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ABSTRACF 

This paper presents a unifying non-Bayesian statistical method for incor- 
porating prior information into the determination of probability distributions 
(and other finite measures) and develops the statistical properties of this 
method together with actuarial applications. This method is shown to be 
useful in several areas in actuarial modeling, including: 

• How to choose between competing models for a stochastic phenomenon 
under investigation. 

• How to use a standard distribution (mortality, loss, duration, and so on) 
and client data to obtain an appropriate distribution that is tailored to 
characteristics of the client. 

• How to adjust mortality tables in a statistically valid manner to obtain 
exactly certain known or assumed individual characteristics, while si- 
multaneously developing a table that is as close as possible to a given 
standard mortality table. 

• How to graduate or smooth observed insurance data to obtain smoothed 
estimates that are as close as possible to the observed data, subject to 
convexity and smoothness constraints. 

• How to incorporate monotonicity constraints into a life table graduation. 
This graduation technique can encompass either univariate or multivar- 
iate mortality tables with equal facility. 

These goMs are accomplished by means of constrained information the- 
oretic techniques. They are shown to provide a unified philosophical ap- 
proach with a firm statistical foundation capable of being applied to many 
problems currently addressed separately or in an ad-hoc fashion in actuarial 
education. Moreover, several other probabilistic models of relevance to ac- 
tuarial analysis (logit or logistic regression techniques, loglinear and multi- 
plicative models, certain Bayesian techniques, and so on) are shown to arise 
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naturally as a consequence of this information theoretic formulation, and 
common mortality table assumptions, such as constant force of mortality 
and uniform distribution of deaths assumptions, are given new interpretation 
and justification in terms of information theoretic concepts. 

1. INTRODUCFION 

A substantial portion of actuarial training is designed to assist in the 
process of decision-making under uncertainty. For example, in modeling 
individual and insurance company choice behavior, the outcomes are often 
evaluated in terms of the expected utility of the alternative outcomes (for 
example, Bowers et al. [12], Hurlimann [43], Borch [9]-[11], or Briys [13]). 
Even the determination of net single premiums involves the calculation of 
the expectations of loss for the phenomenon under investigation. Usually in 
the actuarial literature such problems are approached by separately deter- 
mining (or postulating) the pertinent probability distribution, and then per- 
forming the requisite calculation of expected values, statistical assessment 
of multivariate probabilistic structure, or testing of the appropriate hy- 
potheses. Sometimes stochastic models are developed in an ad-hoc manner 
(examples are certain adjustments to a standard mortality table, visual 
smoothing of graduated series, or certain finite difference or polynomial 
regression techniques used in ratemaking), and the approaches used can vary 
substantially from one application to another depending upon the particular 
training of the actuary. 

A fundamental principle or approach can be used to show the actuarial 
science researcher how to: (1) integrate the distribution determination with 
the analysis method, (2) draw the modeling formulation as a consequence 

of this fundamental principle, while (3) providing a unified framework for 
statistically testing the significance of the obtained relationships. The ap- 
proach should be sufficiently flexible to incorporate (or generalize) the fre- 
quently encountered quantitative actuarial science methods as special cases 
and, hopefully, should even allow the decision-making process to proceed 
when (as often happens in actual actuarial applications) there is only limited, 
partial, or perhaps even conflicting, information about the random variables 
involved. This partial information may, for example, consist of a sample of 
empirical data that may, however, differ in qualitative ways (for example, 
non-monotonicity of observed mortality rates, or non-unimodality of loss 
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distribution data, and so on) from what is known about the stochastic struc- 
ture. Or it could consist of having forecast or exogenously determined ex- 
pected values of certain functions of the random variables (for example, 
interest rate forecasts, known or published percentiles of a mortality or loss 
distribution, and so on). Moreover, this desired fundamental philosophical 
approach should be simple and intuitive so that it is easily understood by 
both researchers and practitioners. We show that statistical information the- 
ory provides such a fundamental actuarial principle that addresses these 
goals. 

We proceed as follows: First, we define and review the mathematical 
foundations of information theory as needed in this paper. Next we show 
how the information theoretic method can be used to guide the actuarial 
science researcher in selecting statistical models for analysis when the true 
underlying distributions are unknown. The resulting criterion, known as 
Akaike's Information Criterion (AIC), presents a unified approach to the 
solution of numerous different actuarial problems (for example, insurance 
models for ratemaking, interest and bond rate process modeling, modeling 
changing demographic characteristics, and so on). 

We next relate the information theoretic method to Bayes' Theorem. Of 
course the Bayesian approach has been widely presented in actuarial appli- 
cations (for example, credibility theory, graduation of mortality tables, eco- 
nomic forecasting, and so on), so this connection unifies the current research 
on Bayesian methods with that of the classical (frequentist) approach com- 
monly studied by actuarial students. We then derive the canonical Minimum 
Discrimination Information (MDI) model and, from this stochastic model, 
develop each of several important actuarial science models (logit or logistic 
regression models, multiplicative models, loglinear models, and so on). These 
are shown to arise naturally in the information theoretic context, and in 
addition, we indicate how the MDI hypothesis-testing capability makes these 
models more useful for actuarial decision-making and assessment of statis- 
tical significance of relationships. For brevity, the mathematical demonstra- 
tions are confined to the simplest case of each subsidiary model (for instance, 
the univariate dichotomous logit model), but extensions are indicated, as 
well as new variants of the basic models that may be suggested by the MDI 
framework. We then give several concrete applications of these techniques 
to actuarial problems such as univariate and multivariate graduation incor- 
porating constraints and construction of loss distributions using partial 
information. 
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2. INFORMATION THEORY 

The conceptof  "information" has a long and prominent history in the 
development of statistics. Clearly the amount of "uncertainty" and the amount 
of "information" are inversely related: the information in an experiment is 
the amount of uncertainty that would be eliminated by performing the ex- 
periment. The common measure of "information" utilized by Fisher [31] 
(and taught in the SOA study material) takes the form of the inverse of the 
variance and was a first attempt to formalize the notion that data and models 
in statistics were essentially information transmissions. In the case of the 
normal distribution, Fisher's variance-covariance based measure turns out to 
be a reasonable measure of uncertainty, and classical statistics as used in 
actuarial science research defines (the Fisher) information in terms of such 
moments. 

However, other potentially more appropriate measures of information are 
available, such as that defined by Shannon and Weaver [72] and developed 
further by Khinchine [48], [49] and by Kullback and Leibler [51]. As ac- 
tuarial models become more sophisticated, the restrictions involved in nor- 
mality assumptions become widely recognized, and the distributions involved 
in actuarial calculations depart substantially from normality (for example, 
mortality distributions closely resembling the Gompertz law, sample sizes 
involved in risk pooling decreasingly subject to central limit arguments due 
to smaller sample sizes, and so on), we see a move away from strictly normal 
distribution-based models and, consequently, a move away from variance- 
based measures of information. In fact, for statistical applications, Wiener 
[77] remarked quite early (1948) that the Shannon measure of information 
would eventually replace the Fisher measure of information. 

We first present the statistical methodology. In information theoretic no- 
tation, the expected amount of information in the observation of a random 
variable X for distinguishing between two potential probability distributions 
p and q for X is denoted by l(p[q). Mathematically this expected information 
is quantified by the expected value of the log-odds ratio (which is a sufficient 
statistic for this discrimination, compare Cox and Hinkley [27, pp. 20--21]). 
In shorthand symbolic notation, 

l(Plq) = - J p(x)In [P(x)l x(ax) (2.1) 
_, [q(x)J 
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where k is some dominating measure for both p and q. Usually k(dx) is 
Lebesgue measure in the (absolutely) continuous case or counting measure 
in the discrete case, so that a more familiar concrete representation is: 

l(plq) {i } p(x) In [p(x)] dx if the variable X is continuous 
Lq(x) J 

~, p(xi)In [p(xi)] if the variable X is discrete 
,~o Lq(x,)J 

An application of Jensen's inequality applied to the function h(x)=xlnx 
suffices to prove that l(p[q)->0 with l(p[q)=0 if and only if p = q .  As a 
consequence, l(plq) can be thought of as the (pseudo-) distance or "close- 
ness" between p and q within the space of all probability measures• 

Kullback and Leibler [51] have shown that this measure l(plq) (called the 
Kullback-Leibler number) can be used to develop a consistent statistical 
theory for measuring the expected amount of information given by a set of 
observations. In addition, the measure l(p[q) satisfies certain intuitively and 
theoretically desirable properties of an information measure (Kullback [50]; 
Haaland, Brockett and Levine [37]; Guiasu [36]; and Sakamoto, Ishiguro 
and Kitagawa [67]). It has also been used in actuarial science as a measure 
of equity. In this application it is a special case of the general functions 
developed by Promislow [66] for this purpose. 

If certain characteristics of the distributions are presumed known, such as 
moments (say, net premiums, life expectancy or expected values of other 
functions of the variable), percentiles (say, expected mortality rates or sur- 
vival probabilities), or other characteristics that can be expressed as expected 
values, then these quantities can also be incorporated as constraints into the 
analysis• The minimization of l(p[q) subject to these given constraints results 
in a convex programming problem (compare Hillier and Leiberman [41, 
Chapter 14]). The dual of this convex programming problem is actually 
unconstrained, so that the computation of the minimum l(plq) is simply 
carried out by using elementary numerical techniques (compare Burden and 
Faires [20]). The constrained minimum l*(plq), called the Minimum Dis- 
crimination Information (MDI) statistic, gives the expected amount of in- 
formation that an observation X yields in favor of the distribution p as 
opposed to the distribution q. We elaborate this further as follows. 

Minimizing the information l(plq) for discrimination between the proba- 
bility distributions p and q, subject to any constraints that may apply to the 
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parameters of p, results in an estimate of p, say p*, which is the distribution 
least distinguishable from q, but which satisfies the given constraints (which 
q itself may not do). In many important cases, these information theoretic 
estimates are also maximum likelihood estimates, and they are in general 
best asymptotically normal (compare Gokhale and Kullback [32] and Kull- 
back [50]). 

The asymptotic (as the sample size increases) distribution theory for l*(Plq) 
(the minimum discrimination information (MDI) value) leads to a chi-squared 
test of the hypothesis that p and q are identical, that is, that the observed 
parameters are consistent with the estimated parameters (compare Golden, 
Brockett, and Zimmer [34]). From an actuarial perspective, one benefit of 
the above development is that estimation and hypothesis testing can be achieved 
simultaneously, consequently making for a more coherent approach to ac- 
tuarial analysis under uncertainty. In addition, because l(plq) is a general 
measure of the "distance" between p and q, all estimates and inferred 
relationships resulting from a constrained MDI problem are valid regardless 
of whether Ho is accepted. In fact, if the hypothesis that p and q are iden- 
tically distributed is not true, then the asymptotic limit of l*(plq) is the 
"distance" between the convex set of all distributions that do satisfy the 
given constraints and the given hypothesized distribution q. See Sakamoto, 
Ishiguro and Kitagawa [67] for details and a proof. 

Information theory provides a convenient framework for most of the usual 
problems of statistical inference as taught in the Society of Actuaries syl- 
labus. Akaike [2], for instance, has shown that the principle of maximum 
likelihood and the Fisher information approach are asymptotically equivalent 
to the information theoretic method, thus yielding on the one hand, a decision 
theoretic interpretation of maximum likelihood and, on the other hand, a 
single rational decision theoretic method of statistical estimation and hy- 
pothesis testing. As such, it becomes a unifying principle for the otherwise 
separate parts of statistics taught and applied in actuarial science. 

3. MODEL SELECTION 

Using the above developed "distance" interpretation of l(plq), Akaike 
[2] showed how to use information theory to choose rationally among com- 
peting stochastic models to obtain a parsimonious parametric representation 
for a given stochastic phenomenon. Of course selecting an appropriate sto- 
chastic model is essential for actuarial analysis to provide useful input for 
decision-making. The information theoretic approach to model selection pi- 
oneered by Akaike proceeds as follows: 
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Using q as a generic potential postulated or stochastic model-based dis- 
tribution and p as the "true" (but unknown) underlying distribution that is 
to be modeled, Akaike [2] proposes to choose the stochastic model q that 
is as "close" to the true stochastic model as possible, that is, which mini- 
mizes l(plq)- To this end we first observe that 

w 

/(plq) = J p(x)In [p(x)[ h(dx) (3.1) 
-® [q(x)J 

= i p(x)In [p(x)] k(dx) - J p(x)In [q(x)] k(dx). 

The first term in (3.1) depends only upon the distribution of the true (but 
unknown) stochastic model p and hence is common to all the potential 
postulated densities q. To select the best or "closest to correct" postulated 
stochastic model from among a given class of postulated models, q must be 
chosen to minimize l(plq) or, equivalently, to maximize 

w 

I pCx) in [q(x)] x(&), 
- w  

the expected log-likelihood of q. 
By the law of large numbers, based upon a sample X1, X2, ..., X,, from 

the true probability distribution p, the expectation 
w 

I p(x) In [qCx)] k(dx) 
- ®  

can be approximated by 1/n times 

imO 

that is, by the sample average log-likelihood of the postulated model. 
In addition, there are many important situations in the actuarial context 

in which the postulated stochastic model is a parametric model with para- 
meters 01, 02, ..., Ore. For example, multivariate regression, polynomial 
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regression, and other linear models are often used in insurance ratemaking 
(compare Kalbfleisch [47], Sampson and Thomas [68]); ARIMA time series 
models (compare Miller and Wichern [61]) are used in models of interest 
rate structures (compare, Panjer and Bellhouse [64] and Bellhouse and Panjer 
[6]); Markov models are used in multivariate increment-decrement marriage 
or working life tables (compare Schoen and Land [71] and Hoem [42]); and 
factor analysis models are used in arbitrage price models for financial val- 
uation of equity and bond prices (compare Martin, Cox and MacMinn [57]). 
In these parametric situations Akaike shows that 1/n times the maximum log- 
likelihood 

(which is obtained by substituting the maximum likelihood parameter esti- 
mates 0~, 02, .... 0m into the likelihood function) is, in fact, (asymptotically) 
upwardly biased as an estimator of the expected log-likelihood 

w 

I p(x) In [q(x)] h(dx), 
- - w  

and that the size of this bias is precisely m/n, where m is the number of free 
parameters in this particular postulated stochastic model q. Incorporating 
this bias correction into the maximum log-likelihood estimate gives the de- 
sired estimate of the expectation 

w 

I p(x) ln[q(x)] h(dx), 
- - w  

(which as we have noted, differs only by a constant common to all postulated 
models from the information distance l(plq) between the true but unknown 
distribution p and postulated model q). 

Thus, using a sample X1, X2, ..., X,,, selecting the "closest" (minimum 
information distance) postulated model from among a given class of postu- 
lated models leads, upon multiplying the bias-corrected estimate through by 
the constant n, to the following criteria for stochastic model selection: Choose 
the stochastic model q that maximizes the quantity 

maximum log-likelihood - number of free parameters. 
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For consistency with other statistical usage, this quantity is usually mul- 
tiplied by - 2  in order to arrive at the equivalent so-called Akaike Infor- 
mation Criteria (AIC): 

minimize { -  2(maximum log-likelihood - number of free parameters)}. 

Numerous examples that use the AIC criteria for model selection problems 
of interest to actuarial science researchers are worked out in Sakamoto, 
Ishiguro and Kitagawa [67]. These include such fundamental problems as 
determining the number of variables to include in a multiple regression, 
selecting the order of a polynominal regression, deciding upon the number 
of factors to include in a factor analysis, selecting the order of an ARIMA 
model, choosing the order of dependence in a Markov chain model, and 
other applications. Because most commercially available statistical computer 
programs output the log-likelihood value, the implementation of this sto- 
chastic model selection procedure is straightforward. 

Although the above development was based upon the asymptotically un- 
biased estimation of the expected log-likelihood of the postulated model, a 
further "small sample" justification of the use of Kullback-Leibler infor- 
mation statistics for model selection is given by Larimore [53]. There it is 
shown that the considerations of likelihood and sufficiency lead naturally, 
even in the dependent variable Setting, to the use of information theoretic 
measures as approximations to the actual predictive distributions obtained in 
repeated sampling, and leads to the same general information theoretic method 
of parsimonious stochastic model selection as above. 

Note that for developing parsimonious parametric models, penalized log- 
likelihood methods proposed previously have been of the form: 

Maximize (log-likelihood - K x number of free parameters) 

for some number K (for example, Schwarz [70] and Smith and Spiegelhalter 
[73]). However, the information theoretic method removes the ad-hoc nature 
of the selection of the value of the parameter K (it should be 1) and, more- 
over, develops this selection rule from a single unified philosophical infor- 
mation theoretic approach to the statistical analysis and consolidates it with 
other aspects of the statistical modeling and testing framework. 

4. INFORMATION THEORY AND BAYES' THEOREM 

Bayesian methods have a long history of use in actuarial science, possibly 
because these methods provide a well-adve(tised method for incorporating 
the prior experience and knowledge of the actuary into the model formulation 
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and estimation (compare Heilmann [40] for an example in a credibility theory 
context). Johns [44], however, points out in Kahn [46] that " ... insurance 
ratemaking provides one of the best examples where the pure Bayesian 
approach based on subjective prior probabilities is not appropriate." As we 
have seen, constrained information theoretic methods provide an alternative 
method of obtaining the same objective of incorporating the prior expertise 
of the actuary into the calculations. In the information theoretic formulation 
the prior information is incorporated through the use of the "standard" or 
"goal"  distribution q and through the use of constraints that express pro- 
perties that are known to hold. This section discusses further connections 
between the Bayesian and information theoretic approaches. 

According to Kullback [50, p. 4], the first simple relationship between 
the information theoretic method and Bayes' Theorem (and hence a con- 
nection between information theoretic methods and the close cousin of Baye- 
sian methods-decision theory) is obtained by writing 

p(x) = er(xlna ) 

q(x) = er(xlH2) 

where p(x) and q(x) are the (either discrete or continuous) statistical distri- 
butions associated with two competing hypothesized distributions HI"p and 
H2:q for the random vector X. By using Bayes' Theorem, the likelihood 
ratio of the two hypothesized distributions p and q can be assessed in light 
of the sample data x and the given prior likelihoods Pr(H~) and Pr(H2) as 
follows: 

er(H, Ix) _ er(xln,)Pr(H1 ) _ p(x)Pr(H1) 
Pr(H21x) Pr(x[H2)Pr(n2) q(x)Pr(H2)' 

or  

p ( x ) = l o g P r ( H t , x )  • I Pr(Hx) 
og q C x )  Pr(/-/21x) lOg ~----'~2)" 

The expression on the left is the "log-odds" ratio in favor of the distri- 
bution p against the distribution q on the basis of the observation X = x  and 
is a sufficient statistic for this discrimination (compare Cox and Hinkley [27, 
pp. 20-21]). It is evidently the difference between the posterior and prior 
distribution log-odds ratios and hence can be interpreted as the information 
gained in favor of p by additional knowledge of the observation x. 
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The statistic 

__l!®p(x) ln[P(X)ldxifthevariableXiscontinuous ILq(x)j__ 
l(plq) 

t i~o p(xi)In [p(xi)]if the variable X is discrete. L q(xi) J 
thus represents the expected value (using p's  distribution) of this gain and 
hence can be interpreted as the average information gained in favor of p per 
observation of X, assuming that H~ is the true state of nature. 1 See Golden, 
Brockett, and Zimmer [34] for more details. 2 Thus, Bayes' Theorem can be 
used to obtain an interpretation of the information theoretic functional as the 
expected information gain from repeated sampling. Even more fundamental 
connections exist between information theoretic methods and Bayesian 
analysis, however. For example, Zellner [78] has shown that if one starts 
with an information theoretic formulation and seeks an optimal information 
processing principle that transmits all the "information" in the prior distri- 
bution for updating the prior distribution in order to obtain a posterior dis- 
tribution, then in fact Bayes" Theorem is a consequence of the information 
theoretic method. This is important in actuarial science because of the nu- 
merous applications that take Bayesian methods as a starting point for their 
analysis. Although Bayesian techniques have been criticized in science for 
their ostensible subjectivity, the "objective" and "frequentist" information 
theoretic method can be used to provide an alternative approach to virtually 
all nonsubjective applications of Bayesian techniques in actuarial science. 

qf we are interested in distinguishing between hypotheses (as opposed to favoring one particular 
hypothesis), then we may introduce the symmetric statistic that Kullback [50] refers to as the 
"divergence measure" J(p,q) =/(p[q) + l(q[p) = 

[P-(X)] h(dr) + q(x ) ln[q (x ) l k (dx )=  [ p ( x ) -  q(x)lln tq(xl j  
- Lq~J Lp~)J -m -m -a 

This represents a generalization of the usual Mahalanobis distance statistic for normal distributions. 
The terms l(plq ) and l(q[p) represent what might be called "directed divergences," and J(p,q) is a 
measure of the divergence between Ht and H2 on the basis of X=x. d(p,q) has all the properties 
of a distance measure, except that it need not satisfy the triangle inequality. See Appendix A in 
Chames and Cooper [22]. 

2Note that in this context l[plq] is a "frequentist" approach as opposed to a subjective Bayesian 
approach. 
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Other authors have also noted some strong similarities between Bayesian 
methods and the information theoretic approach. For example, Murray [62] 
showed that when developing a predictive distribution for a multivariate 
normal distribution with unknown mean and covariance matrix as, for ex- 
ample, in Bayesian graduation techniques (compare London [56]), the MDI 
estimate over the class of invariant distributions coincides with the Bayesian 
predictive distribution obtained by using an invariant prior distribution. Ng 
[63] generalized this approach and showed that a number of common dis- 
tributions lead to the same predictive distributions from either a Bayesian or 
a repeated sampling-information theoretic method. Thus, information theo- 
retic methods can unify and extend certain Bayesian as well as frequentist 
approaches used in actuarial science. Akaike [3], [4] provides further insight 
into the information theoretic connections with Bayesian procedures. The 
information theoretic method can also be used to enable the Bayesian to 
construct a unimodal prior distribution that expresses the assessed informa- 
tion elicited from the decision-maker. Prior distribution determination is a 
critically important problem that must be addressed in the implementation 
of any Bayesian technique. See Brockett, Charnes, Golden and Paick [16] 
for details. 

5. THE CANONICAL MDI PROBLEM 

In the previous sections we have considered information theoretic ap- 
proaches involving analysis of the functional l(plq) viewed as a pseudo- 
distance measure over various classes of probability distributions. This gave 
a unified approach to many problems of interest, such as model selection, 
and generalized other approaches, such as Bayesian methods. We now in- 
troduce the notion of constrained information theoretic analysis and show 
that this further unifies and generalizes many important methods in actuarial 
science. 

We consider first the continuous situation of estimating the density p(x), 
which is as close as possible to a given density q(x) but which satisfies the 
additional expectational constraints E[aj(X)] = ej, j = 1, 2 . . . . .  m; that is, 

Minimize l(plq) = I p(x) In F p(x)] dx 
_ ,  [ _q (x ) J  
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subject to 

1 = Oo = f p ( x )  dr (5.1) 

oj --- f aj(x) ?(x)dr j = 1, 2, . . . .  m. 

By selecting aj(x) =xJ, we may introduce expectational constraints imply- 
ing given values of the moments, for example, means (net single premiums) 
or variances, of the modeled probability distribution. Similarly, by selecting 
aj(x) as the indicator function of an interval, we may introduce constraints 
involving probabilities (survival probabilities or stop loss values, for example). 

For ease of presentation, we also specify the discrete analogue of (5.1). 
Accordingly, we consider a discrete probability distribution q =  (ql, q2, 
. . . ,  q,,). The discrete version of (5.1) is: 

Minimize l(plq) = ,-1~piln [P~] 

subject to 

~ 
Pi = 1 

i=I 

".L 
~, a~jpi = Oj, j = 1, 2, ... , m, 
i=1 

p , ->0 ,  i = 1, 2, . . . .  n, 

This can be written succinctly in matrix form as Min l(plq) subject to 

Ap = 0 (5.2) 
p~O. 

The matrix A is (m + 1)x n with first (zero-th) row set to be all ones, and 
the first constant 0o = 1 appended to ensure the constraint 

/ I  

~ P i  = 1, 
i=l  
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that is, to ensure that the optimizing vector p* forms a probability distri- 
bution. (If one is dealing with numerical values {p,} that do not necessarily 
sum to one, for example, when dealing with mortality rates as opposed to 
probabilities, then the zero-th row constraint can be deleted and the MDI 
problem is still well-defined.) 

Problems of the form (5.1) or (5.2) are referred to as Minimum Discrim- 
ination Information (MDI) problems. In the above discrete MDI formula- 
tions, the probabilities qi and the constraint values 0j are constants. The qi 
may be hypothesized values and the 0j sample statistics or vice versa. They 
may be sample determined or exogenously determined. In any case, the null 
hypothesis to be examined is Ho:p=q; that is, the observed and expected 
probability distributions are not statistically distinguishable. 

The information theoretic framework outlined previously allows for sta- 
tistical testing of the hypothesized relation that the postulated and the ob- 
served distributions are statistically compatible (that is, a test of the above 
Ho). If we denote by l*(Plq)=/(P*lq) the constrained minimum value of 
(5.2) and if we suppose that the observed distribution does, in fact, arise 
from a random sample of size M from the probability distribution q, then 
since p*--->q, the empirically calculated value of l*(plq) converges to zero 
at a rate of l/M). Under these conditions, 2M/*(plq ) can be shown to be 
asymptotically distributed as a chi-square random variable, with degrees of 
freedom that depend upon n, the number of probabilities in the vector q and 
upon the number of linearly independent constraints (see Kullback [50], 
Gokhale and Kullback [33], and Phillips [65]). Examples of these statistical 
tests are given in Golden, Brockett, and Zimmer [34] and in Gokhale and 
Kullback [33], where exact formulas are given for the degrees of freedom 
involved in certain common tests (such as independence and conditional 
independence in contingency tables). 

6. THE LOGLINEAR (MULTIPLICATIVE) MODEL IS A CONSEQUENCE 
OF INFORMATION THEORETIC MODELING 

The loglinear model has application in several aspects of actuarial science 
research (for example, the automobile ratemaking models proposed by Chang 
and Fairley [21], Fairley, Thomberlin and Weisberg [29], Weisberg, Thorn- 
berlin, and Chatterjee [76], Coutts [26], or Harrington [38]). The exponen- 
tiated analogues--the multiplicative models--are also common in actuarial 
science. By introducing a Lagrange multiplier for each of the constraints in 
the MDI formulation, (5.1) or (5.2), it can be shown (compare Brockett, 
Charnes and Cooper [15] or Gokhale and Kullback [32]) that the optimum 
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probability distribution obtained by using an information theoretic approach 
is precisely of loglinear form. 

To see that this is true in the continuous case (5.1), we introduce the 
Lagrange multiplier zj for each constraint j and then minimize 

- J p(x)In ~P(X)l dr - go J p(x)dr - zl J al(x)p(x)dr 
_ .  L q ( x ) J  . . . .  

-- "°" --Zm I am(X) p(x) dr. 

Letting ao(x) = 1 and multiplying by - 1 yields the equivalent maximization 
problem: 

m 

maximize f p(x) ln [ q(x) ] dx + ~ z i f aj(x) p(x) dr 
_ .  L p ( x ) . l  ~=o - .  

® 

= p(x) In ~q(x) ] + zj aj(x) dr 
_ .  L p ( x ) . l  

([ ' f q(x) exp zj ai(x ) 
= p(x) In dr 

_o p(x) 

i m / q x, exp  a., / 
<- I ?(x) p(x) - i dr. 

where the inequality follows since In Z < Z -  1 with equality if and only if 
Z = 1. Thus the upper bound is actually obtained with 

q(x) exp zj aj 

p(x) 
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that is, when 

,x,} p(x) = q(x) exp zj a t . (6.1) 

Thus (6.1) is the desired maximum and is as close as possible (in an infor- 
mation theoretic distance sense) to the distribution q subject to the con- 
straints. Note that 

In r p(x)] = ~ {zja~(x)}, (6.2) 
[q(x).] j-o 

so the resulting representation for p(x) is in loglinear form. 
For the discrete situation modeled by (5.2), the analogous loglinear rep- 

resentation obtains by virtually the same mathematics. In this case the op- 
timal probability values are of the form 

p, = q, exp~.Az} (6.3) 

where iA denotes the i-th column of the matrix A and z = {zj} is the collection 
of Lagrange multipliers. Again, we note that this is the loglinear model as 
described in, for example, Bishop, Fienberg and Holland [8]. Thus loglinear 
modeling is aparticular case of the information theoretic approach, but one 
in which the parameterization is determined from a fundamental approach. 
Note also that the coefficients of the various parameters in the loglinear 
representation of the probabilities can be immediately read from the columns 
of the matrix A in the information theoretic formulation. 

If we write the loglinear model in the form 

l n p , -  lnq, = In [P~] = j - l  ~ z j a ° '  

where the zj are the loglinear parameters, we observe that the zj are actually 
Lagrange multipliers determined so that the resulting probabilities Pi satisfy 
the given moment constraints. Consequently, the Pi in this loglinear model 
automatically sum to one, because this is a condition of the MDI problem. 
Gokhale and Kullback [32] stress that this loglinear model of the pi is a 
consequence of the MDI formulation and is not derived from seemingly 
arbitrary assumptions of convenience. Moreover, the MDI approach shows 
that the term lnqj in the log-odds equation is not merely a constant of fit. 
Its meaning as a prior probability is implied by the derivation of/(p[q) via 
Bayes' Therorem in the earlier section. 
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If we now apply an exponential transformation to both sides of the log- 
linear equation, we arrive naturally at the multiplicative model that is also 
used in actuarial science (compare Almer [5], Jung [45], Ajne [1], and Sant 
[69]). 

p t=q iexp{~ , z laq}  =q, f ieZJ"U=qjf i  {e~u} z, 
j=l  j=l  i=l 

= q, f i  { Yo}~ 
j = l  

where Yu = e,,u. 
The information theoretic formulation also allows for simplified compu- 

tation of the loglinear or multiplicative model parameters. This is due to the 
following duality result from convex programming. Charnes and Cooper 
[23] and Brockett, Charnes and Cooper [15] prove that the following two 
problems form a duality pair: 

Primal Problem Dual Problem 

Max v(p) - - ~ p, In (pi/eq,) Min ~(13) = - ~ q, e e'~- ~- 0r13 
i i 

Subject to 
Ap = 0 13 unconstrained 

p - > 0  

Here e is the base of the natural logarithm and enters the formulation because 
of the duality proof. Whenever the constraint set implies that the two dis- 
tributions have the same total mass (as is the situation when dealing with 
probability distributions for example), then the number e can be eliminated 
from the formulation provided one is only concerned with the primal problem 
and not the duality relationship. 

These duality results imply in particular that, at their optimum values, 
~(13") =v(p*), and 

p* = q~ e ~#-I. 

(See Brockett, Chames and Cooper [15] for a complete statement.) Two 
important things to note are: (I) the condition 

P~: = ql e :#-' 
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is a reparameterization of the multiplicative (loglinear) model of the esti- 
mates p~*, and (2) the loglinear parameters z in the multiplicative model 
(which are the Lagrange multipliers in the primal formulation of the corre- 
sponding MDI problem) can be easily calculated numerically from the op- 
timal solution to the unconstrained dual convex programming problem, which 
involves only linear and exponential terms. Equating the results obtained 
using Equation (6.3) with the above duality results implies the first parameter 
representing the constant normalizing constraint is Zo---[3o-1 in the dual, 
while the remaining loglinear parameters (or Lagrange multipliers) are z~ = [3i 

in terms of the corresponding dual parameters. Thus, information theoretic 
formulation at once simply renders the interpretation and computation of the 
loglinear parameters. Later sections of this paper link the loglinear model 
to logit models and cite further actuarial science applications. The compu- 
tational simplifications available due to the duality formulation are also 
passed along to the computation of the logit models and eliminate the use 
of ad-hoc or approximate methods. 

7. MDI AND THE ENTROPY MODEL 

Maximum entropy models have become well-known in physical science 
research and more recently in actuarial science research (see Martin-Lof 
[58], [59] for additional references). The discrete entropy model involves 
maximizing the "entropy" function of a distribution p: 

Maximize H(p) = - ~ p, In [p,] 
i = l  

subject to linear constraints. It is easily seen that if we let q, = 1/n for i = 1, 
. . . ,  n, then H(p) finds its extremum at the same point as does l(p]q) because 

n 

l(plq) = ~ Pi In (pin) 
i=l  

= ,~,Pi In pl + In n 

= -H(p )  + (constant). 

H(p) and l(p[q) are therefore measures of the deviation of p from a discrete 
uniform distribution over n points. (The same relationship exists between 
continuous entropy and the information theoretic distance to the continuous 
uniform function g(x) = 1.) In this regard the entropy function is clearly a 
special case of the discrimination information statistic. Moreover, the MDI 
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formulation is more general and offers greater flexibility, because with the 
MDI formulation the null-hypothesis function q can represent any probability 
function (not just a uniform distribution). In addition, the MDI formulation 
has a complete and rigorous theoretical foundation in statistics, so that we 
need not be troubled by nonrigorous analogies from thermodynamics--as is 
so often the case with "entropic" models (see Phillips [65] and Haynes, 
Phillips and Mohffeld [39]). 

The constrained maximum entropy density estimation may be construed 
as a new useful extension of Laplace's famous "principle of insufficient 
reason," which postulates a uniform distribution when no knowledge is 
available. Here, when only information of the form (5.1) is available, we 
select the distribution that is as close to uniform as possible subject only to 
these given constraints, a 

This formulation gives for the first time a unified characterization in terms 
of Laplace's information principle of the constant force and uniform distri- 
bution of deaths assumptions so commonly used in mortality table analysis. 
We can for the first time delineate the precise type of information that is 
being assumed when using these models. 

If all that is known about the distribution of deaths within an age interval 
[a,b] is the probability of death, then there is only a single piece of infor- 
mation that, in an MDI framework, translates into the single constraint 

I ao(x)p(x) dx = Oo (7.1) 
- m  

where 

0 i fx  < a / 

ao(x) = l i f a < x < b  , 
0 i f x  -> b 

and 0o is the given probability of death. In this case the MDI density in 
(6.1) has a piecewise constant form and corresponds to the uniform distri- 
bution of deaths assumption. The interpretation immediately follows that the 

3Of course, densities other than the uniform may be more appropriate for reference or comparison 
in certain situations (such as using a "standard" mortality table or a Gompertz table as argued for 
by Tenenbein and Vanderhoof [75]. This would lead to viewing the general MDI problem (5.1) as 
yet a further generalization of Laplace's famous "principle of insufficient reason." 
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uniform distribution of deaths assumption provides the "least informative 
(maximum entropy) distribution" possible with these given probabilities. 

In the case in which further information is available about the mortality 
during the interval [a,b], the constant force assumption can be derived. 
Suppose that the mean life length during the interval is also known. This 
imposes the additional constraint of the form 

f a~(x)p(x) dx = 01 (7.2) 

where 

0 i f x  < a } 

adx ) = x i f a  <-x < b , 

0 i f x  ->b 

with 01 being the given average age of death during the interval. Now the MDI 
density in (6.1) has a form that is piecewise equal top(x)=exp[zo+zl x]. The 
constants Zo and zl are selected to ensure that the two constraints (7.1) and (7.2) 
hold. This piecewise exponential density exp[zo +zxx] is precisely the constant 
force model with exponential survivorship 4 within each interval, and thus can 
be interpreted as the least informative mortality distribution possible subject 
only to the knowledge of indMdual interval death probabilities and average 
death ages. Any other mortality assumption must involve additional informa- 
tion, which, if we truly had, could also be incorporated into the constraint set 
(5.1). 

8, MDI AND THE LOGIT MODEL 

The Logit model is a special case of the loglinear model (see Green, 
Carmone, and Wachspress [35]) and hence can also be derived as a particular 
case of the information theoretic technique. In the logistic model the log- 
odds ratio in favor of occurrence of a particular event, E, is related to several 
independent variables xl,  xz, x3 . . . .  via the relationship 

[ In 1 - P(E)_[ = 2 i  ~ixi, 

where the [3:s are parameters to be fit to the observed data. 
4Note that z, is negative and zo is merely a normalizing constant that gives the requisite probability 

of survivorship for the interval. 
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There have been numerous uses of logit models in the biostatistical and 
actuarial literature (compare Steenackers and Goovaerts [74] and Elandt- 
Johnson and Johnson [28]). We present the following univariate logit ex- 
ample to illustrate that the constrained information theoretic generalization 
of the entropic analysis presented here also contains the logit model for 
contingency table analysis. Gokhale and Kullback [32, p. 273] provide an 
MDI derivation of a multivariate logit model. 

For our illustration we utilize an example from Berkson [7] and Gokhale 
and Kullback [32] in which the following four samples are analyzed under 
different values of a single covariate x: 

Sample Number Value o fx  Sample Size Number of Successes 

I 0 10 1 
2 1 10 6 
3 2 10 3 
4 3 10 8 

These are transformed into a contingency table format: 

Value ofx  

0 
1 
2 
3 

Total  

S u e ~  ( j ffi 11 Failttr~ (] ffi 2) Total 

1 9 10 
6 4 10 
3 7 10 
8 2 10 

18 22 40 

We solve the maximum entropy problem below, 
4 2 

M a x H ( p )  = - E ~ p o l n  [ p i / ]  
iffil j ~ l  

subject to 
2 I0 

•P i j  = - ~ , i  = 1 ,2 ,3 ,  4 
j = l  

4 18 
E Pil = 
i=, 40 
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4 36 
X i  P n  = - -  

i-1 40 

p i j > O  i = 1, 2, 3 , 4 ; j  = 1,2.  

If we translate the series of summations into a single matrix equation, it is 
of the form 

1 1 1 1 1 1 1 1  

1 1 0 0 0 0 0 0  

0 0 1 1 0 0 0 0  

0 0 0 0 1 1 0 0  

0 0 0 0 0 0 1 1  

1 0 1 0 1 0 1 0  

x l O ~ O ~ O ~ O  

Pll  

P12 

P21 

P22 

P31 

P32 

P4~ 

P42 

1 

10 

40 
10 

40 
10 
40 
10 

18 

36 

The problem is thus recognized as being of the general MDI form 

Max HCp) 

subject to 

A P = 0  
p - > 0 .  

From the loglinear representation of the optimal solution in terms of the 
columns of the matrix A and the Lagrange multipliers, Zo, zl, . . . ,  z6 for 
each of the constraints, we find: 

In [Pxl] = xlz6 + z5 + zl + zo 

and 

In [1 - Pit] = In [Pn] = zt + Zo, 
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so that 

[ 1 In 1 - P~IJ = xlz6 + zs. 

A similar calculation of the loglinear representation forp~l and 1 -Pil =Piz 
in the cases i =2 ,  3, 4 yields the same coefficients as above, so that in 
general 

[ ~ ] =x~z6+zs .  In 1 - PixJ 

This is precisely the logistic model 

[ 1 In 1 - P(E)J = ~" 13,x, 

with the Lagrange multipliers serving the role of the logistic parameters. 
The desired probability P(EIx) is given by the logistic cumulant function 

1 FI /L ' I  ~ 

r~LIX) = 1 + e -~=~+~)" 

and thus logistic modeling can also be developed from the MDI perspective 
discussed here. The logistic parameters may be easily calculated from the 
dual convex programming formulation delineated in a previous section. This 
dual convex programming problem is unconstrained, making it easily amen- 
able to the numerical analysis solution methods (for example, Newton-Raph- 
son, successive bisection, and so on) as taught in SOA courses. 

We now consider the MDI extension of the above max-entropy-to-logit 
sequence. If above we replace Max H(p~j) by Min l(pol'rra), the resulting log- 
odds are 

In .... Pq = In • ,n-q + xz7 + z6. 
1 - P o  1 - "tro 

Evidently if the prior log-odds in In "fro~1 -'rr U is a linear function of x, then 
In pJ1-p~j will also be a linear function of x. Otherwise, the resulting 
representation will constitute a nonlinear generalization of the logit model. 
This more comprehensive framework for the logit model may resolve some 
of the problems that arise in its application. In particular, this extends and 
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unifies many of the automobile ratemaking models that involve multiplica- 
tive relatives. The extension to include other covariates and prior distribu- 
tions is also apparent from this new information theoretic formulation. 

9. DETERMINING A CLIENT'S LOSS DISTRIBUTION 

In this section we explicitly show how to use the previously discussed 
information theoretic methods for obtaining a loss distribution that is as close 
as possible to some selected standard or reference distribution and that re- 
flects the individual characteristics of a client's history (which may be in- 
consistent with or not reflected by the standard distribution). A standard or 
reference distribution for losses for a particular insurance line may, for ex- 
ample, be adopted by a small insurance company using Insurance Service 
Office data bases and might not be routinely or immediately applicable to 
its particular situation without some adjustment to reflect the known char- 
acteristics of the clients of the particular small insurance company. 

The problem is how to compare and adjust the standard or reference 
distribution without relying upon ad-hoc ratio or graphical or ratio methods, 
which are commonly used, compare London [56], but which possess no 
theoretical or statistical basis or justification for their usage. This application 
presents the actuary with a new method for adjusting and comparing distri- 
butions that has a firm statistical foundation (the information theoretic tech- 
nology previously discussed) and that is capable of even further statistical 
analysis and extension. This is not possible with the ad-hoc ratio and graph- 
ical methods now taught to actuaries (for example, London [56]). As an 
illustration, we consider the problem of obtaining a duration table necessary 
for pricing a client's disability insurance; this example was first considered 
by Brockett [14]. 

For simplicity we assume that there is a single furnished constraint: the 
client's expected duration is p, = 21 days, rather than the standard table mean 
duration of 31.35 days. The problem is to determine a duration table for the 
client that is as indistinguishable as possible from the standard table (obtained 
from internal company data or industry-wide data), but that is subject to the 
constraint ~ = 21 days. 

Mathematically, we let qi denote the probability of a disability lasting a 
duration of i days according to the standard or reference table, andpi denote 
the unknown corresponding probability of a duration of xl = i  days to be 
developed for the client. We find the values of {p;} by solving 
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subject to 

min/(Plq) = ~ P, In 
i=l I_qiJ 

to 

1 = ~ P i  
i ~ l  

i ~ l  i = 1  

According to Equation (6.3), the solution to this problem is of the form 

P, = qi exp [Zo + zlxi] = q, exp [zo + zli] = {q, exp [Zo]} {exp [zl]} i. 

The numerical determination of the parameters Zo and z~ is easily obtained 
by using the unconstrained dual convex programming problem outlined in 
Section 6, that is, 

Min ~(13o,13~) = - ~ qi e "B-~ - 073 
i 

where 13 =(13o,131)=(zo+ 1, zl), 0=(1,21) ' ,  and the matrix A is given by 

A =  2 3 ... 00-2 t o - 1  to ' 

that is, 

Min ~(~o,13,) - - e x p  [80 - 1 ]X  ,~(exp [~ ]y  - 13o - 21131. 

Because the above problem is unconstrained, any of a number of simple 
numerical algorithms can be used to solve for zo and z~, including taking the 
derivative and setting it equal to zero, using Newton-Raphson methods, 
successive bisection, and so on. 

In our case with ~ = 2 1  days, we obtain 13o=Zo+1=1.387888 and 
131 =zl = 0.0150898, so that the adjusted duration table probabilities satisfy 

p,  = q, exp[[3o - 1 + i131] = q, exp[zo + /z d 

= qi (1.473864876)(0.9850235) ~. 

The resulting client duration table is given in Table 1. 



TABLE 1 ° 

Standard Adjusted 
Length Y Table PlY=y] PlY=y] for ~.=21 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

21 
22 
23 
24 
25 
26 
27 
28 
31 
38 

45 
52 
59 
66 
73 
80 
87 
91 

0.03500 
0.03474 
0.03349 
0.03318 
0.03195 
0.03160 
0.03040 
0.03002 
0.02885 
0.02701 

0.02530 
0.02370 
0.02222 
0.02083 
0.01953 
0.01831 
0.01772 
0.01662 
0.01611 
0.01510 

0.01465 
0.01374 
0.01334 
0.01295 
0.01214 
0.01180 
0.01106 
0.01076 
0.06361 
0.04832 

0.03753 
0.02980 
0.02399 
0.01939 
0.01586 
0.01300 
0.01077 
0.12561 

0.05081 
0.04968 
0.04717 
0.04604 
0.04367 
0.04254 
0.04031 
0.03921 
0.03712 
0.03423 

0.03159 
0.02915 
0.02692 
0.02485 
0.02295 
0.02120 
0.02021 
0.01867 
0.01783 
0.01646 

0.01573 
0.01453 
0.01390 
0.01329 
0.01227 
0.01175 
0.01085 
0.01039 
0.05873 
0.04014 

0.02805 
0.02004 
0.01452 
0.01056 
0.00777 
0.00573 
0.00427 
0.04690 

*Client's derived distribution for the length 
of claim under group weekly Disability ln- 
come Insurance. Column I gives length of 
claim; column 2 represents the standard 
probabilities taken from Bowers et al. [12, 
Table 13.2]; and column 3 shows the result 
of adjusting the standard to obtain mean du- 
ration I~ = 21 days. 

98 
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10. ADJUSTING MORTALITY TABLES 

In many situations an actuary is asked to adjust a standard mortality table 
to obtain a table appropriate for a particular individual or group of individ- 
uals. As an example, we consider an actuary asked to value the lost earnings 
of an individual in a wrongful death suit. The actuary must select a life table 
to use, however, there may be additional information such as a physician's 
estimate of life expectancy together with an estimate of the confidence given 
in this life expectancy estimate. The actuary must construct a mortality table 
that has ex = ~, where x is the age of the decedent and I~ is the expectation 
of life estimated by the physician. If the standard table satisfies this condi- 
tion, then there is no problem. However, because this is usually not the 
case, we suppose that for the standard table, ex:/: I~. Mathematically the 
problem of adjusting the standard table to reflect the known information is 
very similar to the problem of adjusting loss distributions discussed in the 
previous section. 

We can use the information theoretic method previously demonstrated to 
obtain an adjusted table that is as indistinguishable as possible from the 
standard table and that satisfies the known constraint ex = ~. This same 
process is described in more detail in Brockett and Cox [17]. 

We provide two numerical examples that illustrate different levels of 
knowledge about the potential survivalship of the person in question. Table 
2 presents the results. First, we assume that a physician who examined the 
individual in question is prepared to testify that the life lost was a male, 
aged 50, having a curtate future life expectancy of ~ = 9 years. 

In this example we solve the mathematical programming problem 

Min l(Plq) = 2 Pi In 
i-o LqO 

subject to 

i~O 

i~O i~O 

where qi is the probability of death i years from now (during age 50 + i), 
and pl is the desired probability of death in year i, which has been adjusted 
to reflect the known information. The standard table to be used for illustrative 
purposes in this example is the PBGC Table V. 
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TABLE 2 

Age 

50  . . . . . . . . . . . . . . . . . . . .  
51 . . . . . . . . . . . . . . . . . . . .  
52 . . . . . . . . . . . . . . . . . . . .  
53 . . . . . . . . . . . . . . . . . . . .  
54 . . . . . . . . . . . . . . . . . . . .  
55 . . . . . . . . . . . . . . . . . . . .  
56 . . . . . . . . . . . . . . . . . . . .  
57 . . . . . . . . . . . . . . . . . . . .  
58 . . . . . . . . . . . . . . . . . . . .  
59 . . . . . . . . . . . . . . . . . . . .  

60 . . . . . . . . . . . . . . . . . . . .  
61 . . . . . . . . . . . . . . . . . . . .  
62 . . . . . . . . . . . . . . . . . . . .  
63 . . . . . . . . . . . . . . . . . . . .  
64 . . . . . . . . . . . . . . . . . . . .  
65 . . . . . . . . . . . . . . . . . . . .  
66 . . . . . . . . . . . . . . . . . . . .  
67 . . . . . . . . . . . . . . . . . . . .  
68 . . . . . . . . . . . . . . . . . . . .  

6 9  . . . . . . . . . . . . . . . . . . . .  

70 . . . . . . . . . . . . . . . . . . . .  
71 . . . . . . . . . . . . . . . . . . . .  
72 . . . . . . . . . . . . . . . . . . . .  
73 . . . . . . . . . . . . . . . . . . . .  
74 . . . . . . . . . . . . . . . . . . . .  
75 . . . . . . . . . . . . . . . . . . . .  
76 . . . . . . . . . . . . . . . . . . . .  
77 . . . . . . . . . . . . . . . . . . . .  
78 . . . . . . . . . . . . . . . . . . . .  
79 . . . . . . . . . . . . . . . . . . . .  

Standard Probability qi 
from PBGC 

0.054711 
0.052871 
0.051146 
0.048879 
0.047452 
0.045562 
0.043648 
0.041633 
0.039687 
0.037742 

0.035806 
0.033890 
0.031694 
0.030149 
0.028303 
0.026290 
0.024334 
0.022640 
0.019377 
0.019377 

0.018002 
0.016731 
0.015552 
0.014360 
0.013207 
0.012155 
0.011236 
0.010307 
0.009380 
0.008894 

Probability Pi Adjusted 
for V.=9 

0.086346 
0.080354 
0.074855 
0.068890 
0.064404 
0.059550 
0.054937 
0.050461 
0.046322 
0.042422 

0.038756 
0.035324 
0.031813 
0.029142 
0.026345 
0.023566 
0.021005 
0.018819 
0.015511 
0.014937 

0.013363 
0.011960 
0.010706 
0.009519 
0.008431 
0.007472 
0.006652 
0.005876 
0.005150 
0.004702 

Probability Pi Adjus|ed 
for Ix=9 and Even Odds 

of Dying between 
55th and 64th Birthdays 

0.0734290 
0.0683716 
0.0637287 
0.0586828 
0.0548919 
0.0715825 
0.0660745 
0.0607257 
0.0557761 
0.0511081 

0.0467182 
0.0426057 
0.0383918 
0.0351884 
0.0318291 
0.0202098 
0.0180240 
0.0161577 
0.0133246 
0.0128386 

0.0114926 
0.0102916 
0.0092175 
0.0082006 
0.0072671 
0.0064443 
0.0057399 
0.0050733 
0.0044486 
0.0040643 

Solving the dual problem (or simply using Newton-Raphson or successive 
bisection techniques) yields the two parameters necessary for adjustment2 
From (6.3) we have 

P, = qi exp (13o-1) exp (i131) = qi(1.57823)(0.9629889); 

The standard table values and the values adjusted to reflect the knowledge 
of life expectancy are listed in columns 2 and 3 of Table 2. 

SThis problem was actually solved quite easily by using a spreadsheet program (Excel). Using 
the equivalent formulation p:=aq,ff from (6.1), the constant term " a "  is found from the first 
constraint to be a =  1,rZjqkbk, SO that the second constraint translates into one equation in one 
unknown b: that is, p, = ~,: i[q,bl/(Ekqkbk)], or equivalently E~iq~-  p.E~ q,ff = 0. Successive bisec- 
tion on a spreadsheet easily determines the parameter b, and hence a is also determined. Again by 
using the spreadsheet, the adjusted probability distribution p~=aq~ is calculated. 
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Probability pi Adjusted 
for ~ffi9 and Even Odds 

Standard Probability qi Probability Pi Adjusted of Dying between 
Age from PBOC for p.=9 55th and 64th Birthdays 

80 
81 
82 
83 
84 
85 
86 
87 
8 8  . . . . . . . . . . . . . . . . . . . .  

89 . . . . . . . . . . . . . . . . . . . .  

90 . . . . . . . . . . . . . . . . . . . .  
91 . . . . . . . . . . . . . . . . . . . .  
92 . . . . . . . . . . . . . . . . . . . .  
93 . . . . . . . . . . . . . . . . . . . .  
94 . . . . . . . . . . . . . . . . . . . .  
95 . . . . . . . . . . . . . . . . . . . .  
96 . . . . . . . . . . . . . . . . . . . .  
97 . . . . . . . . . . . . . . . . . . . .  
98 . . . . . . . . . . . . . . . . . . . .  
99 . . . . . . . . . . . . . . . . . . . .  

100 . . . . . . . . . . . . . . . . . . . .  
101 . . . . . . . . . . . . . . . . . . . .  
102 . . . . . . . . . . . . . . . . . . . .  
103 . . . . . . . . . . . . . . . . . . . .  
104 . . . . . . . . . . . . . . . . . . . .  

0.008616 
0.008274 
0.007865 
0.007393 
0.006860 
0.006286 
0.005673 
0.005032 
0.004382 
0.003728 

0.003098 
0.002512 
0.001979 
0.001510 
0.001108 
0.000782 
0.000526 
0.000336 
0.000202 
0.000113 

0.000058 
0.000027 
0.000139 
0.000004 
1 . 2 3 E - 0 6  

0.004382 
0.004056 
0.003713 
0.003361 
0.003003 
0.002650 
0.002303 
0.001967 
0.001650 
0.001352 

0.001082 
0.000845 
0.000641 
0.000471 
0.000333 
0.000226 
0.000146 
0.000090 
0.000052 
0.000028 

0.000014 
0.000063 
0.000031 
8 . 7 5 E - 0 7  
2 . 5 3 E - 0 7  

0.0037936 
0.0035102 
0.0032150 
0.0029118 
0.0026034 
0.0022985 
0.0019987 
0.0017082 
0.0014333 
0.0011749 

0.0009408 
0.0007350 
0.0005579 
0.0004102 
0.0002900 
0.0001972 
0.0001278 
0.0000787 
0.0000456 
0.0000246 

0.0000122 
0.0000055 
0.0000271 
0.0000008 
0.0000002 

Assume now that the physician, when pressed under examination, also 
gives a confidence measure for the curtate life expectancy measure. Ac- 
cordingly, he states that in addition to a curtate life expectancy of 9 years, 
he would have given even odds that the person in question would have died 
somewhere between his 55th and 65th birthdays. Taking this set of infor- 
mation into account in the adjustment process yields the second example. 
The physician's last revelation of information implies the constraint 

0.5 = E P ,  = a(i)p, 
i=5 i=0 

where 

- -  i f5  _<x _< 14 , 

i fx  > 14 
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so that there are now three parameters needed to achieve the necessary 
adjustment of the mortality table. From (6.3) the adjusted mortality table is 
of the form 

P, = ql exp (13o - 1) exp (i131) exp [13z a(i)] 

q,. (1.342125)(0.96353) / i f /  < 5 } 

= q; (1.891812)(0.96353)' if 5 < i _< 14 . 
q, (1.342125)(0.96353)' if i > 14 

The parameters can be easily determined by using the unconstrained dual 
mathematical programming problem. 6 The mortality table adjusted to reflect 
the physician's expert testimony is now reproduced in the final column of 
Table 2. The resulting table exactly satisfies the constraints that there be a 
mean of 9 years and that there be equal odds of the person in question dying 
between ages 55 and 65. 

Some situations might require an adjusted life table or loss distribution in 
which the constraint set is not of the linear equality form given in (5.1) and 
(5.2). For example, uncertainty about the constraints may take the form of 
linear inequality constraints. The duality theory and corresponding compu- 
tational advantages of the dual program in the linear inequality constrained 
case are exposed in Charnes et al. [25]. The computation of the optimum 
adjusted table or distribution is still readily carried out by using existing 
nonlinear programming codes (for example, the generalized reduced gradient 
methoddescribed in Lasdon et al. [52], and Liebman et al. [54], which is 
also available for the personal computer). The example in Section 11 in- 
cludes linear equality, inequality, and nonlinear constraints and is still readily 
computed. 

11. INFORMATION THEORETIC GRADUATION 

Because there is no known universally applicable " law"  of mortality, 
observable data must be used to bring out an underlying pattern in the data 
sufficient for probabilistically predicting future outcomes. Graduation is the 
process used by actuaries to develop a unified series of observations from 
the observed data. 

In the case of mortality tables, the observed data often are of the form of 
the number of deaths at specific age intervals among a group of individuals 

6In our calculation a spreadsheet program was used to determine the unknown parameter values, 
as described in footnote 5. The calculation was again simply performed by using successive bisection. 
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recorded over time. If graphed, the set of data would have a jagged pattern; 
these irregularities are due to the limited amount of data and the statistical 
sampling variations. Via the process of graduation, these irregularities are 
smoothed into a curve that "f i ts"  the data while reflecting a desire for 
"smoothed" transitions from age to age, and any other characteristics that 
are assumed known about the mortality rate sequencing. 

The most common methods of graduation are graphic, interpolation, ad- 
justed average, difference equations, and graduation by mathematical for- 
mula (compare London [55]). This section introduces a new method (also 
discussed in Brockett and Zhang [18] and Zhang and Brockett [79]) based 
upon an information theoretic approach, which allows the inclusion of con- 
straints such as isotonicity, convexity, or any other of a variety of desired 
attributes of the graduated series. This technique is easier to interpret and 
computationally simpler and faster than the Bayesian isotonic graduation 
method presented by Broffitt [19]. In addition, it can handle convexity con- 
straints, intervals of isotonicity and can even be extended to multidimen- 
sional graduation (for example, select and ultimate mortality tables) quite 
simply. 

Our technique is quite general and applicable to loss distributions, to term 
structures of interest rates, and to many other relevant issues for the actuary. 
For concreteness, however, we phrase our discussion in the sequel in terms 
of mortality tables (death rates). Thus we can also illustrate a situation in 
which the information theoretic technology is applied to a sequence of num- 
bers (the mortality rates) that are not constrained to sum to one, as was the 
case with the previous examples. 

In graduating mortality data, the entries are often the mortality rates rather 
than some other quantity (such as the probabilities discussed in previous 
sections), because it is usually the rates about which we have some prior 
information (based upon biological or other considerations). The mortality 
rate is defined to be the number of deaths divided by some measure of the 
number of lives exposed to death during the year. The most simple such 
mortality rate (called the crude mortality rate by biostatisticians and actu- 
aries) is just the observed number of deaths during the year (age) x divided 
by the number of people alive at the beginning of the year (age interval) x. 
We denote this crude rate for age x by ux. Thus, the graduation process can 
succinctly be phrased as follows: Given the observed series {ux}, construct 
a "smooth" series {Sx}, which "closely approximates" the observed series 
{ux} and which satisfies certain.other (biological or actuarial) constraints 
known to exist. 
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The goals of " f i t "  to the observed series, "smoothness" of the graduated 
series, and the desire to make the graduated series reflect the known prior 
information (for example, mortality rates increasing with age) can lead to 
conflicting goals. Clearly we could choose a very smooth series that does 
not adequately represent the data, or a series that perfectly represents the 
data but that is as irregular as the data themselves, or that does not exhibit 
the prior information known to hold. The problem is to choose a parsimon- 
ious tradeoff between these conflicting goals. We achieve this end through 
the use of information theoretic techniques. 

In addition to the obvious nonnegativity constraint for the mortality rates, 
8x->0, we also have prior knowledge that the true underlying pattern of 
mortality rates is (a) smooth, (b) increasing with age (that is, A~x>-0 where 
A~x = ~x+ 1 - ~  is the usual forward difference operator), and (c) more steeply 
increasing at the higher ends of the age range (that is, A2~x>0). We would 
like the graduated table to reflect this prior information and also (as is 
standard in actuarial work) to satisfy the additional constraints that (d) the 
graduated number of deaths equals the observed number of deaths and (e) 
the total of the graduated ages at death equals the observed total ages at 
death. Constraints (d) and (e) together imply that the average age at death 
is required to be the same for the graduated and empirically derived tables. 

A measure of smoothnesS often used by actuaries (compare London [55]) 
is the size of the sum of squares of the third differences of the derived series, 
namely, X(A3~x) 2. The smaller this sum of squares, the smoother the grad- 
uation is judged to be. The measure of "fit to observed data" that we use 
is the informational distance/(81u) = Z~iln[~i/ui] between the graduated series 
{8;} and observed crude mortality rate series {u~}. The fact that l(81u) is still 
a measure of fit even in the nonprobability situation holds because the mor- 
tality rates are non-negative and because of the assumed constraints. For 
concreteness we reproduce the example given in Brockett and Zhang [18] 
involving the graduation of data from Miller [60] as considered in London 
[55]; Table 3 gives the raw data for graduation. 

The graduation problem outlined above can be formulated as a constrained 
information theoretic problem: 

Min/(~lu) = ~ ~ , l n / 8 ~ /  
8 LUij 

subject to 

(a') Smoothness: (A~)'(A~) = ~'A'A~ < M 
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T A B L E  3 

Expo~d Actual Ungraduated 
Age to Risk Deaths Mortality Rat~ 

70 . . . .  135 6 0 . 0 4 4  
71 . . . .  143 12 0 . 0 8 4  
72 . . . .  140 10 0 .071  
73 . . . .  144 11 0 . 0 7 6  
74 . . . .  149 6 0 . 0 4 0  
75 . . . .  154 16 0 . 1 0 4  
76 . . . .  150 24 0 . 1 6 0  
77 . . . .  139 8 0 . 0 5 8  
78 . . . .  145 16 0 . 1 1 0  
79 . . . .  140 13 0 .093  

80 . . . .  137 19 0 . 1 3 9  
81 . . . .  136 21 0 . 1 5 4  
82 . . . .  126 23 0 .183  
83 . . . .  126 26 0 . 2 0 6  
84 . . . .  109 2__..66 0 . 2 3 9  

2 ,073  237 
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where 

A = 

- 1  3 - 3  1 0 0 0 0 
0 - 1  3 - 3  1 0 0 0 
0 0 - 1  3 - 3  1 0 0 

0 0 0 0 0 0 0 - 1  3 - 3  1 

and M is a smoothness constant that can be adjusted to trade " f i t "  for 
"smoothness." The constraints (b) through (e) can be written as: 

(b') Increasing with age: B8 -~ 0, where 

- 1  1 0 0 0 0 
0 - 1  1 0 0 0 
0 0 - 1  1 0 0 

(c") 

B = 

°. 

0 0 0 0 0 - 1  1 

More steeply increasing at the higher ends of the age range (con- 
vexity): C8 > 0, where 
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C = 

1 - 2  1 0 0 0 
0 1 2 1 0 0 
0 0 1 2 1 0 

0 0 0 0 0 0 1 - 2  1 

(d') The graduated number of deaths equals the observed number of 
deaths: D ' 5 = D ' u ,  where D = (17o, 171, . . . ,  l~)' ,  and lx is the num- 
ber exposed to risk at age x. 

(e') The total graduated ages at death equals the observed total ages at 
death: E'8 = E'u,  where E =  (70"/7o, 71471 . . . . .  84"/84)'. 

The computation of the MDI estimate 8 (the graduated mortality rates) in 
the mathematical programming problem developed above can be numerically 
evaluated by using any of a number of nonlinear programming computer 
codes. 7 Table 4 presents the results obtained using the information theoretic 
mortality table graduation technique on the crude mortality rates from Table 
3 and the smoothness constant M =  2 x 10 -4. The ad-hoc graphical gradua- 
tion of London [55] is included for comparison. 

Figure 1 presents a graphical representation of the graduated mortality 
rates from Table 4. As is readily apparent, the information theoretic method 
is easily computerized. This method yields graduated series as output that 
are remarkably similar to those which would be obtained by a very experi- 
enced graduation actuary. Moreover, unlike many other graduation tech- 
niques, this information theoretic technique can be extended to the 
multivariate setting without any theoretical difficulty. This extension is 
outlined in the next section. 

12. MULTIVARIATE GRADUATION 

The multivariate graduation problem poses many difficulties for most tra- 
ditional multivariate techniques such as Whittaker-Henderson graduation. 

Tin our analysis, we used GRGII computer code due to L. Lasdon. This technique (generalized 
reduced gradient) has been discussed in a number of articles, such as Lasdon et al. [52] and Liebman 
et al. [54] and is available on the PC as well as the mainframe computer. Using a CDC 6600 
computer, the computation time for our graduation in the above problem was less than 10 seconds 
CPU time. Other nonlinear programming methods such as the Sequential Unconstrained Minimi- 
zation Techniques (SUMPT) by Fiacco and McCormick [30] could also be used. Note that Zhang 
and Brockett [79] present the duality states for this general inequality quadratic constraint case and 
give the computational form for the dual parameters. 
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TABLE 4 

GRADUATED RATES 

Undergraduatcd 
Age Rate 

70  . . . . . . . . . . . . . .  
71 . . . . . . . . . . . . . .  
72 . . . . . . . . . . . . . .  
73 . . . . . . . . . . . . . .  
74 . . . . . . . . . . . . . .  
75 . . . . . . . . . . . . . .  
76 . . . . . . . . . . . . . .  
77 . . . . . . . . . . . . . .  
78 . . . . . . . . . . . . . .  
79 . . . . . . . . . . . . . .  

80 . . . . . . . . . . . . . .  
81 . . . . . . . . . . . . . .  
82 . . . . . . . . . . . . . .  
83 . . . . . . . . . . . . . .  
84 . . . . . . . . . . . . . .  

0.044 
0.084 
0.071 
0.076 
0.040 
0.104 
0.160 
0.058 
0.110 
0.093 

0.139 
0.154 
0.183 
0.206 
0.239 

London's 
Graduation 

0.065 
0.068 
0.072 
0.076 
0.080 
0.085 
0.090 
0.095 
0.103 
0.114 

0.130 
0.153 
0.185 
0.213 
0.240 

Information Theoretic Information Theoretic 
Graduation with Graduation with Convexity 

3rd Difference Constraint and 3rd Difference Constraints 

0.06766 
0.06756 
0.07143 
0.07696 
0.08154 
0.08144 
0.08627 
0.09734 
0.10479 
0.11539 

0.13102 
0.15094 
0.17897 
0.21094 
0.24774 

0.06752 
0.06756 
0.07161 
0.07565 
0.07970 
0.08375 
0.08779 
0.09316 
0.10297 
0.11795 

0.13405 
0.15549 
0.18121 
0.20692 
0.24358 

TABLE 5 

Selection [ Years since Selection 

Age 0 1 2 3 Ultimate 

,X 
x + l  
x + 2  
x + 3  
x + 4  

8H 
8~+H 
8~+21 
~[x+31 
~[x+4] 

~ [zl+t 
~+11+1 

8~+21÷t 
~ + 3 ] + 1  
~[x+41+i 

~ [xl+2 
~+11+2 

~[x+2]+2 
~[x+3]+2 
'~[.x+4] +2 

i 
[~1+3 
[x+l]+3 
~x+2]+3 
[x+3] +3 

~[x,t.4]+3 

~x+4 
8#+5 
8~+6 
8~+v 

For example, consider graduating a bivariate select and ultimate mortality 
table of mortality rates {8]. such as those illustrated in Table 5. 

It is desirable to obtain a graduated series 8x in which several constraints 
(such as monotonicity in rates down the columns, monotonicity of rates along 
the rows, and also monotonicity along the upward diagonals) hold simulta- 
neously. It is usually difficult to develop a single method that achieves these 
monotonicity constraints simultaneously, and often an ad-hoc adjustment or 
a sequence of ad-hoc adjustments are made iteratively to the initial gradu- 
ation in order to develop the desired graduation. Usually it is considered too 
difficult to also insist upon convexity along rows and columns, smoothness, 
and average-age-at-death type of constraints. 
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The information theoretic graduation technique can accomplish the desired 
goals. For convenience of notation, let ~t~÷Jl +k denote the graduated mortality 
rate for an individual selected at age x + j  who has attained age x + j  + k. 
The row, column, and diagonal forward difference operators are defined by 

and 

As(~0,÷n+0 = ~tx÷S+~]+k -- ~÷n+k, 

Ak(~[x+jl+k) = ~[x+yl+k+l -- ~i~+./l+k, 

Ajk($~+n+k) = St~+j-lJ+k+l - 8t~+jl+k. 

If U[~+il+ k represents the corresponding crude (observed) mortality rate, 
then the desired graduated series can be obtained by solving the convex 
programming problem: 

min l($lu) = ~ St~+Jl+kln [ ~ /  
I 

8 S , ~  LU~+sl+kl 

subject to 

and 

Ai(St~÷jl+k ) > 0 for all k, 

Ak(~+jl+k) > 0 for all j ,  

Ai~($tx+jl+k ) > 0 for a l l j  and k. 

The convexity and smoothness constraints can also be inserted in a manner 
exactly analogous to that done in Section 11. 

13. CONCLUSIONS 

This paper presents a single easily understood philosophical approach to 
modeling and analyzing data that, for the first time, unifies several different 
fundamental areas of actuarial science. This technique, constrained infor- 
mation theoretic analysis, provides a non-Bayesian statistical method for 
approaching numerous problems of interest to the actuarial community. Sev- 
eral examples are explicitly worked out that extend or improve upon existing 
actuarial methods. At the same time, these methods provide firm statistical 
foundations and clear signposts for subsequent actuarial applications. 
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DISCUSSION OF PRECEDING PAPER 

BRADLEY P. CARLIN:  

First, congratulations to Dr. Brockett on a fine paper, which pulls together 
a great many results from the information theory literature and shows how 
they may be fruitfully applied to problems in actuarial science. My remarks 
on the paper's approach to model selection are from a more fully Bayesian 
point of view. 

In Section 3, the discussion dwells on the Akaike Information Criterion 
(AIC), while only briefly mentioning the Schwarz criterion, or Bayesian 
Information Criterion (BIC), as given by Schwarz [3]. The author discards 
BIC as a model selection criterion because of its "ad-hoc nature" and be- 
cause it is not equal to the Akaike criterion. This dismissal seems premature, 
especially in view of the attempt made in Section 4 to link the author's 
approach with the traditional Bayesian methodology. In the notation of this 
section, suppose we have parametric models/-/1 and/-/2 for data x, and the 
two models have respective parameter vectors kl and h2. Under prior den- 
sities 'rr~(hk), k = 1,2, the marginal distributions ofx are found by integrating 
out the parameters, 

p(xlH,) = f pCxlX,,H,)~r, CX,)dX,, k = 1,2. 

Bayes' Theorem may then be applied to obtain posterior probabilities P(H~[x) 
and P(H2[x) = 1 -P(HIIx)  for the two models. The quantity commonly used 
to summarize these results is the Bayes factor, B, which is the ratio of 
posterior to prior odds in favor of/-/1 relative to/-/2 indicated by the data, 
and is given by 

B - P(H'Ix)/p(H') - p(xIH') 
pCH2lx)/p(n2) p(xlH2) ' 

the ratio of the observed marginal densities for the two models. Assuming 
the two models are a priori equally probable, 

B = e(H,  lx)/[1 - e(HllX)], 

the posterior odds in favor of H~. Now, Schwarz [3] showed that for large 
sample sizes n, an approximation to - 2 log B is given by 

zkBIC = W -  (P2 - p , ) l o g  n, (1) 
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where p~ and P2 are the numbers of parameters in models 1 and 2, respec- 
tively, and W is the usual likelihood ratio test statistic, 

W = - 2 log[supxlL(ka;x)/supx2L(k2;x)]. 

Although the approximation in (1) is rather crude, Schwarz [3] showed that 
&BIC does tend to - 2  log B as n tends to infinity. Thus the definition of 
BIC is not ad-hoc, but rather is done deliberately to satisfy this asymptotic 
property. The criterion also enjoys the property of being independent of the 
chosen prior distributions 'rrk(hk), k = 1,2. As such, Bayesians have long 
used &BIC as a quick way to discover the relative weight of evidence 
between two models (although the recent increasing availability of comput- 
ing power has lessened its importance somewhat). 

Now, analogous to Equation (1), the change in AIC can be written in our 
notation as 

~A/C = W -  (P2 - P a ) .  (2) 

• Clearly as n increases, &A/C and ZkBIC will obtain different results. Raftery 
[1] remarks that using AIC is asymptotically equivalent to choosing the 
model with the highest posterior probability only when the information in 
the prior increases at the same rate as the information in the likelihood, a 
rather unusual assumption. Shibata [4], working in the area of time series, 
pointed out a bias in AIC toward overparametrization, and indeed applied 
researchers in many fields have noticed that the Akaike criterion does tend 
to "keep too many terms in the model." To get a rough idea in our setting 
of why this might be the case, imagine the usual nested model setting where 
/42 is the "ful l"  model while Ha is the "reduced" model. Then the term 
subtracted from W in the expressions for zL4/C and &BIC is a penalty term 
that corrects for the advantage the full model naturally enjoys over the smaller 
reduced model. The aforementioned work of Schwarz [3] shows that the 
penalty in Equation (2) is too small when n is large. 

Of course, various arguments on behalf of A/C may be made as well, but 
this inconsistency of AIC for - 2 log B leaves many Bayesians unconvinced, 
preferring the Bayes factor itself or at the least the crude approximation 
offered by the Schwarz criterion. Linking the frequentist and Bayesian ap- 
proaches to statistical inference in the presence of a set of competing models 
is a difficult topic that continues to generate research interest; examples 
include the recent papers by Rissanen [2] and Woodroofe [5]. 
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E.S. ROSEN'BLOOM* AND ELIAS S.W.  SHIU: 

Dr. Brockett has given a fine exposition of information theory and its 
actuarial applications. 

We have a comment on Sections 11 and 12 of the paper. In the earlier 
sections, the arguments p and q of the function 

/(Plq) = ~ P ,  In(p,/q,) 
i 

have an identical sum, that is, 

l ' p  = l 'q .  

However, it does not seem reasonable to require that 

1 ' 8  = l ' u .  

In view of constraint (d'), we suggest that the objective function be for- 
mulated as 

Min I(D'81D'u ) = ~ It 8~ ln(8~/u~). 

We would also like to know how the value M =  2 × 10 -4 for constraint (a') 
is determined. 

We wish to suggest that a potential application of the methodology pre- 
sented in the paper is the problem of cash-flow matching. Various methods 
for cash-flow matching and dedication can be found in the TSA papers [4] 
and [5] and their references and in the papers [1], [2] and [3]. None of these 
uses the information theoretic approach. 

*Dr. Rosenbloom, not a member of the Society, is Associate Professor, Department of Actuarial 
and Management Sciences, University of Manitoba. 
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' H - I O ~  N. I-IERZO0" 

I thank Dr. Brockett for writing a stimulating and informative paper. My 
only point is that all the results in his paper are based on the assumption 
that the minimum discrimination information statistic 

p(x) In [pCx)/q(x)] 
is the only loss function that needs to be considered. For certain applications, 
the actuarial analyst may want to examine the sensitivity of his/her results 
to alternate loss functions. Sometimes the conclusions are highly sensitive 
to the choice of loss function selected. One such example of this is described 
in Herzog [1]. 

REFERENCE 
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WOJCIECH SZATZSCHNEIDER*: 

The concept of entropy is an important and useful tool in many branches 
of theoretical and applied mathematics, for example, the Boltzmann H-Theo- 
rem and its impact on modern probability theory or the Kolmogorov-Ornstein 
theorem for dynamic flows. Incidentally, the Boltzmann H-Theorem is get- 
ting new life in view of recent investigations of molecular chaos. In risk 

*Dr. Szatzschneider, not a member of the Society, is Professor of Probability and Risk Theory, 
School of Actuarial Sciences, Universidad Anahuac, Mexico City. 
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theory, entropy is proving to be useful for estimating the probability of ruin; 
see, for example, Martin-L6f [4]. Now is just the right time to apply entropy 
or, more generally, the information theoretic approach to actuarial practice. 
The paper by Dr. Brockett aims precisely in this direction, and it fulfills this 
job admirably. 

The main advantage of the information theoretic approach is that it is a 
simple method of adjusting the probability distribution due to new infor- 
mation; it is like Bayesian statistics, but it is classical. Instead of the pass 
(transfortpation) 

II (to) ~ H (tol information) 

from a prior distribution to the posterior one, we have 

P ~ P (*[ information) 

from one probability distribution to another. 
This approach will be welcomed by orthodox frequentist statisticians and, 

possibly, will not be rejected by, at least, the less orthodox Bayesians. There 
are important links between strict Bayesian statistics and the theory of in- 
formation. The power and efficiency of the information theoretic approach 
result, not from the conflict between frequentist and Bayesian statisticians, 
but mainly from its simple presentation. 

I am more a probabilist than a statistician, but even so, I would like to 
write a few comments about this conflict in an actuarial context. The failure 
in applying Bayesian statistics to the solution of practical problems fre- 
quently results from the lack of good training; see Efron [1] or Lindley [3], 
both with discussions. In the discussion of Lindley's paper, a good part of 
the criticism was derived from the proposed exchangeability. In actuarial 
problems, this exchangeability is usually assumed (Goovaerts et al. [2]), 
especially if we apply credibility theory. Even a pure Bayesian approach, 
based on the prior subjective probabilities, should not find many opponents, 
if we accept that generally no statistics procedure is free from defects. 

In the information theoretic approach, the situation is quite different. One 
also needs good training, but it is an easy task, and the method should have 
a real and immediate impact in applications. There are many antecedents 
but most were probably reduced to investigations and not to actuarial prac- 
tice. For example, no one in Mexico is using this approach. 

My only disagreement is with the statement that under constrained max- 
imum entropy, "We select the distribution that is as close to uniform as 
possible subject only to these given constraints." We often mus t  use 
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constraints in order to be able to solve a given problem, for example, 
considering distributions over an infinite interval. It is not the case of an 
improper uniform distribution used by Bayesians. Even for probabilities 
concentrated over a finite interval, constraints form an intrinsic part of a 
problem and should not be considered of secondary importance. 

To clarify my point, I propose a different proof of the theorem on page 
15. This proof does not need Lagrange multipliers (to sell an idea, one should 
present it in the simplest way). We use the so-called maximization entropy 
principle, instead of an explicit use of Jensen's inequality. Start with the 
elementary inequality 

x lnx - x lny - x + y >~ O,x, y > O. 

Therefore, iff(x) and g(x) are probability densities, then 

f f(x) In f(x) dr >- f f(x) In g(x) dr. 

Now we say that f E H if 

fa(x) f(x)dr = O, 

where a(x) and 0 might be vectors, like they usually are in the author's 
presentation. The result is that the density f~x) ,  which minimizes f f(x) In 
f(x) dr or maximizes the entropy --  if(x) In f(x) dr for densities E H, is 
given by 

f~x )  = exp ~ ai(x) Zi. 

Note that f g(x) In f~x )  dr does not depend on g ~ H, and so 

': f fu(x) In fM(X) dr = f g(x) In fM(x) dr <- f g(x) In g(x)dx. 

For example, in the case of a distribution over (0, ®) with a fixed mean, 
we find that maximal entropy 

- i n  f (x) dr 
is obtained for exponential distribution, For other constraints, other proba- 
bility distributions result. Almost the same proof can be given in the author's 
case (p. 87). 

It is enough to write 

m p(x) .J ~ In ~ q(x)dr  = I p(x~) In p(x) h(dr) : 

. . . . . .  .I q(x) 
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with h(dx)=q(x)dx. This expression is minimized just byp(x)/q(x) given by 
the author. In this proof, which is not original, the role of constraints is 
more explicit. Finally, I hope that the information theoretic approach will 
spread quickly, and its applications will not be postponed for another decade. 
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WILLIAM L. ROACH" 

Section 10 of the paper characterizes a mortality adjustment as the solution 
to an optimization problem 

Min/(Plq) = ~ P, In & 
o qi 

subject to 

1 = ~Pl  
0 

9 = ~ipi. 
0 

The qi's represent the probability of death i years from now, during age 
50 +i. The solution to the optimization problem is the best way of adjusting 
the ql to reflect the known constraints. The form of the solution is given as 

p, = q, exp(13o - 1) exp(il3,) 

p, = q, (1.57823) (0.9629889y. 

The form of the problem is artificial and conceals the form of the natural 
solution. An actuary or a physician considering an individual whom he or 
she expects to experience nonstandard mortality is likely to express that 



122 TRANSACTIONS, VOLUME XLIII 

intuition as a mortality ratio. One assumes nonsmokers experience a mor- 
tality that is 50 percent of the standard mortality. An impaired life might 
experience a mortality of 150 percent of standard mortality. Determining a 
mortality ratio is the natural solution to the optimization problem given 
above. 

The form of the adjustment looks different from a simple mortality ratio, 
because the problem is defined in terms of q,, the probability of death i years 
from now, during age 50 +i ,  rather than the probability of death at the 
attained age. 

The assumed form of the solution 

P, = qi (1.57823) (0.9629889)' 

has a great deal to do with the answer. In fact, there is no optimization 
going on here. The formula for the adjustment has two parameters with two 
constraints. The probabilities must sum to 1, and the expected value must 
be 9. Two nonredundant equations in two unknowns determine a unique 
solution. Figure 1 shows lines corresponding to the 13o and 131 pairs, which 
give probabilities summing to 1, and the 13o and 131 pairs, which give ex- 
pected values of 9. The intersection of those lines at (1.57823, 0.9629889) 
is the solution given in the paper. There are no degrees of freedom left to 
optimize over. 

The same analysis applies to the example presented in Section 9 of the 
paper. 

I tried to solve the optimization problem as a series of linear programming 
problems. The coefficients of the objective function were ln(pi/q~). Initially, 
I calculated 

pi = P"___A. qi 
P,i 

The resultingp[s typically do not sum to 1. The solution to the first iteration 
will assure p [ s  that sum to 1 and have the appropriate expected value. 

As formulated, the constraints of the problem are linear. 
t~ 

1 = ~ P i  
0 

9 = ~ i p ~  
o 
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With no additional constraints, the solutions were very disappointing. 0nly 
two Pi need to be positive to satisfy the constraints and minimize the initial 
objective function. The simple iterative linear programming approach did 
not converge to an appropriate solution. 

I introduced additional constraints into the linear programming formulation 

Pi - Pi*l > 0. 

Frequently, this assumption does not hold true at the end of the mortality 
table. 

Again the results of this iterative linear programming approach were dis- 
appointing. For the mortality example in Section 10, this analysis was be- 
yond the numerical capability of my linear programming software (Quattro 
Pro Version 3.0). For the disability example in Section 9, the coefficients 
of successive objective functions proved to be unstable. 
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JOSHUA BABIER* AND BEDA CHAN: 

We appreciate Dr. Brockett's contribution of systematically treating a 
broad collection of actuarial problems and of writing an overview on infor- 
mation theory. Although we have written about an information theoretical 
approach [1], in this discussion we pretend that we do not know of or believe 
in information theory and redo the problem in Section 9, Determining a 
Client's Loss Distribution. By providing an alternative solution to the prob- 
lem in Section 9, we hope to supplement Section 9 to become like Section 
12, in which graduation by information theoretic and alternative methods is 
presented and compared. 

If we were to construct an adjusted table with O, = 21 with reference to 
the Standard Table where ~ = 31.35 but not to use an information theoretic 
approach, what would we do? For simplicity, we first describe a continuous 
version of our solution. We are given the distribution function 

Fv(y), 0 <- y <- 91 

where 

91 

f y dFr(y) + 91 [1 - Fr(91)] = 31.35. 
o 

Denote the adjusted length of claim by Z. We are to find 

Fz(z), 0 <_ z <_ 91 

where 

91 

I z dFz(z) + 91 [1 - Fz(91)] = 21. 
o 

We first concoct an extension of the function Fr(y) for y>91.  We graph 
Fe(y) to 91 and then extend our graph by hand to larger values ofy.  Then, 
we shrink Fr: Define 

F , ( z )  = 

*Mr. Babier, not a member of the Society, is a specialist student in actuarial science at the 
University of Toronto. 
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where a is determined by 

91 

f z dFy(az) + 91 [1 - Fy(91a)] = 21. 
o 

Thus, we need to extend Fy from [0,91] to [91,9let]. Although our method 
of extending the graph by hand is rather arbitrary, we only need to use the 
part of extended Fy near the known given region of Fy for the determination 
of Fz on [0,91]. 

We approximate the given Standard Table by a continuous distribution 
function, extend it, shrink it by finding a numerically, and approximate it 
back to a discrete distribution. We repeat and fine-tune the process until 
is exactly 21. The repetition and fine-tuning are needed because the exact 
value of !~ is disturbed by the translations between discrete and continuous. 
For the rest of the discussion we use Z to denote the end product discrete 
distribution. The Adjusted Table Z we obtained is: 

I.~ngth z 

1 
2 
3 
4 
5 
6 
7 
8 
9 

I0 
11 
12 
13 
14 
15 
16 
17 
18 
19 

ADJUSTED TABLE 

Pr~{Z = 

0.06883 
0.06310 
0.05787 
0.05309 
0.04872 
0.04473 
0.04108 
0.03775 
0.03471 
0.03193 
0.02939 
0.02706 
0.02494 
0.02300 
0.02122 
0.01960 
0.01811 
0.01675 
0.01551 

Lcn~ z Pr~Z = z) 

20 0.01437 
21 0.01333 
22 0.01238 
23 0.01150 
24 0.01070 
25 0.01000 
26 0.00929 
27 0.00868 
28 0.00811 
31 0.04437 
38 0.02979 
45 0.02144 
52 0.01644 
59 0.01328 
66 0.01113 

• 73 0.00957 
80 0.00836 
87 0.00738 
91 0.06249 

We compare B, Brockett's adjusted table, and Z by computing the ruin 
probabilities where B and Z are alternative models for the claim amount. 
Because disability income insurance benefit amounts are proportional to the 
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length of claims, our interpretation of claim length as claim amount is a 
reasonable one. The method and the APL program we used in calculating 
the values below are from Seah [2]. We used u for initial surplus and 0 for 
loading. 

RUIN PROBABILITY 

Io=o.i I +=o.3 I,=o.5 ),=o.7 I o=o.9 
t~B(U ) USING BRO4~'S ADJUSTIED TABLE 

u = 10 0.8706 0.6894 0.5691 
u = 20 0.8363 0.6228 0.4918 
u = 30 0.8045 0.5649 0.4275 
u = 40 0.7746 0.5139 0.3735 
u = 50 0.7459 0.4675 0.3263 
u = 60 0.7178 0.4246 0.2842 
u = 70 0.6903 0.3844 0.2461 
u = 80 0.6628 0.3462 0.2110 

0.4838 0.4204 
0.4042 0.3420 
0.3404 0.2809 
0.2886 0.2327 
0.2446 0.1927 
0.2064 0.1586 
0.1727 0.1291 
0.1422 0.1028 

~z(tl) USlNO ADJUSTED TABLE 

u = 10 0.8729 0.6939 0.5746 0.4897 0.4263 
u = 20 0.8425 0.6349 0.5058 0.4187 0.3563 
u -- 30 0.8148 0.5844 0.4494 0.3623 0.3021 
u = 40 0.7891 0.5393 0.4009 0.3152 0.2578 
u -- 50 0.7637 0.4969 0.3567 0.2732 0.2190 
u = 60 0.7383 0.4562 0.3155 0.2348 0.1840 
u = 70 0.7127 0.4169 0.2766 0.1993 0.1521 
u = 80 0.6868 0.3785 0.2360 0.1660 0.1226 

Our method is conceptually simple. To obtain a Z that is like Y but with 
a smaller mean, we shrink Y. But since Fy is given only to 91, we need to 
extend it over 91 so that we have something to shrink. Our choices in 
extrapolating Fy are arbitrary; the fine-tuning that is needed to obtain a 
discrete table at the end is numerically tedious, especially in comparison 
with the computational ease of the information theoretic approach as given 
in Brockett, Charnes and Cooper [15 of the paper]. 

If information theory is a black box, it is an easy one to use. To come 
up with a reasonable answer without using information theory requires a 
great deal more work, and the results are not that different. We note that Cz 
is always greater than ¢,~ in the above tables, but the range of difference is 
only from 0.26 percent to 19.26 percent. 
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(AUTHOR'S REVIEW OF DISCUSSION) 

PATRICK L. BROCKET'I': 

First, I thank all the discussants for their comments. Second, I address 
each one's comments in turn. 

I appreciate Dr. Carlin's stimulating comments about my paper and his 
bringing up the Bayesian Information Criterion (BIC). This allows me an 
additional opportunity to discuss the information theoretic approach versus 
Bayesian methods and BIC versus AIC. 

I did not wish to imply that Bayesian methods are "ad-hoc"; indeed, 
Bayes' Theorem in its most elementary form is merely a restatement of the 
fact that joint probability distributions satisfy the logical relationship 

P(A and B) = P(B~I)P(A) = P(A[B)P(B). 

Dividing by the appropriate marginal distribution yields Bayes' Theorem, 
and any probability law not satisfying this relationship necessarily fails to 
satisfy a basic axiom of probability theory. 

Although fundamental in this sense, the Bayesian formulation is also spe- 
cial in that the probability distributions are assumed to be known, so that 
Baye's Theorem merely reflects how one should update the so-called "prior 
probability" P(A) in the light of new information contained in the event B. 
Bayes' Theorem does not give any advice about how one should develop 
the prior probabilities P(A) and P(B~4), especially in the situation frequently 
encountered in actuarial science in which the "event" B contains vague, 
incomplete, imprecise, subjective, or inconsistent knowledge about the phe- 
nomena under investigation, or where the model itself or the probabilities 
involved are unknown. 

The information theoretic method presented in this paper, however, shows 
how one can assign entire probability distributions for events subject to the 
constraints imposed by prior knowledge. Conversely, the development of iso- 
lated individual probabilities cannot be addressed within this framework (as it 
can, for instance, within the Bayesian framework). In addition, the information 
theoretic method does not deal with how to update the probability structure in 
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light of new information. For this, either an entirely new probability distribution 
can be calculated by reapplying the information theoretic variational prin- 
ciple using the new data to augment the constraint set, or Bayes' Theorem 
might be applied. 

Because both the Bayesian approach and, in certain circumstances, the 
information theoretic approach can be used to update prior probability dis- 
tributions to obtain posterior distributions and because both techniques are 
logically consistent, they tend to agree in many specific applications (as 
noted in my paper). However, the two techniques are designed to address 
different problems with different goals of analysis and different "given" 
structures and degrees of subjectivity in the input. My paper was intended 
to show the wide range of applicability of information theoretic methods as 
a nonsubjective and unifying principle for actuarial analysis. Information 
theory has interpretations in terms of information (reduction in uncertainty), 
estimation facility, stochastic testing facility, parametric model building fa- 
cility, and unifying ability for many commonly used models such as log- 
linear, logit, and so on, and hence, it seems to me, to provide a very good 
nonsubjective philosophical starting point for most aspects of actuarial analy- 
sis. This was the purpose of my paper and is why the range of topics covered 
was so broad. 

Having said all that, let me turn to the specifics of the BIC versus the 
AIC methods comparisons discussed by Carlin. The determination of a cri- 
terion for choosing a model selection procedure (such as the asymptotic 
consistency result cited by Carlin) is not at all clear-cut (and it is for this 
reason that exogenous philosophical approaches to general problem-solving 
are needed for guidance). Linhart and Zucchini [3] wrote an entire book on 
the subject. 

With respect to the BIC/AIC controversy, Shibata [4] has shown (as noted 
by Carlin) that model selection procedures with fixed K (like the AIC) have 
an asymptotic tendency to overestimate the "true model." However, he has 
also shown that only the AIC and its variants are asymptotically efficient if 
the true number of parameters in the model is very large. In fact, Akaike 
[1] has criticized the relevance of Schwarz's theorem for asymptotically 
justifying BIC, while Stone [7] has questioned the use of asymptotics as a 
legitimate selection criterion. It is, in fact, quite possible to criticize the 
realism of an asymptotic theory which keeps the size of the model fixed as 
the sample size increases without bound because, as noted by Stone [7], the 
complexity of the models available in practice would increase as the available 
data for model refinement increase. Stone [6] has also shown that procedures 
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like both the BIC and the AIC are asymptotically locally admissible so that 
no "superior" procedure exists among these methods if the number of var- 
iables in the model is held fixed while the sample size increases. Thus, the 
selection of a criterion depends upon whether you want asymptotic efficiency 
(possessed by AIC and not BIC) or asymptotic consistency (possessed by 
BIC and not AIC), and of course all these theorems are based upon asymp- 
totics that, for small samples, may not work so well anyway. 

In an empirical investigation Shibata [4] reports that BIC was likely to 
underestimate the order of the regression model studied. I prefer the AIC 
because it ties nicely together with all the other topics covered in my paper 
and is a part of a single philosophical approach to stochastic modeling that 
goes all the way from selecting models (AIC), to estimating parameters 
(MDI), to testing hypotheses and setting confidence intervals (loglinear mod- 
eling), to incorporating prior knowledge into analysis (MDI), to refining 
crude observed distributions in light of new or constrained information (grad- 
uation), to incorporating and unifying many currently used statistical meth- 
ods under a single nonsubjective paradigm. 

Drs. Rosenbloom and Shiu are correct in their discussion that the condition 
l'p = l 'q used in my numerical example is very strong and that the objective 
function with graduation might be replaced by 

~, e,~i ln(~,lu,), 

where ei could represent, for example, the number of lives exposed to risk 
at age i. Using a development similar to that in the paper (or that given in 
Dr. Szatzschneider's discussion), one can derive the explicit parametric form 
of the solution when this objective function is used subject to the constraint 
e '~ = e 'u  (that is, the observed number of deaths equals the expected number 
of deaths). This was not done in the paper in order to conserve space; 
however, this analysis is presented below in response to Drs. Rosenbloom's 
and Shiu's cogent comment. 

Because l(plq)->0 for all probability measures p and q, it follows that for 
arbitrary positive (not necessarily probability) measures, we have 

ao 

~, p(x~) ln[p(x,)] -> ~ p(xi) ln[q(x~)] + M1 ln[MI/M2] 
i © - ©  l = - ~  
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where 

M~ = • p(xk) 
k=-® 

denotes the total mass of the first weighted measure and 

Ms = Y, q(xk) 

denotes the total mass of the second weighted measure. This applies, for 
example, to the graduation situation suggested by Drs. Rosenbloom and 
Shiu, in which one uses the weighted mortality rates eiS~ and e,u~. When p 
and q are constrained to have the same total mass (for example, if the 
observed number of deaths is constrained to equal the graduated number of 
deaths in the weighted mortality table graduation situation p(xi)= e~8~ and 
q(x~) = e,ui suggested by Drs. Rosenbloom and Shiu, or when both p and q 
are probability measures, as in Section 10), the quantity Mlln[M~/M2] = 0 
and the pseudo-distance interpretation of l(plq) is retained. It follows that 
virtually the entire analysis presented in the paper continues after appropriate 
renormalization. This means, for example, that the extremal solution for the 
weighted mortality rate graduation problem 

Minimize ~/?~8'ln[u~] ~=~ 

subject to 

• e A  = ~, e,ut = Oo 
tffil iffil 

~, aijSi = 0i, j = 1, 2 . . . .  , m,  
i=1 

8i -> 0, i = 1, 2, ..., n, 

is again given by Equation (6.3) with a# replaced by aiiMJei. Note that in 
this case the resulting representation for 8t is again in loglinear form, allow- 
ing access to the classical statistical analysis of exponential families of dis- 
tributions. For simplicity of presentation in this paper, we used the same 
exposure at each age, that is, ei constant. The above analysis shows this 
was not really necessary but was done for expositional purposes. 
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With respect to the question concerning the value of M used in the grad- 
uation, first, in general, all graduation techniques require the actuary to make 
an explicit trade-off between the conflicting goals of fit and smoothness. 
This is done by selection of parameters in the Whittaker-Henderson methods, 
and in the information theoretic method the smoothness of the graduation 
can be varied by varying the value of M. For the analysis presented in the 
paper, because it was desired to show how an automated statistically based 
graduation method would compare with ad-hoc graphical methods, we first 
calculated the value ~:i (A38i)2 implied by the ad-hoc graphical graduation 
of London. This number then served as a guide as to the magnitude of M 
necessary for comparing the resultant information theoretic graduation with 
that of the ad-hoc graphical techniques. In general, a quick ad-hoc graphical 
comparison such as that done in the paper can be used to determine M, or 
several different graduations can be done with selected different choices of 
M and the best graduation selected. We have found that sometimes when 
the convexity constraints are inserted in addition to monotonicity constraints, 
the smoothness parameter M is not all that important in the information 
theoretic graduation. 

I thank Dr. Herzog for his comment, with which I concur. The results of 
any analysis are dependent upon the underlying assumptions involved, and 
the actuary should attempt to be as "unprejudiced" as possible in determin- 
ing his/her modeling assumptions. In fact, this is actually a further strength 
of the information theoretic technique. 

In addition to the "loss function" or pseudo-distance interpretation of 
l(plq) exploited in the first portion of the paper, the information measure 
has a "quantification of uncertainty" interpretation as well. It is this inter- 
pretation that shows that the minimum discrimination information approach 
is a generalization of Laplace's famous "principle of insufficient informa- 
tion." The information theoretic method can be viewed as choosing the 
model that is as "close as possible" to the postulated distribution q subject 
to the constraints. Essentially the method chooses a model to satisfy the 
constraints that are known to hold while maximizing the uncertainty (entropy) 
of that which we don't assume we know. Some authors use this argument to 
justify calling the maximum entropy distribution the most unprejudiced dis- 
tribution possible subject to constraints. Least squares and other loss func- 
tions do not have this interpretation of choosing maximally unprejudiced 
distributions (again, in the sense of entropy). 

While conclusions may change according to the loss function selected, 
the information theoretic loss function has quite defensible characteristics 
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supporting its selection, in addition to its being a part of a unified philo- 
sophical approach to modeling, estimating, and testing stochastic quantities. 
Of course I agree with Dr. Herzog that one might try other loss measures, 
and indeed one could do standard actuarial analysis (for example, Whittaker- 
Henderson graduation), making sure that this analysis is done subject to the 
known constraints. Computationally this can be done by using existing non- 
linear programming software if desired. 

I appreciate the very favorable comments of Dr. Szatzschneider. I agree 
emphatically with his comment that the constraints of the problem are an 
integral part of the problem formulation and, in fact, have included the 
constraints in all my analyses in the paper. It is for this reason that the 
existence of readily available mathematical programming codes should be 
of such interest to actuaries. There is no longer any excuse for ignoring 
important knowledge or constraints solely in order to obtain mathematically 
elegant closed form solutions (which, if the solution violates the ignored 
pertinent constraints, results in the analysis becoming irrelevant for practical 
use anyway). We all use the computer anyway, so why not include the 
constraints and let the computer find the "best"  solution subject to the 
constraints? This was one of the thrusts of my paper. 

I thank Dr. Roach for his comments. The alternative derivation of the 
extremal solution of the MDI problem presented by Dr. Szatzschneider can 
be used to comment on the remark by Dr. Roach that there was no optim- 
ization involved in the MDI problem. This is wrong, as the derivation in 
the paper and that given by Dr. Szatzschneider show. Dr. Roach himself 
seems to have recognized this when he stated that the form of the solution 
(to the optimization problem) was as given in the paper. The MDI problem 
is a problem in the calculus of variations, and solving the extremization 
yields a function as opposed to a number. Of course, once the precise par- 
ametric functional form of the solution is known (which requires extremi- 
zation), the exact parameter values are indeed uniquely specified by the 
constraints (as noted by Dr. Roach and as noted in my paper). Without 
extremization, however, we would not know that the parametric form we 
are looking for is that given by (6.1) or perhaps some other form, and we 
could proceed no further. There are an infinite number of two-parameter 
families of distributions whose parameters could be uniquely determined by 
the two constraints; however, it is the MDI extremization that specifies 
which is the pertinent family. This becomes even more important as the 
actuary obtains more information (and hence more constraints). The equation 
pi=q,(1.57823)(0.9629889)i is not "the assumed form" but rather "the 
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consequent form" of the adjustment. We are not doing parameter opti- 
mization here (as Dr. Roach seems to imply in his assertion) but rather 
functional form optimization with the parameters subsequently intrinsically 
uniquely determined). 

I also take issue with the statement that "the form of the problem is 
artificial and conceals the form of the natural solution." There is nothing 
"natural" about using mortality ratios to adjust mortality tables in the man- 
ner prescribed. Common? Yes. Natural? No. If one examines the informa- 
tion content in a statement like "nonsmokers experience a mortality that is 
50 percent of standard mortality," we are left in a quandary because the age 
interval considered is left out. If the age interval is ages 0 to 200 years, then 
the statement is ambiguous (because all smokers and nonsmokers are dead 
by age 200) because there is no "excess mortality" over this interval. If the 
age interval is not explicitly given, then simply multiplying the standard 
probability of mortality by the given constant is ad-hoc, does not result in 
a probability distribution for the adjusted table, and leads to the absurdity 
that the adjusted probability of death at older ages is greater than 1. The 
usual technique of truncating such adjusted mortality tables when the prob- 
ability of death becomes greater than 1 is an ad-hoc adaptation of the method 
necessary to plug the holes intrinsic in the method. I know of no theoretical 
justification for simply multiplying the conditional probabilities by a com- 
mon constant and truncating the table when the probabilities of death exceed 
one. 

An alternative approach is the information theoretic method presented in 
this paper. If the age interval used in the study that resulted in the empirical 
statement about the mortality ratios was a to b, then this may be translated 
into a constraint that the desired adjusted table must satisfy, and the analyses 
can be performed by methods similar to those of Sections 9, 10, or 11. The 
adjustment of the mortality tables by using mortality rates rather than time- 
to-death probabilities can be performed as well. Again the mortality ratio 
would be inserted as a constraint, and information theoretic selection of the 
"closest possible" distribution subject to the constraints would be performed. 

With respect to the linear programming iteration, I believe the original 
objective function formulation is sufficiently simple to handle the compu- 
tations exactly, and I see no particular point in trying to approximate the 
problem simply so one can use linear programming codes. This is especially 
true because Dr. Roach finds the approximating solutions either unstable, 
beyond the numerical capability of his software, or very disappointing. Con- 
vex (or nonlinear) programming codes are readily available for the PC, and 
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when the problem involved equality constraints (like the problems in Section 
10), the dual problem is unconstrained so ordinary calculus and successive 
bisection methods can be used. I did the calculations on a spreadsheet pro- 
gram very quickly by hand. (For some inequality constrained problems, 
however, I have found the computation facilitated by the reparameterization 
p~ = exp(-Xi) with Xi unconstrained.) 

The discussion of Babier and Chan presents another way to graduate 
subject to a mean constraint. If one focuses on the continuous case (as they 
do at the start of their discussion), then their method reduces to finding an 
adjusted variable Z which satisfies Fz(z) =Fy(az) for a parameter a selected 
so that the given mean is achieved. One readily observes that their specified 
relationship between the two distribution functions is equivalent to the rela- 
tionship Z=Y/a  for the random variables. This would imply that 
E[Z] =E[Y]/ct or that the required value of a is a =E[Y]/E[Z]. While the process 
becomes more complicated when one restricts Z and Y to be integer valued 
(as done by Babier and Chan), the problem I perceive with their method is 
the lack of a theoretic rationale for assuming that the observed and graduated 
variables must be scale multiples of each other. I cannot readily think of 
any criteria under which this gives the "best" or "natural" estimate of Fy 
subject to the mean constraint. Moreover, without such a general rationale 
for their method, the extension to situations in which more than one con- 
straint is known (as occurs often in actuarial science) becomes problematic. 
I do find their use of ruin probability estimates as a comparison criteria very 
interesting and worthy of theoretical investigation. The article by Brockett, 
Goovaerts and Taylor [2] discusses properties of random variables such that 
their ruin probabilities are ordered. 
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