t ~  

tl < s, 

{ ~  s <- tm-~ 
q~m(S) = -- tm-t (0.5) 

tm-~ tm-a <-- S <-- tm, 

O 

$ - -  t j_  t 

= t j  - -  t j _  1 

tj+ 1 - -  $ 

ti+ 1 - -  t 1 

for j = l  . . . . .  m - 1 .  

s < t j _ t ;  s > t j + t  

tj_  < s <_ tj 

tj<s<-tj+l, 

It is easy to see that for all s¢[0, 1], 

j=O 

That is, {q~(s)} form a partition of unity over [0, 1] for every m. 

(D.6) 

The Force of Duration 

Consider next an arbitrary, continuously differentiable function q@)¢Ct([0, 
1]). By (D.6), 

~p(s) = ~ q>~"(s) q@). (D.7) 
j - 0  
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Because q>(s) is differentiable, we have by the Mean Value Theorem that 

tp(s) = qo(tj) + (s - tj) qo'[0(s, tj)], (D.8) 

where 0(s,tj) = 0tj+ (1 - 0)(s - t j )  for some 0_<0_<1. 
Multiplying (D.8) by q~j"(s) and summing, we obtain 

where I I=max  {Itj - tj-l[}, the maximum interval size of the partition. 
J 

By (D.9) and (D.7), we have that the piecewise linear function, cp,,(s)= 
I~'7=o ~p~(s)~p(tj), converges uniformly to ~(s) as II---*0. By (D.4) applied to 
~,,(s), we have that if D~(io) exists, 

D~(io) = lim ~ D~j(io) ¢p(ti). (D.IO) 
H--->o J = o 

Because functions q~eC([0, 1]) can be uniformly approximated by ~nECl([0, 
1]), we have that (D.10) also holds for all continuous functions q~(s), for 
which D,(io) exists. 

Since (D.10) holds for any partition with II--->0, we simplify the following 
with the uniform partition: tj=j/m, j = 0  . . . . .  m. Then (D.10) can be re- 
written as 

-1 
D~(io)= lira ]~m D~.(io)cp(j'/m)×I/m+ Do(io)Cp(0)|. (D.II) 

m--->00 LI-I 2 

Note that for each m, mDT(io ) corresponds to an "annualized" partial 
duration at the pivotal point t: =tim, in the same way that the nominal interest 
rate, i(")=m(i(")/m), corresponds to an "annualized" m'h-ly interest rate. 

Extending the analogy, define the "force of duration function" at maturity 
t, denoted D,~(io), by 

DS,(io) = lira [m D~'(io)], (D.12) 
rn ........~ 00 

when this limit exists, where D~(io) is defined using a pyramid function, 
trV(s), centered at t and with base 2/m, and q~(t) = 1 (see below). 
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By (D.11), Dr. Zeppetella's functional duration can be represented by 

D~,(io) = DS,(io) q~(t)dt, (D.13) 

under the assumption that the limit in (D.12) is uniform in t and that D ~, (io) 
is a sufficiently smooth function oft that the Riemann sum in (D.11) converges. 

One advantage of formula (D.13) is that it generalizes (D.4) and (4.3) of 
Proposition 8: all directional durations, in any number of dimensions, as 
well as all general functional durations, can be expressed directly in terms 
of the force of duration function, DtS(io). This is an advantage because this 
function is intrinsically defined based only on the price functional, P, and 
the initial yield curve, io, and is independent of any dimensionality assumption. 

Specifically, for any value of t, 0 < t < 1, D':(io) is defined by 

I/ /fit (io) = ~e[to + e qoT'(s)] P(io), (D.14) 
~ = 0  

where q::'/(s) is the pyramid function noted above, which is centered on t, 
and with base [ t -  1/m, t + 1/m]. For t = 0, 1, the pyramid function is suitably 
redefined as in (D.5). D,8(io) is then given by (D.12). 

A second advantage of (D.13) is: it allows the generalization of (4.9) of 
Proposition 10, again without regard to a dimensionality assumption. Spe- 
cifically, by the Cauchy-Schwarz inequality: 

[D,(io)[ < liD, s 115 II qo 115, (9.15) 

where il f IIz denotes the L2-norm, II f I1~ = J" I f  I ~dt. 

An Example 
As an example, let io(S) denote the initial forward spot rate curve. Also, 

let c(s) denote a continuous cash-flow stream. The price of these cash flows 
is then 

So [ S o ]  e(io) = c(t) exp - io(s)ds dt. (D.16) 

It is not difficult to show that for this price functional, the continuity property 
assumed earlier holds. That is, if i , (s)~i(s)  in C([0, 1]), then e(in)--->e(i). 
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For duration, we let qo(s)= 1. Then since 

1 et + ©(e2), (D.17) 

one can show that the functional derivative, oP/a% exists and that the fol- 
lowing anticipated formula results: 

So [ fo ds]t/P D~(io) = D(io) = t c(t) exp - io(S) d (io). (D.18) 

To calculate the force of duration function at to, 0<to< 1, we let optS(s) be 
defined above. Then 

0 t < - t o  - 1/m 

f l  m(t -- t o + l/m) 2 to - 1/m <_ t <- t o 
¢p~(s)ds = 1/m m(t 0 - t + l/m) 2 t < t < t o + 1]mo 

(D.19) 

1/m to + 1/m < t .  

Using the counterpart to (D.17) for 

exp (s)ds) 

in (D.19), one obtains from (D.14) and (D.12) 

s, [So ]/ D~(i°) : o c(t) exp - io(s)ds dt P(io). (D.20) 

In this example, the force of duration function is quite regular as a function 
of t, and in fact, DtS(io)¢Cl([0, 1]). Also, DSo(io)-- 1, D~(io)--0, and D,8(io) is 
strictly decreasing if and only if c(t)>_O for all t. For more general c(t), D~ 
(io) need not even be strictly positive. 

It is easy to check that in the above example, as in general from (D.13) 
with q~(t) - 1, the traditional duration in (D.18) can be recovered from Dt~(io) 
integration: 

Io OCio) = OS,(io)dt. (D.21) 
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Note that (D.21) generalizes (3.35) of Proposition 5. 
Also, from (D.13) and an integration by parts, for any q~(s)cC([0, 1]) and 

Dtr'(io) as in (D.20), 

so [so ]/ D~(io) = ~( t )  c(t) exp  - io(s)ds dt e(io).  (D.22) 

where qb(t)=f6 qo(s)ds. In this general form, the duration formula in (D.18) 
becomes especially transparent, since cp(s) = 1 in this case, and hence, ~(t) = t. 

Undoubtedly, much more can be done with this very general approach, 
but we conclude here. 

Again, I thank Dr. Shiu and Dr. Zeppetella for their thoughtful and thought- 
provoking comments and additional references. 






