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ABSTRACT 

In this paper, I caution against using expected utility theory for mea- 
suring insurance risk, because of the numerous inherent difficulties as- 
sociated with it. Among them is the fact that individuals do not seem to 
behave as described by the axioms of expected utility theory. 

Instead, I develop an approach for loading gross premiums that is based 
on risk-measure functions. A risk-measure function, R, is a function that 
measures the level of "riskiness," r, inherent in an insurance risk X, 
where r=R[X]. Some basic properties of risk-measure functions are sug- 
gested. For an insurance risk X and a given risk-measure function R[X], 
it is suggested that the insurance premium II[X] be calculated according 
to the premium calculation principle II[X]=IX+O(r, Ix; R), where Ix=E[X] 
and 0 is the risk-loading function. The traditional properties of premium 
calculation principles are used to identify some possible functional forms 
of O. The variance is the most commonly used risk-measure function, 
that is, R[X]=Var[X]; however, it does not adequately measure risk if 
the distribution of X is positively skewed. For positively skewed distri- 
butions, risk-measure functions depending on the third and/or fourth cu- 
mulants are provided. In particular, the normal power approximation is 
used to derive one such risk measure. Risk-measure functions based on 
the normal power approximation may be useful in pricing financial risks 
in portfolio analysis. 

1. INTRODUCTION 

1.1 The P r e m i u m  Calcu la t ion  Process  

The calculation of  insurance premiums is one of the most important 
functions of  a practicing actuary. So it follows that the principles and 
techniques used to derive these premiums are very important. From a 
theoretical perspective, premiums can be split into two components: the 
"net (pure)" premium and the loading. It is generally agreed that the net 
premium is E[X], where X is the amount at risk, and that loadings should 

305 



306 TRANSACTIONS, VOLUME XLV 

take into account the "variability" or the "level of risk" in X. Unfortu- 
nately there is no general agreement on a method of loading premiums 
because no general principle for loading premiums has been shown to 
be the best one. 

For this paper, the amount at risk X associated with a policy is the 
present value of all claims, expenses, dividends, and losses due to any 
special features (such as riders or options) in the policy. Note that since 
X includes expenses, the term "net premium" is used in a general con- 
text. Since it is generally agreed that the risk-loading should reflect the 
level of risk inherent in the amount at risk X, it seems reasonable to 
develop an explicit measure of the level of risk in X and to let the load- 
ing be a function of this quantity. As mentioned in Feldblum [ 19], there 
are different approaches to calculating the risk-loading. For example, 
one can use (1) the moments of X, (2) utility theory, (3) ruin theory, (4) 
the empirical costs of reducing risk via such methods as reinsurance, 
or (5) profitablility considerations in connection with modem portfolio 
analysis. 

Once X is fully defined and the gross premium is determined, the re- 
quired contingency reserve (surplus) must be found. The process of de- 
riving the appropriate contingency reserve for a given gross premium is 
a very complex one; it is not the subject of this paper. However, ruin 
probabilities can be used to assist in the determination of the appropriate 
reserve level; see, for example, Brender [12]. 

The approach in this paper is to use risk-measure functions and risk- 
loading functions for calculating gross premium. Specifically, a new pre- 
mium calculation principle is introduced. This principle requires the in- 
surer to calculate risk-loaded gross single premium II[X] in five steps: 
given a risk X, 
Step 1: Calculate I~=E[X]. 
Step 2: Choose a risk-measure function R[']. 
Step 3: Calculate the level of riskiness, r, inherent in the insurance risk 

X, that is, r=R[X]. 
Step 4: Choose a risk-loading function 0(', .; R). 
Step 5: Calculate the gross single premium II[X], as 

II[X] = ~ + 0(r, ~; R). (1) 

Steps 2 and 3 are very important because they require the insurer to 
explicitly choose R and to use R to calculate the risk in X. Since R will 
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be defined (in Section 2.3) to be an objective measure of risk, this ap- 
proach excludes premiums based on utility theory. In addition, see the 
comments (in Section 3.2) on the problems associated with expected util- 
ity theory. 

The insurer also must choose a risk-loading function, 0, which is an 
explicit function of the level of risk as measured by R. Even though it 
is assumed for simplicity that 0 depends only on ~ and r, in general 0 
depends on other factors including the insurer's attitude towards risk- 
taking, the insurer's level of reserves, the overall size of the company, 
the size of its portfolio of risks, and the skewness and the tail behavior 
of the distribution of X. Of course, in a competitive environment, the 
actual premium charged ultimately depends on market conditions. 

1.2 Objectives 

This paper has three objectives: 
1. To formally and explicitly include the element of risk analysis in 

the formulation of insurance premiums. To this end, the terms "in- 
surance risk" and "risk-measure functions" are defined. Five desir- 
able properties of risk-measure functions are given along with some 
of the well-known measures of risk in use today. A new measure 
of risk, based on the normal power approximation, is given. 

2. To develop a risk-loaded premium using the third and/or fourth mo- 
ments of X. Here the properties of premium calculation principles 
are discussed. Some of the well-known premium calculation prin- 
ciples are introduced, for example, the variance and standard de- 
viation principles. A new premium calculation principle based on 
the normal power risk measure is developed. Since utility theory 
does not use risk-measure functions, it is not used in this paper. 

3. To stimulate discussion and research on the nature and measurement 
of insurance risk; see the comments in Section 6. 

2. RISK MEASURES 

2.1 Definition of  Risk 

Before exploring the various measures of risk, I would like to define 
the term "risk." According to Williams et al. [58, pp. 6-I0] ,  risk is 
used in insurance to mean the following: (1) the possibility of loss, (2) 
the probability of loss, (3) a peril, (4) a hazard, (5) the property or person 
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exposed to damage or loss, (6) potential losses, (7) variation in potential 
losses, and (8) uncertainty concerning losses. 

There is a strong connection between the concepts of "risk" and "un- 
certainty." Freifelder [23, pp. 9-10] defines uncertainty as " . . .  the lack 
of certainty; doubt as to the actual outcome of an event or trial of an 
experiment." He defines risk as " . . .  the individual evaluation of the 
uncertainty surrounding the choice of a course of action or the outcome 
of an event." Thus he views risk as the subjective evaluation of uncer- 
tainty. Kaplan and Garrick [23] succinctly define risk as 

risk = uncertainty + damage. 

For a more philosophical discussion of risk, see Rescher [48]. 
The term "insurance risk," as used in this paper, is defined as follows: 

Definition 1: An insurance risk, X, is the non-negative real valued ran- 
dom variable that represents the present value of  the insurer's total 
f inancial expenditures (attributable to the policy) over the life of  the 
policy. 

The term "expenditure," as used in the definition above, includes the 
costs associated with the insurer's financial obligations to the insured 
and the expenses incurred over the life of the insurance contract. These 
costs are not confined only to claims; they also include the costs asso- 
ciated with all the policy's features such as riders and options. For ex- 
ample, features such as interest rate guarantees, policy loan provisions, 
guarantees against policy lapses, dividends options, waiver of premiums, 
and so on can be included in X. 

To be precise, let X ~"~, X ~I) and X ~e) be the present value (at issue) of 
all future claims, all future costs due to special policy features, and all 
current and future expenses, respectively, generated by the risk over the 
life of the contract; then 

X = X ~c~ + X ~i~ + X ~ .  (2) 

Not surprisingly, it may be very difficult to actually construct X for some 
interest-sensitive products (such as a universal life policy) with many of 
the options and riders mentioned above. Thus the actual implementation 
of Equation (1) may depend entirely on the technical skills of the pricing 
actuary. 
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All present values are assumed to be calculated under general condi- 
tions including the possibility of a stochastic interest rate. However, in 
practice, the interest rates used for determining gross premiums are usu- 
ally nonstochastic. 

Examples of the risks associated with X include claim size variation, 
investment risks, mortality/morbidity risks, lapse risks, and so on. See, 
for example, Lew [34] for an overview of the types of risks covered in 
insurance contracts. The Society of Actuaries Committee on Valuation 
and Related Matters classified the risks faced by insurance companies 
broadly into three parts, the C-l ,  C-2 and C-3 risks, as follows: 
• The C-1 risk is the risk that an asset loses value because the borrower 

defaults, the asset is destroyed or the future earning power of the 
borrower has fallen; see Sega [51]. 

• The C-2 risk is the risk that the price (gross premium) is insufficient 
to pay losses; see Brender [12]. 

• The C-3 risk is the risk that there is a mismatch in timing between 
assets and liability cash-flow streams; see Mereu [38]. 

This paper is concerned primarly with the C-2 risk. 

Definition 2: A basic insurance contract consists of  a single premium, 
[l, paid at the start of  the contract and an insurance risk X. The contract 
may last for one period or several periods. 

2.2 P e r i o d i c  P r e m i u m s  

Definitions 1 and 2 may appear to be more suited to non-life insurance, 
in which contracts are short-term single-premium contracts, than to life 
insurance, in which premiums are usually paid more frequently and con- 
tracts can span several years. In addition, life insurance premiums can 
be level or variable (nonstochastic) or stochastic. Also, premiums can 
even be a part of the death benefit (as in the case of a premium refund 
feature). In any of these cases, the present value of the premium income 
is a random variable, Y. As a result, the insurer is faced with two sources 
of risk: X and Y. 

When the premiums are scheduled to be paid more often than once, 
the gross premiums can be determined as follows: Let Gk be the periodic 
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gross premium due at consecutive times t~, k=0,  1, 2 . . . .  with t0=0. 
Here Y is given by 

K 

Y = 2 Gkvk (3) 
k=O 

where K+ 1 is the actual number of premiums paid before the contract 
ends, and vk is the discount factor, that is, 

where 8(s) is the stochastic force of interest at time s. These premiums 
can be determined in three stages: 
Stage 1: Calculate the single premium II[X] using Equation (1). 
Stage 2: Calculate the risk-loaded single premium H[Y] using Equation 

(1) again. Here Y is being viewed as a risk as well. Note that 
R must be the same in stages 1 and 2. 

Stage 3: By equating the two single premiums, that is, setting 

II [x l  = rI[lq, (5) 

we can then solve for the Gk's. To solve Equation (5), the Gk's 
must all be known up to a single common unknown. 

If 0~0,  then the well-known principle of equivalence results; see Bowers 
et al. [11, chapter 6]. 

Warning 1: Given the three-stage approach leading up to Equation (5), 
the multiperiod case can be handled in a manner similar to the single- 
period case. So, without loss of generality, only a basic one-period con- 
tract is covered in this paper. It is assumed the insurer receives a fixed 
premium at the start of the period and in return pays all claims and 
expenses arising during the period. 

If premiums are stochastic, then, by definition, they cannot be deter- 
mined a priori. Thus the techniques of this paper (or any other paper, 
as a matter of fact) cannot be used to completely specify stochastic 
premiums. 



LOADING GROSS PREMIUMS FOR RISK 311 

2.3 P r o p e r t i e s  o f  R i s k - M e a s u r e  F u n c t i o n s  

Consider a portfolio of risks II, in which 

lq = {X : X >-- 0 is a random variable}. 

Definition 3: XEf~ is said to be riskless if and only if X is a constant 
with probability 1; that is, there exists a constant Ix such that Pr[X= Ix] = 1. 

For a given portfolio II, assume the insurer chooses a unique, real val- 
ued, risk-measure function R[X], which measures the level of risk in- 
herent in X~Iq. This function may be different for different portfolios. 

Definition 4: Given any insurance risk in ~ ,  a function R is called a 
risk-measure function if, and only if, it satisfies the following properties: 
(2.1) Risklessness: X~I~ is riskless if and only if R[X]=0. 
(2.2) Non-negativity: R[X]>-0 for all X~t~. 
(2.3) Subadditivity: If X~, X2~O are independent risks, then 

R[X~ + X2] <- R[X~] + R[X2]. 

(2.4) Consistency: For any XEII  and constant c, 

R[X + c] = R[X]. 

(2.5) Objectivity: R[X] depends on X only through the cumu- 
lative distribution function (cdf) Fx(x) of X. 

• According to the risklessness property, (2.1), risk exists if, and only 
if, there is a possibility of deviation from the expected. 

• The subadditivity property, (2.3), reflects the fundamental principle 
of insurance: the overall level of risk must not increase if independent 
risks are pooled. 

• The consistency property, (2.4), implies that the level of risk in a 
portfolio cannot be altered by adding "sure events" such as incurring 
riskless debt. 

• The objectivity property, (2.5), is included to ensure that Fx(x) con- 
tains all the information needed to measure the level of risk in X. 
One may argue that, by its very nature, risk is inherently subjective. 
However, given the cdf of X, any subjective element must lie in the 
insurer's choice of risk-measure function and/or the insurer's attitude 
towards risk. Once R[.] is chosen, the insurer's evaluation of the level 
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of the risk inherent in X must be based only on R and F. Another 
source of  subjectivity in assessing risk lies in the choice of Fx(x). 
Since, in practice, the cdf is usually not known completely, the in- 
surer may have to arbitrarily assign a cdf to X. For a discussion of 
the objective/subjective nature of insurance risks, see Berliner [4], 
[5], [6]. Weirich [56] contains a discussion of an individual's attitude 
towards risk. 

An axiomatic approach to the study of risk measures is given by Fishburn 
[22]. He defines X on the entire real line and uses the possibility of loss 
as his determinant of risk. Thus an absolutely certain loss of  a constant 
amount Ix is considered as having positive risk (in contrast to the risk- 
lessness property, (2.1), which would have assigned to Ix a risk of zero). 
Fishburn's risk measure is objective in the sense of  the objectivity prop- 

, erty, (2.5). 

2.4 C o m m o n  R i s k . M e a s u r e  F u n c t i o n s  

The well-known risk measures are as follows: 
(1) The variance: R1[X]=~r2[X]. The variance is intuitively appealing 

as a risk measure. It has been used extensively in the economics 
and finance literature in the context of mean-variance analysis. The 
works by Markowitz [36] and Tobin [53] help to solidify the use 
of the variance as a risk measure. However, its use as a measure 
of risk is criticized by Borch [9] and Feldstein [20] for its lack of 
generality; that is, it is applicable only to cases in which the normal 
distribution is assumed or quadratic utility can be assumed. Mar- 
kowitz criticizes the variance on the grounds that it considers ex- 
tremely high and extremely low returns as equally undesirable. 
Brockett [13] proves that risk averse behavior does not always lead 
variance minimization when choosing between equal expected re- 
turns. According to Pentik~iinen [43], in an insurance environment, 
the variance is not a good measure of  risk because it does not give 
information on ruin probabilities unless a normal distribution is as- 
sumed. In addition, the variance does not give information on the 
degree of asymmetry (skewness) on the probability of  large claims. 
The variance satisfies properties (2.1) to (2.5). 

(2) The standard deviation: R2[X]=~r[X]. Since the standard deviation 
contains the same information as the variance, the same comments 
apply as in the case of the variance. 
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(3) The positive semivariance: This measures the deviations in excess 
of the mean, ix; that is, 

f; R[XI = ~ [ X I  = (x - ix)2 dFx(x). 

This risk measure is not very popular because it is cumbersome. 
In addition, it does not, in general, satisfy the subadditivity prop- 
erty, (2.3); see [26, section 3.7]. In the area of finance, Markowitz 
advocates the use of the negative semivariance (for below-average 
returns), 

tr2-[X] = / f ~  (ix - x)2 dFx(x), 

instead of the variance. Clarkson [15] develops measures of in- 
vestment risk based on the investor's risk-weighting function, W(r), 
and the negative semivariance. Since W(r) is, in essence, the inves- 
tor's "utility" for risk, Clarkson is in fact measuring the investor's 
attitude towards risk-taking, thus violating the objectivity property, 
(2.5). Fishburn [21] extends the semivariance concept by using a 
general targeted return instead of the mean. 

(4) Coefficient of variation: R[X]=tr[X]/E[X]. This has often been called 
the measure of "relative" risk (as opposed to the measure of "ab- 
solute" risk in the case of the variance or standard deviation). How- 
ever, it is often difficult to draw reliable conclusions about the risk- 
iness of a heterogeneous portfolio of risks on the basis of this statistic 
alone. This risk measure has the attractive feature of  being dimen- 
sionless, that is, scale invariant. However, it does not satisfy the 
consistency property, (2.4). 
Stone [52] recommends the use of the coefficient of  variation as a 
measure of the "capacity" of  an insurance portfolio to accept more 
risk. A smaller coefficient of variation implies a larger capacity for 
risk acceptance. 

(5) The mean absolute deviation: R[X]=EIX-E[X] I. This is similar to 
the variance and the standard deviation in that it assigns equal weight 
to deviations above and below the mean. Its advantage is that it 
does not stress larger deviations over smaller ones. Unfortunately, 
it is difficult to manipulate mathematically. The mean absolute de- 
viation satisfies properties (2.1) to (2.5). 
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3. THE RISK-LOADING FUNCTION 

In non-life insurance, the actual gross premium charged by an insurer 
for a risk X can usually be written in the form 

Gross Premium = E[X] + 0 + p + • (6) 

where 0, p, and e are the (non-negative) claim-risk, profit, and expense- 
risk loadings, respectively. Note that E[X] already includes the expected 
costs of claims and expenses. Venezian [55] contains an overview of the 
use of risk loads in premium formulation in non-life insurance. Since 
the distribution of X is usually unknown, credibility theory is used to 
update the estimate of E[X] from the past data generated by X or similar 
risks. However, credibility theory is not a risk-based technique in the 
sense of Equation (1); instead it focuses on approximating the mean and 
the variance of certain conditional random variables. See Venter [57, 
chapter 7] and Goovaerts et al. [27, chapter iv] for an introduction to 
credibility concepts. 

In life insurance, deterministic techniques were devised for obtaining 
gross premiums because actuaries did not explicitly recognize the sto- 
chastic nature of life insurance; see, for example, the older life contin- 
gencies texts such as Jordan [31 ] and Nell [41 ]. Fortunately this is chang- 
ing, as evidenced by the current standard life contingencies text Actuarial 
Mathematics by Bowers et al. [1 I]. Instead of using an equation-type of 
formula such as Equation (6), life actuaries have used asset share math- 
ematics to calculate gross premiums; see Huffman [30] for more on asset 
share mathematics. These actuaries have compensated for random fluc- 
tuations by being "conservative," that is, assuming higher levels of mor- 
tality, expenses, and so on, and lower levels of interest rates. In general, 
they made assumptions about future trends that were inherently disad- 
vantageous to the prospective insured; see [54, chapter viii]. Thus the 
claim-risk, profit and expense-risk loadings were involved in the gross 
premiums such that the gross premium could not be written in the form 
of Equation (6). In other words, insurers did not explicitly segregate 
these loading factors when deriving gross premiums. An exception to 
this is given in Pollard [45], in which a risk-loading factor L is explicitly 
given. 



LOADING GROSS PREMIUMS FOR RISK 315 

3.1 Properties of Premium Calculation Principles 

Definition 5: A premium calculation principle 11 is a function that as- 
signs a non-negative real number, called the premium, to a risk X E ~ .  
In other words, Ih Fx--->[0, 0o). 

The well-known premium calculation principles are: (i) the expected value 
principle, (ii) the standard deviation principle, (iii) the variance princi- 
ple, and (iv) the principle of exponential utility. See, for example, the 
texts by Biihlmann [14, chapter 4], Gerber [25, chapter 5], or Goovaerts 
et al. [26, chapter 2] for more on the theory of premium calculation 
principles. 

Definition 6: An insurance premium, II[X], is said to be loaded if, and 
only if, II[X]#E[X]. The size of  the loading is ll[X]-E[X]. 

Gerber [25, chapter 5] states the following five properties of premium 
calculation principles: 

(3.1) 
(3.2) 
(3.3a) 
(3.4a) 

(3.5) 

Non-negative loading: H[X]->E[X]. 
No rip-off: II[X]-<Max(X). 
Consistency: For any constant c>0,  II[c+x]=c+l-I[X]. 
Additivity: If X~ and X2 are independent risks, then 

l l [x ,  + x~] = I I [xd  + ll[x2]. 

lterativity: I fX and Y are arbitrary risks, then I-I[X]=ll[II[X]Y]]. 

Clearly property (3. l) is not practical in some situations. For example, 
an insurer entering a new market may be forced by competition to price 
the product below the net premium and carry a deficiency reserve. 

The consistency property, (3.3a), should be strengthened to give a new 
property: 

(3.3b) Linear Consistency: For all non-negative constants a and c, 

II[aX + c] = all[X] + c. 

This property is needed to ensure purchasing power parity and to prevent 
riskless arbitrage in international insurance markets. In such markets, in 
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which premiums may be quoted in several different currencies, the pre- 
miums for identical risks must be equivalent. As an example, consider 
the U.S.-Canadian insurance market. If the premium for a risk X is $~ 
U.S., the exchange rate is $1U.S.=$aCAN and there is a perfect, fric- 
tionless market, the premium in Canadian dollars should be $a'rr CAN. 
As will be seen, then the variance principle violates this property. We 
are not suggesting that a similar property be developed for risk-measure 
functions; however, see the comments at the end of Section 6. 

Reich [47] suggests the additivity property, (3.4a), be weakened to the 
one of subadditivity: 

(3.4b) Subadditivity: If Xj and X2 are independent risks, then 

II[Xz + X2] -< II[X~] + II[X2]. 

Subadditivity is a desirable property because it captures the spirit of in- 
surance: the pooling of independent risks must not increase the total pre- 
mium, while pooling may actually reduce it. 

The iterativity property, (3.5), means that II[X] can be calculated in 
two stages: first, find the premiums for [X[Y] as a function of Y; then 
find the premium for this function of Y. The premium calculation prin- 
ciple in Equation (1) is not iterative except in a few special cases; see 
[25, pp. 72-73].  As a result, property (3.5) is not used. 

Finally, a new property is added to accommodate the risk-based ap- 
proach of the premium calculation principle introduced in Equation (1). 

(3.6) Increased loading for increased risk: This means that for fixed ~,, 
as r increases, 0(r, ~,; R) must increase. 

This property is needed to articulate a rational approach to risk-taking. 

3.2 Problems of Traditional Expected Uttltty Theory 
Deserving special mention is the class of premium calculation prin- 

ciples based on the traditional expected utility theory developed by von 
Neumann and Morgenstern (VNM) [42]. This expected utility theory is 
often used when there is a process of decision-making under uncertainty. 
The process of premium formulation is, in essence, one of  decison-mak- 
ing under uncertainty. Not surprisingly, VNM's utility theory has been 
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used by several authors in the actuarial literature, Borch being the lead- 
ing proponent of the potential applications of this theory to various as- 
pects of  insurance; see Borch [8] and [10]. The Society of Actuaries now 
includes VNM's utility theory as a part of its Course 151 examination 
on risk theory. 

Hammond [28] points out that, in practice, the top management of 
insurance companies does not usually articulate a clear risk-taking pos- 
ture for the company. As a result, there may be several different "com- 
pany positions," and hence, no consistent posture is demonstrated. The 
VNM utility theory can be used to resolve some of these difficulties 
because, once a utility function u(x) is specified, consistent decisions 
can be made. Similarly, individual consumers of insurance products can 
use the VNM utility theory to make rational decisions about these prod- 
ucts. Kahn [33] cautions that utility theory cannot be used to predict 
consumer behavior exactly, it can only provide clues about what is or 
is not "rational." 

Another problem with VNM's utility theory is that utility functions for 
individuals or corporations are rarely known in practice. Methods for 
constructing utility functions have been provided by several authors, for 
example, Moore [39, chapter 5]. However, such empirically constructed 
utility functions must be suspect because it has been well-documented 
that individuals show inconsistencies when making even modestly com- 
plex decisions under uncertainty. In fact, McCord and de Neufville [37] 
demonstrate that very different utility functions are used by a decision- 
maker depending on the underlying probability distribution of  the risk 
faced. In addition, there is strong evidence to the effect that decision- 
makers have preference orderings that can be represented only by utility 
functions that are convex in some intervals and concave in others, This 
point was made by Friedman and Savage [24] after observing that people 
who buy insurance are also willing to buy lottery tickets even though 
neither is sold at an actuarially fair price. So even a weak condition, 
such as a strictly concave utility function, may not suffice. A review of 
the empirical investigations of decision-making under uncertainty is con- 
tained in Schoemaker [50]. Recent experiments continue to show that 
individuals do not behave in the manner implied by VNM's utility theory 
and that individuals have more complex utility functions than those gen- 
erally assumed; see Loomes [35] and Dahlbach [16]. 
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There are also theoretical problems with VNM's  utility theory. It has 
long been argued that the axioms underlying expected utility theory, which 
are supposed to describe rational behavior, do not actually do so. Allais 
[2] shows how informed, intelligent persons choose actions that contra- 
dict the axioms of  VNM's  utility theory. In addition, there is confusion 
about the nature of  the utility of  X (a random variable) and of  x (a certain 
event).  Bernard [7] states this point as follows: 

~... u(x) represents in the expression of the utility of a random variable 
the behavior in the simultaneous presence of the value x and of the un- 
certainty [author's emphasis added] about its obtaining, that is, risk aver- 
sion or risk love. So in the general case the cardinal utility of the value 
x [a certain event] is not the function u(x) as specified in the utility u(X) 
of the random variable, but a distinct function . . . . .  v(x)." 

In view of  these problems, premiums based on V N M's  utility theory 
are suspect. 

W a r n i n g  2: Since VNM's utility theory does not explicitly calculate the 
level of  risk in X, as required in Equation (1), it is not considered again 
in this paper. 

3.3 The Risk-Loading Function 

The properties of risk-measure functions and premium calculation 
principles are now used to investigate the functional form of  0. 

T h e o r e m  1: For any risk-measure function R satisfying properties (2.1)- 
(2.5) and for any premium calculation principle II satisfying properties 
(3.1), (3.2) and (3.3b), the risk-loading function satisfies 
1. 0(0, Ix; R) = 0, and 
2. 0 is independent of  Ix. 

Proof." Let a and c be non-negative constants. 
(1) From properties (3.1) and (3.2), I I [c ]=c .  Since there is no risk- 

loading on constants, the risklessness property,  (2.1), implies 

O(O, I~; R) -- O, I X - O .  
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(2) From the consistency property, (2.4), R[aX+c]=R[aX]. Let 

R[aX] = p(r, a), (7) 

where r=R[X]=p(r, 1) is the level of risk in X itself. The linear 
consistency property, (3.3b), says 

II[aX + c] = c + alI[X] 

(aFt + c) + 0[p(r, a), af t  + c; R] = c + a[Ft + 0(r, It; R)] (8) 

0[p(r, a), aft  + c; R] = aO(r, Ix; R). 

Since Equation (8) holds for any c->0, it follows that 0(r, Ix; R) 
must be independent of Ft. [] 

Since 0 is independent of  I~, the term tx will be dropped from 0(r, Ix; 
R) and the notation 0(r; R) will be used instead. Equation (8) can now 
be rewritten as the functional equation 

0[p(r, a); R] = a0(r; R). (9) 

This functional equation must be satisfied in order for Equation (1) to 
be linearly consistent [property (3.3b)]. 

Theo rem 2: When the variance is used as the measure of risk and pre- 
miums are additive [property (3.4a)], then 
1. The variance principle results, that is, 

II[X] = E[X] + ~lVar[X]; and (10) 

2. The linear consistency property, (3.3b), is violated. 

Proof." 
(1) For i=1,2,  let ri=Rl[Xi], Fti=E[Xi] and also let 0t(r)=0(r; R0.  It 

follows that for independent Xi~l~, 

II[X~ + X2] = l-I[X~] + II[X2] 

Itl + Ft2 + Ol(rj + rE) = ~1 + Ol(rl) + Ft2 + 01(r2) 

Ol(rt + r2) = 01(rl) + Ol(r2) 
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which is a functional equation in rj and r 2 with solution (see, for 
example, Acz61 [1, pp. 1 1-12]) 

01(r) = 131r 

where 13~>0 is a constant. The result follows. 
(2) It is easily seen that p(r, a)=aZr and that Equation (9) is violated. 

[] 

If property (3.4b) (subadditivity) is used instead, then 

II[Xj + X2] <- II[Xj] + lI[X2], 

which reduces to 

0f(rl + rz) ~ 01(r0 + 0t(rz). 

Assuming 01(r) is differentiable for r ~ 0 ,  this inequality implies 

0~(rj + r2) - 0~(ri) 01(r2) 

r 2  r 2 

Since 01(0)=0 and property (3.6) implies that 0'l(r)->0, then r2---~0 im- 
plies 

0 ~ 0't(r) ~ 01(0), r -> 0. (11) 

One consequence of Equation (1 1) is the following: 

Resul t  1: I f  the variance is used as a measure of risk and premiums are 
subadditive [property (3.4b)], then any increasing, non-negative con- 
cave function of  r passing through the origin can be used to represent 
the loading function. 

For example, 

01(r) = 132r" 0 < c¢ <_ 1 and 132 > 0. 

As a special case, when c~ = 1/2,  the standard deviation principle results, 
that is, 

I][X] = E[X] + 13zV~/-------ar[X]. (12) 

Since p(r, a)=aZr and Oz(r)=132r ~/2, it is obvious from Equation (8) that 
the linear consistency property (3.3b) holds. 
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Another example of a concave function is 

01(r) = [33 log(1 + r) 

yielding a new premium calculation principle called the log-variance 
principle, that is, 

II[X] = E[X] + t33 log(1 + Var[X]). (13) 

The log-variance principle does not satisfy the linear consistency prop- 
erty, (3.3b). 

When the standard deviation is used as the risk-measure, that is, 
r = R 2 [ X ] = ~ ,  it essentially yields the same risk-loading functions 
as the variance. 

4. PREMIUMS USING HIGHER CUMULANTS 

4.1 The R igh t -Ta i l  R i s k  

The combination of the two consistency properties, (2.4) and (3.3b), 
has a very powerful effect on 0(r, IX; R): it removes any dependence of  
the risk-loading on Ix. Thus, if the variance or standard deviation is used 
as a measure of  the level of  risk in X, risks with the same mean and 
variance must be charged the same premium. This is somewhat disturb- 
ing because, even though they may have the same mean and variance, 
some risks are more "dangerous ~ than others. A distribution is said to 
be dangerous if  there is a relatively significant probability of very large 
claims; see Beard et al. [3, sections 3.5.3 and 3.5.8]. From the criticisms 
of the variance given in Section 2.3, the mean and the variance jointly 
do not reflect the level of risk in X partly because the right tail contains 
information on the probabilities of obtaining excessively large claims. 
Such claims are, of course, a source of  risk. Promislow [46] raises a 
similar point. Detailed discussions of  the tail classification system of  
claim size distributions are contained in Embrechts and Goldie [17] and 
in Embrechts and Veraverbeke [18]. 

Definition 7: The right-tail risk & the risk associated with the extreme 
right tail o f  a distribution; that is, it is the risk associated with the oc- 
currence of  claims that are much larger than the mean, that is, cata- 
strophic claims. 
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Since insurance claims are usually positively skewed and have rela- 
tively long right tails, then premiums based solely on mean/variance 
considerations will be inadequate: they will tend to underprice the long- 
tailed risks and overprice the short-tailed risks. In a competitive market, 
there is the danger that inadequate pricing may lead to insolvency. This 
danger is especially great for reinsurers because a large part of their busi- 
ness is related to accepting and pricing right-tail risks. As an example, 
suppose there are three non-negative risks, X~, X2 and X3, each with the 
same mean Ix = 1 and the same variance cr2=3. In particular, 

X1 = ~0 with probability 3/4; 

X2 has a gamma distribution with pdf 

~Ctxa- I e -  I~x 

f2(x) = , x<-O 
F(a) 

where ot=13 = 1/3; and X3 has a Pareto distribution with pdf 

f3(x) = (1 + b)(1 + bx) -~2"~l/b~, x > 0 

where b= 1/2. Most insurers and reinsurers would assign the lowest pre- 
mium to X1 and the highest premium to X3 because, of the three distri- 
butions, X3 generates the longest fight tail and X~ the shortest; that is, 
the Pareto has the largest right-tail risk. However, if premiums are based 
solely on mean-variance considerations, each of these three risks must 
be charged the same premium! Since these risks essentially have very 
different characteristics and should be priced differently, relying only on 
mean-variance considerations forces the actuary to underprice X3 and to 
overprice X~. 

A technique for including the right-tail risk in the premiums is now 
investigated. 

4.2 A G e n e r a l  R i s k - M e a s u r e  Func t i on  

Let Kx(t) be the cumulant generating function of X, that is, 

Kx(t) = In E[e ix] 

t j 
= ~ Kj[x] 

j= l  j l 



LOADING GROSS PREMIUMS FOR RISK 323 

where Kj[X] is the j-th cumulant of X. For independent risks the cumu- 
lants are additive, that is 

Kj[XI + X2] = Kj[Xt] + Kj[X2]. (14) 

When there is no chance of  confusion, Kj[X] is written as Kj. The first 
four cumulants of  X are K~=lx, K2=tr 2, K3=V.3, and  K4=I, L4--30 "4, where 
the tx,=E[(X-tx)"], the central moments of  X. 

Since the variance is an adequate measure of risk only in the case in 
which the distribution is normal (or nearly so), it does not adequately 
measure risk when the distribution is positively skewed. Clearly a risk- 
measure that adjusts the variance is needed. This adjustment can be writ- 
ten in additive form as 

R[X] = variance + right-tail risk, (15) 

or in ~relative risk" form as 

R[X] = variance × (1 + relative right-tail risk). (16) 

The factor 

= 1 + relative right-tail risk 

is called the "variance adjustment factor." 
The well-known and most accurate approaches to approximating the 

cdf of  the aggregate claims (from an insurance portfolio) use at least the 
first three or four cumulants; see [3, chapter 3], [40], or [44]. Since these 
approximations to the cdf are accurate, it follows from the objectivity 
property, (2.5), that these cumulants should be used in developing risk- 
measure functions. To this end, a general risk-measure function is de- 
fined as 

R[X] = r(K2, K3, K4). 

An example of such a risk-measure function is 

= ~24 ( 1 7 )  RIg] K 2 '~  {-O3K~ 3 Jr f~4K4 

where the coj>-0 and 0-<aj-  < 1, j =  3,4. 
The use of fractional powers may be problematic because K3 can be 

negative. To avoid such problems, only risks that have non-negative 
skewness are considered, that is, risks in the set 

£U = {X : X @ 11 and K3[X] >--- 0}. 
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Fortunately in practice most insurance risks are non-negatively skewed, 
making this assumption a reasonable one. 

Suggestion 1: I f  X is negatively skewed, the variance~standard devia- 
tion can be used as a conservative measure of its level of riskiness. 

We have now established that Equation (17) defines a risk-measure 
function. 

Theorem 3: I f  X E O  +, the risk-measure function defined in Equation 
(17) with toj>-O and 0---<aj-<l, j = 3 , 4  satisfies properties (2.1) to (2.5). 

Proof." It is obvious that these properties, except perhaps the sub- 
additivity property, (2.3), must hold. Recall Equation (14). To prove 
that the subadditivity property, (2.3), holds, we only need to prove that 
for any pair of constants x>-0 and y->0, the inequality is (x+y)"<-x~+y ~, 
for 0<-a < - 1. However, from an application of the Minkowski inequality 
(see, for example, Hardy et al. [29, p. 31, equation (2.11.4)]), this in- 
equality holds. Hence Equation (17) satisfies property (2.3). [] 

Another problem with R[X] in Equation (17) is that it may suffer from 
hyperinflation; that is, if c > l  is a constant and j=2 ,  3 . . . . .  then 
K~[cX]=cJKj[X]. This gives an undue amount of weight to the higher- 
order cumulants. To combat this, we can use 

where 

R3[X] = K2 + 0)31K32/3 + (.032 KI/2 

, , 2 /3  , I / 2 ~  
= O-2(1 + w31rt  + ,.u32r2 j (18) 

-?, = k3/k~/2 and "?2 = k4/k 2 , (19) 

are the coefficients of skewness and kurtosis, respectively. The condition 
R3[cX]=c2R3[X] now holds. Equation (18) suggests a general way of 
avoiding this type of inflation: simply define R[X] as 

R[X] = o'2[1 + h("?j,  "?2)] (20) 

where h ( . , . ) - 0  is the relative right-tail risk. The proper choice of h(.,.) 
is left to the insurer, the only condition being that the resulting risk- 
measure must satisfy properties (2.1) to (2.5). 
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4.3 The N o r m a l  P o w e r  R i s k - M e a s u r e  Func t i o n  

The normal power (NP) approximation can be used to provide a rel- 
ative risk-measure function, h. For a moderately positively skewed ran- 
dom variable, X, the NP approximation essentially states that when stan- 
dardized, X can be approximated in the short version as 

1 
.¢ ~ r + ~ ~ , ( r  ~ - 1) 

or in the long version as 

1 2 1 1 
) ~  11+ ~ , ( Y  - 1) + ~ " / 2 ( V  3 -  3Y) - ~ 1 2 ( 2 r  3 -  5}1) 

where Y-N(0,1) and .~=(X-p.)/cr. In view of the definition of~' ,  one 
would expect its variance to be 1; however, VarD(]=~Np where 

tI' ~Ne = 1 2 (21) ( , ) , ]  
1 + ~-~ T~ - i-O ~2 + --2400 T~ long. 

The fact that Var[X]>-I suggests the NP approximation is adjusting the 
variance of X to accommodate the skewness and kurtosis of X. This gives 
the adjusted variance of X as 

Adjusted Var[X] = (~2~Np, 

which suggests a new risk-measure function, called the NP risk-measure 
function, given by 

RNp[X] = crZ ~Ne. (22) 

I know of no other risk-measure function in the actuarial literature or the 
finance literature that explicitly uses the first three or four cumulants. 
This risk measure also may be useful in determining the risk in financial 
securities. 
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Theorem 4: For any X@fU,  

RNp[X ] = Cf 2 ( 
\ 

1 + -~  ~i (23) 

is a risk-measure function satisfying properties (2.1) to (2.5). 

Proof." It is obvious that these properties, except perhaps the sub- 
additivity property, (2.3), must hold. To prove that the subadditivity 
property, (2.3), holds, proceed as follows: Recall Equation (14). Con- 
sider two independent risks X~, X2@f~ +. Assume Xi has j-th cumulant 
Ku; then subadditivity implies 

1t[13 ~ 

(K~2+K22) l +  18(K,2+K22)3J ~-K~2 1 +  18K32]+K22 

2 2 2 

\K I2  *'I" K22 / \K I2  / \K22 / 

Let Ki3=XiKi2 and Fi=Ki2/(KI2-~K22)'~ then subadditivity implies 

( r l x  ! + r2x2) 2 ~_ x 2 + x2 2 

where r~, r2->0 and r~+r2 = 1. Since y=x  2 is a convex function of x, then 
from Hardy et al. [29, chapter 3.5], it follows that 

(rlx~ + rzxz) 2 <-- r~x 2 + r ~  

<-d + xL 

so subadditivity holds. [] 

The long version in Equation (21) does not generally produce a risk- 
measure that satisfies the subadditivity property, (2.3). However, if the 
risks belong to a homogeneous portfolio (that is, one consisting of i.i.d. 
random variables) or a portfolio that consists of risks that are linear trans- 
formations of i.i.d, random variables, the long version becomes subad- 
ditive. Even though the long version often improves the approximation, 
Beard et al. [3, section 3.1 l(g), p. 116] caution against its use because, 
in the right tail of Fx(x), the long version may produce worse results. 
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Suggestion 2: In general  situations X may be negatively skewed.  In such 
cases, assume both 3"t and 3"l are zero in Rue. This can be used as a 
conservative measure o f  its level o f  risk. 

The obvious generalization of the variance principle is the correspond- 
ing NP-premium calculation principle given by 

HNp[X] = Ix + 134~ 2 1 + - - 3 '  (24) 
18 

where 134>0 is a constant to be determined by the insurer. This premium 
is subadditive but is not linearly consistent. The "standard deviation" 
version of the NP-premium satisfies the linear consistent property, (3.3b), 
and is given by 

,/1 
Hue[X] = I • + 135cr 1 + ]-~ 3'[ (25) 

where [35>0 is a constant to be determined by the insurer. 

5. AN EXAMPLE 

To demonstrate how the risk-based approach can be used, the follow- 
ing example is provided. 

Consider a $100,000 whole life insurance policy issued to a life age 
30 with level gross premiums paid for life and death benefit paid at end 
of year of death. For simplicity, assume the following: 
• Mortality follows Makeham's  law with 

10001x~ = 0.7 + 0.05(10°°4) ~ 

for x=0 ,  1 . . . . .  This is the same mortality assumption used by Bow- 
ers et al. in their text Actuarial Mathematics .  

• Interest is i=0 .06  and d = i / ( l + i ) .  
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• Expenses (based on table 14.8 in A c t u a r i a l  M a t h e m a t i c s )  are as fol- 
lows 

Expenses First Year Renewal 

Percentage of  premium 87% 10% 
Per $1000 of  benefits $5 $1 
Per policy $46 $6 

• Settlement expenses: $18 plus $0.10 per $1000. 
• Data: 

/i3o-- 15.85612 

1000A3o = 102.4835 

1000 × 2A3o = 25.3113 

1000 × 3A3o = 11.9269 

3A~o - 3(a3o)a3o + 2(A3o) 3 

"Yl = [Za3 ° _ (A3o)213/2 

= 3.4948 

• Find: (1) the net level premium P and 
(2) the gross premium G using: 

(a) the equivalence principle 
(b) the standard deviation principle of  Equation (12) 
(c) the normal power-standard deviation principle of  

Equation (25). 
(3) Repeat (2) using a group of  n identical and independent 

lives age 30. 
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Solut ion:  
1. Clearly 

P = 100,000A3o///3o = 646.34. 

2. Let X and Y be the present values of  claims plus expenses and gross 
premiums,  respectively. 

X = 440 + 100,028v K+l + 0 .77G + (0 .1G + 106)//x+~ (26) 

Y = Gax+~ (27) 

where K is the curtate future lifetime of  (30). The key is Equation 
(5). 
(a) Solve the equation E[X]=E[Y], that is, 0 ~ 0  in Equation (1). 

This leads to 

440 + 100,028A3o + 106//3o 
G = = 916.41. 

0.9//30 - 0.77 

(b) Solve the equation 

E[X] + [32tr[X] = E[Y] + [32cr[Y]. 

But 

E[X] = 440 + 100,028A3o + 0 .77G + (0.1G + 106)//3o 

= 12,371.97 + 2 .35561G 

~r[X] = [ lOO'O28 - (O'lG +106)] "~/2asO - 

= 11,944.51 - 0 .21499G 

E[Y] = G//3o 

= 15.85612G 

G 
O"[]I] = "~ ~v/2A3 'o-  A32o 

= 2. 14985G 

(28) 
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Solving Equation (28) yields 

(i+0"96545132 ~ G = 916.41 
+ 0.17517[32/ 

Recall that 916.41 was the gross premium using the equivalence 
principle. The insurer must determine the appropriate level of 
132. 

(c) From Equation (25), solve the equation 

E[X] + f3,cr[X] ~1 +lye[X] 

= E[Y} + 135~r[Y] + --y~[Y]. (29) 
18 

Note that if W and Z are any pair of random variables, a and b 
are known constants and Z=a+bW, then their coefficients of 
skewness are connected as follows: 

%[Z] = if b = 0 

I - y z [ W ]  if b < 0  

In other words, the skewness is invariant under positive linear 
transformations and changes signs under negative linear trans- 
formations. Assuming that 

[ 1 0 0 ' 0 2 8 - ( 0 " 1 G +  106)] > 0 ' d  

which will hold true in practice, it follows that 

~/I[X] = 3.394794 = -Yt[Y]. 



. 
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Since Y is negatively skewed, suggestion 2 implies that "YI[Y] 
should be set to zero. This leads to the equation 

E[X] + ~5~r[X] 1 + u ~[X] = E[t'] + 135~[g], (30) 
18 

which has the solution 

G = 916.41 . 
+ 0.17987135/ 

The insurer must determine the appropriate level of 13s. 
Let X; and Y~ be the present values of claims plus expenses and gross 
premiums, respectively, for the i-th life, i= 1, 2 . . . . .  n. 

X; = 440 + 100,028v x~÷l + 0.77G + (0.1G + 106)//x,+~ 

Yi = G~ir,+~ 

and 

It follows that 

X = ~ X, (31) 
i ~ l  

Y = ~ Yi- (32) 
i = l  

 /l[Xl] 
= 

because the Xi's are i.i.d. It can easily be proved that 

G = 916.41 l 
1 0.96545 ) 

0.17517 

(33) 
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under the standard deviation case, and 

G = 916.41 

0.67853 / 
1 + 0.96545135 i l  + n 

i 0.67853 " 
I + 0.15924135 1 + 0. I × 

tl 

under the standard deviation-normal power case. 

6. COMMENTS 

The following are interesting areas for actuaries to explore. 
1. The development of an axiomatic approach (similar to Fishbum's) 

to study risk-measure functions would be helpful. It is hoped that 
properties (2.1) to (2.5) can be used as a part of this axiomatic ap- 
proach. A key axiom will be that of mixing: if X~ and X2 are in f~ 
and 

;XI with probability Pl; 
X [ X2 with probability P2; 

with p~+p2=l,  how should R[X] be defined'? 
If X and Y are in f~, can we define R[X] as 

R[X] = E[R[X[Y]] + RIE[X[Y]]? (34) 

I think that only the variance satisfies this equation. I would wel- 
come other suggestions for dealing with mixtures. Note, using 

R [ X ]  = RtR[XIY]], (35) 

which is analogous to E[X]=E[E[XIY]], will not be useful because 
if X is discrete, then R[X]=0. 

2. In developing the axiomatic approach, the R[.] induces an order of 
risks. It would be interesting to determine whether the normal power 
risk measure results in the same definition of increasing risk as given 
by Rothschild and Stiglitz [49]. Rothschild and Stiglitz attempt to 
answer the question: When is a random variable Y "more variable" 
than a random variable X? They give four plausible answers: (1) Y 
is equal to X plus noise; (2) every risk averter prefers X to Y; (3) Y 
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has more weight in the tails than X; and (4) Y has a greater variance 
than X. They prove that the first three are equivalent but that they 
are not equivalent to the fourth. 

3. I am not sure whether p(r, a) [from Equation (7)] should be in- 
creasing in a or should be independent of  a for r>0 .  Should the 
properties of p(r, a) be listed as a part of  the properties of  R? Since 
a can be viewed as an inflation factor, should it affect the inherent 
risks involved? Do the comments on purchasing power parity, im- 
mediately after property (3.3b), apply? For example,  suppose the 
prices o f  all items (goods, services and the factors of  production) in 
an economy were inflated by the same factor, say, a. Will this affect 
the risk in X as it changes to aX? Suppose instead, that only one 
risk, say, X,, was inflated; will the risk change as X, becomes aXi? 
These questions may lead to an analog of  the CAPM analysis used 
in the theory of  finance. For example,  one can think of  the en- 
tire market of  insurable risks as f~, and rm=R[f~] as the market 
risk. This may lead to the notions of  "the market risk" (associated 
with the economy as a whole) and the "relative risk," which is the 
proportion of  X's  risk R[X] in r,,. Answers to these questions are 
welcomed. 

4. Further research into the NP-risk measure is needed, especially from 
the point of  view of  portfolio analysis. 

I hope this paper will stimulate discussions on the foundations of  the 
nature of  insurance risk. 
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DISCUSSION OF PRECEDING PAPER 

JACQUES F. CARRIERE: 

I enjoyed reading Dr. Ramsay's article. The purpose of this discussion 
is to show that utility functions can be used to create risk measures. The 
article suggests that a general risk measure should be a function of the 
cumulants K2, K3 and K4, and as an example the article presents a risk- 
measure of the form R(X)=K2+to3K~+to4K~. I claim that prices that are 
calculated according to the utility principle are always functions of K2, 
K3 and K4, if they exist. Let me demonstrate this claim with the expo- 
nential utility function, u(x)=-exp(-'yx). 

Let to denote the insurer's initial wealth and let P denote the smallest 
premium that the insurer will accept for a risk with a loss random vari- 
able, X. The value P is found by solving the identity u(to)=E{u(to+P-X)}. 
For the exponential utility, this means that 

e = loge{e(e,X)  = 
i =  I 

where K, is the i-th cumulant of X. Therefore, 

P ~ K~ + K2"y/2 + K3~2/6 + K4"y3/24 = I • + ~Ru(X), 

where ix=g1, 13=~//2 and Ru(X)=K2+K3~I/3+K4~I2/12. Note that Ru(X) is 
a b simply a special case of the risk m e a s u r e  K2"I-to3K3"q-to4.K 4, 

In general, the utility principle implies that the premium P(Klu) is al- 
ways a function of the cumulants K={K~, K2, K3, ...} and that the func- 
tional relationship between the cumulants is determined by the utility 
function, u. A weakness of the utility approach is finding an explicit 
expression for the premium function P(Klu). An advantage of using a 
risk-measure approach is the elimination of the thorny problems of (1) 
choosing an appropriate utility function and (2) calculating P(u, K). But 
the axiomatic development of the risk-measure approach is much weaker 
than that of utility theory. In conclusion, I think that the risk-measure 
approach would benefit tremendously by drawing on the strengths of the 
utility approach. 

337 



338 TRANSACTIONS, VOLUME XLV 

CHARLES S. FUHRER: 

Dr. Ramsay has made an important contribution to the way actuaries 
think about risk and premium loads. At the Colorado Springs 1991 meet- 
ing [2], I used a different method of loading premiums for group health 
insurance that, like the author's method, was based on a risk measure. 
The risk measure I used was based on ruin theory and was suggested as 
a measure of required surplus by Brender [ 1 ] and others. I present this 
measure, my premium loads based on it, and discuss whether they meet 
the author's principles. 

My measure of risk is defined as R(X)=inf{r>-OIF(v,+r)>(x } for a fixed 
constant 0<et< 1. Usually c~=0.99 or 0.98; that is, R(X) is the minimum 
amount of surplus that avoids ruin with a probability of eL. Unlike the 
author's measures of risk, it can be expressed in monetary units. Now 
let us see if this R is a risk measure function as defined by the author 
in Definition 4. R = 0  for a riskless random variable. However, R can 
equal 0 for a risk that is not riskless. Thus Property (2.1), risklessness, 
is only half satisfied. This R considers low-risk contracts as riskless. 
Property (2.2), non-negativity, is satisfied by definition. I was somewhat 
surprised to see that R does not always satisfy Property (2.3), subaddi- 
tivity. I have not determined the minimum sufficient conditions for sub- 
additivity. I have shown that R is subadditive if the two random variables 
are continuous and have the same distribution except for location and 
scale and if the distribution is reproductive with respect to a positive 
power of the scale parameter. These conditions are satisfied, for ex- 
ample, by the normal and the gamma distributions. The function R also 
satisfies Property (2.4), consistency, and Property (2.5), objectivity. 

The risk loading function is O=cv~Rr/p~r, where Rr and V-r are deter- 
mined from a portfolio of similar risks and c is a constant. I suggest that 
c=(t+r-i)/(1 +t+r-i), where t is the trend of premiums, r is the return- 
to-stockholders rate, and i is the interest rate. This is derived from as- 
suming that the loading plus interest on surplus needs to be large enough 
to provide the stockholder's return on surplus and to allow for surplus 
growth at the trend rate of premiums. Another assumption is that the 
loading plus required surplus needs to be equal to an insurance contract's 
share of the risk R. Let us see whether this loading function satisfies the 
properties of premium calculation stated by the author in Section 3.1. 
Property (3. l) is satisfied since R->0. Property (3.2) is satisfied as long 
as the risk is as risky as the portfolio used. Property (3.3a) is satisfied 
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if the constant is added to all the risks in the portfolio. Property (3.3b) 
is satisfied. Property (3.4a) is satisfied if the portfolio is not assumed to 
change. If the portfolio is changed, then (3.4b) is satisfied whenever 
(2.3) is satisfied. Property (3.5) is not satisfied. 

1 believe that most insurance company actuaries are using R above as 
a measure of risk for required surplus levels. Most are also using a risk- 
loading function that is proportional to this required surplus. 
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JOSl~ GARRIDO: 
It is well-known that the variance is a poor measure of risk for heavy- 

tailed distributions. The originality in Dr. Ramsay's work lies in his ax- 
iomatic approach to risk measurement and its possibilities for estimating 
the underpricing that results from the use of variance-type premium prin- 
ciples with positively skewed risks. The paper raises many issues on the 
nature of risk and a number of interesting questions that the author de- 
liberately leaves unanswered. My comment focuses on the scale invar- 
lance property of  the risk measure R(X) and the related linear consistency 
of the premium principle H(X). I hope these thoughts can help answer 
one such question. 

Dr. Ramsay illustrates well that "to prevent riskless arbitrage in 
an international insurance market," linear consistency of premiums 
II(aX+c)=alI(X)+c must be imposed. It avoids situations as in his ex- 
ample of a risk in American dollars ($U.S.) being priced differently than 
if the same risk had been underwritten in Canadian dollars (SCAN) by 
the same insurer. However, he does not clearly discuss how this differs 
from a scale-invariance requirement on the risk measure R(X). The prob- 
lem is subtle and best understood through simple examples. 

Consider the above currency problem. Is it reasonable that the measure 
of risk R(X) be dependent of the currency in which the risk is measured? 
If R(X) is an index of the riskiness inherent to X, should it be affected 
by the units of X, be it $U.S., SCAN or Swiss francs? The answer seems 
to be, "no," if based solely on intuition. This implies that R(aX)=R(X), 
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for any constant a and positive risk X. Together with property (2.4) of 
the paper, it means that R must be scale and location invariant; that is, 
R(aX+c)=R(X). None of the usual, nor the new risk measures discussed 
in the paper, is invariant under both scale and location transforms! Per- 
haps this indicates that the requirement is not appropriate for risk mea- 
sures; in some way it must be related to the linear consistency require- 
ment Fl(aX+c)=alI(X)+c imposed on premiums. It is this relation that 
needs to be clarified before the theory can be reconciled with our intuition. 

Additional hindsight on the desirable properties of R(X) can be gained 
by looking at the partial ordering it induces on risks. The value of R(X) 
is especially informative when it is compared with that of another risk. 
It then defines an order relation; we will say that X is more risky than 
Y if R(X)>R(Y). Pushing this reasoning further, we could say that an 
"absolute" risk measure like R(X) is informative only when given in 
reference to some standard like (1) a reference scale (for example, the 
minimum and/or maximum R(X) value), or (2) the "absolute" risk mea- 
sure R(Y) of another risk Y. The simple currency problem above with 
its dependence of R(X) on the currency units provides another example 
of a risk measure relative to a scale (here the $U.S.). 

From this discussion, it seems clear that two different concepts of a 
risk measure need to be distinguished: (1) an "absolute" risk measure, 
R(X), necessarily location-invariant, as in Ramsay's axioms, and (2) a 
"relative" risk measure, say RR(X), defined through R(X), that gives the 
riskiness of X relative to a reference scale (or to that of another risk). 
Intuitively it is the latter that should be scale-invariant, not R(X). This 
probably adds other necessary requirements on R(X). To identify them, 
the idea of a "relative" risk measure first needs to be formalized. 

Let us define, as an example, a relative measure of risk as the ratio 
of R(X) to the premium II(X), 

R(X) 
RR(X) - 

II(X) 

This is similar to a well-known relative risk index, the loss ratio. Ton- 
sider a risk X, with absolute risk measure R(X) and charged premium 
II(X). Then the ratio 

x 

rl(X) 
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is also a risk and its expected value, the expected loss ratio, 

E(X) 

ll(X)' 

is a relative index of risk. Note that it is not a risk measure in Ramsay's 
sense because it does not satisfy Properties 2 .1-2.5  of the paper. It is 
easy to show that proposed relative risk measure satisfies Properties 2 .1 -  
2.3 and 2.5 but not 2.4, and hence is not a true risk measure either. It 
is, however, a simple generalization of the expected loss ratio, where 
the numerator can be any risk measure R(X). Scale invariance of RR(X) 
means that 

R(aX) 
RR(aX) - - -  = RR(X), 

all(X) 

which, in turn, implies that R(aX)=aR(X). This is precisely the relation 
we were after; intuition suggested scale-invariance for R(X), but it lacked 
consistency with the other axioms of Ramsay. This analysis shows that 
linearity for R(X) [and the resulting scale-invariance of the relative risk 
measure RR(X)] is the only possible requirement that can agree with the 
linear consistency of premiums. 

This conclusion is based on a particular definition of a relative risk 
measure. We conjecture that the above linearity property of the absolute 
risk measure R(aX)=aR(X) is the appropriate scale requirement with any 
relative risk measure. 

S. DAVID PROMISLOW: 

Dr. Ramsay is to be congratulated for a thought-provoking paper. Par- 
ticularly interesting is the axiomatic approach to measuring risk. In my 
discussion I comment on this aspect of the paper and attempt to answer 
or partially answer some of the questions that Dr. Ramsay has posed. 

The Consis tency  Proper t y  

The axioms that one chooses for a risk-measure function must nec- 
essarily reflect one's attitude towards the meaning of risk. The paper 
brings out the fact that there is no universal viewpoint. There appear to 
be two main ingredients to risk (which admittedly are somewhat linked). 
One is the possibility of something "bad happening," to quote the work 
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of Fishburn referenced in the paper. The other is the presence of uncer- 
tainty. Dr. Ramsay's so-called consistency property (I am not sure if the 
name is accurate), (2.4), gives much greater emphasis to the latter. Es- 
sentially it says that the amount of risk in a random variable does not 
depend on its mean. One can look upon it in the following way. Instead 
of considering the set of non-negative risks, denoted by 1) in the paper, 
let us consider 

1)0 = {X: X is a random variable with mean 0}. 

Property (2.4) says that we need only define our risk function R on 1)0. 
We can then extend it to all random variables (not just non-negative 
ones) by simply taking R(X)=R[X-E(X)]. 

This property seems appropriate for insurance purposes. After all, the 
insurer charges a net premium of E(X) for the coverage and so is really 
faced with the mean zero random variable, X-E(X), to form the basis 
for the risk charge. It would not be an appropriate axiom for the case in 
which the predominant viewpoint is on possibility of loss. This occurs 
in much of financial decision-making. Consider a situation in which 
investors have a 50-50 chance of either doubling their present capital or 
losing it all. Most people would consider this to be much more risky 
than a situation in which there is a 50-50 chance of either doubling pres- 
ent capital or quadrupling it. To put this another way, the issue in fi- 
nancial decision-making is usually not just to measure risk alone, but to 
decide on the trade-off between risk and expected return. 

An example of a function used to measure risk, which is highly mean 
dependent and therefore violates the consistency property, is the adjust- 
ment coefficient of ruin theory; see Bowers et al. [1, Chapter 12]. This 
is as it should be, since one is not concerned here with uncertainly, but 
rather with the possibility of "something bad," namely, ruin. (Note that 
this moves in the other direction to Dr. Ramsay's functions as it assigns 
higher value to the safer possibilities.) 

Partial versus Complete Orderings 

The paper comments on comparing risk as defined by a risk measure 
with the Rothschild-Stiglitz definition (which is perhaps better known as 
second-order stochastic dominance). Of course, these can never result 
in exactly the same ordering. Rothschild-Stiglitz results in a partial or- 
der, as do most of the commonly used methods for ordering risks. In 
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general, a given pair of random variables will not be comparable. This 
reflects the viewpoint that assessment of risk depends on individual pref- 
erences. If two individuals are faced with choices X and Y, it may well 
be that one finds alternative X more risky, while the other thinks so of 
alternative Y. This is a well-accepted principle, notwithstanding the fact, 
indicated in the paper, that various writers have questioned the axioms 
of the classical VNM utility theory. They are not questioning the exis- 
tence of individual preferences, but rather the particular methodology 
used for measuring such preference. (There is in fact much active re- 
search involved in modifying utility theory, so as to more accurately 
represent the actual decision-making principles that people seem to use; 
see the work by Schmeidler [3] as an example.) I therefore find the words 
in the title of the paper, "without using utility theory," as somewhat 
inaccurate. The use of  a real valued function to measure risk necessarily 
imposes a completeness on the ordering. Given two random variables, 
X and Y, we will be able to unequivocally state that one is more risky 
than the other or else that they are both of equal risk. An insurer adopting 
a risk-measure function is therefore automatically implying certain pref- 
erences and is in effect using a utility theory of  some sort. 

The NP Ordering 

We can pose a one-sided version of  the ordering question introduced 
above. Given a particular partial order -< on a collection of random vari- 
ables and a risk-measure function R, is it true that X<-Y implies that 
R(X)<-R(Y)? Given two random variables of equal means, X<-Y in the 
Rothschild-Stiglitz sense (that is, X is less risky than Y), if and only if 
E[g(X)]<E[g(Y)] for all convex g. Therefore, taking this partial order, 
the answer to our question is in the affirmative for R(X)=cr2(X). How- 
ever, x 3 is not convex, and it turns out that the short form of the NP risk 
function does not respect the Rothschild-Stiglitz ordering. To see this, 
consider the following two sequences of  random variables 

xn: l 
1 

2n with probability ~n 

n - 1  
n with probability ~ Y, = 

n 

1 
0 with probability 2--n 

1 
2n with probability ~n 

n - 1  
n with probability 2n 

I 
n - 1 with probability 
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The relevant facts are 

E(X,,) = E(Y,,) = n 

n - I  n 2 - 1  
or2(Xn) = rl,  o'2(Yn) = , k 3 ( X n )  = O, k 3 ( Y n )  - 

2 2 

It is not hard to verify that Y, is less risky than X, in the Rothschild- 
Stiglitz sense; see, for example, [2, Theorem 1.1]. On the other hand, 
the condition that RNp(X,)<-R~p(Y,,) fails dramatically. Noting that y~(Y~) 
is O(Vn),  we see that 

RNp(Y~) 
~ ~ as n--+ o% 

R•e(X,) 

using the "short form" of RNe. 
I am not sure what happens with the long form of the formula. In fact, 

I am puzzled by the fact that the fourth cumulant is used at all. It was 
pointed out in the paper that the third cumulant can be negative, but this 
is also true of the fourth. Dr. Ramsay makes a case for excluding risks 
with negative skewness, but I cannot see any possible reason for ex- 
cluding risks with negative kurtosis. 

M i x t u r e s  

Dr. Ramsay wonders about a proper axiom to cover mixing. One has 
to be careful here, as it was precisely the fact that individuals often make 
what appear to inconsistent choices regarding mixtures that that led to 
the re-examination of classical utility theory. Nonetheless, one natural 
axiom that comes to mind is simply a weaker version of Requirement 
(34). To state this in the two component case, if 

{X~ with probability p 

X = X2 with probability 1 - p 

then 

R(X)  >-- pR(X~) + (1 - p) R(X2). 

We could also require the obvious extension to countable or more gen- 
eral mixing distributions. This axiom provides an interesting counterpart 
to the subadditivity property (2.3). The motivating idea is simply that 
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the measure of risk in the mixture is at least as much as the correspond- 
ing mixture of the respective risk measures and possibly more due to the 
uncertainly arising from the fact that we don't know which of the random 
variables, Xj or X2, will occur. 

A stronger axiom arises if we wish to postulate that this additional 
uncertainty depends only on the means of Xl and Xz. This seems rea- 
sonable because the internal uncertainty has already been accounted for. 
If so (switching to the more general formulation used by Dr. Ramsay), 
we could require that for all X and Y, R(X)-E[R(XIY)  ] is some non- 
negative function of R[E(XIY)]. In the case of (34), the function is sim- 
ply the identity, but other functions could be possibly be pertinent. 

Other  A x i o m s  

Here are a few suggestions for other features that we may want of a 
risk-measure function. We could introduce these directly as axioms or 
provide other axioms from which they could be deduced. Some of these 
follow from familiar criteria that have been used for ordering risks. A 
major reference for this topic is the book by Stoyan [4]; see particularly 
definition I. 1. I, which motivated the following ideas. 
(1) One natural requirement is that comparison of risk should be in- 

dependent of the units involved. We would want then that 

R(X) < R(Y) implies that R(cX) <- R(cY) 

for all c>0.  
(2) We may believe that adding an independent summand will not af- 

fect relative risk. To state this precisely, suppose that X and Z are 
independent and that Y and Z are independent. Then we will require 
that 

R(X) < R(Y) implies that R(X + Z) <- R(Y + Z). 

(3) In most axiomatic schemes, some sort of continuity property is re- 
quired to obtain suitable representation theorems. A natural one here 
is simply to postulate that for a sequence, F~, of distribution func- 
tions that converge weakly to a distribution function, F, 

R(F,) converges to R(F). 

[The objectivity property, (2.5), justifies the notation used here.] 



346 TRANSACTIONS, VOLUME XLV 

REFERENCES 

1. BOWERS, N.L., GERBER, H.U., HICKMAN, J.O., JONES, D.A, AND NEsm~t'r, C.J. 
Actuarial Mathematics. Itasca II.: Society of Actuaries, 1986. 

2. PROMISLOW, S.D. "Comparing Risks." In Actuarial Science, edited by I.B. MAC- 
NElL and G.J. UMPHREY. New York, N.Y.: D. Reidel Publishing Co., 1987. 

3. SCHMEIDLER, D. "Subjective Probability and Expected Utility without Additiv- 
ity," Econometrica 57 (1989): 571-87. 

4. STOYAN, D. Comparison Methods for Queues and Other Stochastic Models. New 
York, N.Y.: Wiley and Sons, 1983. 

ELIAS S.W. SHIU: 

Dr. Ramsay is to be thanked for cautioning us in applying the expected 
utility theory and for proposing alternative risk measures. Recently,  an- 
other actuarial paper, by Clarkson [5], also voices objection to the ex- 
pected utility maxim. However ,  this field of  study is still being actively 
researched, as evidenced by the number of  articles under the heading 
"Choice under Risk" in the book of classified bibliography [9]. An ex- 
cellent source on the development of  utility theory is [6], a collection of  
articles on utility and probability from the four volumes of The New 
Palgrave: A Dictionary of  Economics. 

Perhaps the most eloquent introduction to the expected utility theory 
is Raiffa 's  book [ 10]. Raiffa also discusses the Allais paradox mentioned 
by Dr. Ramsay. The following is from pages 127 and 128 of  Raiffa 's  
book [10]. 

We have considered the problem faced by a person who on most 
occasions makes decisions intuitively and more or less inconsistently, 
but who on some one particular occasion wishes to make one partic- 
ular decision in a reasoned, deliberate manner. We have assumed he 
starts by structuring the anatomy of his problem in a decision-flow 
diagram that depicts the chronological interaction between his decision 
alternatives at any stage and the information he obtains in the dynamic 
evolution of his problem. We have shown that if the decision maker 
adopts two principles of consistent behavior, transitivity of prefer- 
ences and substitutability of indifferent consequences in a lottery, then 
he is pretty well fenced in . . . .  

Our conclusions represent the foundations of the so-called ~Bayes- 
ian" position. Nowhere in our analysis did we refer to the behavior 
of an "idealized, rational, economic man" who always acts in a per- 
fectly consistent manner as if somehow there were embedded in his 
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very soul coherent utility and probability evaluations for all eventu- 
alities. Rather, our approach has been constructive: We have pre- 
scribed the way in which an individual who is faced with a problem 
of choice under uncertainty should go about choosing an act that is 
consistent with his basic judgments and preferences. He must con- 
sciously police the consistency of his subjective inputs and calculate 
their implications for action. These lectures do not present a descrip- 
tive theory of actual behavior, nor a positive theory of behavior for a 
fictitious superintelligent being, but rather present an approach de- 
signed to help us erring folk to reason and act a bit more systemati- 
c a l l y - w h e n  we choose to do so! 

My next comment  is motivated by Section 4.2,  in which Dr. Ramsay  
points out that, "[f]or independent risks the cumulants are additive." Borch 
[3] wrote that the cumulants  were introduced by Thiele at the end of  the 
last century "just because they are additive for independent variables."  
That is, 

II[x] := ~ o~jKj[x] (l) 
j=l 

satisfies the additive Formula (3.4a). By citing a theorem of Luckas [8], 
Botch ([1], [3]) also pointed out the remarkable  fact that any premium 
formula,  additive for independent risks, is given by Equation (1). 

I would like to conclude this discussion by quoting the last paragraph 
in the first section of  [7]: 

The philosophy is not to claim that economical agents have a utility 
function. Instead, we deliberately assume that they have a utility func- 
tion, and discuss the resulting conclusions, which often could not be 
obtained otherwise. Thus a utility function plays the role of a deus 
from my china (ex machina)! 
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(AUTHOR'S REVIEW OF DISCUSSIONS) 

COLIN M. RAMSAY: 

I thank Mr. Fuhrer and Drs. Carriere, Garrido, Promislow, and Shiu 
for their insightful comments. I respond to each discussant's remarks 
separately and in alphabetical order. 

My own aversion to expected utility theory not withstanding, I agree 
with Dr. Carriere's assertion that the axiomatic development of the risk- 
measure approach (as it now stands) is weaker than that of utility theory 
and that it would benefit from drawing on the strengths of utility theory. 
However, he should bear in mind that this theory is still in its incipient 
stages, so there still is a lot of work to be done. For example, the 
discussions by Drs. Garrido and Promislow represent a step in that 
direction. 

Mr. Fuhrer's use of R(X)  as a measure of risk is more in line with 
Fishburn's [22] approach; that is, it deals with the possibility of some- 
thing "bad" happening, such as ruin. So it is not surprising that R[X] 
may be zero when a nondegenerate random variable is "safe." 

I was very pleased to receive Dr. Garrido's discussion. About five or 
six years ago, Dr. Garrido had invited me to give a talk at Concordia 
University. Though I had only just started thinking about the problems 
associated with loading premiums for risk and measuring risk, I pre- 
sented a (very early) version of this paper. The discussions following 
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that initial presentation have influenced my thinking about the nature of 
risk. Dr. Garrido's current discussion deals with one of the central di- 
lemmas that I faced when developing this axiomatic approach: How must 
we define R[aX]? I agree with him that, intuitively, we should define 
R[aX]=aR[X]. His supporting arguments are persuasive. 

Dr. Promislow's discussion deals directly with some of the issues raised 
at the end of the paper. In addition, he has explored the mathematical 
underpinnings of some of the axioms. I was delighted to see his proof 
that the short form of the NP measure was not consistent with the Roths- 
child and Stiglitz ordering. Dr. Promislow's suggestions on mixtures and 
his other axioms point us in the direction that the axiomatic development 
of the risk-measure function should take. 

I thank Dr. Shiu for providing me with additional references on utility 
theory and for bringing to my attention the result in his Equation (1). 
(This may be the result that Dr. Carriere was referring to.) 

In closing, I hope that these discussants will continue to be interested 
in the development of the axiomatic approach to risk-measure functions 
and to make contributions to the literature. 




