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ABSTRACT 

A stochastic interest rate generator is a valuable actuarial tool. The pa- 
rameters that specify a stochastic model of interest rates can be adjusted to 
make the model arbitrage-free, or they can be adjusted to accommodate an 
individual investor's subjective views. The arbitrage-free settings of the pa- 
rameters must be used when pricing streams of interest-rate-contingent cash 
flows, for example, when establishing the risk-neutral position for asset- 
liability management. The real-world settings of the parameters should be 
used when evaluating the risk-reward tradeoffs inherent in deviating from 
the risk-neutral position. 

Without relying on formulas, this paper presents the important concepts 
underlying the theory of arbitrage-free pricing of interest-rate-contingent cash 
flows: absence of opportunities for riskless arbitrage; completeness of mar- 
kets; relative prices that do not depend on individual investors' subjective 
views or risk preferences; and expected-value pricing in the risk-neutral 
world. Using these concepts, the paper then describes the steps required to 
build continuous stochastic models of interest rates, including models that 
are either partially or fully arbitrage free. After studying the paper, all ac- 
tuaries should be able to comprehend better some of the literature in this 
important subject area. Then, after studying some of the technical references, 
many actuaries should be in a position to begin to build their own practical 
models. 

1. INTRODUCTION 

In recent years, the literature of financial economics has featured papers 
on how to value interest-rate-contingent claims by means of option-pricing 
models (for example, [2], [8], [11], [14], and [18]). The most important 
applications include the pricing of fixed-income instruments with embedded 
options: callable corporate bonds, mortgage-backed securities subject to pre- 
payment risk, collateralized mortgage obligations (CMOs) created by allo- 
cating the cash flows arising from pools of mortgages to different classes of 

509 



510 TRANSACTIONS, VOLUME XLIV 

bonds, floating-rate and other indexed bonds, and various hedging instru- 
ments, such as futures, options, and interest rate swaps, caps, and floors. 
Life insurers have begun to use option-pricing models to value complicated 
interest-rate-contingent liabilities that contain embedded options, such as the 
insurer's right to reset periodically the interest rate credited to a policyhold- 
er's account, or the policyholder's right to take loans at below-market interest 
rates or to surrender a policy for a cash amount that does not fully take into 
account the level of interest rates prevailing at the time of surrender. In the 
U.S., the capital adequacy of depository institutions (banks and thrifts) is 
now measured against risk-based capital guidelines that include an interest 
rate risk component, for which an option-pricing model is needed to value 
mortgage-related assets properly. 

Unfortunately, the papers about option pricing are often very technical, 
leaving almost all actuaries frustrated, because they recognize the importance 
of utilizing option-based models, but they do not understand the theory well 
enough to be able to write computer programs to implement it. I have made 
no attempt in this paper to review the literature on the subjects of interest- 
rate models and option pricing. That would have diluted my efforts in achiev- 
ing the paper's objective of bringing the actuary who is not an expert in 
either financial economics or in the mathematics of stochastic processes 
(martingales and stochastic calculus, in particular) comfortably to the point 
of understanding how a useful model for valuing streams of interest-rate- 
contingent cash flows can be built. Several routes could have been followed 
to achieve this objective. After much consideration, I decided to develop 
the paper without formulas, with one exception: in offering an example of 
a continuous stochastic process for interest rates, it seemed easier to write 
down a few equations than to write elaborately around them. After reading 
this paper, and perhaps relying to some extent on the references cited, math- 
ematically inclined actuaries will likely be able to construct stochastic in- 
terest rate generators appropriate to their needs. Other actuaries, if unable 
to build such generators themselves, should at least be able to apply the 
generators in solving asset and liability valuation problems. The principal 
goal of this paper is to discuss thoroughly the concepts underlying the val- 
uation of interest-rate-contingent streams of cash flows, not to provide a set 
of mathematical recipes that can be programmed into an option-pricing model 
on a computer. 

Central to the problem of valuing interest-rate-contingent cash flows is 
the creation of an appropriate set of interest rate paths or scenarios. In fact, 
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once a theoretically sound stochastic interest rate generator has been con- 
structed, all the applications described above can be handled. Each appli- 
cation involves projecting the relevant cash flows along a path, then discounting 
the projected cash flows for the path, using the short-term interest rates 
along the path, to a present value number for the path, and finally averaging 
the present value numbers for all paths to obtain the arbitrage-free value of 
the cash-flow stream. The rigorous proof that such a simple procedure works 
is highly mathematical (see, for example, the texts [12] and [16]). However, 
one can develop an intuitive feel for the validity of the approach without 
having to face intimidating mathematics. In this paper, I offer some expla- 
nation that serves to build such intuition, but not so much as to distract us 
from the main goal of laying the foundation for constructing arbitrage-flee 
stochastic interest rate generators. 

Section 2 introduces the concepts of current-coupon yields, spot rates of 
interest, and forward rates of interest, and describes the relationships among 
them. Section 3 briefly describes both discrete-state and continuous-state 
models of interest rates and debates the strengths and weaknesses of each. 
Section 4 introduces several key concepts from financial economics, and 
then indicates how the assumptions of complete markets and the lack of 
riskless arbitrage opportunities allow one to move into a special equilibrium 
world characterized as risk neutral, in which the valuation of interest-rate- 
contingent cash flows becomes a straightforward expected-value problem. 
Section 5 fulfills the purpose of the paper by documenting how to construct 
a path generator based on a continuous process, and Section 6 then indicates 
how such a generator can be used. Section 7 lists the key conclusions of the 
paper. 

2. YIELD CURVE AND TERM STRUCTURE 

This paper focuses on interest rates for instruments free from default and 
call risk, which, in the financial markets in the U.S., means U.S. Treasury 
bills, notes, and bonds. All other investment-grade fixed-income financial 
assets are priced relative to U.S. Treasury obligations. There are several 
equivalent ways to express the set of yields applying to risk-free debt obli- 
gations of various maturities. The most common, because it is the basis on 
which traders make quotations, is the concept of the yield curve. The yield 
curve is a graph that depicts the yields of hypothetical U.S. Treasury obli- 
gations that trade at a price of par as a function of their terms to maturity 
in years. By convention, the yields on such par bonds are expressed as 
annual rates of interest payable semiannually, referred to as bond-equivalent 
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yields, because bonds issued in the U.S. usually pay coupons semiannually. 
The hypothetical bonds trading at a price of par that constitute the yield 
curve are said to have current coupons. 

Another way to express the information contained in the yield curve is to 
compute the yields of zero-coupon bonds of various maturities from the 
yields of all current-coupon bonds. A unit par value zero-coupon bond hav- 
ing a maturity of n years pays its holder $1 at the end of n years and nothing 
before then. A zero-coupon bond is sometimes referred to as apure discount 
bond, because it must always trade at a price less than par, that is, at a 
discount to par. The yield of a zero-coupon bond with maturity n years is 
referred to as the n-year spot yield or spot rate. The graph that depicts 
default-free spot rates as a function of term to maturity is known as the term 
structure of interest rates. The prices of the zero-coupon bonds that define 
the term structure are often referred to as spotprices and, as already stated, 
are always less than par. 

Yet a third way to express the information contained in either the yield 
curve or the term structure is to compute the yields for forward loans. For 
example, an investor might agree to lend a borrower money in m years and 
to be repaid in full (principal plus all accumulated interest) in n years from 
that point in time--that is, at the end of m +n years from today. Such an 
arrangement is known as an m-year forward n-year loan. The rate of interest 
for such a loan is referred to as the (m,n) year forward rate. More generally, 
the (m,n;t) year forward rate refers to the interest rate on a loan that will be 
arranged t years from today, under which an investor will lend a borrower 
money m + t years from today and will be repaid in full m + n + t years from 
today. 

Using the terms defined above, it can be shown that the n-year spot price 
is equal to the product ofn positive discount factors. The first factor involves 
only the (0,1) year forward rate; the second factor involves only the (1,1) 
year forward rate; and the n-th factor involves only the (n - 1,1) year forward 
rate. Thus, it follows that the (n + 1)-year spot price divided by the n-year 
spot price is equal to a positive number that depends only on the (n, 1) year 
forward rate. This number will be less than or equal to 1 (in other words, 
it will be a "discount" factor) if, and only if, the (n, 1) year forward rate is 
non-negative. 

The information contained in the sets of current-coupon yields, spot rates, 
and forward rates is equivalent. (Further material on this subject can be 
found in the text by Sharpe and Alexander [22].) Any one set of yields or 
rates is sufficient to derive the other two sets. Depending on the situation, 
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there may be a natural set to use, but all carry identical information. For 
example, when speaking with traders or portfolio managers to obtain interest 
rate assumptions for pricing an annuity product, an actuary would likely ask 
about the yield curve. When discounting a stream of fixed and certain cash 
flows arising from structured settlement annuity liabilities to obtain a current 
market value, an actuary would naturally use spot rates. When constructing 
an arbitrage-free theory of interest rate dynamics, most financial economists 
would use forward rates as the starting point. 

3. DISCRETE VERSUS CONTINUOUS MODELS 

Throughout this paper, the term state of  the world refers to the yield curve 
prevailing at a particular time or epoch. In a model of interest rates, the 
adjectives discrete and continuous, without any modifiers, are used best to 
describe the type of states of the world represented, not the type of time 
interval used. In practical applications, regardless of the model used, cash 
flows are assumed to occur at discrete time intervals" monthly for typical 
mortgages; quarterly for CMOs, preferred stocks, and some floating-rate 
bonds; and semiannually for typical bonds. In asset-liability cash-flow anal- 
yses, quarter-year periods typically are used. So the basic issue is not whether 
discrete-time models are to be preferred to continuous-time models; rather, 
it is whether discrete-state models are to be preferred to continuous-state 
models. 

Most of the recent literature describes discrete models, in which the states 
of the world are represented by nodes on a lattice (refer to the papers [2], 
[11], and [18] cited earlier). The vast majority of such models utilize bi- 
nomial lattices, on which the world evolves from any given state at one 
epoch to one of two different states at the next epoch. These two states at 
the end of a time interval are usually referred to as the up state and the down 
state with respect to the state at the beginning of the interval. For reasons 
of computational efficiency, connected lattices are almost always used. From 
any node in a connected lattice, the two-period evolution of states up first, 
then down and the two-period evolution of states down first, then up must 
lead to the same ending node. In a connected lattice, the world can evolve 
from a single initial state at epoch 0 to one of two states at epoch 1, to one 
of three states at epoch 2, and so on, to one of H +  1 states at epoch H. In 
a connected binomial lattice model, it is unlikely that the possible states of 
the real world will be sampled sufficiently finely at the early epochs. To 
remedy this problem, the time interval can be reduced. For example, with 
daily intervals, there are about 30 states at the end of any one-month period, 
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but the computational demands of creating and using such a model can be 
enormous, especially for long-term assets or liabilities. Moreover, it is un- 
natural (and should be unnecessary) to choose a time interval much shorter 
than the shortest period between cash flows for typical assets and liabilities. 
Thus, the coarseness-of-sampling difficulty of connected lattice models re- 
mains in many practical situations. Continuous models do not suffer this 
weakness. 

Continuous-state models are described in the academic literature by means 
of differential equations that represent continuous-time stochastic processes 
(refer to the papers [8] and [14] cited earlier, and also to the text by Hull 
[13]). For practical applications, though, the continuous-time process needs 
to be sampled only at regular time intervals, and the models are reformulated 
as stochastic difference equations. The time interval is often chosen to equal 
the shortest period between the cash flows for the assets and liabilities under 
study. In continuous models, one samples paths of interest rates by iterating 
the difference equation. If P interest rate paths are used, there are P states 
of the world represented at every epoch. Because the sample of P states at 
each epoch is drawn from a continuous distribution, the resulting paths of 
interest rates do not appear to have been constructed artificially. Stated a 
little differently, it is difficult for an experienced portfolio manager to tell 
whether an interest rate path was generated from a good continuous model 
or was constructed from segments of actual interest rate history. The same 
claim cannot be made for interest rate paths sampled from a lattice. 

A connected lattice model has a significant weakness that can be overcome 
by using a continuous model. For a connected lattice to be arbitrage-free 
(defined in Section 4), severe constraints have to be placed on how it is 
constructed. These constraints greatly limit the possible yield curve dynam- 
ics, and for most models, the resulting evolution of yield curves does not 
correspond adequately to real-world behavior. The problem arises in simple 
lattice models because a single stochastic factor--the short-term rate of in- 
terest-drives the dynamics of the entire yield curve, resulting in perfect 
correlation of yield movements across the curve. In the real world, the 
movements of neighboring segments of the yield curve may be highly cor- 
related, but they are not perfectly correlated. Arbitrary correlation can be 
accommodated in a continuous model, because different parts of the yield 
curve can be assumed to follow correlated stochastic processes. 

Discrete and continuous models can also be compared for computational 
efficiency, which depends on the type of problem to be solved. In the case 
of interest-rate-contingent, but path-independent, cash flows, as are usually 



BUILDING STOCHASTIC INTEREST RATE GENERATORS 515 

associated with pure options, callable bonds, and optional sinking fund 
bonds, backward induction algorithms can be used on a lattice to determine 
the optimal exercise strategies. Such algorithms are processed backward in 
time from the latest epoch to the earliest epoch, and such algorithms need 
to evaluate conditions occurring only at all states in the lattice, not along all 
paths through the lattice. From epoch 0 to epoch H, there are 2 n paths 
through a binomial lattice, but only (H+ 1)(H+ 2)/2 total states, if the lattice 
is connected. Thus, many option-pricing problems can be solved efficiently 
and accurately on a connected lattice. Without a lattice (whether connected 
or not), backward induction is not possible. From a purely mathematical 
viewpoint, it is difficult to construct optimal exercise strategies for many 
option problems by doing calculations on interest rate paths sampled from 
a continuous model. From a practical viewpoint, note that real-world options 
are exercised by people who manage portfolios or trading positions, or who 
run corporations or other businesses. The behavior of these people, as to 
their strategies for rational (if not mathematically optimal) exercise of the 
options they hold, can be modeled sufficiently accurately that the options 
are valued properly by way of calculations performed on paths sampled from 
a continuous model. 

Many important problems involve path-dependent cash flows, for exam- 
ple, the pricing of prepayable mortgages and instruments derived from them, 
and the valuation of interest-sensitive insurance liabilities. For such prob- 
lems, the possible paths of interest rates must be considered, not merely the 
possible states of the world. A connected lattice offers no special compu- 
tational advantages in these situations. In fact, when path-dependent cash 
flows are involved and a lattice model is used, P paths of interest rates will 
have to be sampled, just as if a continuous model were being used. 

In summary, several compelling factors favor the use of continuous-state 
models over discrete-state models: (i) a discrete model's lack of computa- 
tional advantage in the common case of path-dependent cash flows; (ii) the 
need to use the same model consistently for all assets and liabilities, whether 
their cash flows are path independent or path dependent; and (iii) a contin- 
uous model's ability to sample states of the world sufficiently densely and 
to accommodate realistic yield curve dynamics. 
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4. RISKLESS ARBITRAGE, COMPLETE MARKETS, 

AND THE RISK-NEUTRAL WORLD 

4.1 Basic Concepts 

This section is shorter that it could be, so that we can proceed to the main 
subject of the paper. The underlying mathematics are generally presented in 
an imposing manner and have been the subject of numerous lengthy seminal 
papers on the application of stochastic process theory to financial economics. 
The topic of riskless arbitrage is dealt with with well in the paper by Ped- 
ersen, Shiu, and Thorlacius [18], and brief comments on the role of the risk- 
neutral world in option-pricing calculations can be found in the text by Cox 
and Rubinstein [6]. 

The concept of a riskless arbitrage opportunity is not difficult. If one asset 
or portfolio of assets can be sold and the proceeds of the sale can be used 
to purchase a different asset or portfolio of assets whose performance will 
be superior to that of the original asset or portfolio over a specified holding 
period (infinitesimal or finite depending on the situation), regardless of the 
states of the world during and at the end of the holding period, then a riskless 
arbitrage opportunity is said to exist. One need merely sell the first asset or 
portfolio and purchase the second to be guaranteed of having more wealth 
at the end of the holding period without having incurred greater risk. The 
reason that such an opportunity is said to be riskless is that wealth can be 
created without investing any capital at all by selling the first asset short 
(that is, selling it before purchasing it), and using the proceeds of the short 
sale to purchase the second asset. In this situation, there is no net outlay of 
funds, but there is a guarantee of positive wealth at the end of the holding 
period, because the second asset can then be sold for more than is then 
needed to cover (close out) the short position by purchasing the first asset. 

Financial economists and other reasonable people assume that no riskless 
arbitrage opportunities exist in an equilibrium world. In other words, prices 
of assets are assumed to adjust continuously to eliminate opportunities for 
riskless arbitrage. For this to occur, a number of assumptions must be made: 
assets are perfectly divisible, unlimited short sales are possible, trading takes 
place continuously without transaction costs, investors act rationally and 
prefer more wealth to less wealth, and there are no taxes. Although these 
assumptions are quite stringent, one should not debate too strenuously whether 
small arbitrages can exist in the real world for brief periods because the 
assumptions are only approximations to reality. Instead, one should regard 
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the concept of an equilibrium world in which riskless arbitrage opportunities 
do not exist as fundamental to constructing a sound financial theory for 
pricing assets. 

To see how the concept of riskless arbitrage can lead to a theory for 
establishing the relative prices of assets, consider again the situation de- 
scribed above, modified slightly. Suppose that an asset for which one wants 
to establish the arbitrage-free price is equivalent to a portfolio of different 
assets for which one knows the prices. Equivalence is used in the sense that 
the performance of the single asset and that of the portfolio are identical 
over a specified holding period. Then it follows that the single asset and the 
portfolio of assets must have the same prices, or else there would be a riskless 
arbitrage opportunity, wherein the more expensive one could be sold short 
and the less expensive one purchased, guaranteeing a profit without taking 
any risk. Thus, one establishes the arbitrage-free price of the single asset as 
equal to the known price of the portfolio of assets. For this approach to be 
generally applicable and therefore lead to a pricing theory, it is necessary 
to assume that the financial markets are complete, meaning that any given 
asset is equivalent to some portfolio of fundamental assets. 1 This replicating 
portfolio might not be equivalent to the given asset over all holding periods. 
The portfolio's holdings might have to be adjusted from time to time, perhaps 
continuously, to maintain the equivalence. Having to rebalance the repli- 
cating portfolio is of no consequence, however, because the ability to trade 
continuously absent transaction costs, as assumed earlier, enables equiva- 
lence to be maintained without having to inject additional money into the 
portfolio; the replicating strategy is said to be self-financing. 

If the financial markets are complete and no opportunities for riskless 
arbitrage exist, then the prices of all assets can be determined relative to the 
prices of their replicating portfolios. Under these assumptions, the relative 
prices of assets cannot depend on individual investors' preferences, which 
include their differing subjective views on the probabilities of occurrence of 
various future states of the world and their differing degrees of aversion to 

IA natural set of fundamental assets is all Arrow-Debreu securities. An Arrow-Debreu security 
pays $1 if a specified future state of the world occurs, and nothing otherwise. There are as many 
Arrow-Debreu securities as there are future states of the world. In a binomial model of interest 
rates, the two fundamental Arrow-Debreu securities defined at each two-pronged fork in the lattice 
are: an elementary put option that pays $1 if the up state occurs and $0 if the down state occurs, 
and an elementary call option that pays $1 if the down state occurs and $0 if the up state occurs. 
The role of the elementary options in valuing interest-rate-contingent cash flows is described in a 
paper by Jacob, Lord, and Tilley [15]. 
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risk. Otherwise, riskless arbitrage opportunities would arise. Because rela- 
tive asset prices must bepreference-free, we can choose a frame of reference 
in which the pricing of assets is particularly straightforward, namely, the 
risk-neutral world. It does not mean that we must adopt such a setting, only 
that we are permitted to do so, and that we will obtain the correct relative 
prices for assets if we do. Black and Scholes [3] derived their now-famous 
formula for the price of a call option on a share of non-dividend-paying 
stock in terms of the price of the underlying stock by applying the no- 
riskless-arbitrage condition to a combined position of buying the call option 
and selling short its replicating portfolio. They solved the resulting differ- 
ential equation for the price of the call option after establishing appropriate 
boundary conditions. Only later did others show that a simpler derivation is 
possible by moving into the risk-neutral world and performing the pricing 
calculation there (for example, refer to [5]). 

What is the risk-neutral world, and why are pricing calculations simpler 
there? In the risk-neutral world, investors do not require a premium for 
assuming risk. Thus, assets are priced at their expected present values. In 
other words, risk-neutral investors behave like traditional actuaries. When 
pricing assets, they project cash flows along interest rate paths, then discount 
the cash flows at the one-period interest rates occurring along the paths, and 
finally calculate the expected present value by weighting the present value 
for each path by that path's probability of occurrence. 2 Moreover, in the 
risk-neutral world, the probabilities of occurrence of the various paths do 
not depend on investors" subjective views of the likelihood that different 
future states of the world will arise. I now show how this description of the 
risk-neutral world can be used to construct an arbitrage-free model of interest 
rates. 

In a binomial model, the states of the world represented at the nodes of 
the lattice can be determined from the assumed stochastic process for the 
one-period interest rate, for example, a discrete geometric Brownian motion. 
Then, the risk-neutralprobabilities of up and down transitions at each node 

2There are many ways that an expected present value could be computed for a stream of interest- 
rate-contingent cash flows. The intuitively appealing method described in the text above is the only 
one that is valid generally, but the proof is beyond the scope of this paper. The essence of the proof 
for the case of binomial lattices (from which one can generalize to other situations) appears in 
Jacob, Lord, and Tilley [15] and utilizes the elementary put and call options described in footnote 
1. Finally, I offer a helpful calculation reminder: On any path, be sure to use the one-period interest 
rate at epoch t - 1 to discount cash flow occuring at epoch t back to a present value at epoch t - 1. 



BUILDING STOCHASTIC INTEREST RATE GENERATORS 519 

can be established to ensure that all zero-coupon bonds are priced properly 
by the expected-present-value algorithm described above. Alternatively, the 
no-riskless-arbitrage conditions can be used to establish the possible states 
of the world, given assumed risk-neutral probabilities for up and down tran- 
sitions at each node; for example, Oi., for the up transition and 1 -  0i., for 
the down transition at the i-th node at epoch t, with 0<0i, t< l .  This is the 
approach used by Pedersen, Shiu, and Thorlacius [18]. In a continuous 
model, it is convenient to adopt the approach of assuming that the risk- 
neutral probabilities are given, and then generating afinite number of interest 
rate paths appropriately. It is usual to generate equal-probability paths of 
interest rates by randomly sampling, epoch to epoch, from an assumed sto- 
chastic process, and to adjust, epoch by epoch, the distribution of interest 
rates to ensure that the no-riskless-arbitrage conditions hold. 

4.2 Example: A One-Factor Lognormal Model of Short-Term Interest 
Rates 

The rest of this section is devoted to an example in which the natural 
logarithm of the ratio of the one-period rate of interest at epoch t to the one- 
period rate of interest at epoch t -  1 is normally distributed with mean ~ and 
standard deviation cr. It is conventional to refer to this example as a log- 
normal stochastic process for the one-period (spot) rate. The initial term 
structure of interest rates (all the spot rates or all the spot prices) is assumed 
to be specified exogenously. The objective is to generate an arbitrage-free 
set of P equal-probability paths of one-period interest rates out to epoch H, 
the assumed horizon for the desired application. In practical applications, 
limitations on computer memory and execution time usually constrain the 
choice of P to between 100 and 1000. 

A single path of one-period interest rates can be created by starting from 
the given initial one-period rate, then randomly sampling from the assumed 
lognormal distribution a one-period rate at epoch 1 and using it as the starting 
one-period rate for randomly sampling from the assumed lognormal distri- 
bution a one-period rate at epoch 2, and so on, out to epoch H. Independently 
repeating this entire sequence of computations P times gives rise to P equal- 
probability paths of one-period interest rates. Unfortunately, the set of paths 
is not arbitrage free. To obtain an arbitrage-free set of paths, all P one- 
period rates at each epoch must be multiplied by an appropriate adjustment 
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factor that is the same for all P rates, but that differs from epoch to epoch. 3 
The proper approach involves generating and adjusting the one-period rates 
at epoch 1, which evolve from the given initial one-period rate at epoch 0; 
then generating and adjusting the one-period rates at epoch 2, which evolve 
from the adjusted one-period rates at epoch 1; and so on; and finally gen- 
erating and adjusting the one-period rates at epoch H, which evolve from 
the adjusted one-period rates at epoch H -  1. The arbitrage-free algorithm is 
described more precisely as follows: 
Step 1. Using the initial (epoch 0) one-period rate and the assumed lognormal process, 

generate P random one-period rates at epoch 1. Call these the epoch 1 unad- 
justed one-period rates. Calculate P epoch I adjusted one-period rates by mul- 
tiplying all P epoch 1 unadjusted one-period rates by the adjustment factor exp 
[h t -  ix], where hi is determined so that the following condition holds: The 
expected present value of a $1 payment at epoch 2 is equal to the given initial 
spot price of the two-period zero-coupon bond. The expected present value is 
measured at epoch 0 and is based on the initial one-period rate and the epoch 
1 adjusted one-period rates. 

Step 2. Using the epoch 1 adjusted one-period rates and the assumed lognormal process, 
extend the P paths of interest rates one period by generating P random one- 
period rates at epoch 2. Call these the epoch 2 unadjusted one-period rates. 
Calculate the P epoch 2 adjusted one-period rates by multiplying all P epoch 
2 unadjusted one-period rates by the adjustment factor exp [~.2-P.], where ~.z 
is determined so that the following condition holds: The expected present value 
of a $1 payment at epoch 3 is equal to the given initial spot price of the three- 
period zero-coupon bond. The expected present value is measured at epoch 0 
and is based on the initial one-period rate and the epoch t adjusted one-period 
rates for t = 1, 2. 

Step H. Using the epoch ( H -  I) adjusted one-period rates and the assumed lognormal 
process, extend the P paths of interest rates one period by generating P random 
one-period rates at epoch H. Call these the epoch H unadjusted one-period rates. 
Calculate the P epoch H adjusted one-period rates by multiplying all P epoch 
H unadjusted one-period rates by the adjustment factor exp [ h n -  IX], where hn 
is determined so that the following condition holds: The expected present value 
of a $1 payment at epoch H + I  is equal to the given initial spot price of the 

aThe form of adjustment should be appropriate to the stochastic process that is modeled. A 
multiplicative adjustment of the type described in this section is valid for the lognormal process. 
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(H+ 1)-period zero-coupon bond. The expected present value is measured at 
epoch 0 and is based on the initial one-period rate and the epoch t adjusted one- 
period rates for t = 1, 2 . . . . .  H. 

The expected present values referred to in steps 1 through H above are 
calculated as described earlier in this section: that is, as the simple arithmetic 
mean (since all paths have equal probabilities 1/P) of the P present values 
obtained by discounting the cash flows occurring along each path at the 
relevant one-period interest rates occurring along the path. The sequence hl, 
kz . . . . .  hH is referred to as the time-dependent drift of the stochastic process. 
Thus, constraining the process to be arbitrage free is tantamount to setting 
its time-dependent drift so that all zero-coupon bonds are priced at values 
equal to those derived from the exogenously specified initial yield curve. 
Otherwise, trivial riskless arbitrages would exist. Note that all traces of the 
originally assumed drift ~z are eliminated by the adjustment factors exp 
[h,-p~]. In essence, the drift is reset from ~ to the appropriate h, at each 
epoch t to ensure that the model is arbitrage free. 

Performing steps 1 through H ensures that the expected-present-value al- 
gorithm will produce the observed (exogenous) initial prices for all zero- 
coupon bonds having maturities less than or equal to H +  1 periods. As a 
consequence, any stream of fixed and certain cash flows occurring at epochs 
up to H + 1 will be priced fairly relative to the zero-coupon bonds, because 
an arbitrary stream of fixed and certain cash flows is equivalent to some 
portfolio of zero-coupon bonds. Similarly, the arbitrage-free set of paths of 
one-period interest rates and the expected-present-value algorithm can be 
used to price any interest-rate-contingent stream of cash flows occurring at 
epochs up to H. (In general, one cannot get as far as epoch H +  1, because 
the cash flows at epoch H +  1 may depend on the adjusted one-period rates 
at epoch H +  1, and those rates have not been determined.) The prices so 
obtained for interest-rate-contingent cash flow streams will be arbitrage free 
relative to the prices of the zero-coupon bonds, because any such stream 
can be shown to be equivalent to some dynamically adjusted replicating 
portfolio consisting only of zero-coupon bonds. 

One has to be careful about what is meant by the descriptor "arbitrage 
free." The H-step algorithm ensures a fair price at epoch 0 for any stream 
of cash flows not extending beyond epoch H. The epoch 0 price of the cash- 
flow stream is said to be "fair" relative to the epoch 0 prices of all zero- 
coupon bonds, because opportunities for riskless arbitrage between the cash- 
flow stream and the set of zero-coupon bonds have been eliminated through 
the application of the H-step algorithm. The key question, however, is whether 
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the H-step algorithm ensures arbitrage-free dynamics for the full yield curve 
at all epochs or just for the one-period rate at all epochs. The answer can 
be either yes or no, depending on the objective. If some control over the 
statistical properties of yield curve movements is desired, such as being able 
to specify exogenously the correlation between the movements of the one- 
period rate and the current-coupon yields at all other maturities, then the 
answer is no: the H-step algorithm will not produce interest-rate behavior 
consistent with the externally supplied assumptions. The reason is that the 
stochastic behavior depends on only one factor: the dynamics of the one- 
period rate determines the dynamics of all other parts of the yield curve. 

To see this, suppose we are situated at an arbitrary state of the world 
(namely, an arbitrary value of the one-period rate) at epoch t, where t<H. 
We determine the prices, and hence the yields, of all zero-coupon bonds 
with maturities up to H + 1 - t  periods by generating a large number of paths 
of one-period rates emanating from this state and then using the expected- 
present-value algorithm. In generating the paths emanating from the arbitrary 
state, we are forced to use the drift parameters h , + l  . . . . .  hu that have 
already been determined. Thus, utilizing the H-step algorithm establishes 
the dynamics of the full yield curve in this one-factor model of interest rates. 
The model is fully arbitrage free at the initial state and at all future states 
of the world, but a huge sacrifice is necessary to achieve this result: the 
ability to specify the desired yield curve dynamics must be (at least partially) 
surrendered! 

Before generalizing the one-factor model to a multiple-factor model and 
therefore gaining control over yield curve behavior, we consider how the H- 
step algorithm described above achieves arbitrage-free stochastic interest- 
rate dynamics. Earlier, we stated that a model of interest rates can be ren- 
dered arbitrage free by either (i) assuming the states of the world to be given 
and the risk-neutral probabilities to be determined, or (ii) assuming the risk- 
neutral probabilities to be given and a finite number of states of the world 
to be determined appropriately. The H-step algorithm uses the latter ap- 
proach. It assumes that the P paths have equal probability, and then deter- 
mines P one-period rates at each epoch in a manner to ensure that the no- 
riskless-arbitrage conditions are satisfied. Because theoreticians generally 
speak and write in terms of the former approach, it makes sense to ask 
whether there is some relationship between the approaches. The answer is 
yes. Take the limit as P tends to infinity and ensure that all possible paths 
of one-period interest rates are represented. In this case, because the full 
continuous distribution of states at each epoch is represented, the H-step 
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algorithm actually establishes the probability distribution of paths in the risk- 
neutral world. Thus, when all possible paths are represented, solving for the 
risk-neutral drift of the stochastic process is equivalent to establishing the 
risk-neutral probabilities. 

5. CONSTRUCTING AN INTEREST RATE GENERATOR 

This section extends the approach described in Section 4.2 to allow dif- 
ferent parts of the yield curve to be modeled simultaneously. This is im- 
portant in many practical applications. For example, prepayments arising 
from a seasoned pool of fixed-rate residential mortgages are commonly mod- 
eled as depending on the currently prevailing and recent levels of the ten- 
year U.S. Treasury bond yield. To project the cash flows from the mortgage 
pool, a stochastic model of ten-year U.S. Treasury bond yields is needed. 
To price the pool of mortgages properly, that model must be arbitrage free. 
Because movements of short-term U.S. Treasury bill yields and ten-year 
U.S. Treasury bond yields are correlated, the models of the short-term yields 
and ten-year yields must be developed together and consistently. Other sim- 
ilar examples abound: insurance company interest-sensitive life and annuity 
products are often priced relative to prevailing intermediate-term U.S. Treas- 
ury note yields; most adjustable-rate preferred stocks have quarterly divi- 
dends that reset off the highest of the three-month U.S. Treasury bill yield, 
the ten-year U.S. Treasury note yield, and the 30-year U.S. Treasury bond 
yield; and many options are written on intermediate-term U.S. Treasury 
notes and bonds. 

Even when many parts of the yield curve are modeled together, the one- 
period rates continue to play a special role. In the expected-present-value 
algorithm, only the one-period rates are used to discount cash flows. Yields 
of bonds with maturities greater than one period affect the arbitrage-free 
price of a stream of interest-rate-contingent cash flows only to the extent 
that the amounts of the cash flows depend on those yields. The examples 
listed above illustrate such dependence. 

5.1 What Random Variables Should Be Modeled? 

Before describing how to build a stochastic interest rate generator, we 
must decide what interest rates are to be modeled. From Section 2, the 
choices are: current-coupon yields, spot rates, or forward rates. Because 
these three sets of rates are equivalent, any one set may seem to be as good 
as another for stochastic modeling purposes, but that is not the case. From 



524 TRANSACTIONS, VOLUME XLIV 

the recent literature, it is clear that academicians prefer to model forward 
rates. It is useful to understand why. 

If one views interest rates as the cost of money, it is reasonable to constrain 
them to be non-negative. Some models permit negative interest rates (Vas- 
icek [23] and Ho and Lee [11], for example), but most theoreticians and 
practitioners regard non-negativity of interest rates as a basic constraint that 
an acceptable model must satisfy. If all one-period (n,1) forward rates, as 
defined in Section 2, are non-negative, then all spot rates and all forward 
rates are non-negative. Thus, modeling forward rates by a process that en- 
sures that they are non-negative also ensures that spot rates and current- 
coupon yields are non-negative. Modeling spot rates by a process that en- 
sures that they are non-negative does not ensure that all forward rates will 
be non-negative. For example, if both the (n + 1)-year and the n-year spot 
rates are positive, but the n-year spot price is less than the (n + 1)-year spot 
price, then the (n,1) year forward rate will be negative, as discussed in 
Section 2. Modeling current-coupon yields by a process that ensures that 
they are non-negative can produce a result even more pathological, because 
negative spot prices can occur, leading to spot rates that are complex numbers 
(having both real and imaginary parts). 

The preceding points would seem to make a clear case for modeling 
forward rates, and that is the route that authors of most recent papers have 
chosen. (Heath, Jarrow, and Morton [8] is an example.) From a practical 
viewpoint, the trouble with modeling forward rates is that few people seem 
to have an intuitive feel for how forward rates should behave. Traders in 
U.S. government securities often do not know what a theoretician means by 
a one-period forward rate, and they certainly do not have an intuitive feel 
for the relative volatilities of the various (n,1) period forward rates. Nor do 
they have a view on whether the movements of the (n,1) period forward 
rates for different n are weakly or strongly correlated. These observations 
cannot be ignored if the goal is to build a stochastic generator that will be 
useful in practical situations. 

What fixed-income traders and portfolio managers understand well is the 
yield curve. Thus, it seems reasonable to build a model using current-coupon 
yields as the random variables. Of course, the architects and engineers of 
such models have a strong duty to test how frequently pathological spot rates 
and forward rates arise when reasonable ranges of input assumptions are 
used, and to reject models for which that frequency is too high (greater than 
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1 percent, for example). A rejection criterion is necessary, because the so- 
called pathologies are actually just different forms of riskless arbitrage op- 
portunities which we have so assiduously eliminated elsewhere. 

A model that allows the user to input assumptions about the behavior of 
current-coupon yields, but which, perhaps unknown to the user of the model, 
simulates forward rates of interest as the random variables, is the ideal 
solution to the dilemma posed above. This is undoubtedly the proper course 
to follow, but I have not yet discovered a wholly satisfactory method for 
translating input assumptions relating to current-coupon yield volatilities, 
correlations, and mean reversion strengths (all defined in Section 5.2) into 
model parameters that apply to a specified stochastic process followed by 
forward rates. Because this is likely to be the natural evolution of interest 
rate models, I should remark that the stochastic process introduced in Section 
5.2 is as valid for spot rates or forward rates of interest as it is for current- 
coupon yields. Thus, most of the material presented in Sections 5.2 and 5.3 
can be read as if it applies directly (or with obvious modifications) to spot 
or forward rates of interest. 

5.2 A Continuous Stochastic Model of Current-Coupon Yields 

Let rk,, denote the random variable for the yield at epoch t of the non- 
callable current-coupon bond that has a maturity of k periods? The natural 
logarithm of rz, is assumed to obey the following process: 

In rk.,+l = h~.,+i + (1 - ~bk)In rk,, + O'k Ck.,,i 

where Xk.,+l is the drift that was introduced in Section 4, +k measures the 
strength of mean reversion (0_<+k_< 1), ok is the logarithmic yield volatility, 
and e~.,+~ is a random standard normal deviate (that is, a random normal 
deviate with zero mean and unit variance). It is assumed that %~ and ok., are 
independent random variables if s 4:t and that they have linear correlation 
coefficient Pjk if s = t, with pjj = 1. 

The subscript k for the random yield variables and the parameters has 
been used to indicate that there is one equation for each current-coupon bond 
maturity. Each yield rk follows its lognormal random walk with its own 
mean reversion 6~, volatility ok, and time-dependent drift Xk,,. Using a log- 
normal process ensures that no rk can ever be negative. The stochastic processes 

4No distinction in notation is made in this paper between random variables and particular values 
they may assume, because the relevant interpretation is always clear. 
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followed by the yields of the current-coupon bonds of the various maturities 
are not independent of each other; the contemporaneous shocks ej and ck to 
the natural logarithms of the current-coupon yields rj and rk, respectively, 
have correlation Pjk- 

That dp~ can be interpreted as the strength of mean reversion for the yield 
r~ becomes a little clearer if the drift is time-independent and given by h~., 
= ~b, In Ixk at all epochs t, where ~k is the mean reversion level of rk, apart 
from a factor that is generally close to unity if ~bk is not too small. An 
explicit expression for the mean reversion level is given in Section 5.3. The 
larger is ~b~, the faster the expected value of rk approaches its long-run limit. 
Thus, d~ measures the strength of the mean reversion. When d~k=0, the 
yield rk follows a pure lognormal random walk with drift, and there is no 
finite long-run mean level of yields. When ~bk = 1, the yield rk has no memory 
whatsoever of its levels at previous epochs and, apart from time-dependent 
drift, has the same lognormal probability distribution at each epoch. 

The formula for r,,,+l is a first-order difference equation for which the 
initial condition is the initial current-coupon yield rk.o. The difference equa- 
tion is said to be first-order autoregressive because the value of rk.,+l can 
be determined, apart from the random shock ej,.,+l, by looking back only 
one period to the value of rk,,. In practical applications, the difference equa- 
tion is used as the basis for iterative random simulation. A single path of 
interest rates can be generated randomly by starting from rk.o and iterating 
one period at a time to obtain rk.1, rk.2, ..., rk.tl. The set of rk., for all k 
defines the yield curve at epoch t, and the sequence of yield curves at epochs 
0, 1, 2 . . . . .  H defines the interest-rate path. The stochastic nature of the 
interest-rate path derives from the random shocks e that occur from epoch 
to epoch along the path. 

Consider a single path of interest rates. In generating the path on a com- 
puter, a column vector e of standard normal deviates must be generated 
randomly at each epoch. There is one element of ~ for each maturity index 
k. If the correlation matrix p is positive definite, it can be factored as p =LL T, 
where L is a lower triangular matrix. This is known as the Choleski or 
square-root factorization of 0 (refer to [4]). Suppose ~ represents a column 
vector of independent random standard normal deviates. Then, the column 
vector e=L~ of random standard normal deviates has a correlation matrix 
equal to the given matrix p, as desired. The column vector ~ can be generated 
by any acceptable method for producing random standard normal deviates, 
such as the polar method [24]. 
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The stochastic process specified above possesses a useful scaling property 
that allows the interest-rate model to be adjusted easily to whatever time 
interval between epochs is desired. If the difference equation is applied s 
times rather than once, it takes the form: 

]n rk, t+ s -= Ak, t+ s -4- (1  - (YPl,) ln rk, t + (~k ~,k Ek, t+s 

where A~,,+~ depends on X~,,, for l<u<_s, qbk, and s; qb k depends on d)k and 
s; ~,, depends on o-~, qbk, and s; and Pjk, the scaled linear correlation coef- 
ficient, depends on P~k, d)j, qbk, and s. E~,,.s is a random standard normal 
deviate. Thus, under a scaling of the time interval from 1 to s, the same 
form of process obtains, but its parameters must be scaled appropriately 
relative to the parameters for the unscaled process. To emphasize the sim- 
ilarity, I have used upper-case Greek letters for the scaled process to cor- 
respond to the lower-case Greek letters for the unscaled process: specifically, 
k<--+A, 6~dP,  o-,~.-~5'., p+-->P, and ~(---)E. 

What parts of the yield curve should be modeled? If a quarter-year time 
interval were used, for example, one could model the yields for all current- 
coupon bonds with maturities at quarter-year intervals up to the maximum 
maturity bond needed for the particular application. In fact, it might seem 
that the yields for all bonds must be modeled if a fully arbitrage-free set of 
paths is desired. This is true if one insists that each random yield strictly 
follow the specified stochastic process. Modeling all maturities leads to a 
very large computing problem, as to both memory requirement and execution 
time. I believe that it is preferable to model only what Ho [10] has called 
key (spot) rates or key (current-coupon) yields and to obtain all other needed 
rates or yields by linear interpolation. Reitano describes the same approach 
in a recent paper [20]. 

The justification for not using all bond maturities in the model is that 
fixed-income traders generally use the following new-issue or outstanding 
U.S. Treasury securities as benchmarks: bills having maturities of 3, 6, and 
12 months; notes having maturities of 2, 3, 5, 7, and 10 years; and bonds 
having maturities of 20 and 30 years. These are the key maturities that should 
be modeled. The reference yields for hypothetical current-coupon instru- 
ments with other maturities are usually quoted by traders on the basis of 
linear interpolation between the key yields. A result of using the key-yield- 
with-linear-interpolation approach is that the random yields of bonds with 
other than key maturities will only approximately follow the form of sto- 
chastic process that is precisely followed by the key yields, and the non-key 
yields will not be arbitrage free. This sacrifice, made in response to the 
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computational limitations of most computers, will likely be acceptable only 
if sufficiently many key maturities are used and if those maturities are spaced 
sufficiently closely. 

5.3 Adjusting the Drift Parameters 
How to set the drift parameters depends on the application. For example, 

to permit investors to base their analyses of the risk-reward tradeoffs among 
various risky investment strategies on their own subjective views regarding 
the behavior of interest rates, the model can be tuned to characterize the real 
world. This is accomplished by setting the drift parameters appropriately. A 
commonly used assumption in the real world is that the drift is time inde- 
pendent: specifically, that h~.,=dok In ~ at all epochs t. In this case, by 
exponentiating the difference equation for In rk.,+s, then taking the mathe- 
matical expectation, and finally taking the limit as s tends to infinity, it can 
be seen that the long-run means of the random variables r are equal to Ix 
exp[o-2/2(1- ( 1 -  d0)z)], where the subscripts k have been omitted for nota- 
tional convenience. These are the mean reversion levels of the key yields. 
Alternatively, the investor can set a time-dependent drift of the process to 
reflect his or her short-term and intermediate-term views of the trend of the 
expected levels of the key yields, followed by a time-independent drift to 
establish the desired long-term mean reversion levels of the key yields. 

The term "real world" is not intended to convey either the notion of 
always being the "proper" or "superior" framework for analysis or the 
notion that other worlds are somehow always "improper" or "inferior" 
frameworks for analysis. The real world is an environment in which different 
investors have differing subjective views, differing degrees of risk aversion, 
and differing utility functions. Thus, the real world differs from the risk- 
neutral world described in Section 4, which is an artificial construct that 
enables fair prices to be calculated for assets and liabilities (whether they 
are potentially "r isky" or not) in the simplest manner possible: specifically, 
by way of the expected-present-value algorithm. The analysis of risk-reward 
tradeoffs among various risky strategies is carried out in the real world by 
(i) constructing a frontier of strategy possibilities, all of which are efficient 
in the sense of having the least risk for a given expected return, and then 
(ii) selecting the optimal efficient strategy on the basis of one's own utility 
function. These important concepts of modern portfolio theory are covered 
in the text by Sharpe and Alexander [22]. 
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If the intended use of the interest rate model is to determine the arbitrage- 
free price of an interest-rate-contingent stream of cash flows, the drift pa- 
rameters must be set appropriately to characterize the risk-neutral world. 
Adjusting the drift parameters properly is a more difficult problem when 
many key yields are involved than when only the one-period rate is involved. 
In order to obtain yield curve dynamics that exhibit sufficiently many degrees 
of freedom (by means of correlated stochastic processes for the key matur- 
ities), and yet still ensure that the model is arbitrage free (at the key matur- 
ities), the drift parameters must be state dependent, not merely time dependent. 
The principal objective in adjusting the drift parameters of the processes is 
to ensure that the expected-present-value algorithm prices correctly the ex- 
ogenously specified initial yield curve. However, any future state must also 
be viewed, at the epoch it occurs, as an "initial" state, and the drift param- 
eters must be adjusted properly from that state forward in time in order to 
ensure that the expected-present-value algorithm also prices correctly the 
yield curve at the new "initial" state. 

The arbitrage-free algorithm is completely specified by showing how to 
start from an arbitrary "initial" state and create fully arbitrage-free yield 
curves one period later. The local drift of each of the correlated processes 
is adjusted to satisfy the no-riskless-arbitrage condition of step 1 in the 
method described in the next paragraph. (Only step 1 is ever used in this 
approach, but it is used at the true initial state and at each future state 
occurring at each future epoch out to the horizon.) Fortunately, the procedure 
does not require that a sample of paths be generated from each "initial" 
state. Instead, the drift adjustment is accomplished by computing the relevant 
expected present values in the no-riskless-arbitrage conditions as integrals 
over the entire continuous conditional lognormal distribution of states one 
period ahead. The integrals can be evaluated easily and accurately by the 
Gauss-Hermite method [9], and the local drift parameters can be determined 
efficiently by Newton-Raphson iteration [9]. If spot rates of interest are 
assumed to be locally lognormally distributed, the computions are practical 
on a mainframe computer or its equivalent. However, when either current- 
coupon yields or forward rates of interest are assumed to be locally lognor- 
mally distributed, the number of independent stochastic factors in the model 
must be limited to a small number, such as two or three, for the computations 
to be feasible. Note that bonds of all maturities can be studied in a two- 
factor or three-factor model, but the "degrees of freedom" embedded in the 
variance-covariance matrix that is constructed from the volatility vector cr 
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and the correlation matrix p will be exactly two or three, respectively. Fur- 
ther details of the iterative method for obtaining a set of paths sampled from 
a model that is fully arbitrage free at the initial state and all future states of 
the world will be provided in a subsequent technical note. The essential 
points are covered in an article by Miller [17]. 

A yield curve model that is commonly used because it is computationally 
less demanding to construct than the model described above, but which is 
not free of riskless arbitrage opportunities at future states of the world, can 
be obtained by generalizing the no-riskless-arbitrage conditions discussed in 
Section 4. The objective is to generate a set of P equal-probability paths of 
yield curves (defined at the key maturities k) out to epoch H, the assumed 
horizon. The procedure is essentially the H-step inductive algorithm dis- 
cussed in Section 4. The exogenously given initial set of key yields rk,o is 
the starting point. Step number t in the procedure assumes that P adjusted 
yield curves have been obtained at all epochs from 0 to t - 1 .  Using (i) the 
P adjusted yield curves at epoch t -  1, (ii) the assumed stochastic process, 
and (iii) trial values of the drift parameters hk., for all key maturities k, the 
interest rate paths are extended one period by generating P unadjusted yield 
curves at epoch t. Adjusted yield curves at epoch t are obtained by solving 
for the values of the drift parameters hk., that force the following no-riskless- 
arbitrage condition to hold for all key maturities k: At epoch 0, the price of 
the (k + 0-period zero-coupon bond, as computed by applying the expected- 
present-value algorithm, must equal the given initial price of the (k + t)- 
period zero-coupon bond, that is, the (k + t)-period spot price that is derived 
from the given initial yield curve. The following technical points are intended 
to be helpful to anyone who attempts to program the algorithm: 
• To apply the no-riskless-arbitrage condition, the spot prices at key ma- 

turities must be calculated. This means that yield curves specified at all 
maturities, not just key maturities, must be obtained before they can be 
transformed into the corresponding curves of spot rates and spot prices. 
For any maturity that is between two adjacent key maturities, the asso- 
ciated current-coupon yield is found by interpolating linearly between 
the relevant key yields, as discussed earlier. 

• The most difficult part of implementing the algorithm is solving for the 
values of the drift parameters ~k., that force the no-riskless-arbitrage 
conditions to be satisfied. The method of false position, also known as 
regula falsi [9], has been found to give satisfactory results in that it 
succeeds in finding the roots and usually converges rapidly. 
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• It was pointed out in Section 5.1 that constraining current-coupon yields 
to be non-negative does not preclude negative spot prices from arising. 
If they do occur, trouble is likely to be encountered when solving for 
the drift parameters. In particular, difficulties arise in the handling of 
complex numbers. Remedies can be devised for these annoyances, but 
a description of them is beyond the scope of this paper. 5 

5. 4 Variance-Reduction Techniques 

Because the model described in Section 5.2 must be implemented on a 
computer, either memory capacity or execution time will limit the number 
of interest rate paths that can be generated for a given application. Fortu- 
nately, calculating the arbitrage-free price of an interest-rate-contingent cash- 
flow stream is an expected value problem. Only the mean of the distribution 
of present values across paths needs to be determined. None of the higher 
moments of that distribution matter. Nevertheless, the entire probability 
distribution of interest-rate paths, not just its mean, affects the arbitrage-free 
price of a general cash-flow stream. Thus, it is important to sample interest- 
rate paths efficiently, and standard variance-reduction techniques are useful 
in this regard. A good reference for this subject is the text by Rubinstein 
[21]. 

The methods of antithetic variates and stratified sampling were tested on 
the simple problem of estimating the moments of the probability distribution 
of the sum of 40 independent random standard normal deviates and then on 
the more realistic problem of pricing European bond options. Each variance- 
reduction technique was applied separately, and then they were applied to- 
gether. All three cases were compared against the control experiment of 
crude Monte Carlo sampling, that is, pure random sampling without any 
variance reduction technique applied. In all situations, an even number of 
paths P = 2Q was used, where Q is a positive integer greater than one. The 
algorithms that were used in selecting a random sample of size P are de- 
scribed below for the three variance-reduction methods that were studied. 

~Trying to cope with these difficulties, which arise more frequently when high yield volatilities, 
low mean-reversion strengths, or long-maturity bonds are used, quickly leads a model builder to 
the view that stochastic generators based on spot or forward rates would be highly preferred to those 
based on current-coupon yields. 
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Antithetic Variates 

A sample of Q independent standard normal deviates (nl, n2 . . . .  , nQ) is 
chosen randomly. Another set of Q standard normal deviates is obtained by 
reversing the signs of the first Q deviates. (This step is what gives the 
technique its name.) Together, the two sets of Q deviates form the required 
random sample of P deviates, which can be displayed descriptively in pairs 
as: (nl , - n l ;  n2, - n2 ;  ...; nQ, -nQ). This technique results in mirror- 
image pairs of paths of the natural logarithms of the key yields. 

Stratified Sampling 

The positive half of the standard normal density is divided into Q strata 
of equal probability 1/P. A stratified sample (nl,  n2, ..., n o) is created by 
placing ni for i = 1, 2, .... Q - 1 at the midpoints of the first Q -  1 strata, 
and n o at such point in the Q-th stratum as to ensure unit variance for the 
full sample of P deviates. The required random sample of P deviates is 
obtained by shuffling the ordered stratified sample ( -nQ . . . .  , -n2,  - n l ,  
nz . . . .  , nQ) randomly. Any trace of nonrandom pairing disappears completely 
after random shuffling. 

Antithetic Variates Combined with Stratified Sampling 

A stratified sample of Q positive standard normal deviates is created as 
previously described, and each deviate in that sample is separately and 
independently multiplied by + 1 with probability 1/2 or by - 1 with prob- 
ability 1/2. The resulting sample is then shuffled randomly to produce the 
sample (n j, n2 . . . . .  nQ), which is augmented by another set of Q deviates 
that is obtained by reversing the signs of all the n i for i=  1, 2 . . . . .  Q. The 
required random sample of P deviates is displayed descriptively in pairs as: 
(n~, -n~; n2, -n2; ...; n a, -nQ). This technique results in mirror-image 
pairs of paths, in the sense described above. 

In the test situations in which paths of interest rates were used, indepen- 
dent samples of P random standard normal deviates were needed for each 
key maturity k at each epoch t, regardless of the sampling method studied. 
When stratified sampling was used, the stratified sample of Q positive stan- 
dard normal deviates needed to be created only once, and that sample was 
used repeatedly in the second and third algorithms described above. There 
are several ways to combine the methods of antithetic variates and stratified 
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sampling. The approach described above has both advantages and disadvan- 
tages relative to other algorithms for combining the techniques. 

The effectiveness of the variance-reduction techniques was tested for sam- 
ple sizes of P =  100 and P =  1000. Unfortunately, the results of the tests 
were ambiguous. Each of the three methods generally produced satisfactory 
results relative to using crude Monte Carlo sampling, but none of the ap- 
proaches emerged as clearly the most effective. Due to the pairing of de- 
viates that was described above, any method that involves antithetic variates 
always reduces the effective sample size to one-half of the sample size for 
either crude Monte Carlo or stratified sampling. Thus, when a given statistic 
is estimated on the basis of a fixed sample size, the standard deviation of 
the error that results when the method of antithetic variates is involved is 
generally larger, by a factor of V'2, than the standard deviation of the error 
that results when either crude Monte Carlo or stratified sampling is used. 
However, the method of antithetic variates is designed to calculate some 
statistics exactly, regardless of sample size. 6 It is not always clear which of 
these opposing effects on the size of the estimation error will dominate. 
More analysis is needed before stronger conclusions can be made about 
which variance-reduction technique is to be preferred in a given situation. 

6. USING AN INTEREST RATE GENERATOR 

The first task that must be accomplished before the interest rate generator 
described in Section 5.2 can be used is to estimate the parameters of the 
model and to input other necessary assumptions. The generator requires as 
input an initial yield curve rk.o that is specified at the key maturity indexes 
k. Although the parameters of the model can be chosen arbitrarily, it is 
reasonable to begin by using values derived from a historical analysis of 
yield curve movements. Performing linear regressions on at least the last 
two years of weekly yield curve data will provide estimates of the mean 
reversion levels I.z and strengths d~, the yield volatilities o', and the yield 
shock correlation matrix p, as were defined in Sections 5.2 and 5.3. 7 The 

~For example, let Y be a random variable equal to the sum of n independent random variables 
X , , i = l  . . . . .  n, each of which has the same probability density function. Assume that the probability 
density function of X~ has zero mean and is symmetric. Then, regardless of sample size, the method 
of antithetic variates will calculate the median and all odd moments of Y exactly. 

7The method used by Balzer [1] on yield data for Australian government bonds will likely estimate 
the mean reversion level and strength parameters much more accurately than is possible by linear 
regression. 
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scaling transformations described in Section 5.2 then must be applied to 
adjust the parameters estimated from the historical data to values appropriate 
to the time interval used in the stochastic difference equation, for example, 
from weekly periods in the historical data to quarter-year periods in the 
difference equation. When the partially arbitrage-free version of the yield 
curve model described in Section 5.3 is used, the no-riskless-arbitrage con- 
ditions override the mean reversion level parameters la, and result in values 
of the drift parameters k that depend on the initial yield curve. When the 
fully arbitrage-free version of the yield curve model described in Section 
5.3 is used, the no-riskless-arbitrage conditions override the mean reversion 
strength parameters qb as well, thus eliminating the explicit effects of mean 
reversion from the model. 

Once the parameters and the initial yield curve have been specified, the 
model can be used to generate an arbitrage-free set of interest-rate paths. 
This set of paths and the expected-present-value algorithm defined in Section 
4 are all that is needed to be able to project and price streams of interest- 
rate-contingent cash flows: callable corporate bonds, mortgage-backed se- 
curities, CMOs, floating-rate and indexed bonds, futures, options, interest 
rate swaps, caps, and floors, and all forms of liabilities. By perturbing or 
shocking the initial yield curve rk.0 in different ways, one can compute 
various indexes that measure interest-rate risk. As an illustration, suppose 
that the arbitrage-free set of paths has been used to value a mortgage-backed 
security, and the resulting price is P. Now, suppose that the initial bond- 
equivalent current-coupon yield curve obtained by linearly interpolating the 
key yields r~,.o is transformed into the equivalent term structure with spot 
rates expressed as forces of interest (that is, on a continuously compounded 
basis), and that these spot rates are all given the same small upward shock 
A--this is referred to as aparallel shock to the term structure. If key yields 
are taken from the yield curve that is equivalent to the parallel-shocked term 
structure, and are used as a revised initial yield curve from which a new 
arbitrage-free set of paths is created, a revised price P' can be calculated 
for the mortgage-backed security. The effective duration index D of the 
mortgage-backed security is given by D = (P-P')/PA. 8 Similarly, by using 

Sin using the equation given for the duration index exactly in the form written (that is, without 
some (1 +/)-type of factor multiplying the right-hand side of the equation), one should calculate the 
"shocked" price P' based on a parallel shift A in the term structure, not the yield curve, and one 
should express the spot rates defining the term structure as forces of  interest. Otherwise, the duration 
index so calculated will not agree precisely with the conventional Macaulay-Redington definition. 
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two different parallel shocks to the term structure, the effective convexity 
index of the mortgage-backed security can be calculated. 

Risk indexes that measure price responses to fairly general non-parallel 
shifts in the term structure can be computed as described by Reitano ([19] 
and [20]). This is accomplished through shocking by amount A only the 
spot rate at the key maturity k, without shocking any of the spot rates at the 
other key maturities. Linearly interpolating the shocked term structure, trans- 
forming it back into a revised initial yield curve, and repricing the illustrative 
mortgage-backed security, gives a revised price P~. The partial duration or 
key rate duration D k is given by Dk = (p-p~)/pA.  The sum of the partial 
durations Dk for all key maturities k is equal to D, the total duration index 
calculated above. A risk index that measures the sensitivity of the illustrative 
mortgage-backed security's price to a small change in yield volatilities can 
also be calculated. This can be done for each key yield volatility o'k sepa- 
rately to give partial volatility durations or for a constant shock to all key 
volatilities simultaneously to give a total volatility duration. The same ap- 
proach can be applied to the yield curve shock correlation coefficients 0jk to 
calculate other risk indexes if desired. 

Price and risk index calculations of the type described above have been 
utilized by Griffin [7] to develop an excess spread methodology for mea- 
suring profitability and its exposure to interest rate risk. In his paper, the 
new approach is applied to the case of an interest-sensitive annuity business. 
An interest rate generator of the type specified in Section 5.2, and adjusted 
to be arbitrage free as described in Section 5.3, is central to implementing 
Griffin's methodology, and thus is an essential tool in asset-liability man- 
agement. To determine a financial institution's risk-neutral position and its 
current risk exposure relative to that risk-neutral position, the stochastic 
generator must be run in arbitrage-free mode by setting the drift parameters 
as described in Section 5.3. To analyze whether risky product-investment 
strategies should be adopted, the stochastic generator can then be run in real- 
world mode by adjusting the drift parameters to reflect management's views 
on expected interest rate behavior over time. Some institutions will be suf- 
ficiently risk averse that they will choose the risk-neutral position as their 
strategy. Or they may have insufficient capital to adopt prudently any strat- 
egy other than the risk-neutral position. Some institutions will have both the 
inclination and the financial strength to adopt a risky strategy, and can use 
the generator in the real-world mode to analyze the relative attractiveness of 
different risky strategies. 
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7. KEY CONCLUSIONS 

This paper has shown that it is possible to gain a practical understanding 
of key concepts in financial economics without having to resort to a study 
of the mathematics of stochastic processes. Based on the assumptions that 
opportunities for riskless arbitrage do not exist and that the financial markets 
are complete, it was shown that a theory could be developed for pricing 
interest-rate-contingent cash-flow streams relative to the prices of all zero- 
coupon bonds, which are taken as exogenous inputs to the theory. The 
arbitrage-free prices are calculated in a straightforward manner by the ex- 
pected-present-value algorithm, a technique that lies at the heart of actuarial 
science. 

From a theoretical viewpoint, a model of interest rates should be based 
on forward rates of interest, rather than on spot rates of interest or current- 
coupon yields, because pathologies such as negative or complex interest 
rates are then eliminated automatically. From a practical viewpoint, how- 
ever, model parameters are specified more naturally in terms of the statistical 
properties (volatilities and correlations) of current-coupon yields which serve 
as the reference points for traders who make markets in fixed-income se- 
curities. More research is needed in order to build a single model that com- 
bines the advantages of each approach. This is likely to be the next significant 
practical evolution of interest rate path generators. 

Continuous-state models have important practical advantages over dis- 
crete-state models (and have no significant practical disadvantages): (i) re- 
alistic yield curve dynamics are accommodated more easily in a continuous 
model because a separate stochastic process equation is used for each key 
part of the term structure; (ii) many more states are sampled at the early 
epochs (and perhaps all the way out to the investor's horizon) in a continuous 
model, because paths of interest rates are the primary feature of the model; 
and (iii) moving between the risk-neutral world and the real world is accom- 
plished more readily in a continuous model, because only the local drift of 
the process need be adjusted appropriately. 

The drift of a stochastic process is an important "dial"  in an interest-rate 
model that is based on the process. The drift can be " tuned"  to the risk- 
neutral world, so that application of the expected-present-value algorithm 
will result in arbitrage-free prices for interest-rate-contingent cash flow streams. 
This setting of the dial enables an asset-liability manager to determine the 
risk-neutral position properly. The drift can also be " tuned"  to the real 
world, so that subjective views regarding the behavior of interest rates can 
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be accommodated. This setting of the dial enables the asset-liability manager 
to analyze properly the risk-reward tradeoffs inherent in adopting risky 
positions. 

The type of model of the yield curve presented in this paper can be used 
to price general streams of interest-rate-contingent cash flows and to compute 
indexes of interest rate risk, such as duration and convexity. The calculation 
of partial durations for the situation of non-parallel changes in the term 
structure is straightforward and natural under the model presented. Using 
the model involves generating a finite sample of interest rate paths on which 
to perform the price and risk index calculations. To improve the efficiency 
of the price estimation, variance-reduction techniques must be used when 
selecting the sample of paths. More research is needed to determine which 
techniques work best in given situations. 
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DISCUSSION OF PRECEDING PAPER 

MICHAEL F. DAVLIN~ 

I commend Dr. Tilley for writing yet another fine paper for our Trans- 
actions on the important problem of interest rate risk. This excellent paper 
successfully achieves his stated goal of presenting the basic concepts of 
interest rate processes and option-pricing in such a manner that they are 
easily understood by the many actuaries who have chosen not to pursue the 
study of modern financial economics and stochastic processes. My own 
understanding of how a reasonable number of arbitrage-free interest rate 
paths can be constructed has been much improved by reading this article, 
and I am anxious to see the author make good his promise (in Section 5.3) 
of a forthcomig technical note extending the methods he outlines in this 
paper. I especially appreciate that he points out the room in his model for 
the important and, in my opinion, unavoidable issues of subjective expec- 
tations and subjective risk preferences. A well-written paper always raises 
questions and observations in the mind of its reader, and this paper is no 
exception. A few of my thoughts are presented here for the author's 
consideration. 

As the author points out, a key contribution to actuarial practice by fi- 
nancial economics is its emphasis on what the classical economists referred 
to as the law of one price: in a competitive market equilibrium there cannot 
exist more than one price for the same good. Financial economists now refer 
to a generalizaton of this law as the absence of riskless arbitrage. I am 
tempted to argue that many actuarial models, those based upon decision- 
theoretic principles, were (internally) arbitrage-free before our recent en- 
counters with the theories of modern finance in the following sense: iden- 
tically contingent cash flows within these models were assigned identical 
prices. The (externally) arbitrage-free condition imposed by the financial 
economist places additional consistency restrictions or bounds on what a 
modern actuary should consider to be a reasonable valuation of uncertain 
cash flows: model prices must match market prices. While I confess to 
finding this very appealing and intuitive, I also have difficulty adopting it 
wholeheartedly and without some caution. 

Some aspects of my reservations may merely be differences in interpre- 
tation, with little or no practical consequences. For example, if I interpret a 
lognormal distribution of future interest rates as being reasonably represent- 
ative of my uncertainty about the future course of interest rates, I have little 

539 
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difficulty adopting it for modeling purposes. I may even find myself esti- 
mating its parameters from historical prices if I do not have a compelling 
reason for using some other approach. If, on the other hand, adopting this 
model means that I have to accept the somewhat metaphysical baggage that 
often accompanies "scientific" economic modeling--assumed market equi- 
librium, process stationarity and ergodicity, and a generally positivist out- 
look on the world--then I become far less comfortable using and accepting 
these models. In contrast to the author's earlier writings on this subject, this 
paper admits that there may be validity to reflecting a decision-maker's 
subjective outlook in modeling. Perhaps I read too much into his remarks. 
I would be very interested to know how the author interprets his model's 
interest rate process and whether he believes that the interpretation of a model 
is important. 

Another impediment to my embracing this approach to modeling interest 
rates is that it does not seem to explain interest rates in a way that gives me 
any guidance into how current developments might influence the future. In 
the same sense that Newton's law of gravity does not explain gravity but 
only describes its effects, the financial economist's models describe the 
pattern of interest rate movements but do not explain why they move or 
even why interest rates exist in the first place. As a consequence, these 
models are not of much use in answering questions that can be meaningful 
to an actuary. For example, how will future interest rates be affected if 
recurring proposals to limit the interest deduction on residential mortgages 
are adopted? How will rates and default premiums differ if deposit guarantee 
programs are left in place, in comparison to what they will be if these 
programs are modified? These types of issues evidently do not affect the 
decisions of a user of the author's model until, ex post facto, they have an 
observable effect upon interest rates, and only then through a revision in the 
historically derived estimates of the process parameters or drift terms. In- 
sights on questions such as these frequently seem to be more available in 
traditional, even nonmathematical or "armchair" economics. This is ulti- 
mately not very intellectually satisfying, because I then feel as though my 
decision-making is based upon two irreconcilable world views. 

A more serious reservation concerns the assumption of equilibrium. The 
author cautions us not to "debate too.strenuously whether small arbitrages 
can e x i s t . . ,  because the assumptions are only approximations to reality." 
I would agree, but what should one do if he does not believe that one or 
more of the assumptions are not even remotely close to reality? 
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What reasons do we have to believe that equilibrium is ever attained? 
Certainly, an unfettered market abhors a free lunch as much as nature abhors 
a vacuum. But does the fact that market participants have every incentive 
to discover and consume away any and all free lunches guarantee their 
success in doing so in the real world? At least since Keynes appeared on 
the scene, economists have been debating whether equilibrating or disequi- 
librating forces prevail in a free market. I am not aware that this issue has 
been resolved either way and am not optimistic that it ever will be. It seems 
to me that an absence of riskless arbitrage can exist regardless of whether a 
market is in equilibrium. If this is possible, then it raises the question of 
how much advantage there truly is to evaluating a strategy or position in the 
risk-neutral world implied by a constellation of prices in a market that may 
or may not be in equilibrium, as opposed to judging them with a subjectiv- 
ist's outlook to the future. Clearly, serious mistakes can result from either 
approach. I would caution actuaries against concluding that decisions made 
in the computationally convenient risk-neutral world are by their nature more 
"objective" or less risky than those made in the real world using methods 
that reflect preferences and expectations. One of the most attractive aspects 
of the method presented in this paper is that it seems to allow for both 
outlooks. 

Once again, I am grateful to the author for this stimulating paper and look 
forward to reading his promised technical note. 

MERLIN JETTON: 

Other actuaries, as I do, should appreciate Dr. Tilley's efforts to increase 
their understanding of interest-rate modeling. He discusses many of the con- 
siderations and describes how to create arbitrage-free interest rate scenarios. 

My aim is similar, but in a quite different way. I believe we should be 
aware of the purpose of an arbitrage-free option-pricing model. Some as- 
sumptions that underlie the arbitrage-free hypothesis are discussed. I discuss 
some theoretical and practical aspects of the interest rate model described 
by Dr. Tilley. 

Such an option-pricing model is designed to calculate current market 
values. The current price (present value) of a financial instrument whose 
value depends on interest rates obviously must use interest rates to do the 
present valuing. In other words, such a model is a quite complex present- 
valuing algorithm. It generates interest rate scenarios, but the scenarios gen- 
erated are subservient to the primary goal of calculating current market 
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values. The scenarios are not intended to answer the question "What might 
the future be like?" but rather "What is the theoretically fair market value 
of this or that financial instrument or portfolio given today's yield curve?" 
Hence, the scenarios that an option-pricing model generates may not be 
appropriate given a different primary goal, for example, financial projec- 
tions. (The model user needs to make this judgment.) The scenarios that the 
option-pricing model does generate must be, in a certain sense, arbitrage- 
free. 

In a free market an entrepreneur who finds an arbitrage opportunity will 
quickly exploit it and make an extraordinary profit. However, the market's 
supply and demand conditions will respond to the entrepreneur's actions, 
and the arbitrage opportunity will soon vanish. In the context of an option- 
pricing model, this implies that two financial instruments or portfolios that 
are nearly identical or close substitutes should have identical, or nearly 
identical, prices. If there is a large enough price discrepancy between the 
two instruments per the model that it would present an arbitrage opportunity, 
then the model is not arbitrage-free. 

Dr. Tilley discusses interest rates in terms of coupon rates, spot or zero- 
coupon rates, and forward rates. They are all related. Given a yield curve 
of coupon rates, one can calculate a corresponding yield curve of spot rates, 
and then an array of implied forward rates. I wish to make two points about 
these different kinds of rates: 
1. Neither coupon rates nor spot rates make any claim about market interest 

rates as of some future date. They only portray rates in effect at the 
moment. On the other hand, forward rates calculated as described can 
be used to make an inference about market interest rates as of future 
dates. If you assume that the expected spot rate at some future date 
depends on a forward rate that exists today, then you are making an 
assumption. 

2. All these different kinds of rates can be used, in somewhat different 
ways, to calculate the present value of a cash flow. For ease of discus- 
sion, I refer to the three different ways as the yield-to-maturity method 
(YTMM), the spot rate method (SRM), and the forward rate method 
(FRM). The last method is quite different from the other two. Using 
the FRM starts with a spot rate as of now. This permits calculating the 
present value of a cash flow that will (or might) occur at the end of the 
period coterminous with the initial shortest-period spot rate. To calculate 
a present value of a cash flow that will (or might) occur beyond the end 
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of such period, one links together inferred forward rates as of one or 
more future dates. An assumption is made about future interest rates. 

I have read a limited amount of the literature on arbitrage-free interest 
rate models. But it seems to me, and it is quite clear in Dr. Tilley's model, 
that such a model has these features: 
1. The starting yield curve is taken as given, and one would presumably 

use the current real-world yield curve. 
2. The FRM is used to calculate all present values. Each linked forward 

rate covers an equal amount of time, and the forward rates are as of the 
future dates at which the model assumes interest rates can change. 

3. For the model to be arbitrage-free, the following conditions must hold. 
Using the FRM, calculate the present value of $1 payable at any future 
date n years from now along each path of interest rates the model 
projects, and then average such present values. Then calculate the pres- 
ent value of the same $1 using the n-year spot rate based on the starting 
yield curve. These two present values must be equal. It is presumably 
this forced condition that calls for all the intimidating mathematics to 
which Dr. Tilley refers. 

Because of this third feature, the starting yield curve determines the av- 
erage trend of future interest rates, at least of the shortest term interest rate, 
that the model will stochastically generate. If the starting yield curve is 
upward-sloping, the model will generate on average higher interest rates as 
it proceeds forward in time. If the starting yield curve is downward-sloping 
or fiat, the model will generate rates that on average trend downward or flat 
as it proceeds forward in time. If the starting yield curve is humped, the 
model will generate on average higher interest rates, and then lower interest 
rates, as it proceeds forward in time. In other words, the model will "walk 
up" or "walk down" the starting (forward rate) yield curve. Of course, this 
affects the likelihood of options being exercised and the values the model 
places on such options. 

The arbitrage-free model almost exclusively uses the FRM as the present- 
valuing method. Is it the best method for present-valuing all cash flows? Is 
is better than the SRM for calculating the present value of a Treasury note 
or bond? Is it better than the YTMM for calculating the present value of a 
Treasury coupon-paying note or bond? Let us consider an example. Suppose 
we want to value at time 0 a five-year zero-coupon Treasury note, with a 
face value of $100, whose current market price is $68.05. According to the 
arbitrage-free hypothesis, we must be able to calculate the present value, 
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using the FRM, of that $100 along each of the future interest rate paths, 
average the results, and get $68.05. It strikes me as odd that the FRM 
calculates different present values for the different paths when the present 
value of the $100 using the SRM for any path is $68.05. I guess it doesn't 
matter if the average is the only concern. However, the FRM would give 
an invalid measure of the variance of returns; the SRM would not. 

According to the arbitrage-free hypothesis, the expected return (the mean 
of an assumed probability distribution) for a given holding period should be 
equal for bonds of different maturities. For example, the expected total return 
for investing in a two-year U.S. Treasury for one year should equal the 
expected return of investing the same amount in a one-year Treasury, even 
when the yield-to-maturity for the former is greater. Suppose you were to 
use the model, but you do not force it to "walk up the forward yield curve"; 
rather, you set the drift parameter so that interest rates would on average 
not drift upward. That would be a violation of the arbitrage-free hypothesis. 
The two-year Treasury, vis-a-vis the one-year Treasury, presents an arbitrage 
opportunity. Its present value, averaged over all paths, exceeds the present 
value, averaged over all paths, of the one-year Treasury. Is this truly a 
riskless arbitrage opportunity or is it a quirk of using the FRM? Consider 
the following: 
1. As stated earlier, a necessary condition for a riskless arbitrage oppor- 

tunity is that it can be exploited nearly instantaneously. The arbitrage 
opportunity that you want a model to avoid is inconsistent prices based 
on current interest rates, not current interest rates and inferred future 
interest rates as well. 

2. Amazingly, this apparent riskless arbitrage opportunity would vanish if 
the SRM were used. It does not depend on inferred interest rates. 

It was just suggested that the model will not replicate current market prices 
when not set in the arbitrage-free mode. This is generally true. Subsequent 
changes in market price implied by using a non-arbitrage-free drift parameter 
are captured in the present value at time 0. This is again the result of relying 
on the FRM in contrast to the SRM. The SRM would not do this. 

If one is going to use this model regularly, there are further implications 
to be aware of. Suppose the following. One day when the yield curve is 
quite upward-sloping, you use the model for a particular set of assets and 
liabilities. Then a few weeks later, you use the model again for essentially 
the same assets and liabilities. Not much has changed in the few weeks, 
except that the short end of the yield curve has shifted upward, making it 
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less upward-sloping than before. The results from the second time will differ 
markedly from those the first time. This is not a concern if you are interested 
only in current market values. However, if you are concerned with other 
results, you will probably question the model and the assumptions you made. 
You recognize that some of the results produced using the model are fairly 
crude estimates anyway. You know very well that yield curves shift often, 
and in two weeks the curve may be back where it was when you ran the 
model the first time. Would you be satisfied with your results? 

I do not think that the starting yield curve has to dictate the average trend 
of future interest rates. Otherwise it is implicitly assumed that the forward 
rates derived from the starting yield curve do not contain any risk premiums. 
I find that assumption very unrealistic. How is it that spot rates contain risk 
premiums, but forward rates inferred from them do not? It would be more 
realistic to assume that these forward rates do contain risk premiums and 
that these risk premiums generally decline and eventually vanish as each 
forward rate comes ever closer, with the passage of time, to becoming a 
spot rate. This contrary assumption, of course, introduces a judgmental ele- 
ment. The amounts of these risk premiums are not easily observable in the 
marketplace, so different people will make different judgments about their 
size and thereby determine different average trends of future interest rates 
given the same starting yield curve. On the other hand, I do not believe we 
should equate attaining objectivity of current prices--by assuming zero risk 
premiums--with attaining objectivity of future prices (interest rates). 

The instruments the arbitrage-free model was developed to price are "de- 
rivatives" of other instruments that are close substitutes. They are traded in 
active and efficient markets. The possibility of arbitrage opportunities being 
exploited, if they do arise, is more likely. The market value of such options 
are quite sensitive to shifts in the yield curve in the short run. The time to 
expiration of most such options is rather short--two years or less. On the 
other hand, the financial instruments an actuary deals with often contain 
options that do not have close substitutes or are not as efficiently priced. 
There is no active and efficient market. Also, such financial instruments 
often have much longer lives--10 years or more. This suggests that maybe 
the model needs revision when applied to these somewhat different instruments. 

In an earlier paper*, I said that bias, in some form or another, seems to 
be an unavoidable feature of stochastic interest rate generation models. I 

*JETTON, MERLIN. "Interest Rate Scenarios," TSA XL, Part I (1989): 423-76. 
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still believe that and that the arbitrage-free model is no exception. As Mr. 
Miller said in his discussion of that paper, " . . .  our goal should be to know 
the implications of any bias and to avoid making bad decisions because of 
it." He also said that the "bias" in option-pricing models comes from 
assuming that a model that works well for one purpose will work well for 
all purposes.* Another bias in the option-pricing model is its devotion to 
the FRM for calculating present values when other proven methods may be 
better. 

My final point is that I do not believe jointly using two interest rate 
models, one of which is arbitrage-free and the other not, would necessarily 
be incompatible. I will attempt to convey this notion with an imaginary 
conversation. It is between two actuaries, Gus and Norb. Gus is uncom- 
fortable using an arbitrage-free model for a particular task at hand. Norb 
(his coworkers sometimes pronounce his name like "no arb") works with 
Gus and is enthralled with his arbitrage-free model. (He often says, "It 's 
really elegant, a brilliant application of the pure expectations hypothesis.") 

Gus: I don't believe using your option-pricing model is the right tool to 
use here. 

Norb: But if we don't use the arbitrage-free model, then we cannot ac- 
curately value the embedded options in the assets or the liabilities. 

Gus: Please, Norb, bear with me. Look, I have a solution to our dilemma. 
You walk along my interest rate paths with me. At every stop you can go 
off and do your thing. You take the yield curve we have at that time, make 
whatever assumptions you want to make about future interest rates and bring 
me back the appropriate values for the embedded options. Then you'll again 
walk along my path with me to the next stop, where you'll repeat the process 
and I will again wait. It doesn't bother me that the assumptions you make 
to value the options don't match the assumptions I make about the paths we 
will walk together. 

Satisfied, Norb walks off to his supercomputer to gear it up for the task. 

HAL W. PEDERSEN*; 

Dr. Tilley has written an interesting paper that clearly explains the fun- 
damental ideas of term structure modeling. Furthermore, the paper is written 
carefully with due regard for the difficulties that an "actuarial layman" 

"Mr. Pedersen, not a member of the Society, is a recipient of a Society of Actuaries Ph.D. Grant 
for his doctoral studies at Washington University, St. Louis. 



DISCUSSION 547 

might face in an endeavor to understand and implement a "stochastic interest 
rate generator." I admire the paper for its successful exposition, with the 
use of but one formula, of such a technical subject. The objectives of the 
paper, as stated, make it inevitable that it must leave some issues by the 
wayside. I have some questions, the answers to which will assist me in 
better understanding not only the ideas of this paper but also the gap between 
theory and practice. At the same time, I hope that my remarks will provide 
an alternative point of view on some techniques of this paper. 

The discussion begins with a description of the martingale approach to 
the modeling of the term structure of interest rates. This is followed by a 
specific example based on Brownian motion. Some questions concerning 
the model of this paper are then posed. 

Martingale Approach to Term Structure Modeling 
One standard approach to the modeling of the term structure of interest 

rates is known as the martingale approach. The work of Artzner and Delbaen 
[1] is a thorough, though demanding, reference on this topic. The book of 
Duffle [3, chapter 7] can also be consulted for this material. A different 
approach has recently been developed by Heath, Jarrow, and Morton [5]. 
As I agree with Dr. Tilley that continuous state space models are preferable, 
the approach to modeling that I describe here is set up as such. Essentially, 
a model of the term structure may be prescribed by Equation (1). 

Basic to the analysis is a probability space (~,  ~, P) equipped with a 
filtration {~,}. The filtration is an increasing family of sub e-algebras of $;; 
by increasing is meant $;sC~;, for s <t and the filtration is interpreted as the 
way in which the information in the market evolves or is revealed through 
time. The filtration is often referred to as the information structure. Also 
given is a spot rate process r, which is analogous to the one-period rate in 
Dr. Tilley's analysis. The spot rate process should be everywhere positive 
to avoid undesirable interest rate behavior such as negative interest rates. 
For O<_t<_T, let P(t,7) denote the price at time t of a default-free zero- 
coupon bond that pays 1 at time 7". Note that P(T, 7) = 1. We now fix a risk- 
neutral probability measure, which is denoted by Q. Note that we are choos- 
ing this measure and that consequently the procedure that we are following 
corresponds to approach (ii) that Dr. Tilley describes on page 522. A model 
of the term structure of interest rates can now be prescribed by the formula 

P(t, T) = EQ[exp(- r~du)]~, ], (1) 
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where E Q denotes expectation with respect to the probability measure Q. If 
it is desired to reduce this formula to discrete time, then this translation can 
be achieved by replacing the integral with the appropriate summation. It 
follows from Equation (1), by the law of iterated expectations, that for 0< 
s < T-t  the bonds in the model will satisfy 

I 
t + ~  

P(t, T) = E°[exp( - r, du)P( t  + s, T)}~ ], (2) 

which can be interpreted as a consistency condition. In practical applications, 
the model prescribed by (1) will not be arbitrage-free. The problem is that 
the initial bond price function that results from this equation, namely, P(0,T), 
usually will not agree with the bond prices currently in the market. One 
approach that can remedy this problem has been documented by Dybvig [4]. 
It should also be noted that Dybvig shows how to translate a closed formula 
for the value of an option in the original model to a closed formula for the 
value of the option in the adjusted model. 

The idea is to add a deterministic function, say h, to the spot rate process, 
which adjusts the model to fit the observed bond prices. As Dybvig [4, p. 
6] notes, this perturbation technique is such that, "[t]he variance assumption 
[of the perturbed model] is as reasonable as it is in the chosen model." 
Suppose that the observed bond prices are given by the function f(T). Then 
the problem of fitting the observed bond prices is equivalent to choosing the 
function h such that for every T 

Io f ( r )  = eO[exp(-  (r. + h.)du)]. (3) 

Since the function h is deterministic, Equation (3) can be expressed as 

for f; f(T) = exp( -  (h.du)EO[exp( - (r, du)] 
(4) 

f; = exp( -  (h, du)P(O,r) ,  

where P(0,T) is the bond price function at time 0 that the original model 
generated and f(T) is the observed bond price function that we want the 
model to generate. Now it is relatively straightforward to solve for the func- 
tion h. We can then employ the model given by Equation (1) with the spot 
rate process r + h in place of r to obtain an arbitrage-free model of the term 
structure. 
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Let us now describe the option-pricing theory in a model such as (1). The 
term "contingent claim" is a general term that encompasses the term "op- 
tion." A contingent claim payable at time t is any non-negative random 
variable that is measurable with respect to $;,. For example, a European 
option with maturity t and strike price K that is written on a bond with 
maturity T, where T>t, is a contingent claim payable at time t with contin- 
gent payoff equal to the maximum of 0 and P(t, T)-K. Subject to the same 
assumptions that Dr. Tilley makes, namely, no arbitrage and completeness, 
the price at time 0 of a contingent claim payable at time t, say, X, is 
characterized by the formula 

price of Xat  time 0 = EQ[exp(- rudu)X], (5) 

where the risk-neutral measure Q is the same Q that appears in the formula 
for the bond prices given in Equation (1). More generally, the price of the 
same claim at any time, s,s<t, is given by the equation 

price of X at time s = EO[exp(- I~ r, du)X[~ ]. (6) 

Taken together, Equations (1) through (6) represent one standard approach 
to the construction of arbitrage-free term structure models and the pricing 
of interest-rate-contingent claims within these models. 

There is a fundamental difference between term structure modeling and 
the option-pricing within the model despite the fact that the expectation 
formulas in Equations (1) and (6) are similar. Equation (1) is the definition 
of the bond price processes. In other words, Equation (1) prescribes the 
bonds for the model. In contrast, Equation (6) evaluates the price of the 
contingent claim. An important assumption behind Equation (6) is that the 
cash flows from the contingent claim can be replicated by an appropriate 
self-financing portfolio of the assets, and this allows us to price the contin- 
gent claim by our knowledge of the prices of the assets in the replicating 
portfolio. In the succinct terminology of Dr. Tilley, Equation (6) represents 
the "relative price" of the contingent claim. 

The pricing of contingent claims in the approach to term structure mod- 
eling that I have described here is really a two-step procedure. The first step 
is a prescription of the bond prices, which is made by fixing a risk-neutral 
probability measure and a spot rate process and then defining the bond prices 
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through Equation (1). The second step is to employ these bond price processes 
and then to price the contingent claims through Equation (6). The recent 
paper [5] objects to this two-step procedure. There are sound theoretical 
reasons for their objection, and consequently there are good reasons to per- 
haps favor the approach that is taken in [5], as Dr. Tilley has alluded to at 
various points of his paper. Nevertheless, this two-step procedure is a time- 
honored approach in the finance literature and provides a benchmark for 
understanding other models such as [5]. 

Last, Equation (5) underscores the important point on page 523 about the 
role of the one-period rates. For a concrete example to illustrate this point, 
consider a European option with maturity t and strike price K that is written 
on a bond with maturity T, where T>t. This contingent claim provides a 
cash flow equal to Max[0, P(t, T)-K], which is clearly determined by the 
bond price and not the spot rate, and by Equation (5) we also see the role 
of the spot rate in the valuation of this claim, because 

 r coo op  on  °[exp  

An Example Based on Brownian Motion 

Let us now mention a concrete case of the model [Equation (1)] that is 
known to be arbitrage-free and complete and thus meets Dr. Tilley's basic 
assumptions in Section 4.1. This specialization also will provide an example 
of what could come out of a path simulation of the model (1). To this end, 
let us now specialize the information structure to be a Brownian filtration 
and the spot rate process, r, to be defined by a stochastic differential equation 

dr, = t~,dt + otdWt. (7) 

In Equation (7), W is to be understood as a vector of independent Brownian 
motion processes, W= (Win, W~21 . . . .  , W~N~), and o is understood to be an 
N-dimensional vector process. In the case of N=  1, we have a one-factor 
model and in the case of N> 1, we have a multifactor model. For a more 
general formulation of the multifactor case, one could consult Duffie [2, p. 
137]. In this setting, Artzner and Delbaen [1, section 2.2] show that the 
bond price processes that result from Equation (1) are of the form 

dP(t,T) = ~rdt + crr dW,. (8) 
P(t, T) 
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Please note that the differential in this equation is to be understood in t, for 
t<T.  

If we choose a number of bonds, indexed by maturity times, say, TI, T2, 
• .., TK, then using Equation (8) we can write 

"-aP(t, T1)- 
P(t, 7"1) 

_ P(t, 

1 dt 

E  ]r tl 1 9 
which gives a matrix representation for the interrelationships between the 
rates of return on the various bonds. Equation (9) also exhibits the correlation 
structure between these various bonds. 

For this model, the technique in Equation (3) is precisely the addition of 
a time-dependent drift to the spot rate process. This can be seen immediately 
from the stochastic differential equation for the spot rate r. Thus, it appears 
that there may be some analogy betwen the adjustment procedure that Dr. 
Tilley employs and the type of adjustment procedure in Equation (3). 

Dr. Tilley states on page 514 that, "a  single stochastic factor--the short- 
term rate of interest--drives the dynamic of the entire yield curve, resulting 
in perfect correlation of yield movements across the curve." Some clarifi- 
cation of this point in the context of the general model that I have described 
may be appropriate. A model that is prescribed by Equation (1) is such that 
all the interest rate dynamics are driven through the spot rate process r. 
However, in the case in which there is more than one independent Brownian 
motion that is driving the spot rate, then we do not have perfect correlation 
of the yield curve movements. This fact is emphasized by Equation (9). 

In the case where r is driven by only one Brownian motion, I wonder if 
the following interpretation is what Dr. Tilley had in mind? It is convenient 
to drop the superscript and denote the Brownian motion by W. Equation (8) 
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shows that the returns on all bonds are locally perfectly correlated because 
dP/P are linear functions of one another across all bonds. An application of 
It6's lemma to (8) shows that for s<t 

A discretized version of this equatio.n would take the form 

l°g L J (10) 

This equation could be recast in the notation of Section 5.2, which is 

- 1  
- -  log P(t,k). r k . , - k - t  

In particular, Equation (10) shows that there is perfect correlation of yield 
movements across the curve. Indeed, the yield movements are perfectly 
correlated in the usual statistical sense because these movements are all 
linearly related to the same random variable, IV,+ l-W,. In a fashion similar 
to Equation (10), a discretized version of the multifactor case could be 
written down, but the yield movements now will be imperfectly correlated. 
For a Brownian motion process, the random vector W,+I-W, has a normal 
distribution. However, the actual distributional properties of a discretized 
version of this multifactor case will depend on the properties of the coeffi- 
cients as well. 

Some Questions 
Can the model for generating interest rates described in this paper be 

viewed as a path-by-path simulation (or sampling) of a model that is pre- 
scribed by a formula such as Equation (1) and that is then adjusted to fit the 
observed bond price data? If this is the case, then one could feel at ease 
with this model because this model could be regarded as being embedded 
in a standard arbitrage-free framework. Also, what exactly is the theory 
behind this model? Furthermore, if this simulation interpretation is correct, 
is it possible to make rigorous the convergence argument, based on equal 
probability samples, that appears at the top of page 523? Also, I wonder 
whether it is possible to make rigorous the part of this assertion that says, 
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"[t]hus, when all possible paths are represented, solving for the risk-neutral 
drift of the stochastic process is equivalent to establishing the risk-neutral 
probabilities." If such an interpretation is not correct, then can Dr. Tilley 
offer a precise alternative interpretation that would also explain what is meant 
by the remark on page 515, " . . .  by way of calculations performed on 
paths sampled from a continuous model?" What is the relationship of the 
model that is prescribed in this paper to the class of models that are given 
by Equation (1)? There should be some relationship here because Dr. Tilly 
states on page 518 that "I  now show how this description of the risk-neutral 
world can be used to construct an arbitrage-free model of interest rates." 

A simulation of the type of model described by Equation (1) under an 
adjustment procedure such as Equation (3) seems to be analogous to what 
is done in Section 4.2 and to what is suggested on page 102. The multifactor 
discretization will not be analogous to the most general model in Section 
5.2, because the general model of this section prescribes all the rates si- 
multaneously and because the drift adjustment factor could be stochastic. 
However, the multifactor discretization does seem to be analogous to Dr. 
Tilley's model in the case in which it is based only on the "key rates (page 
527)" and the drift adjustment factor is deterministic. In brief, if we were 
to discretize this model and then simulate the discretized dynamics, it appears 
that we would be doing something like what Dr. Tilley is doing. Although 
this analogy with Dr. Tilley's generator is not perfect, it is suggestive. 

In some sense can we regard Dr. Tilley's model as a simulation, perhaps 
with a discretization, that is embedded within a master model of the term 
structure? If so, perhaps Dr. Tilley's model is best interpreted as a way of 
generating a consistent interest rate scenario, as a sampling from a full term 
structure model, and then applying the pricing techniques that the full model 
tells us are correct. Under such an interpretation, this approach would not 
be taken as a literal model of the term structure but rather as a way of using 
a master term structure model to price complicated cash flows in a com- 
putationally feasible way. 

Although I do not fully understand the ideas behind Dr. Tilley's model, 
the following description of the procedure seems to be correct, and it sum- 
marizes a major point of confusion that I have. Indeed, once the interest 
rates are generated by the model, it appears that one might view the situation 
as follows. At time 0 one does not know which path one will be on, and so 
in some sense the yield rates are stochastic at this time. However, as soon 
as you move ahead to time 1, the yield rates are then deterministic because 
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you will be on the same path of yield curves for the rest of the time. Figure 
1 illustrates the point. Loosely speaking, once you take the first step to the 
state of the world at time 1, then you are in a deterministic world. This 
would then seem to lead to arbitrage because, for instance, the forward rates 
imply definite restrictions if the next yield curves are known with certainty. 

FIGURE 1 

time 

zero 
or|gin 

yield curves at time one 

"[T]hus, constraining the process to be arbitrage-free is tantamount to 
setting its time dependent drift so that all zero-coupon bonds are priced at 
values equal to those derived from the exogenously specific initial yield 
curve" (page 521). Is this really an appropriate notion of an arbitrage-free 
model? Does the more fundamental notion of such a model being arbitrage- 
free involve being free of arbitrages that arise by setting up certain riskless 
hedges through the trading of bonds? Since there is no trading of bonds 
possible in this path-based model, it seems unclear how the usual notion of 
arbitrage-free would be understood. 

Another question is how one is to value contingent claims (options) that 
have early-exercise provisions. The following two quotations from page 515 
seem to suggest that Dr. Tilley is not advocating the usual arbitrage-based 
methods for valuing contingent claims with early-exercise provisions, 
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"[w]ithout a lattice (whether connected or not), backward induction is not 
possible. From a purely mathematical viewpoint, it is difficult to construct 
optimal exercise strategies for many option problems by doing calculations 
on interest rate paths sampled from a continuous model," and "[t]he be- 
havior of these people, as to their strategies for rational (if not mathemati- 
cally optimal) exercise of the options they hold, can be modeled sufficiently 
accurately that the options are valued properly by way of calculations per- 
formed on paths sampled from a continuous model." 

My first point of confusion is what is meant by the word "difficult." 
Backward induction is the only method that I know of for constructing the 
optimal exercise strategies that are necessary to evaluate contingent claims 
that have early-exercise provisions. Because the model in this paper does 
not permit backward induction, I do not know what technique Dr. Tilley 
has in mind. 

I also point out that it is not possible to project the optimal cash flows 
from such a contingent claim on a path-by-path basis. All possible future 
events must be taken into account to make this optimal projection. In other 
words, at each epoch all the future possibilities that may develop from the 
current state of the world must be known, but such is not the case for this 
model because there is no evolution structure available. For example, even 
though any particular contingent claim that has an early-exercise provision 
may be in the money, it does not mean that the claim holder will want to 
exercise it, although he may wish to do so in some situations. (A good 
example of this dual phenomenon is the American put option.) The exercise 
decision will depend on the future states of the world (hence future values 
of the claim) in relation to the current state of the world. Hence, it seems 
impossible to value certain contingent claims by this model in accordance 
with the usual arbitrage-based techniques. In fact, it seems this model can 
only properly price claims whose cash flows at each time along a path are 
determined by the yield curves along that path only. (By properly, I mean 
a price that is consistent with the benchmark of arbitrage-based pricing.) A 
particular subclass of such claims would be those claims whose cash flows 
at each time are determined by the past history and the current yield curve 
only. For instance, the model in the paper would price interest rate caps and 
floors nicely. Is it possible to quantify the bias in pricing contingent claims 
that have early-exercise provisions that results from using the approach that 
Dr. Tilley is suggesting as compared to the arbitrage-based optimal exercise 
procedure? 
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I am also unclear on how to reconcile this second quotation from page 
515 with the following quotation, which is taken from [2] in the context of 
a particular example but which is representative of a general principle in 
pricing by arbitrage-based methods, "[i]t still might seem that we are de- 
pending on rational behavior by the person who bought the call we sold. If 
instead he behaves foolishly and exercises at the wrong time, could he make 
things worse for us as well as for himself? Fortunately, the answer is no. 
Mistakes on his part can only mean greater profits for us." 

Note that for the class of models that I have described, the optimal exercise 
strategies can be computed because we can project the optimal cash flows 
since there is an information structure (filtration) present at each state of the 
world. Thus, in theory, contingent claims that have early-exercise provisions 
can be priced by arbitrage-based methods. In practice, these arbitrage-based 
prices have to be computed numerically, and this is a most troublesome task. 

I thank Dr. Tilley for an insightful paper that has furthered my under- 
standing of some of the difficult issues involved in the practical application 
of term structure theory. I also appreciate the lesson in the art of commu- 
nicating difficult concepts without relying on formulas. However, it would 
be most interesting to see some pictures of the yield curves, with the ac- 
companying parameters, that are generated by the model of Section 5.2. 
This would be helpful in appreciating the wide range of yield curve dynamics 
that the model is capable of producing. 
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(AUTHOR'S REVIEW OF DISCUSSIONS) 

JAMES A. TILLEY; 

I thank Mr. Davlin, Mr. Jetton, and Mr. Pedersen for their discussions 
of my paper. I find it most convenient to respond to their questions by author. 

Mr. Davlin's Discussion 

I believe that an interest rate model should capture how the world actually 
works. One should do the best job possible to discover the real world's 
interest rate dynamics. If one observes fat-tailed distributions, tendencies to 
mean reversion, stochastic rather than deterministic volatility, liquidity pre- 
miums, and so on, one should build them into the model. Subjective views 
of the trend of interest rates and the shape of the yield curve also should be 
incorporated into the model. Of course, any model will end up being only 
an approximation to reality, but it should be the best one can build. The 
most important use of such a model is to evaluate risk/reward tradeoffs 
characteristic of all portfolio decisions. 

Once such a model is available, it also can be used to calculate consistent 
relative prices among various instruments whose cash flows either are fixed 
or depend only on interest rates. For this purpose, and probably for this 
purpose only, the drifts of the interest rate processes must be adjusted so 
that the desired relative prices can be derived properly by way of straight- 
forward expected-value computations. Once one has determined the fair 
market prices for all instruments, one should return to the real-world model 
(the one with unadjusted drifts) to evaluate the relative attractiveness of 
various portfolio strategies. 

I share Mr. Davlin's yearning for models that "explain" sources of in- 
terest rate and spread changes. Such models are the subject of econometrics, 
a discipline in which mathematical economists attempt to codify the fuzzy 
ideas of armchair economists. In general, the results of such efforts have 
been rather unsatisfying. Even a satisfactory econometrics model for interest 
rates would be probabilistic, not deterministic. The purpose of my paper 
was not to take on the challenge of building a better econometrics model. 
But I would like to say a little more about the question of the "causes" of 
the stochastic dynamics of interest rates. 

Consider the case of the Brownian motion of a particle in a liquid. One 
knows that the particle moves within the liquid because it is buffeted by 
molecules of the liquid--in other words, one understands the "causes" of 
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the particle's motion. One even understands the physics of the interaction 
among molecules of the liquid and their resulting motion. Nevertheless, the 
best description, indeed, the only useful description, of the dynamics of the 
particle is a random movement governed by a particular stochastic differ- 
ential equation. In the case of the particle, one can "derive" the stochastic 
equation of motion, but in the case of interest rates, one has to "observe" 
behavior in the real world and then select a satisfactory equation of motion 
empirically. I believe it is the "empirical" approach to which Mr. Davlin 
objects on philosophical grounds. Yet, actuaries often utilize empirical ap- 
proaches in their traditional areas of work--they observe the age dependency 
of the forces of mortality and morbidity, and they observe the probability 
distributions of losses that arise from the violence of the earth, air, water, 
and fire. 

Mr. Davlin poses good questions about market equilibrium, questions that 
many good minds will ponder for years to come. Related to his comments 
in this area, let me stress once again that I believe that decisions should be 
made in setting of the real world using methods that reflect subjective pref- 
erences and expectations--I do not believe that there is necessarily any 
advantage 'to evaluating a strategy in the setting of the risk-neutral world. 
However, I do know that fair market prices can be calculated easily in the 
setting of risk-neutral world. 

Mr. Jetton "s Discussion 

My comments on Mr. Davlin's discussion indicate that I do not agree 
with what I believe to be Mr. Jetton's view that "[interest rate] scenarios 
are not intended to answer the question 'What might the future be like?' ." 

I also disagree with the thrust of Mr. Jetton's statement that "neither 
coupon rates nor spot rates make any claim about market rates as of some 
future d a t e . . .  [but] forward r a t e s . . ,  can be used to make an inference 
about market interest rates as of future dates." This ostensibly innocuous 
statement is the opening salvo of his view that the use of forward rates to 
perform discounting calculations involves assumptions (implicit or other- 
wise) that are not needed by or are not shared by other discounting methods. 
I find many of Mr. Jetton's statements about calculating present values using 
current-coupon yields (his label is YTMM), spot rates (his label is SRM), 
and forward rates (his label is FRM) to be confusing, misleading, or inac- 
curate. I offer a detailed critique of a few of Mr. Jetton's examples below. 
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As indicated at the end of Section 2 of my paper, the sets of current- 
coupon yields, spot rates, and forward rates contain equivalent information. 
Any one set of yields or rates is sufficient to derive the other two sets. 
Depending on the situation, the~:e may be a natural set to use, but all carry 
identical information. These are mathematical statements of fact, not opinions. 

When cash flows are non-interest-sensitive, it makes absolutely no dif- 
ference whether one uses yields to maturity, spot rates, or forward rates to 
calculate present values, provided that the calculations are performed prop- 
erly and accurately. For this situation, generating interest rate scenarios is 
unnecessary. Computing the present value of a non-interest-sensitive cash- 
flow stream by using the relevant spot rates is not only correct, but also by 
far the simplest method. However, when cash flows are interest-sensitive, 
the only practical choice for discounting the cash-flow stream to a proper 
present value is the "expected present value" method, invented by others 
and described by me in the paper. For this situation, the SRM as described 
by Mr. Jetton will give the wrong answer. Whether one constructs the ran- 
dom generator for interest rates based on current-coupon yields, spot rates, 
or forward rates is partly a matter of taste. Thus, it is not proper to single 
out forward rates and claim that interest-rate-contingent cash flows must be 
discounted by something called an FRM. Instead, it is proper to state that 
interest-rate-contingent cash flows must be discounted by the expected-pres- 
ent-value method, and that the paths of future interest rates can be sampled 
from stochastic processes relating to current-coupon yields or spot rates or 
forward rates. Specifying the stochastic processes in terms of forward rates 
makes it easy to constrain the forward rates from ever becoming negative, 
a statement that does not apply when the stochastic processes are specified 
in terms of either spot rates or current-coupon rates. 

After reading Mr. Jetton's comments, I think that it is important to stress 
a point about the expected-present-value method that was made in my paper 
and that was reinforced by a comment made by Mr. Pedersen in his discus- 
sion. The one-period rates of interest play a special role in the expected- 
present-value algorithm. Only the one-period rates are used to discount cash 
flows along a path. Yields of bonds with maturities greater than one period 
affect the arbitrage-free price of a stream of interest-rate-contingent cash 
flows only to the extent that the amounts of the cash flows depend on those 
yields. Note that a one-period rate is a current-coupon yield, a spot rate, 
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and a forward rate. Certainly, it seems artificial to claim that the expected- 
present-value algorithm is a "forward rate method" (FRM), as Mr. Jetton 
states. 

In giving an example of pricing a five-year $100 face amount zero-coupon 
bond, Mr. Jetton states that the present value is $68.05 for any path if one 
uses the SRM, whereas using the FRM leads to different present values for 
each path, these different values only averaging to $68.05 over the full set 
of arbitrage-free paths. He then states "I  guess it does not matter if the 
average is the only concern. However, the FRM would give an invalid 
measure of the variance of returns; the SRM would not." For Mr. Jetton's 
example, the zero-coupon bond has a single fixed cash flow, not interest- 
sensitive cash flows. Thus, as I stated above, using the five-year spot rate 
to discount the bond's single cash flow is the most straightforward way to 
obtain its price. Also, as I stated above, one does not need to generate an 
arbitrage-free set of interest rate paths to price this bond, but if one chooses 
to generate such a set of paths, the expected-present-value method will lead 
to the correct price. 

Where Mr. Jetton errs is in comparing the returns, and hence the variances 
of the returns, for two different investment strategies. The first strategy is 
to buy the five-year zero coupon bond at time 0 and to hold it for five years 
until its maturity--the terminal wealth is $100, regardless of the actual path 
of interest rates followed. The second strategy is to invest $68.05 at time 0 
in a one-period bond (for example, a three-month Treasury bill if the period 
between epochs is one quarter of a year), and to keep rolling that investment 
at its maturity into successive one-period bonds until the five-year horizon 
is reached. For this second strategy, the terminal wealth depends on the path 
that interest rates follow. For some paths, the terminal wealth is greater than 
$100, while for others is it less than $100. In fact, the terminal wealth 
generally does not average $100, and definitely does not average $100 if the 
full set of paths is arbitrage-free, a very surprising, but correct, result. The 
variances of the returns are different for the two strategies--zero for the first 
strategy and positive for the second strategy--because the strategies are 
different! 

Mr. Jetton's statement that "the expected return for a given holding period 
should be equal for bonds of different maturities" is not generally true. The 
expectations that must be equal relate toprices (that is, present values), not 
to returns (that is, future values). Only locally, that is, over a one-period 
horizon, must expected returns for bonds of different maturities be equal. 
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This is a very commonly misunderstood point that is almost always discussed 
too casually in the literature on interest rate processes. 

Mr. Jetton offers a second example to highlight the advantages of what 
he has called the SRM and the difficulties encountered by what he has called 
the FRM. The example involves the returns from two different investment 
strategies: (1) buy a one-year Treasury and hold it for one year, and (2) buy 
a two-year Treasury and hold it for one year. Mr. Jetton properly describes 
a real-world situation in which the drifts of the interest rate processes are 
such that the second strategy has a greater expected return than the first 
strategy. He then states: "The two-year Treasury, vis-a-vis the one-year 
Treasury, presents an arbitrage opportunity . . . .  Is this truly a riskless ar- 
bitrage opportunity or it is a quirk of using the F R M ? . . .  Amazingly, this 
apparent riskless arbitrage opportunity would vanish if the SRM were used. 
It does not depend on inferred future interest rates." 

The situation that Mr. Jetton poses is realistic. Most investors consider it 
to exist every time the yield curve is sufficiently positively sloped. However, 
his analysis is flawed in several respects. First, the situation has nothing 
whatsoever to do with SRMs or FRMs--how Mr. Jetton makes this con- 
nection I do not understand. Second, there is nothing wrong with a situation 
in which the two strategies have different expected returns. Third, the op- 
portunity available to the investor in this example is not a riskless arbitrage. 
By shorting the one-year bond and using the proceeds to purchase the two- 
year bond, one will lose money if interest rates rise a lot by the end of the 
year--there is nothing riskless about the arbitrage! 

In my opinion, other misleading, if not incorrect, statements made by Mr. 
Jetton in connection with present-value calculations are: "This is again the 
result of relying on the FRM in contrast to the SRM. The SRM would not 
do this" (page 544) and "Another bias in the option-pricing model is its 
devotion to the FRM for calculating present values when other proven meth- 
ods may be better" (page 546). 

I agree with Mr. Jetton in that "I  don't believe it has to be the case that 
the starting yield curve dictates the average trend of future interest rates." 
Portfolio and business decisions should be based on a real-world calibration 
of the interest rate model, in which the drift of interest rates is likely to be 
somewhat, if not fully, independent of the starting yield curve. However, 
for purposes of calculating the prices of interest-rate-contingent cash-flow 
streams in a straightforward fashion that produces answers consistent with 



562 TRANSACTIONS, VOLUME XLIV 

the observed prices of Treasury bonds, one must adjust the drift of interest 
rates based on the starting yield curve. 

Mr. Jetton's character Gus essentially has it right: Norb is allowed to "do 
his thing" by using an arbitrage-free model to value embedded options. Gus 
then uses this information at each point along his own real-world paths of 
interest rates to make whatever business decisions he thinks are appropriate. 
By the way, Norb does not actually need a supercomputer--a powerful PC 
or a good workstation will suffice. 

Mr. Pedersen's Discussion 

The adjustment procedure used by Mr. Pedersen in his example is the 
type that I have described in my paper. His clarification of what is meant 
by a multifactor process is very helpful. The perfect local correlation of yield 
curve movements across the yield curve in the case of a single Brownian 
motion is exactly what I had in mind. 

The interest rate generator that is described in my paper can be viewed 
as a path-by-path simulation of a model described by Mr. Pedersen's Equa- 
tion (1) and that is then adjusted to fit the observed bond price data. Apart 
from the discretization of time, I prefer to think of the models I have de- 
scribed as being exactly those described by Mr. Pedersen. The selection of 
a finite sample of paths from the model is merely a computational device to 
price contingent claims. Different samples of P paths each will lead to 
different prices for a given contingent claim. The probability distribution of 
these sample estimates has a variance that tends to zero as P tends to infinity. 
The truth of the various assertions in my paper to which Mr. Pedersen refers 
follows from the sampling interpretation. 

I believe that Mr. Pedersen has misunderstood one aspect of the techniques 
described in my paper, probably because I adhered too closely to my con- 
straint of a purely verbal description of the model and its related computa- 
tional algorithms. The method for sampling paths of interest rates does not 
make the model stochastic at epoch 0 and deterministic at any or all future 
epochs. Nor does the sampling method render trading of bonds impossible 
in the model. At any time on any path, one has available by means of the 
simulation algorithm the full yield curve, not just the one-period rate of 
interest. Thus, one knows the prices of noncallable bonds of all maturities 
and one can trade a portfolio of bonds and establish a riskless hedge if 
desired. 
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Paths of interest rates from a given model can be simulated in many ways. 
A common approach is multinomial sampling in which N paths are generated 
from epoch 0 to epoch 1; for each of the N points at epoch 1, N paths are 
generated from epoch 1 to epoch 2; for each of the N 2 points at epoch 2, N 
paths are generated from epoch 2 to epoch 3; for each of the N 3 points at 
epoch 3, N paths are generated from epoch 3 to epoch 4; and so on. The 
structure of such a set of paths is a multinomial " t ree"  in which the number 
of paths grows exponentially as the number of time periods, making practical 
computations infeasible. It is better to sample paths as depicted in Figure 1 
of Mr. Pedersen's discussion (with path crossings permitted, of course), but 
such sampling does not make the model deterministic beyond epoch 0. The 
model is stochastic beyond epoch 0 because a random number (or as many 
random numbers as there are stochastic factors) is needed at each epoch on 
each path to extend the path to the next epoch. Because the full yield curve 
is simulated in an arbitrage-free manner at each epoch on each path, one 
does not need a " t ree"  emanating from each point to calculate the prices 
of all bonds at each point. This is the crucial concept underlying the practical 
implementation of the computational techniques that I have described. 

Although I have not provided the mathematical details to make it easy, 
one can implement the algorithm described in Section 5.3 of my paper to 
construct a multifactor model of the term structure that satisfies the Heath- 
Jarrow-Morton (HJM) arbitrage-free conditions to which Mr. Pedersen refers 
in his discussion. [The article by Miller that is cited in my paper describes 
the approach. However, Miller's algorithm is based on spot rates, not for- 
ward rates, and develops negative forward rates with positive probability. 
Basing the processes explicitly on forward rates introduces some computa- 
tional subtleties.] The resulting model can thus be characterized as an HJM 
model. Interestingly to Mr. Pedersen, I suspect, the model explicitly utilizes 
the two-step procedure described in his discussion. I intend to provide the 
technical details in a future communication, as I stated in Section 5.3. 

Mr. Pedersen's question about what is an appropriate notion of an arbi- 
trage-free model was also raised by Dr. Shiu during his reading of my paper 
prior to its being submitted for publication in the TSA. Obviously, I need to 
explain this important point more clearly and will try to do so here. The 
essential ideas are contained in Section 5.3 of my paper. To state the arbi- 
trage-free condition as crisply as possible, a few definitions are helpful. An 
arbitrary epoch on an arbitrary interest rate path is chosen and referred to as 
the "initial point." Since full yield curves are simulated period by period 
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under the model, there is no loss of generality in considering the yield curve 
obtaining at the initial point to be given--thus, it is referred to as "exoge- 
nously specified." The prices of all default-free zero-coupon bonds can be 
derived from the exogenously specified initial yield curve and are also con- 
sidered to be "exogenously specified." Arbitrage-free adjustments of the 
drifts of the interest rate processes are defined by reference to these zero- 
coupon bonds. 
• Arbitrage-Free Adjustments. The drift terms of the stochastic processes 

that govern the evolution of the yield curve from the initial point to the 
epoch one period ahead are adjusted at the initial point until the present 
value at the initial point of the expected one-period-ahead price of each 
zero-coupon bond is equal to its exogenously specified price at the initial 
point. 

• Arbitrage-Free Condition. The stochastic interest rate model is said to 
be arbitrage-free when the arbitrage-free adjustments as defined above 
have been made at every epoch on every interest rate path. 

Mr. Pedersen raises excellent points about determining the optimal ex- 
ercise of options. First, I want to point out that the "evolution structure [of 
interest rates]" is potentially available at each epoch on each path--it is 
only singly sampled on each path after epoch 0 under my method for con- 
structing paths. Second, I have written a paper that has been accepted for 
publication in Volume XLV of the TSA in which I demonstrate how to 
implement backward induction on a set of paths of the type depicted in 
Figure 1 of Mr. Pedersen's discussion. A specific numerical example in- 
volving an American put option is given in that paper. The valuation method 
is surprisingly accurate, even for relatively small sample sizes. 

Finally, I encourage all readers of my paper to experiment with imple- 
menting the model and to plot the evolution of yield curves. I have imple- 
mented a four-factor HJM model that produces yield curves with the various 
shapes that are observed in the real world. 


