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Autoencoders for 
Anomaly Detection
By Je� Heaton

In data science, anomaly detection is the identification of 
unusual items, events or observations that raise suspicions by 
differing significantly from previously seen data. Typically, the 

anomalous items will translate to some kind of problem such 
as bank fraud, a structural defect, medical problems or errors 
in a text. Anomalies are also referred to as outliers, novelties, 
noise, deviations and exceptions. Anomaly detection can also be 
particularly useful to determine how suited a model trained on 
a particular dataset is at handling a new dataset. This suitability 
detection is the focus of this article.

INTRODUCTION TO AUTOENCODERS
An autoencoder is a type of neural network that has the same 
number of input neurons as output neurons. The number of 
input/output neurons you have corresponds to the size of your 
feature vector after the data source has been encoded. For 
instance, you might have a single input for continuous and a 
set of dummy variables for each of your categorical inputs. The 
autoencoder is trained in a supervised fashion; however, the x 
(inputs) and y (targets) are the same. It is also important to note 
that the autoencoder is using the ability of a neural network to 
perform a multi-output regression. The neural network is learn-
ing to directly copy the inputs to the outputs. This structure is 
seen in Figure 1.

At first glance the autoencoder may not seem that useful. We 
are training a neural network to simply pass the input through 
to the output. However, there is always at least one hidden layer 
with fewer neurons than the input and output layers. These 
hidden layers teach the neural network to compress the input 
data. You can think of the connections between the input and 
hidden layers as learning to be a data decompressor and the 
connections between the hidden and output layers as learning 
to be a decompressor. It is common to separate the autoencoder 
into two neural networks. This way the hidden layer becomes 
the output layer for the compressor.

Extracting the output from the hidden layer can be thought of as 
a form of dimension reduction, similar to principal component 
analysis (PCA) or t-distributed Stochastic Neighbor Embedding 

(t-SNE). Because the neural network shown in Figure 1 contains 
only two hidden neurons, it would reduce the dimensions from 
the five input neurons down to two dimensions.

Despite the fact that an autoencoder is trained like a normal 
supervised neural network, usually using some variant of back-
propagation, this training process is considered unsupervised. 
This is because no one value from the dataset is the target—all 
of the values from the dataset are the target value. In this regard, 
the autoencoder training is unsupervised in the same sense as 
PCA or t-SNE are not provided with a target. However, unlike 
PCA or t-SNE, the autoencoding neural network also includes 
a decoder. T-SNE and PCA both lack a well-defined means of 
returning to the high-dimension input that they processed. In 
this regard, an autoencoder shares more with a compression 
algorithm, such as PKZIP, than a dimensionality reduction 
algorithm.

You can essentially think of the training process of the auto-
encoder as creating a compression algorithm optimized to the 
data you provided. Such domain-specific compression-decom-
pression (codec) algorithms are not uncommon. Portable Net 
Graphics (PNG) format is a lossless codec for image compres-
sion. The Joint Photographic Experts Group (JPEG) format is a 
lossy codec for image compression. A lossy codec will lose some 
of the original detail from the source data; a lossless codec main-
tains absolute data integrity. For images and audio, absolute data 
integrity is not always required.

This specialization among codecs is what allows an autoencoder 
to be used for anomaly detection. Early cellphone compression 
algorithms were designed to compress human voice as effec-
tively as possible and make the best utilization of the very slow 

Figure 1 
Autoencoder Structure
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cellular networks. When non-voice sounds, such as music, were 
compressed with these early voice-centric codecs, the music 
would clearly sound distorted. These early cell phones were 
anomaly detectors. They produced very little distortion among 
the human voice data that they were designed for and very high 
distortion on all other sounds. The more noise introduced into 
the signal, the less similar that signal was to the original type of 
data the codec was designed for. Essentially, the effectiveness of 
the specialized lossy codec for a particular dataset shows how 
much of an anomaly the new dataset is when compared to the 
original dataset the codec was designed for.

Now consider an autoencoder. We create an anomaly detector 
by training this autoencoder on data that we consider “normal.” 
Overfitting is not that big of a concern, since this is effectively 
an unsupervised learning; however, a k-fold or similar scheme 
might be used for early stopping of the neural network training 
once the out of sample error ceases to improve.

INTRODUCTION TO THE KDD-99 DATASET
The KDD-99 dataset is famous in the security field and almost 
a “hello world” of intrusion detection systems in machine 
learning. This dataset was used for the Third International 
Knowledge Discovery and Data Mining Tools Competition, 
held in conjunction with the Fifth International Conference on 
Knowledge Discovery and Data Mining. According to the KDD 
archive, “The competition task was to build a network intrusion 
detector, a predictive model capable of distinguishing between 
‘bad’ connections, called intrusions or attacks, and ‘good’ nor-
mal connections. This database contains a standard set of data to 
be audited, which includes a wide variety of intrusions simulated 
in a military network environment.”1 This dataset is commonly 
used for computer security and anomaly detection examples. 
This is the dataset that I used for this example on autoencoder 
anomaly detection.

The KDD-99 dataset includes a target that identifies the type of 
attack or if the transaction was normal. We will not directly use 
this target in the training. Rather, we will separate the data into 
normal and attack rows. We will train the neural network on 
the normal rows. We will then compare the difference between 
the root mean square error (RMSE) for normal vs. error. This 
RMSE is the difference between the data before and after the 
autoencoder compresses and decompresses it. The RMSE effec-
tively measures the amount of noise added by running through 
the autoencoder. Just to be sure there is no overfitting, we will 
compare out-of-sample normal to the error rate for normal 
as well.

ANOMALY DETECTION EXAMPLE
This example is from a college course that I teach on deep 
learning. I will not reproduce all of the code here.2 This example 

is in the Python programming language, using TensorFlow 2.0 
for deep-learning support.

The TensorFlow autoencoder neural network is set up by the 
following lines of code:

model = Sequential()
model.add(Dense(25, input_dim=x_normal.shape[1], 

activation=’relu’))
model.add(Dense(3, activation=’relu’))
model.add(Dense(25, activation=’relu’))
model.add(Dense(x_normal.shape[1])) # Multiple 

output neurons
model.compile(loss=’mean_squared_error’, 

optimizer=’adam’)
model.fit(x_normal_train,x_normal_

train,verbose=1,epochs=100)

You can see that the number of input neurons and output neu-
rons are the same, specified by the value x_normal.shape[1]. 
These both correspond to the number of predictors in the 
feature vector generated from the KDD-99 dataset. There are 
additionally 25 neurons added before and after the three bot-
tleneck neurons to assist with compression and decompression. 
The three hidden layer neurons specify the number of dimen-
sions that the autoencoder is reducing the data to.

The results from the experiment are shown below.

In-Sample Normal Score (RMSE): 0.30
Out of Sample Normal Score (RMSE): 0.31
Attack Underway Score (RMSE): 0.53

The in-sample and out-of-sample normal data RMSE were 
approximately the same, between 0.30 and 0.31. The attack rows 
were noticeably higher at an RMSE of 0.53. This is consistent 
with anomaly detection in that the anomaly data is compressed 
with more noise than normal data. ■
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