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ABSTRACT 

Extending the general nonparallel shift approach to duration analysis de- 
veloped previously [28], this paper explores the immunization properties of 
that model. In particular, results are developed for directional immunization, 
in which the yield curve shift direction vector is specified, as well as for 
nondirectional immunization. Throughout, the goal of immunization at a 
time k periods into the future is seen to be intimately linked to the relationship 
between the durational and convexity attributes of the portfolio and those of 
a k-period zero-coupon bond. Applications to asset/liability management are 
then explored in theory and in a detailed example, which illustrates the 
potential shortcomings of traditional parallel shift immunization. 

I. INTRODUCTION 

The concepts of duration and immunization have been the subjects of 
increasing interest, from both a theoretical and an applied perspective. Orig- 
inally discovered more than 50 years ago, duration was defined to better 
reflect the length of a payment stream (Macaulay [21]). A short time later 
(Hicks [14]), it was independently derived in an investigation into the elas- 
ticity of the price of a bond with respect to the discount factor v = (1 + i ) - ' .  

Soon thereafter (Samuelson [30]), Redington [23]), duration was redis- 
covered in the context of the immunization of a firm's or portfolio's net 
worth, that is, in pursuit of conditions under which assets and liabilities 
would be equally responsive to changes in an underlying interest rate. Re- 
dington's approach [23] was later adapted by Vanderhoof [34] and became 
what to many of today's actuaries represented an introduction to this field 
of thought and its application to insurance company portfolios. Common to 
the above investigations was the assumption of a single interest rate for all 
discountings of cash flows, that is, a flat yield curve. 

Fisher and Weil [11] first extended the Redington model to reflect a 
nonflat term structure and developed a corresponding duration measure 
sometimes denoted D2, to distinguish it from the Macaulay duration, D,. 
This measure reflected price sensitivity to parallel shifts in the term structure, 
that is, shifts for which each yield point moves by the same amount. 
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Other definitions of duration were developed (Bierwag [3], Khang [20], 
Brennan and Schwartz [8]) corresponding to other models of yield curve 
dynamics, or the manner in which the term structure changes. Surveys of 
these models and related matters can be found in Bierwag, Kaufman and 
Toevs [7] and in Bierwag [2], who also provides a broad survey of many 
aspects of this theory and its applications. 

The fact that immunization against a given yield curve shift assumption 
generally fails to provide protection against more general yield curve shifts 
was noted by Ingersoll, Skelton and Weil [17], Fong and Vasicek [12], and 
Shiu [31]. The importance of the correct choice for yield curve dynamics 
was noted in Milgrom [22], as well as in Bierwag, Kaufman and Toevs [4], 
who investigated stochastic process risk and demonstrated that losses asso- 
ciated with choosing the wrong model can be substantial. 

Other extensions of Redington's work include that of Grove [13], who 
immunized a non-zero initial net worth; Kaufman [19], who investigated the 
immunization of the net worth asset ratio; and Bierwag, Kaufman and Toevs 
[5,6], who introduced a methodology for developing an immunizing asset 
portfolio and investigated the concept of an efficient frontier in this context. 

More recent approaches have involved immunizing multiple liabilities (Shiu 
[32]), tax-adjusting the duration measure (Stock and Simonson [33]), and 
utilizing a duration vector approach to immunization (Chambers, Carleton 
and McEnally [9]). This last approach defines a vector in which the com- 
ponents reflect "moments" of adjusted times-to-receipt of the underlying 
cash flows. In this context, traditional duration is closely related to their first 
moment, while the concepts of convexity and inertia (Bierwag [2]) are closely 
related to their second moment. The adjustment made to the times-to-receipt 
of the cash flows is a reduction by one time unit. 

A general nonparallel shift approach to duration analysis was developed 
in Reitano [24,28], and applications to measuring potential yield curve risk 
were given in Reitano [25,27,29]. For this analysis, the yield curve is iden- 
tified with a vector of values representing the "yield curve drivers," which 
can be taken, for instance, as the yields at the commonly quoted maturities. 
The underlying technique employed is a general multivariate analysis. Al- 
though multivariate models are not new (Bierwag [2], Ho [16]), the general 
model utilized provides great insight to portfolio sensitivity to general yield 
curve shifts. 
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In particular, "partial" durations are defined to reflect yield sensitivities 
point by point along the yield curve. These measures are then easily com- 
bined to produce "directional" duration measures that reflect portfolio sen- 
sitivity to any yield curve shift. The traditional duration measure, for example, 
reflecting sensitivity in the parallel shift direction, is seen to be the sum of 
the underlying partial durations. 

The current article extends this theory to the question of immunization. 
The yield curve is again modeled as a vector of yields, with other yields 
assumed to be functionally dependent, such as via interpolation. Conse- 
quently, all yield curve changes are identified with vector shifts, and im- 
munization is pursued within this multivariate context. 

This immunization model is introduced in Section II, along with the nec- 
essary definitions from Reitano [24,28]. Section III then develops the theory 
of "directional" immunization at time k, which is seen to be a natural 
extension of Redington's parallel shift approach to general but specified 
nonparallel yield curve shifts. 

In this context, as throughout the paper, the goal of immunization at a 
time k periods into the future is seen to be intimately connected to the 
relationship of the portfolio's directional duration and convexity attributes 
to those of a k-period zero-coupon bond. Naturally, immunization results 
for the special case of parallel shifts are seen to be equivalent to well-known 
results. Also in this section, the concept of an immunization boundary is 
explored, extending the idea of duration window (Bierwag [2]), as is the 
portfolio return on investment, generalizing Babcock [1]. 

Section IV applies these general results to the context of asset/liability 
management. Surplus immunization conditions are developed in both the 
absolute and asset ratio contexts and the results translated to implications 
for the immunization boundary. An example is then developed in detail that 
demonstrates that immunization for one direction, for example, against par- 
allel shifts, may provide little protection against more general shifts. This 
result is shown in theory and by using actual yield curve shifts from August 
1984 through June 1990. 

Section V then develops immunization results in the general nondirectional 
context, that is, conditions under which portfolio values at time k are pre- 
served under all yield curve shifts. General return on investment results are 
also developed, as are the implications for asset/liability management. 

Section VI investigates the relationship of immunization properties to the 
yield curve model employed. 
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A technical appendix contains the proofs of the duration theory underlying 
the immunization results. 

II. MULTIVARIATE IMMUNIZATION 

A. Multivariate Price Model 

Let P(i) denote a positive valued multivariate price function that reflects 
the dependency of the price of a portfolio of securities on an underlying 
yield curve vector, i = ( i  1 . . . . .  ira). This portfolio could equally well reflect 
assets, liabilities, or a net worth or surplus position. The cash flows encom- 
passed by P(i) may be fixed or interest-dependent, with P(i) correspondingly 
representing a simple present value price function, or the price values ob- 
tained via a model that incorporates the options or other interest dependencies 
(for example, Clancy [10], Ho and Lee [15], and Jacob, Lord and Tilley 
[18]). 

The yield curve above is modeled as a discrete vector, representing the 
yield curve drivers in a given valuation model, which can be taken as the 
yields at the commonly quoted maturity points. This yield curve may reflect 
any system of units (bond yields, spot or forward rates) and any nominal 
basis (annual, semiannual, and so on). In practice, yield points at other 
maturities are typically derived from these values via interpolation and/or 
other conversion, so it is appropriate to view the price of the portfolio, P(i), 
as a function of this yield curve vector. For example, with i reflecting bond 
yields, pivotal yield values for maturities 0.25, 1, 2, 3, 4, 5, 7, 10, 20, and 
30 years are sufficient for most valuations, and P(i) can be modeled as a 
function of these ten observed values. 

As in Reitano [24,28], we make the following definitions, which gener- 
alize the notions of duration and convexity to this yield vector basis. Ac- 
cordingly, we assume throughout that P(i) is twice differentiable, with 
continuous second-order partial derivatives. 

Definition 1 

Given P(i), the j-th partial duration function, denoted Dj(i), and the jk- 
thparlial convexity function, denoted Cjk(i), are defined for P(i) # 0 as follows: 

Dj(i) = -djP(i)/P(i), j = 1 . . . . .  m (2.1) 

Cjk(i) = dikP(i)/P(i), j, k = 1, ..., m (2.2) 

where dp(i) and dj~P(i) denote the corresponding partial derivatives of P(i). 
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The total duration vector, denoted D(i), and total convexity matrix, de- 
noted C(i), are defined as follows: 

D(i)  = (Ox(i) . . . . .  Dm(i)), (2.3) 
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D~v(i) = - dN P ( i ) / P ( i ) ,  (2.5) 

C~i) = d~P(i)/P(i), (2.6) 

where dNP(i) and d~P(i) denote the first- and second-order directional de- 
rivatives of P(i) in the direction of N. [ ]  

Intuitively, N equals the "direction" of the yield curve shift in that it 
reflects the relative magnitude of the individual shift amounts. A typical 
shift can then be modeled as tN = (tnl, .... tnm), corresponding to each yield 
point ij shifting by the amount tnj. When all nj = 1, the classical parallel shift 
model is produced. 

A related model was developed in Ho [16], in which "key rate" durations 
are defined. In this context, several key rates are identified among the 360 
monthly spot rates on a 30-year yield curve vector. These 360 spot rates are 
initially obtained using a regression model, the goal of which is to reproduce 
as closely as possible the price of a given collection of assets subject to 
certain smoothness constraints. Pyramid-type direction vectors are then de- 
fined, such as: 

Nj = (0, 0, ..1/2, 1, 2/3, 1/3, 0, ..0), 

where the component " 1 "  corresponds to the location of the given key rate. 
Also, these direction vectors form a "partition" of the parallel shift direction 
vector, that is: 

~Nj  = (1, 1, ..., 1). 

The various key rate durations are then equivalent to directional durations 
with the direction vectors above. For more details on the models' relation- 
ships, see Reitano [28]. 

The directional measures of Definition 2 can be easily obtained from the 
corresponding partial measures as follows: 

DN(i) = O(i)" N = ~ njDi(i), (2.7) 

C~i) = NrC(i)N = ~ E  njnkCyk(i), (2.8) 

where N r denotes the transpose of the column vector N. 
When N = (1 . . . . .  1), the associated directional measures above reduce to 

the more traditional modified duration and convexity measures, D(i) and 
C(i), calculated with respect to parallel yield curve shifts. In addition, we 
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have from (2.7) and (2.8) that these traditional measures equal the sums of 
the corresponding partial measures: 

D(i) = ~ Dj(i), (2.9) 

c(i)  = E E cj (i). (2.1o) 

When necessary for clarity, duration and convexity functions will explicitly 
reflect P(i), such as D~(P) or D~P;i)  for D~i).  

B. Immunization Definitions 

Let Pk(i) denote the forward value of the portfolio at time k_>0, on the 
yield curve vector i, where it is assumed that no securities are either added 
or removed from the portfolio during this period. In addition, we assume 
that the yield vector changes from the initial value of io to i immediately 
after time 0 and evolves according to the forward yield curve structure 
implied by i throughout the period. Letting Zk(i) denote the price of a k- 
period zero-coupon bond with maturity value of 1, it is clear that 1/Zk(i) 
then equals the forward value at time k of 1 invested now. Consequently, 

Pk(i) = P(i)/Zk(i). (2.11) 

For example, if ij = i for all j ,  then Zk(i) = (1 + i) -k and Pk(i) = (1 + i)kP(i). 
Extending the classical notions of immunization, we have the following: 

Definition 3 

The price function P(i) is said to be locally immunized at time k on the 
yield vector io if: 

Pk(i) > Pk(io), (2.12) 

for i sufficiently close to io; that is, for I i - io [<r, where r> 0 and [ i [ denotes 
the standard Euclidean norm: 

Il l  2 = ~ i  2. (2.13) 

Similarly, P(i) is said to be globally immunized at time k on the yield 
vector io if (2.12) is satisfied for all feasible yield vectors i. [ ]  

For the purposes of Definition 3, "feasibility" is not rigorously defined. 
Certainly, the restriction 0<ij is a minimal requirement for feasibility, though 
in applications other bounds may be more practical. 
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We analogously define local and global immunization in the direction of 
N by: 

Pk(io + tN) > Pk(io) (2.14) 

for all t such that It[ <r  (local) and for all feasible t (global). 
For the purposes of directional immunization, we restrict our attention to 

yield curve shifts of a fixed type, N, so only the amount of the shift t is 
variable. For example, N could reflect the classical parallel shift direction 
vector, or a shift vector that changes the yield curve level and slope, or a 
more general type of shift. In the nondirectional immunization model, we 
consider all possible directions of shift from io. 

Given the above definitions, we now return to the definition of Pk(i) in 
(2.11) and investigate in more detail the implications of immunizing P(i) at 
time k. 

Assume first that P(i) enco.mpasses only fixed cash flows; that is: 

P(i) = ~ c, [1 + r(0,t)] -t, 

where r(O,t) denotes the t-period spot rate, or the rate used to discount cash 
flows from time t to time 0. Clearly, in this notation, Z~(i)= [1 +r(0,k)] -~. 

Letting r(s, t) denote the rate used to discount cash flows from time t to 
time s, or the implied (t-s)-period forward rate at time s, where 0<s<t ,  
we have that: 

[1 + r(0,t)] -t = [1 + r(0,s)] -s [1 + r(s,t)] -<t-s). 

Hence, a simple calculation produces: 

Pk(i) = ~ c, [1 + r(t,k)] ¢k-') + ~ ct [1 + r(k,t)] -¢`-k), 

where the first summation is over all t<k, and the second is over all t>_k. 
Consequently, we see that Pk(i) equals the value of the cash flows at time 

k, where maturing cash flows are assumed to have been invested at the 
forward rates, and then future flows discounted at the forward rates, implied 
by i. Immunization of P(i) at time k on io then ensures that the above value 
will be no smaller than Pk(io), or the forward value of these cash flows based 
on the above formula and the forward rates implied by the current yield 
curve, io. 

It is clear from the above formula why the definition of Pk(i) requires that 
the yield curve shift from io to i immediately after time 0 and then evolve 
according to the forward yield curve structure implied by i. Otherwise, the 
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first summation in the above formula would reflect the yield curves pre- 
vailing at the time of each maturity and reinvestment. In the current for- 
mulation, only the initial yield curve, io, and the shifted yield curve, i, have 
a bearing on the problem. 

In the special case in which the immunization horizon k precedes the time 
of the first cash flow, that is, k<t for all t, this assumption can be relaxed 
when cash flows are fixed. Specifically, in this case the yield curve shift 
from io to i can be assumed to occur at any time before time k, and can 
occur after any given number of other shifts; only the yield curve prevailing 
at time k matters. That is, immunization of P( i )a t  time k on io will ensure 
that Pk(i) will not fall below Pk(io) independent of the path followed by the 
yield curve from io to i. 

In the general case of interest-sensitive cash flows, P~(io) in (2.11) cannot 
be expressed in terms of forward rates as in the above formula. However, 
its interpretation remains the same as the forward value of the portfolio given 
the current yield curve io. This is because the portfolio can in theory be sold 
for P(io), its current market value, and the proceeds invested in a k-period 
zero-coupon bond, which will mature at time k for amount Pk(io). 

In this context, immunization of P(i) at time k on io again ensures that 
the actual forward value will not fall below this initial value when the yield 
curve shifts from io to i. That is, although the current portfolio value will 
change from P(io) to P(i), and the price of a zero-coupon bond will change 
from Zk(io) to Zk(i), the above sale and purchase can still be implemented 
and will result in a value at time k no smaller than that originally targeted. 

In contrast with the simple case of fixed cash flows, the assumption re- 
garding the timing of the yield curve shift from io to i, and the evolution of 
yields thereafter, cannot be relaxed in the case of interest-sensitive cash 
flows. That is, the value of the portfolio at time k will in general reflect 
both the timing of the shift in the simplest case, as well as the actual path 
the yield curve takes in the more complex case. 

However, this assumption about the yield curve shift from io to i, while 
necessary for the development of the theoretical results, does not prevent 
the application of the results to the real world. Rather, the results are fully 
applicable in the context of active portfolio management, whereby assets are 
frequently added or traded and new liabilities sold. In this context, the 
various criteria for immunization can be regarded as establishing targets for 
the asset and liability yield curve sensitivities. 
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For example, assume that the portfolio is structured so that surplus is 
immunized at time k on io. Consider the value of the portfolio on the fol- 
lowing business day, by which time the yield curve has inevitably shifted 
to i. On the assumption that this shift was consistent with the direction 
assumed under a directional immunization program, or more generally if it 
is assumed that the portfolio was immunized against all shifts, it is clear that 
Pk(i)>--Pk(io). To remain immunized, the criteria implemented on the previous 
day must again be implemented in light of the new yield curve and any new 
assets or liabilities. In this sense, the immunization criteria become active 
management targets. 

In the context of this day-to-day active management strategy, it makes 
little difference whether k is fixed in absolute terms or fixed in calendar 
time. In the former case, the management criteria will reflect fixed k, while 
in the latter case, k will be a function of time that decreases linearly as the 
target date approaches. 

Returning to the general problem, it is clear from (2.12) and (2.14) that, 
for P(i) to be immunized at time k on io, io needs to be a relative minimum 
of Pk(i) in the local immunization case and a global minimum in the global 
immunization case. For the results below, we utilize the well-known suffi- 
cient conditions for a point to be a minimum value. For example, a sufficient 
condition for Xo to be a local minimum off(x) in the direction of N is that: 

d~vf (Xo) = 0 (2.15) 

and 

d~,f(Xo) > 0. (2.16) 

A sufficient condition for Xo to be a global minimum is that (2.15) holds 
and (2.16) is satisfied for all x. 

Similarly, a sufficient condition for Xo to be a local minimum off(xo) is 
that (2.15) and (2.16) hold for all N; that is: 

djf(Xo) = 0, j = 1 . . . .  , m, (2.17) 

and 

(djkf (xo)) is positive definite, (2.18) 

where (djkf(xo)) denotes the second derivative matrix, or Hessian matrix, of 
f(x). A sufficient condition for Xo to be a global minimum is that (2.17) is 
satisfied and (2.18) holds for all x. 
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We now investigate the immunization of P(i). We will see that the du- 
rational and convexity properties of Zk(i) provide insight to sufficient con- 
ditions for immunization of P(i) at time k. In particular, for local immunization 
we require that P(i) have the "same duration" as Zk(i), and be "more 
convex," on the yield vector io. For global immunization, we also require 
duration and convexity relationships on other yield curve vectors. The con- 
cepts of "same duration" and "more convex" will be made precise below, 
but will be seen to be natural generalizations of the classical notions to this 
multivariate context. 

III. DIREC"rIONAL IMMUNIZATION 

A. General Results 
This section presents general results on directional immunization. For 

local immunization, it is sufficient for P(i) to have the same directional 
duration as Zk(i) and greater directional convexity. 

Proposition 1 
Let P(i), io and N:~0 be given, and assume there exists k_>0 so that on 

io: 

D~r(P) = D~r(Zk), (3.1) 

and 

C~¢(P) > C~¢(Zk). (3.2) 

Then P(i) is locally immunized at time k in the direction of N on the yield 
vector io. 

Proof 
Applying Corollary A.4 from the Appendix to Pk(i) in (2.11), we have 

from (3.1) and (3.2) that on io: 

DN(Pk) = 0, (3.3) 

and 

CN(Pk) > 0. (3.4) 
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Consequently, the respective directional derivatives of Pk(i) satisfy the con- 
ditions of (2.15) and (2.16) on io, since P(io)>0 by assumption, and the 
result follows. [ ]  

For global immunization in the direction of N, we require a convexity 
constraint on all feasible yield vectors i = io + tN. 

Proposition 2 

Let P(i), io and N ¢ 0  be given, and assume that there exists k->0 so that 
on io: 

DN(P) = DN(Zk), (3.5) 

and for all feasible yield curve vectors i = i o + tN: 

Cu(P) > Cu(Z,) + 2D~Z,) [DN(P) -- DN(Z,)]. (3.6) 

Then P(i) is globally immunized at time k in the direction of N on the yield 
vector io. 

Proof 
From Corollary A.4, (3.5) implies (3.3), while (3.6) implies that: (3.7) 

CN(P,) > 0 

for all feasible yield curve vectors i = io + tN. Hence, the result follows. []  

In the classical Redington model of N =  (1, 1 . . . .  ,1)  and io flat, ij=io for 
all j ,  the conditions for local immunization reduce to familiar statements. 
Here, Zk(iO)= V~, and using (2.7) through (2.10), Condition (3.1) becomes: 

D(P) = kvo, (3.8) 

from which k is uniquely determined, given io, by: 

k = (1 + io)D(P) = DM(p), (3.9) 

where DM(p) denotes the Macaulay duration of P(i) on io. 
Similarly, the convexity constraint in (3.2) becomes: 

C(P) > k(k + 1)vo 2, (3.10) 

which by (3.9) is equivalent to: 

C(P) > DM(p)[DM(p) + 1]Vo 2. (3.11) 
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When the cash flows underlying P(i) are fixed and positive, (3.11) is 
always satisfied, and immunization is ensured for k satisfying (3.9). The 
convexity constraint in (3.10) can also be expressed in terms of the inertia 
of P(i) on io (see (4.10) below and Bierwag [2] for details). For more details 
and results from general spot rate and forward rate models, see Reitano [26]. 

The convexity constraints in (3.2) and (3.6) can also be expressed in terms 
of the directional derivatives of the directional duration functions. Specifi- 
cally, because: 

duD~(P) = D~ (P) - cu(e), (3.12) 

we can rewrite (3.2) as: 

duDu(P) < dNOu(Zk), (3.2)' 

while (3.6) can be expressed: 

duDu(P) < duDu(Z~) + [Du(P) - D,v(Zk)] 2. (3.6)' 

For fixed N ¢ 0, the pair (k, io) of the above propositions gives rise to a 
duration window [k,Pk(io)], as defined in Bierwag [2]. Specifically, consider 
the graph o fy  =Px(i) in the xy-plane for each feasible i= io+sN.  All such 
graphs will equal or exceed the value Pk(i0) when x = k  in the case of global 
immunization, while all graphs with Isl <r  will have this property in the local 
immunization case. That is, each will pass through a window at x = k  with 
lower bound equal to Pk(io). Consequently, the value Pk(io) also gives rise 
to the minimum annualized return on investment over the interval [0, k]. 

It is natural to inquire into the existence of other such duration windows. 
That is, given i, = io + tN, does there exist k =k(t) so that P(i) is immunized 
at time k(t) on i,? We next consider all such pairs, [k(t),i,], and the associated 
duration windows, as forming an immunization boundary. 

Definition 4 

Given P(i) and N 4: 0, let i, = io + tN denote the yield vector on which P(i) 
is locally (globally) immunized in the direction of N at time k = k(t), if such 
a k exists. The local (global) immunization boundary for P(i), in the direction 
of N, denoted IBN(P), is defined: 

IBm(P) = {(k, Pk(i,)) I k = k(t)}. [ ]  (3.13) 

The immunization boundary then has the same property as does the du- 
ration window, yet over a range of forward times k. That is, the collection 
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of graphs y=P~(i)  for i = i o + s N  will be minimized at each such time k(t) 
on the yield vector i, in the global case and for more limited ranges of yield 
values in the local immunization case. Therefore, ek(i/) reflects the minimum 
portfolio value in this sense at each such time k(t) and consequently gives 
rise to the minimum annualized return on investment, i(k), over every such 
interval [0,k]: 

i(k) = [Pk(it)/P(io)] Ilk - 1, (3.14) 

where k =k(t) and io is the initial yield vector. For t = 0, the minimum return 
given in (3.14) equals the annualized return on the k-period zero-coupon 
bond, Zk(io), due to (2.11). Below, this return is denoted byj(k).  

In the classical model of N = (1, 1 . . . . . .  1) and flat io, the local immu- 
nization boundary always exists when cash flows are fixed and positive. 
This is due to the fact that, given it, k(t) is given by (3.9), and we have: 

IBN(P) = {(k, (1 + i,)ke(i,))lk(t) = DM(P,i,)}. (3.15) 

Consequently, the minimum return on investment in this case is given by: 

i(k) = (1 + i,) [P(i,)/P(io)] ~/k - 1, (3.16) 

where io is the initial yield value. 

B. Returns on Investment: Ik(i) 

As noted above, the immunization boundary gives rise to the minimum 
annualized return on investment, i(k), over every period [0, k] for which a 
yield vector exists so that P(i) is immunized at time k. However, the actual 
return on investment over [0, k] is in fact a random variable, Ik(i), the value 
of which depends on the yield vector i. As before, we assume that the initial 
yield vector is io, that this value changes to i immediately after time 0, and 
that it evolves according to the forward yield curve structure implied by i 
throughout the period. 

As in (3.14), which provides the minimum value of Ik(i) for each k on 
the immunization boundary, we have for all k: 

Ik(i) = [Pk(i)/P(io)] l / k -  1, (3.17) 

where i = io + tN. Following Babcock [1], we seek an approximation for Ik(i), 
where the approximation reflects the dependency on t. To this end, let qb(t) 
denote the right-hand side of (3.17), considered as a function of t. The first- 
order Taylor series approximation is then d~(t) = d~(0) + ~b'(0)t. 
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By substitution, we have that ~b(0)=j(k), where j(k) is the annualized 
return on the zero-coupon bond, Zk(i0), as noted above. To evaluate ~'(0), 
note that: 

d, Pk(i)l,:o = d~vPk(io) = --Pk(io)D~Pk). 

Consequently, we obtain the following approximation, in which all direc- 
tional durations are evaluated on io: 

Ik(i0 + tN) = j(k) - [1 + j(k)] D~ (Pk) t/k 
=j(k) + [1 + j(k)] [DN(Zk) --DN(P)]t/k. (3.18) 

If P(i) is immunized at time k, it is clear from (3.3) that the above linear 
approximation reduces to: Ik(i)-~j(k). In this context, however, j(k)=i(k),  
the minimum value of/k(i) over this period. Consequently, it is clear that 
the above formula is somewhat crude in this special case. 

Taking the second derivative of d~(t), we obtain the following generali- 
zation of (3.18), where all durations are evaluated on io: 

Ik(io + tN) -- j(k) - [1 + j(k)] D~ (Pk)t/k 

+ [1 + j(k)] [CN(Pk) + (k - 1)D 2 (Pk)/k] t2/2k. (3.19) 

When P(i) is immunized at time k, we see from (3.3) that the second-order 
bracketed term in (3.19) equals CN(Pk), which is positive by (3.4), and hence 
Ik(i) >j(k) = i(k) as expected. 

For more general values of k, the linear term in (3.18) and (3.19) will be 
non-zero. Specifically, if P(i) is longer than Zk(i) on io in the direction of 
N, that is, DN(P) >D~(Zk), then DN(Pk) will be positive and Ik(i) will decrease 
with increases in the yield vector in this direction. That is, the capital loss 
due to the increase in yields will not be made up by reinvestment gains over 
the period [0, k]. Similarly, lk(i) will increase with decreases in the direction 
of N. On the other hand, if P(i) is shorter than Zk(i) on io in this direction, 
then Ik(i) will increase with yield increases in the direction of N, because 
then reinvestment gains will overcome initial capital losses. 

In all cases, the second-order adjustment in (3.19) will be independent of 
the sign of the yield curve movement, reflecting only the magnitude of t. In 
general, however, the sign of this adjustment will depend on k. 

Naturally, either of the above approximations can be used to estimate the 
mean and variance of Ik(i), given an assumption about the probability density 
of t. For example, from (3.18), we obtain: 
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E[Ik(io + tN)] = j (k)  - [1 + j(k)] DN(Pk)E(t)/k, (3.20) 

Var[Ik(io + tN)] = [1 + j(k)] 2 D~(Pk)Var(t)/k 2. (3.21) 

IV. ASSET/LIABILITY MANAGEMENT 

In this section, we translate the above immunization methodology and 
results to an asset/liability management setting. To this end, we consider 
two objective functions: 

S(i) = A(i) - L(i), (4.1) 

n( i )  = [A(i) - L(i)]/A(i), ( 4 . 2 )  

where A(i) and L(i) denote the market values of assets and liabilities, re- 
spectively. Immunization in the context of (4.1) then provides a floor for 
the value of surplus at time k, while use of the objective function in (4.2) 
provides a floor for the ratio of surplus to assets, or net worth asset ratio, 
or simply, surplus ratio. 

A. Immunization of Surplus 
Let r s denote the surplus ratio on the current yield vector io; that is, 

r s = R(io) = [A(io) - L(io)]/A(io). (4.3) 

Proposition 3 
Let S( i )=A( i ) -L( i ) ,  io and N 4:0 be given. Assume that there exists k_>0 

so that on io: 

DN(A) = (1 - r')DN(L) + r'DN(Zk), (4.4) 

CN(A) > (1 - r')CN(L) + r~CN(Zk). (4.5) 

Then S(i) is locally immunized at time k in the direction of N on the yield 
vector io. 

Proof 
Consider first the case in which rS>0. By Proposition 1, we require on 

io: 

DN(S) = DN(Zk). (4.6) 

However, by Corollary A.1, 
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D~S)  = D~(A)/r" - D~L)(1 - r')/r s, 

and (4.6) follows from (4.4). An identical argument demonstrates that (4.5) 
is equivalent to CN(S)> C~(Zk) on io. 

For the case r ~ = 0, we work directly with the directional derivatives of 
Sk(i), with the goal that (2.15) and (2.16) be satisfied. The resulting con- 
ditions on the directional derivatives of A(i) and L(i) are then equivalent to 
the conditions in (4.4) and (4.5) with r ~= 0. [ ]  

When r s = 0, Conditions (4.4) and (4.5) imply that S(i) is locally immu- 
nized at all times k_>0 in the direction of N on the yield vector io. Conse- 
quently, the local immunization boundary is given by (3.13) with i,=io for 
all k -> 0. However, since r s = 0, we have that Sk(io) = 0 for all k, and hence, 

IBm(S) = {(k, 0) : k  _> 0}. (4.7) 

For r" > 0, we see that the directional duration of assets required for im- 
munization reflects both the directional durations of liabilities and the zero- 
coupon bond, Zk(i), corresponding to the immunization horizon k. In some 
applications, k may be chosen small or equal to zero, providing short-term 
immunization as part of an active management strategy. 

For k = 0, the above conditions become: 

O~¢(A) = (1 - rs)D~(L), (4.8) 

C~(A) > (1 - r')C~(L). (4.9) 

When N = (1 . . . .  ,1 ) ,  the parallel shift direction vector, and the yield curve 
io is flat, the above conditions are equivalent to those in Bierwag [2], stated 
in terms of Macaulay durations and the portfolio inertias IA. This is because 
in this case: 

(1 + i)2C(A) = IA + DM(D M - 1), (4.10) 

and similarly for liabilities. In this special case, it is clear from (4.4) and 
(4.5) that immunization at time k>0  requires more asset duration and con- 
vexity as k increases, because then D~(Zk)=kv is an increasing function of 
k, as is C~(Zk)=k(k+ 1)v 2. 

More generally, k can be chosen to be consistent with the planning cycle 
of the organization. For example, k- -1  would be an initial immunization 
target consistent with stabilizing income over a one-period interval, where 
income is defined as the change in net worth. In such a strategy, the value 
of k would be decreased over the period consistent with the targeting of 
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values to a fixed calendar date, such as December 31. Similarly, larger 
values of k can be chosen to reflect a multiyear business plan or the maturity 
period of the last liability flow. This last assignment would then be consistent 
with immunizing pricing margins over the life of a block of liabilities. 

As noted in Section IIB, however, the assumption that io shifts to i im- 
mediately after time 0 and remains fixed during [0, k] effectively precludes 
the use of the above results as part of a passive management strategy, that 
is, a strategy whereby the portfolio is structured at time 0 and effectively 
left alone during the period, except perhaps for the reinvestment of maturing 
cash flows. As noted there, passive management is possible in theory in the 
special case of fixed cash flows if the planning horizon, k, is less than the 
time of the first cash flow. However, even in this case immunization could 
fail under a local immunization strategy if the yield curve shift during the 
period is too great. 

B. Immunization of the Surplus Ratio 
In this section, we investigate the immunization of the net worth asset 

ratio, R(i) = [A(i) -L(i)]/A(i). Since R(i) is not a price function, its forward 
value at time k, Rk(i), is not given by (2.11). However, we have: 

Rk(i) = [Ak(i) -- Lk(i)]/Ak(i) 

= n ( i ) ,  

because the forward values of A(i) and L(i) satisfy (2.11). Consequently, 
immunizing R(i) at time 0 ensures its immunization at all times k>0.  

Proposition 4 
Let R(i) be defined as above, and let io and N :/: 0 be given. Assume that 

on io: 

D~(A) = D~L), (4.11) 

C#(A) > CN(L). (4.12) 

Then R(i) is locally immunized at all times k_>0 in the direction of N on the 
yield vector io. 

Proof 
Assume that R(io)=rS>0. We then have from Corollaries A.4 and A.I:  
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D (R) = D , , ( A  - L)  - D , , ( A )  

= c[DN(A) - D~L)], 

where c =L(io)lS(io). Consequently, (2.15) is satisfied due to (4.11). Similarly: 

CN(R) = c[CN(A) - C~(L)] - 2 c D ~ A )  [D~(A) - D~L)], 

and (2.16) is satisfied due to (4.11) and (4.12). 
For r s= 0, we proceed as in Proposition 3, working directly with the 

directional derivatives of R(i). [ ]  

When N = (1 . . . .  ,1 )  and the yield vector io is flat, the above conditions 
reduce to those in Bierwag [2] expressed in terms of Macaulay durations 
and inertias due to (4.10). Also, for general N, the local immunization 
boundary in (3.13) is given with i,=io for all k_>0, and hence, Rk( i , )=rS;  
that is, 

IBm(R) = ((k, rs) l k >_ 13}. (4.13) 

We leave it to the reader to generalize Propositions 3 and 4 to the case 
of global immunization in the direction of N. 

C. A n  Examp le  

The significance of Propositions 3 and 4 is the theoretical dependence of 
the condition of immunization on the direction vector, N, assumed in the 
duration and convexity estimates. In the classical model, N=(1 ,  1, .... 1) 
is commonly assumed. 

In theory, the satisfaction of Conditions (4.4) and (4.5), or (4.11) and 
(4.12) for a given N, does not ensure their satisfaction for other values of 
N. The following example illustrates that this observation is also true in 
practice and demonstrates how surplus immunization may fail due to actual 
yield curve shifts not encompassed by the model's specification for N. For 
other examples that relate to surplus and the net worth asset ratio and illus- 
trate the same conclusion, see Reitano [29]. 

Assume that the yield curve is given by io = (0.075, 0.090, 0.100), rep- 
resenting bond yields at time 0.5, 5, and 10 years, respectively. For all 
valuations below, we assume that bond yields at other maturities are derived 
by linear interpolation and that spot yields are developed from these values 
by the usual procedure. That is, they are derived so as to price the bonds 
implied by the bond yield curve to par. In practice, more pivotal points or 
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yield curve drivers would be used in the valuation model. For example, 
maturities of 1, 3, and 7 years would often be added to the bond yield curve, 
but we use this model for simplicity. 

Assets are to be composed of a mix of a 10-year, 12 percent coupon bond, 
and a 6-month pure discount position, such as commercial paper. Based on 
the above yield curve, this bond has a market value of 112.80 per 100 of 
par and a duration of 6.151, while the commercial paper has a market value 
of 96.39 per 100 and a duration of 0.482. To be consistent with the partial 
duration basis below, these duration values reflect sensitivity to parallel shifts 
in the bond yield curve and were calculated by using a forward difference 
approximation to the derivative with a difference of 5 b.p. (see Reitano [24, 
25, 28] for more detail). 

The liability is a $100-million 5-year zero-coupon bond, such as a 5-year 
guaranteed investment contract (GIC), with a current market value of $63.97 
million and duration of 4.855. Available assets total $71.08 million, and 
hence S(io) = $7.11 million and r s = 0.10 for a 10 percent net worth asset 
ratio. 

We seek to apply Proposition 3 to immunize surplus from parallel shifts 
at time k = 1/2, the time of the first cash flow. First, the duration of assets 
must satisfy (4.4) and hence must equal 4.418. A calculation based on 
Proposition A.1 shows that about 31 percent of assets needs to be invested 
in commercial paper, purchasing a par value of $22.54 million, while the 
remainder is to be invested in the bond, purchasing $43.75 million par. The 
asset portfolio then has a duration of 4.418, producing a surplus duration of 
0.482, the same as the duration of Zk(io) for k = 1/2. Consequently, (4.6) 
and hence (4.4) are satisfied. In addition, because the convexity of the bond, 
commercial paper, and GIC equal 52.48, 0.46, and 25.95, respectively, the 
convexity of surplus equals 132.25. Since this value exceeds the convexity 
of Zk(i0) of 0.46, (4.5) is also satisfied. 

Consequently, Proposition 3 assures that this portfolio is locally immu- 
nized at time k=  1/2 against parallel shifts from the initial yield vector 
i o = (0.075, 0.090, 0.100). For k=  1/2, the forward value of surplus, &(io), 
equals $7.37 million, which then provides the minimum value of &(i), for 
i= io+tN,  N=(1 ,  1, 1), and small t. In addition, by (3.14) the minimum 
annualized half-year return on surplus, i(k), is the return on Zk(i0) of 7.64 
percent, the annual equivalent of 7.50 percent. 

Using (3.19), we estimate the actual half-year return on surplus for N = (1, 
1, 1): 
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Ik(iO + tN) -- 0.0764 + 1.0764(131.77t2), k = 1/2, 

while for Sk(i), the corresponding Taylor series is: 

Sk(io + tN) ~- 7.3711 + 1/2-131.77t2]. 

A calculation then produces the following results: 

413 

(4.14) 

(4.15) 

, s~(i) s;(1) J~(I) i;( i)  
- 0.02 
-0.01 
-0.005 

0 
0.005 
0.01 
0.02 

7.59 
7.43 
7.39 
7.37 
7.38 
7.42 
7.55 

7.57 
7.42 
7.39 
7.37 
7.39 
7.42 
7.57 

14.1% 
9.2 
8.0 
7.6 
8.0 
8.9 

12.7 

13.3% 
9.1 
8.0 
7.6 
8.0 
9.1 

13.3 

In this table, Sk and I, represent exact values, ~ and ~ estimates using 
(4.14) and (4.15). The above values demonstrate that immunizationat time 
k=  1/2 will be successful if yield curve shifts are parallel. In addition, it 
illustrates the degree of accuracy of the above approximations in this case. 

For nonparallel shifts N, the conclusions can be significantly different. 
Consider first the duration value. By construction, DN(Sk)=DN(S)-D~Zk)= 0 
for N =  (1, 1, 1). However, calculating the partial durations of Sk(io) and 
using (2.7), we have that in general on io, for N =  (nl, n2, n3): 

D~Sk) = 5.26nl - 46.21n2 + 40.95n3. (4.16) 

To evaluate the potential range of directional durations in (4.16), a re- 
striction must first be put on the length of N because DN(Sk) is proportional 
to INI. Because we seek to compare the resulting values to that produced by 
N = (1, 1, 1), which has a length of "X/~, we restrict INI to equal V~  for 
consistency. A calculation then produces (see Reitano [24, 28]): 

-107.33 -< D~Sk) <- 107.33, INI = V'J. (4.17) 

The boundary points in (4.17) equal ± V'31D(Sk)[ and are achieved when N 
is proportional to D(Sk). For example, a simple calculation shows that 
N=(0.147, -1.292,  1.145) has length ~ (approximately), equals 2.8 
percent of D(Sk), and produces D,v(Sk)= 107.33. 

Consequently, while D~Sk) = 0 for N = (1, 1, 1), nonparallel shifts expose 
this portfolio to significant duration risk. To analyze convexity, we require 
the total convexity matrix C(Sk). When DN(Sk)= O, C,v(Sk)= C~S)- CN(Zk) 
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by Corollary A.4. In general, however, we must include the duration terms, 
producing: 

Cu(Sk) = 9.03n~ - 162.73n2z + 167.76n 2 
- 67.10nlnz + 25.72.nln3 + 159.10n2n 3 
- 0.9636n, Du(Sk). (4.18) 

As noted above, CN(Sk) = CN(S) - Cu(Zk) = 131.77 when N = (1, 1, 1). For 
other N with INI = V'3,  we use the result that (see Reitano [28]): 

3×" _< c sk) <- 3x*', INI = (4.19) 

where h m, h M represent the minimum and maximum eigenvalues of the total 
convexity matrix, C(Sk), given in Proposition A.4: 

3.97 -11 .29  - 6 . 8 7 \  
C(Sk)= - 1 1 . 2 9 - 1 6 2 . 7 3  79.55 / (4.20) 

- 6 . 8 7  79.55 167.76/- 

A calculation then produces eigenvalues of -181.4 ,  4.0 and 186.4, and 
(4.19) becomes: 

-544 .2  _< Civ(Sk) <- 559.2. (4.21) 

Consequently, the estimate Cu(Sk) = 131.77 for N = (1, 1, 1) understates the 
potential magnitude of the convexity factor. More importantly, it disguises 
its potential sign, because it is often tacitly assumed that the convexity 
adjustment for such a portfolio is always positive. 

By utilizing monthly Treasury yield data for the period August 1984 to 
June 1990, 65 sample values were produced for yield change vectors, N, 
representing overlapping 6-month yield curve shifts. 

Actual values of Du(Sk) using (4.16) ranged from - 0.153 to 0.148, while 
actual values of Cu(Sk) using (4.18) ranged from -0 .007  to 0.148. Nor- 
malizing all values of N so that INI = X/3, we obtained the following values 
for this period: 

-15 .75  _< D~v(Sk) <- 40.17, (4.22) 

-217.11 < C~Sk) < 447.51. 

Consequently, this sample period produced 6-month yield curve shifts that 
demonstrated significantly different normalized values of Du and Cu com- 
pared with the respective values for N=(1 ,  1, 1) of 0 and 131.77. These 
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observed ranges can be compared to the theoretical ranges in (4.17) and 
(4.21). In the case of C,, values close to the theoretical maximum were 
observed. See Table 1 for the distribution of results. 

TABLE 1 

DISTRIBUTION OF DIRECTIONAL DURATIONS 
AND COm'EXmES 

PERCENTILES FOR 65 OVERLAPPING 6-MoN'm PERIODS 
AUGUST 1984 TO JUNE 1990 

Pereentilc 

0.02 
0.10 
0.20 
0.30 
0.40 
0.48* 
0.50 
0.59 ° 
0.60 
0.70 
0.80 
0.90 
1.00 

Aemal 

D~(S~) C~(S~) 
-0 .153 -0 .007 
-0.105 -0 .003 
- 0.069 - 0.001 
- 0.056 0.001 
- 0.035 0.003 

0.009 0.006 

0.034 0.008 
0.048 0.014 
0.068 0.021 
0.094 0.043 
0.148 0.148 

*Values for N = (1, 1, 1). 

Normalized INI = v'~ 

- 15.75 -217.11 
- 11.20 -48.89 

-7 .67  -8 .79  
- 5.13 30.87 
- 3.27 62.96 

0 
1.91 90.59 

131.77 
4.86 139.96 
5.73 . 188.48 
7.31 238.98 

11.60 283.49 
40.17 447.51 

Utilizing the actual values of N, Sk(i) and Ik(i) can be estimated using the 
calculated duration and convexity values. For this purpose, we use (3.19) 
and the following generalization of (4.15): 

Sk(io + tN) = Sk(io) [1 -- D~(Sk)t + 1/2CN(Sk)t2]. (4.23) 

The ranges produced were: 

6.32 -< ~(i) -< 8.68, (4.24) 
-0.208 -< ~ (i) -< 0.482. 

Table 2 displays the distribution of estimated results and shows that im- 
munization was unsuccessful in more than 50 percent of the periods ob- 
served. Table 3 displays a comparison of actual and estimated values over 
11 nonoverlapping 6-month periods and shows immunization failing in 6 of 
the 11 periods. Note the proximity of actual and estimated values on Table 
3, indicating the extent to which this portfolio's risk characteristics were 
captured by D(Sk) and C(Sk). 
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TABLE 2 

DISTRIBUTION OF ESTIMATED PERIOD RETURNS 
AND PERIOD-END VALUES 

PERCENTILES FOR 65 OVERLAPPING 
6-MONTH PERXODS 

AUOUST 1984 TO JUNE 1990 

Percentile ~(1) ~(i) 
0.02 
0.10 
0.20 
0.30 
0.40 
0.50 
0.53* 
0.60 
0.70 
0.80 
0.90 
1.00 

-20.818% 
- 11.853 

-7 .536  
- 1 . 9 7 1  

1.156 
4.869 
7.641 

14.035 
22.025 
29.105 
33.165 
48.190 

$6.3182 
6.6701 
6.8349 
7.0357 
7.1470 
7.2778 
7.3743 
7.5908 
7.8523 
8.0772 
8.2126 
8.6773 

*Expected values on initial yield curve, io = (0.075, 
0.09, 0.10). 

TABLE 3 

ACTUAL VERSUS ESTIMATED VALUES 
NONOVERLAPPING 6-MONTH PERIODS 

AUGUST 1984 TO JUNE 1990 

6 mos. beginning I S~(i) ~(i) Ik(i) I ~(|) 

1/1/85" 
7/1/85" 
1/1/86 
7/1/86" 
1/1/87 
7/1/87" 
1/I/88" 
7/1/88 
1/1/89" 
7/1/89 
1/1/90 

$6.9558 
7.2915 
8.6943 
6.4331 
7.9502 
7.1163 
7.3425 
8.1939 
7.0121 
7.4207 
7.5890 

$6.9471 
7.2834 
8.6773 
6.4340 
7.9589 
7.1178 
7.3421 
8.1936 
7.0064 
7.4201 
7.5908 

- 4.230% 
5.239 

49.625 
- 18.084 

25.110 
0.240 
6.714 

32.899 
- 2.674 

8.999 
13.999 

-4 .337% 
5.056 

48.190 
- 18.089 

25.227 
0.299 
6.704 

32.951 
-2 .744  

8.981 
14.036 

*Immunization unsuccessful: Sk(io) = $7.37, lk(io) = 7.64%. 

Recall that this portfolio was immunized against parallel shifts, with ex- 
pected minimums: Sk(io)= 7.37, Ik(io)= 0.076. Consequently, parallel shift 
immunization assured immunization against nonparallel shifts neither in the- 
ory (Proposition 3) nor in practice (Tables 2 and 3). However, the above 
methodology provides a framework for measuring potential risk, as well as 
insight to conditions under which complete immunization would be assured. 
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V. NONDIRECTIONAL IMMUNIZATION 

A. General Results 

In this section, general results on nondirectional immunization are devel- 
oped and seen to be natural generalizations of the Section III results. For 
local immunization, for example, we again require P(i) to have the "'same 
duration" as Zk(i) on io and be "more convex." Here, however, the con- 
straints are stated in terms of the total duration vectors and total convexity 
matrices. We begin with a definition: 

Definition 5 

Let A and B be square matrices. We say that A / s  more convex than B, 
denoted A>B,  if A - B  is positive definite. That is, x r ( A - B ) x > 0  for all 
x~O. [ ]  

For convenience, we will sometimes write A>0,  which by Definition 5 
means that A is positive definite. 

The generalization of Proposition 1 is then: 

Proposition 5 

Let P(i) and i o be given and assume that there exists a k_>0 so that on io: 

D(P) = D(Zk), (5.1) 

C(P) > C(Zk). (5.2) 

Then P(i) is locally immunized at time k on the yield vector io. 

Proof 

As for the proof of Proposition 1, we require the result of Proposition 
A.4 relating D and C for Pk(i) to the respective values for P(i) and Zk(i). In 
particular, from (A.13) we see that (5.1) assures that: 

D(Pk) = 0, (5.3) 

while (5.2) and (5.1) together imply that: 

c(ek) > 0. (5.4) 

Recalling Conditions (2.17) and (2.18), we see that the above conclusions 
regarding Pk(i) ensure that io is a local minimum, and the result follows. [ ]  
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Clearly, the conditions of Proposition 5 are equivalent to assuming that 
Conditions (3.1) and (3.2) of Proposition 1 are satisfied for a fixed k, for 
all direction vectors N. A similar statement holds for the generalization of 
Proposition 2, which we state without proof. 

Proposition 6 

Let P(i) and io be given and assume that there exists a k_>0 so that on io: 

D(P) -- D(Zk), (5.5) 

and for all feasible i: 

C(P) - C(Zk) > 2D(Zk) r [D(P) - D(Zk)]. (5.6) 

Then P(i) is globally immunized at time k on the yield vector io. []  

B. Returns on Investment: Ik(i ) 
Defining Ik(i) as in (3.17), we have the following counterpart to (3.18), 

which follows from (2.7): 

Ik(i) = j(k) - [1 + j(k)] D(Pk)-(i - io)/k. (5.7) 

The second-order term in (3.19) can be similarly expressed. 
The earlier comments about the competition between capital gains and 

losses and reinvestment losses and gains apply here as well. Here, however, 
the concept of P(i) being "longer" or "shorter" than Zk(i) refers to the sign 
of the inner product in (5.7) being positive or negative, respectively. 

To generalize the moments of Ik(i) in (3.20) and (3.21), we require the 
following notation. Let E(i - io) denote the vector mean, and V(i - io) denote 
the covariance matrix of i -  io, reflecting the underlying density function of 
i. Then: 

E[Ik(i)] ~-j(k) - [1 + j(k)] D(Pk) 'E( i -  io)/k, (5.8) 

Var[Ik(i)] = [1 + j(k)] 2 D(Pk) V(i - io) V(Pk)r/k 2, (5.9) 

where all total duration vectors are evaluated on io. 

C. Asset-Liability Management 

For nondirectional immunization, the results of Section IV generalize in 
the natural way. We state the results without proof. 
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Proposition 7 

Let S(i)=A(i)-L(i) and io be given. Assume that there exists k_>0, so 
that on io: 

D(A) = (1 - r')D(L) + r'D(Zk), (5.10) 

C(A) > (1 - r0C(L ) + r'C(Zk). (5.11) 

Then S(i) is locally immunized at time k on the yield vector io. []  

As for Proposition 3, the conclusion of Proposition 7 remains valid when 
r~=0. Conditions (5.10) and (5.11) then imply local immunization for all 
k_>0. Also, in the same way that (4.4) of Proposition 3 implies that D~(Sk) = O, 
(5.10) of Proposition 7 is equivalent to D(Sk)=0. 

Returning to the above example, the durational constraint imposed by 
(5.10) to ensure complete immunization is that D(A)= ( -0 .354,  4.772, 0). 
This total duration vector is substantially different from that of the given 
assets of D(A)=(0.172, 0.152, 4.095). 

Proposition 8 

Let R(i) be defined as in (3.16) and io be given. Assume that on io: 

D(A) = D(L), (5.12) 

C(A) > C(L). (5.13) 

Then R(i) is locally immunized at all times k_>0 on the yield vector io. []  

VI. YIELD VECTOR TRANSFORMATIONS 

It is natural to inquire to what extent immunization, as developed above, 
depends on the underlying yield vector basis used. For example, if a portfolio 
is locally immunized at time k on the yield vector io, what can be said if 
the analysis was to be done using yield basis Jo? A similar question arises 
for directional immunization. The next proposition shows that the property 
of local immunization is independent of the yield basis. 

Here and throughout this section the yield curve basis is displayed as part 
of the duration and convexity notation to avoid confusion. 

Proposition 9 

Let P(i) be a price function that satisfies Conditions (5.1) and (5.2) of 
Proposition 5 and hence is locally immunized at time k on the yield vector 
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io. Let A:i--+j be a yield curve transformation, with a nonsingular Jacobian 
matrix, J[A(i)] at io. Then P(j)=P(A-I(j))  also satisfies these conditions on 
jo=A(io) and hence is also locally immunized at time k on the yield vector 
Jo. 

Proof 
By Proposition A.5, we have: 

D(Pk; io) = O(Pk; Jo) J[A(io)], 

and hence: 

[D(P; io) - D(Zk; io)] = [D(P; Jo) - D(Zk; Jo)] J[A(io)]. (6.1) 

Consequently, since J[A(io)] is nonsingular, P(i) satisfies (5.1) on io if and 
only if it satisfies this constraint on Jo- 

Similarly, we have: 

C(Pk; io) = J[A(io)] r C(Pk; Jo) J[A(io)] - D(Pk; Jo) H[A(io)], 

where H[A(io)] is the Hessian "matrix" of A at io. Substituting for the total 
convexity matrixes using (A.14) and using the fact D(Pk; io)= D(Pk; Jo)=0 
by (6.1), we obtain: 

C(P; io) - C(Zk; io) = J[A(io)] r [C(P; Jo) - C(Zk; Jo)] J[A(io)]. (6.2) 

Consequently, since J[A(io)] is nonsingular, C(P) satisfies (5.2) on io if and 
only if it satisfies this constraint on Jo. []  

The implication of Proposition 9 is clear, namely, that k, the time to 
which P(i) is immunized, is an invariant and intrinsic property of the port- 
folio. It does not depend on the yield curve basis chosen. For directional 
immunization, the situation is of necessity more yield curve dependent, 
because the direction vector N clearly reflects the yield curve basis. Trans- 
forming N by the Jacobian of the transformation provides a direction vector 

• M for which immunization is possible, yet unfortunately not assured without 
additional constraints, as the following result demonstrates. 

Proposition 10 
Let P(i) be a price function and N 4 ~ 0 a direction vector such that Con- 

ditions (3.1) and (3.2) of Proposition 1 are satisfied, and hence P(i) is locally 
immunized at time k in the direction of N on the yield vector io. Let A be 
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given as above. Then P(j) satisfies Condition (3.1) with M=J[A(io)]N and 
Jo = A(io). In addition, if DM,(P; jo)>-Dra.(Zk; Jo), where M' = NrH[A(io)]N, 
then P(j) also satisfies Condition (3.2) and hence is also locally immunized 
at time k in the direction of M on the yield vector Jo- 

Proof 

Using Corollary A.5, we have: 

D~(Pk; it) = DM(Pk; Jo), (6.3) 

and hence P(j) satisfies Condition (3.1) with M and Jo if and only if P(i) 
satisfies this condition with N and it. 

Using the corresponding result for directional convexities, and simplify- 
ing, we obtain: 

CN(Pk; it) -- CN(Zk; it) = Cu(Pk; Jo) - CM(Zk; Jo) - Du'(Pk; Jo)- (6.4) 

Consequently, if P(i) satisfies (3.2) with N and it, it does not necessarily 
follow that P(j) satisfies this condition with M and Jo due to the last term 
on the right of (6.4). However, if DM.(Pk; J0) =DM,(P; Jo) -Du.  (Zk; j0) -~0, 
local immunization in the direction of M is ensured. []  

Results about global immunization can be treated similarly. Unfortunately, 
as in Proposition 10, while the duration results carry forward well, the 
convexity conditions are not preserved without additional constraints. For 
example, for global immunization, we require J[A(i)] to be nonsingular 
everywhere and D(Pk; j)H[A(i)] to be positive definite for all i. Details are 
left to the interested reader. 
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APPENDIX 

Proposition A. 1 
Let P(i) --Pl(i) +P2(i). Then for Pl(i), P2(i), P(i) ~ O: 

D(P) = axD(P,) + a2D(P2), (A.1) 

C(P) = a,C(P,) + a2C(P2), (A.2) 

where aj= Pj(i)/P(i). 

Proof 
Let dj denote differentiation with respect to ij. Then: 

diP = diP, + diP2, 

dj, P = dj, e ,  + 

Dividing by P(i) completes the proof. []  

Corollary A. 1 
Let P(i) =el(i) +e2(i) and N 4:0 be given. Then for el(i), P2(i), e(i) --/: 0: 

D~P) = a,DN(P~) + a2D~,(P2), (a.3) 

C~(P) = a,C,v(P,) + azCN(P2), (A.4) 

where a t =Pj(i)/P(i). 

Proof 
Applying (2.7) and (2.8) to Proposition A.1, the result follows. []  

Proposition A.2 
Let e(i)=Pl(i)  P2(i). Then for P(i):/:0: 

D(P) = D(P,) + D(P2), (A.5) 

C(P) = C(P,) + C(Pz) + D(P,)rD(P2) + D(P:)rD(P,), (A.6) 

where D r is the column matrix transpose of the row matrix D. 
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Proof 

Let dy be defined as above, then: 

diP = P,(djP2) + (djP,)P2, 

djkP = (dykP,)P2 + P,(djkP2) + (djP,)(dkP2) + (djP2)(dkP,). 

Hence, 

Di(P ) = Dj(P,) + Dj(P2), 

cj~(P) = c~k(P,) + cjk(P2) + Dj(P,)D,(P2) + D~(P2)d~(P,). [] 

Corollary A. 2 

Let P(i) =P,(i)P2(i) and N :P 0 be given. Then for P(i) :P 0: 

ON(P) = Du(P,) + DN(P2), (A.7) 

CN(P) = CN(P,) + CN(P2) + 2DN(P,)D~(P2). (A.8) 

Proof 

Applying (2.7) and (2.8) to Proposition A.2, the result follows. []  

Proposition A.3 

Let P(i) = 1/Q(i), Q(i) :# 0. Then: 

D(P) = -D(Q),  (A.9) 

C(P) = - C(Q) + 2D(Q)rD(Q). (A.10) 

Proof 

As above, 

diP = -djQ/Q 2, 

from which (A.9) follows. Similarly, 

djkP = -djkQ/Q z + 2(dja)(dka)/Q 3, 

from which (A.10) follows. []  
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Corollary A. 3 
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Let P(i)= 1/Q(i), Q(i)~0 and N:~0 be given. Then: 

D#(P) = - DN(Q), 

cu(e) = -CN(Q) + 2D~(Q). 

Proof 

Immediate. [] 

Proposition A. 4 

(A.11) 

(A.12) 

Let P(i) =P~(i)/P2(i), P2(i) :~ 0. Then for P(i) ¢ 0: 

D(P) = D(P1) - D(P2), (A.13) 

C(P) = C(P,) - C(P2) + D(p2)r[D(P2) - D(P,)] 

+ [D(P2) - D(P,)]rD(p2). (A.14) 

Proof 

Combining Propositions A.2 and A.3, 

D(P) = D(PI) + D(I/P2) = D(P~) - D(P2), 

C(P) = C(P~) + C(1/P2) + D(p~)rD(1/P2) + D(1/P2)rD(P~) 

= C(P~) - C(P2) + 2D(p2)rD(p2) - D(P~)rD(P2) 

- D(P2)rD(p~). [] 

Corollary A. 4 

Let P(i) =e~(i)/P2(i), P2(i) :/: 0 and N 4= 0 be given. Then for e(i) 4: 0: 

DN(P) = DN(P,) - D~P2), (A.15) 

CN(P) = CN(P,) - C#(P2) + 2D~(P2)[D#(P2) - DN(P,)]. (A.16) 

Proof 

Immediate. [] 
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Proposition A. 5 

Let A : i o j  be a smooth transformation from R m to R". Let Q(j) be a price 
function and define P(i)=Q(Ai).  Then: 

D ( e ; i )  = D ( Q ; A i ) J [ A ( i ) ] ,  ( A . 1 7 )  

C(P;i) = J[A(i)]rC(Q;Ai)J[A(i)] - D(Q;Ai)-H[A(i)], (A.18) 

where J[A(i)]/k = aAj/#ik is the n × m Jacobian matrix of A, and H[A(i)]/~a 
= a2Aj/aikait is the n × m x m Hessian 'matrix' of A .  

Proof 
Applying the chain rule: 

dL.P(i) = ~ djQ(Ai) dkAj(i) = d Q -  dkA, 
1 

from which (A.17) follows. Taking second derivatives: 

d/kP(i) = ~ ~ doQ(Ai ) dtAi(i) dkAj(i) + ~ djQ (Ai) dt~zlj(i) 
y i y 

= (dtA)7[d2Q] dkA + dQ-d /kA,  

from which we obtain (A.18). [ ]  

Corollary A. 5 

Let A, Q(j) and P(i) be as in Proposition A.5, and N 4:0 be a given 
direction vector in R m. Also, let M and M' be defined in R" by: 

M = J[A(i)]N, (A.19) 

M' = NrH[A(i)]N. (A.20) 

Then: 

Ou(P) = DM(Q), 

Cu(P) = CM(Q) - D~r(Q). 

(A.21) 

(A.22) 
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Proof 
Using (2.7), (A.21) follows immediately from (A.17). Similarly, (2.8) 

makes the first term on the right of (A.22) clear from (A.18). For the second 
term, we have: 

-NrD(Q;Ai)H[A(i)]N = ~ djQ(Ai) ~, d, kAj(i) ntnk/Q(Ai) 
j tk 

= d Q  • [Nr  H [ A ( i ) ] N ] / Q ( A i )  

= - D ( Q )  • M '  

= - DM.(Q). [] 



DISCUSSION OF PRECEDING PAPER 

ELIAS S. W.  SHIU: 

Dr. Reitano is to be congratulated for publishing another paper on 
duration analysis and immunization. The paper is full of interesting 
mathematics. 

A difficulty I have with this paper is the concept of nondirectional im- 
munization, which I understand to mean immunization with respect to all 
(directions of) yield curve shifts. The existence of a nondirectionally im- 
munized portfolio would imply the existence of a free lunch, violating the 
principle of no arbitrage. In the case of a locally immunized portfolio, any 
"small" shift in the term structure of interest rates would guarantee an 
increase in the value of the portfolio. A globally immunized portfolio is one 
for which any shift, whether small or large, in the term structure of interest 
rates would guarantee an increase of its value. I use the word "increase" 
instead of "non-decrease," because I see that (5.2), (5.6), (5.11), and (5.13) 
are strict inequalities. The existence of this inconsistency in the model arises 
from the assumption that the yield curve is a deterministic function of several 
variables. 

Let us first consider the simplest situation: the case of a single liability 
cash flow. Let us assume that the current (t = 0) yield curve is determined 
by the force-of-interest function ~(t), t_>0; that is, the present value (t = 0) 
of each stream of fixed cash flows {Ct, t_>0} is given by 

In financial literature, {~(t), t~O} are called instantaneous forward rates. In 
the spirit of Dr. Reitano's zero-coupon bond notation, we write, for a force- 
of-interest function ~.(.) and a pair of non-negative numbers 'r and t, 

Z,.t(h) = e x p [ - I :  A(s) ds ] .  (D.I) 

The symbol Z,.,(h) represents the value at time 'r of 1 payable at time t, 
evaluated with the force-of-interest function h(.). Note that, for 'r>t, the 
symbol also makes sense mathematically, and it may be interpreted as the 
accumulation of a unit amount from time t to time 'r, with respect to h(.). 

429 
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Suppose that an insurance company issues a k-period zone-coupon bond 
(or a k-period bullet guaranteed investment contract) with maturity value L. 
It receives the amount of LZo,k(8) from a customer and invests it in an asset 
with fixed cash flows {A,, t_>O}, 

LZo~(8) = ~, AtZo.,(8). (D.2) 
taO 

Now, suppose that the force-of-interest function changes from 8(.) to 8(.) + e(.). 
The liability value and asset value become 

and 

LZo~,(8 + ~) 

E A, Zo,(  + 
tzO 

respectively. The question we want to ask is whether 

ZZo.k(~ + 0 ~ E ZtZo,t(~ + ~:), (D.3) 
t~o 

can hold for each feasible interest-rate shock e(.). Here, feasibility means 
that 8(0 + e(t) is never negative for all t. Inequality (D.3) is an inequality 
in terms of values at time 0. We can rewrite it as an inequality in terms of 
forward values at time k by dividing its two sides by Zo.k(8 + e). Since 

Z,,k(A) -- Z~,(A), (D.4) 

(D.3) is equivalent to 

A,Z ,(8 + ,) >_ L = E (D.5) 
tzO triO 

Inequality (D.5) is essentially the same as (2.12) of the paper. If I understand 
Definition 3 of the paper correctly, local immunization means that (D.5) is 
true for all sufficiently "small"  and feasible e(.), while global immunization 
means that (D.5) holds for all feasible e(.). As I demonstrate below, local 
or global immunization is only possible in the case of exact cash-flow match- 
ing; that is, the asset consists of a single cash flow of amount L, which is 
to be paid at time k. In other words, nondirectional immunization, or im- 
munization in all directions, is essentially a vacuous concept. This is not 
surprising because nondirectional immunization means free lunches. 
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Before proceeding further, I would like to clarify that the mathematical 
framework for interest rate movement as described above is essentially the 
same as the one in the paper. However, Dr. Reitano and I differ in verbal 
interpretation. In this discussion the initial term structure of interest rates is 
described by the force-of-interest function or instantaneous forward-rate 
function 15(.); in the paper it is described by the finite-dimensional vector 
io. There is an instantaneous interest rate shock and the forward-rate function 
becomes 8(.) + e(.); in the paper the new yield curve is determined by the 
vector i. I would not, however, say that the new yield curve "remains fixed 
at this level throughout the period." In the model, the yield curve does 
change as time passes (unless we are dealing with a flat yield curve). For 
-r_>0, let 8,(.) denote the instantaneous forward-rate function at time -r. The 
model assumes 

and, for 0<'r_<k, 

Bo(t) = 8(0,  t >-- O, 

8,(t) = 8 ( t +  7) + , ) , t _ >  o. 

The last formula means that, after time 0, the yield curve movement is 
governed exactly by the so-called pure expectations hypothesis ([6], [8]). 
On the other hand, the statement that the yield curve "remains fixed at this 
level throughout the period" means that, for 0 <'r<_k, 

8,(t) = 8(t) + t_> 0, 

which I do not find to be the case when I examine the mathematics in the 
paper. Thus Dr. Reitano and I have essentially the same mathematical frame- 
work but different verbal interpretation. 

Let us return to the question whether there can exist asset cash-flow 
streams for which (D.5) is true for all (small) ¢(.). (We remind the readers 
that (D.3) is equivalent to (D.5), which in turn is equivalent to (2.12) of the 
paper.) Define 

V(A) = X A,Z~,(A). (D.6) 
t>O 

Inequality (D.5) is equivalent to 

V(8 + e) - V(8) > O. (D.7) 
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To simplify writing, put 

and 

Then 

at = AtZk.,(6) 

f( t)  = Zk.t(e). 

V(8 + e) - V(8) = ~a , [ f ( t )  - 1]. 
t;~0 

(D.8) 

Let us assume that e(.) is a differentiable function. (This is for technical 
convenience, and one may use the advanced mathematical method in [12].) 
Then the function f(.) is twice differentiable. By Taylor's formula with 
remainder, there exists a point ~ between t and k such that 

f ( t )  = f (k)  + (t - k ) f ' ( k )  + 1/2 (t - k)2f"(~,) 

= 1 - (t - k)e(k) + I/2 (t - k)2f"(~). (D.9) 

Substituting (D.9) in (D.8) yields 

v(8 + 0 - v ( o  
= - e C k )  ~ ,  (t - k)a, + '/2 E f"(~)Ct - k)2a,. (D.lO) 

t~O t~:O 

Since {(t - k)2at} are non-negative numbers, there exists a positive number 
such that 

f " (~ ) ( t  - k )2a ,  = f " ( O  ~ (t -k)2a,. (D.11) 
t~:0 t~:0 

It is easy to check that 

f " (s )  = f(s){[e(s)] 2 - e'(s)}. (D.12) 

Hence (D.10) becomes 

V(,~ + 0 - V(a) = - E ( k )  ~ (t - k ) a ,  
t~O 

+ l/'z/(~:){[e(~)] 2 - e'(~:)} ~ (t -k)2a, .  (D.13) 
t>0 

Define 

• tat 
D = ,~o 

v(o 
(D.14) 
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and 

t2a, 
,~o (D.15) c= 

In the terminology of the paper, the quantities D and C are the directional 
duration and convexity, respectively, of the cash flows (A,} in the direction 
of the vector 

N = (1, 1, ..., 1) r. 

Note that, although each a, depends on k, the quantities D and C do not 
depend on k. That is, for every % 

E tA,Z,.,(8) 
D - ,~o 

E A,Z,.,(a) 
t~O 

and 

:A,Z,,,(a) 
C ~ t~o 

E A,Z,.,(a)" 
t;~0 

On the first page of the paper, Dr. Reitano suggests that D was first devel- 
oped by Fisher and Weil [3]; however, as I pointed out in an earlier dis- 
cussion [18], Macaulay [9] also had this idea. For convenience, let us call 
D and C the parallel-shift duration and convexity, respectively. Analogous 
to the formula 

define 

Var(X) = E(X 2) - [E(X)] 2, 

M z = C - D  z. (D.16) 

(The quantity M 2 is the same as the inertia defined in Chapter 7 of Bierwag's 
book [1]. This term also appears in the paper. Fong and Vasicek ([4], [5]) 
introduced the notation Mz.) 

Inequalities (D.3), (D.5) and (D.7) are equivalent to 

1/'(8 + e) 1 >_ 0. (D.17) 
V(8) 
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It follows from (D.13), (D.14), (D.15), and (D.16) that 

v ( a +  +) 
I = (k - D)+(k) 

v(a) 
+ '/2f(0{[e(se)] 2 - e'(0}[M 2 + (D - k)2]. (D.18) 

We now show that (D.17) cannot hold for all e(.), unless the asset consists 
of a single cash flow of amount L, to be paid at time k; in this case, for 
each e(.), 

v(a + 0 = v(a). 

There are two cases: k--/=D and k=D.  If k--/=D, consider parallel shifts of 
the yield curve. Let ,q be a constant and 

e(t) = r/, for all t. 

Then (D.18) becomes 

v ( a +  ~) 
I = r/{(k - D) + I/2 ~e'TCk-0[M 2 + (D - k)2]}. (D.19) 

v(a) 

For Inl sufficiently sinai1, the right-hand side of (D.19) is dominated by the 
term "q(k-D), which can be made negative by choosing -q to be of the 
opposite sign of (k-D). Then 

v(a + ~) < v(8). 

Now, let us examine the second case, in which the parallel-shift duration of 
the asset is k, 

D = k .  

Here, (D.18) becomes 

V(8 + e) 1 = ~/2f(~){[e(~)] 2 - d(~:)}M 2. (D.20) 
v(a) 

I f  there is more than one asset cash flow, we have M 2 > 0. Consequently, 

v(a + +) < v(a) 

i f and only if 

[e(~)] 2 < e'(se). (D.21) 
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Inequality (D.21) holds if the function e(.) satisfies 

d 1 
- - - -  < - 1  for allt. 
dt e(t) 

Let me now explain in words why nondirectional immunization can only 
occur for the case of exact cash-flow matching. If the parallel-shift duration 
of the asset, D, is not the same as k, the portfolio is not protected against 
all parallel shifts. If D =k and if the asset is not a single cash flow, then 
the asset has cash flows before and after time k. Now, consider a counter- 
clockwise twist of the yield curve; that is, short interest rates go down and 
long interest rates go up. Because the asset cash flows occurring before time 
k are to be reinvested at lower interest rates and the asset cash flows due 
after time k depreciate in value because of higher interest rates, the portfolio 
loses value. 

We have just treated the simple case of a single liability cash flow in 
detail, showing that nondirectional immunization is not possible except for 
exact cash-flow matching. The next question is whether the concept of non- 
directional immunization is viable in the general case of multiple liability 
cash flows. In the case of a single liability, it follows from (D.19) that 
matching the parallel-shift duration of the asset with k is a necessary and 
sufficient condition for immunizing against all parallel yield-curve shifts. 
With D = k, Formula (D. 19) becomes 

V(8 + e) 1 = ~ ~2e~t°-~)M2. (D.22) 
vca) 

For the general case of multiple liability cash flows, the matching of the 
parallel-shift duration of the asset with that of the liability is a necessary, 
but not a sufficient, condition for immunization against parallel shifts. The 
mathematics is more complicated, and we refer the interested reader to [16] 
or [17]. A theorem in [17] states that, for immunizing a portfolio with a 
liability outflows against parallel yield-curve shifts, a necessary condition is 
that the asset cash flows can be partitioned into n streams, each with the 
same present value and parallel-shift duration as one of the a liability out- 
flows. In other words, we need to immunize each liability outflow against 
parallel yield shifts separately. Using this result and refining the anticlock- 
wise yield-curve twist argument given earlier, we can show that nondirec- 
tional immunization for multiple liability cash flows can only be achieved 
by means of exact cash-flow matching. 
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Let me present one more argument why a nondirectional immunized port- 
folio must be a perfectly cash-flow-matched portfolio. Consider a portfolio 
of assets and liabilities. Following the notation in Section II-B of the paper, 
let c, denote the net cash flow of the portfolio to occur at time t, t_>0. (The 
net cash flows are the asset cash flows minus the liability cash flows.) The 
forward value of the portfolio at time k is 

c,[1 + r(t,k)] k-' + ~, c,[1 + r(k,t)] k-'. 
k>t~O t~k 

If the asset and liability cash flows are not exactly matched, there are some 
nonzero net cash flows. Let {s(., .)} be a set of feasible interest rates such 
that 

s(t,k) <- r(t, k), if t < k and c, > O, 

s(t,k) >_ r(t,k), if, t < k and c, < O, 

s(t,k) >_ r(t,k), ff t > k and c, > O, 

and 

s(t, k) <- r(t, k), if t > k and c, < 0. 

Then 

~, c,[1 + r(t,k)] k-' + 
k>t~:O 

c,[1 + rCk, t)] k-' 
tak  

>- ~ c,[1 + s(t,k)] '-k + E c,[1 + s(k,t)] k-', 
k>t~O t~k 

where the inequality becomes a strict inequality when just one of the in- 
equalities between s(., .) and r(., .) becomes a strict inequality. 

The concept of nondirectional immunization is indeed a natural conse- 
quence of the assumption that the yield curve is a deterministic function of 
several variables. Perhaps it would be useful to spend some time examining 
this assumption. If we stretch the word "several" to mean "many,"  the 
concept of nondirectional immunization becomes the same as exact cash- 
flow matching. Equating the gradient of the portfolio-value function to the 
zero vector yields a system of equations, with the number of equations being 
the same as the number of variables. When there are many variables, the 
solution to the system of equations is exact matching. That is, each liability 
outflow is paired with an asset inflow. 
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The model becomes more interesting and potentially useful if the term 
"several variables" means "a  few variables." Unfortunately, this implies 
the existence of a nontrivial nondirectionally immunized portfolio, which in 
turn implies the existence of a free lunch. It may help focus the issue by 
asking an explicit question. In Section C of The Wall Street Journal, there 
is a table entitled "Treasury Bonds, Notes & Bills." In the column under 
the heading "U.S. Treasury Strips," we can find the prices for zero-coupon 
bonds. The question is: Can one write down a function of several variables, 

Zk(il, i2 . . . . .  ira), 

which gives the price of the zero-coupon bond of term k for all k? What are 
il, i2, ..., and i,,,? This paper seems to advocate using the "pivotal yield 
values for maturities 0.25, 1, 2, 3, 4, 5, 7, 10, 20, and 30 years" as the 
variables, but I cannot write down the function Zk with these variables. The 
financial literature contains many papers trying to determine the term struc- 
ture of interest rates from empirical data; see, for example, [2], [7], [10], 
[11], [13], [14], [15] and [19]. Unfortunately, none of these papers provided 
such a function. As the function Zk(i) appears repeatedly in the paper, it 
would certainly help me understand the practicality of the results by seeing 
some formulas for Zk(i). 

Let me conclude this discussion with a comment on notation. The vectors 
in the paper are written as row vectors, but they are really used as column 
vectors. One sees definitions such as 

N = (1, ..., 1), 

where the right-hand side is obviously a row vector; however, one then finds 
formulas such as 

NrC(i)N, 

where N has to be a column vector. Also, the subscripts N, M and M' should 
be in boldface; that is, D ,  should be DN, CM should be CM, dN should be 
dN, and so on. 
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(AUTHOR'S REVIEW OF DISCUSSION) 

ROBERT R. REITANO: 

I thank Dr. Shiu for his discussion of my paper. Unfortunately, he con- 
tinues the misconceptions articulated in his discussion of my paper on 
"Multivariate Duration Theory" (TSA XLIII (1991): 335-76), apparently 
unconvinced by the rebuttal in my author's review of his discussion (TSA 
XLIII (1991): 382-91), which he had the opportunity to review prior to his 
current comments. 

His first misconception is that "the existence of a nondirectionally im- 
munized portfolio would imply the existence of a free lunch, violating the 
principle of no (riskless) arbitrage." Though this issue is addressed in more 
detail in my prior author's review, it is easy to show the error in this con- 
clusion. Basically, Dr. Shiu's argument ignores that "arbitrage" implies 
two trades: a trade to access a source of funds and a trade for the investment 
of these funds. His argument ignores the implications of the source of funds, 
in particular, their associated cost. 

The existence of a portfolio that increases in value, no matter the direction 
of interest rates, does not really provide a free lunch unless one can borrow 
funds to invest at no cost (that is, with no interest rate charges). If an investor 
has a non-zero cost of funds, no free lunch exists until the profits on yield 
changes first offset the losses on the cost of the funds invested. Clearly, 
such a trade is not risk-free, and hence this is not a riskless arbitrage, because 
such a position can net a loss over any period. 

Dr. Shiu's second misconception is that "local or global (nondirectional) 
immunization is only possible in the case of exact cash-flow m a t c h i n g " . . .  
and hence " . . .  is essentially a vacuous concept." To justify this view, a 
lengthy analytic derivation is presented. Unfortunately, the price function 
model used in that derivation compelled the given result. Also, for this 
particular price function, the propositions in my paper make the derivation 
of his conclusion quite straightforward. Finally, his conclusion fails to gen- 
eralize to other price function models. 

To demonstrate these assertions, we first recall the price function model 
used. Dr. Shiu begins with a continuous forward rate structure, {8(t), t>0}, 
which can then be used to calculate both the current and future values of a 
collection of fixed cash flows. His yield curve shift model: 8(0 ---> 8(t) + e(t), 
is constrained only by the condition that 8(t)+ e(t)>0 for t>0. 

Given a collection of cash flows {A,, t = tl, t2, ...}, we discretize the yield 
curve to price 30 years of cash flows to the minute,  say, with 
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m = 30 × 365 x 24 x 60 and with i = (il, i2 . . . . .  im) equal to the corresponding 
spot rate vector in m dimensions consistent with the original yield curve. 
The price function can then be given by: 

CA(i) = ~ A , ( 1  + i,)-'. 

It is not difficult to show that Dr. Shiu's yield curve shift model, g( t)~ 
g(t) + e(t), translates to allowing i=  (il, i2, ..., ira) to shift in any direction 
as a vector in this m dimensional space. 

Since Dr. Shiu assumes PA(i)=PL(i) initially, Proposition 7 of my paper 
states that a sufficient condition for immunization at time k->0 is that 
D(A) =D(L) and C(A)>C(L), where total duration vectors and convexity 
matrices are calculated within the m dimensional model constructed above. 
However, for the price function given, D(A)=D(L), if and only ifA,=L, 
for all t. Hence, it is true that if the yield curve model used is sufficiently 
fine to price fixed cash flows of all maturities and the shift model allows 
vector shifts in all directions in the associated spot rate vector space, then 
nondirectional immunization of fixed cash flows implies cash-flow 
matching. 

However, this result clearly relies on the explicit model for P(i), because 
this price function is uniquely characterized by its initial value and gradient, 
or equivalently, its initial value and total duration vector. 

In general, however, it is far too much to hope that a more general price 
function is uniquely characterized by its initial value and total duration vec- 
tor, or both of these and its total convexity matrix. Clearly, price functions 
of interest-sensitive cash flows do not fall within Dr. Shiu's result, nor do 
fLxed cash-flow models with cruder discretizations of the yield curve structure. 

For example, if one starts with Dr. Shiu's spot rate model, a yield curve 
of par bond yields can readily be constructed. Next, if one then selects 
several "yield curve drivers" among the resulting bond yields at, say, t=0.5,  
1, 2, 3, 4, 5, 7, 10, 20, and 30 years, and assumes that yields at other 
maturities move in an interpolated way, the initial price, total duration vector 
and total convexity matrix in this 10-dimensional space clearly will not 
uniquely characterize a price function, not even a price function of fixed 
cash flows. That is, many fixed cash-flow price functions can be constructed 
with common initial price, total duration vector, and total convexity matrix. 

In the limit of these yield curve simplifications, one obtains a single yield 
curve driver and the assumption that all other yields move by the same 
amount; that is, the Fisher-Weil or parallel shift model. 

In general, the goal of the yield curve model chosen is to be finer than 
the Fisher-Weil model, which allows significant yield curve exposure, yet 
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cruder than the Shiu model, which overconstrains the portfolio toward cash- 
flow matching. I believe that the bond yield curve and recommended yield 
curve drivers represent one such model, as does a variety of variations on 
this, such as Ho's spot rate model and key rates. The goal of my research 
has been to study the general properties of such models, to allow flexibility 
in their applications. Given this framework, only more empirical work will 
shed light on the yield curve models that provide the best balance between 
portfolio protection and management flexibility. 

On the subject of my simple description of the yield curve shift from i0 
to i in the paper's preprint, Dr. Shiu is quite right that my language was 
inaccurate and not reflective of the model used in the mathematical devel- 
opment or general discussion. Stating that the yield curve "remained fixed 
at level i throughout the immunization period" was a misleading way to 
state my actual assumption that no other changes in the yield curve took 
place other than the evolution of rates according to the forward structure 
implied by i. I have hopefully clarified my language in the final printing. 

On lighter subjects, Dr. Shiu comments that The Wall Street Journal table 
of U.S. Treasury Strips cannot be accurately reproduced by a simple model 
of a bond yield curve and the small number of yield curve drivers that I 
recommend. However, it is also the case that if one uses this strips curve, 
the universe of Treasury notes and bonds cannot be accurately priced either. 
The fact that a model has limitations does not invalidate its use. 

Dr. Shiu is also concerned that the prices of zero-coupon bonds cannot 
be easily represented analytically as an explicit function of my yield curve 
drivers. Certainly, given any collection of yield curve drivers and an inter- 
polation assumption, it is quite easy to calculate the implied price of zero- 
coupon bonds at all maturities using a computer. The fact that one cannot 
write down these prices as a simple function of the yield curve drivers should 
be no more troubling than one's inability to write down the formula for the 
price of a callable bond using the Ho-Lee model. 

Finally, Dr. Shiu objects to my notational conventions. As in my paper, 
it is quite common in linear algebra texts to display vectors as row vectors, 
yet identify them with column vectors in matrix calculations. This saves 
numerous and unnecessary uses of the transpose symbol whenever a vector 
is identified. As for my decision to not use boldface subscripts, the conven- 
tion here is less established so I opted for simplicity. 

Again, let me thank Dr. Shiu for his stimulating discussion and his con- 
structive comments about my description of the assumed yield curve shift. 




