

Article from
Predictive Analytics and Futurism
December 2019

 DECEMBER 2019 PREDICTIVE ANALYTICS AND FUTURISM | 15

Autoencoders for
Anomaly Detection
By Je� Heaton

In data science, anomaly detection is the identification of
unusual items, events or observations that raise suspicions by
differing significantly from previously seen data. Typically, the

anomalous items will translate to some kind of problem such
as bank fraud, a structural defect, medical problems or errors
in a text. Anomalies are also referred to as outliers, novelties,
noise, deviations and exceptions. Anomaly detection can also be
particularly useful to determine how suited a model trained on
a particular dataset is at handling a new dataset. This suitability
detection is the focus of this article.

INTRODUCTION TO AUTOENCODERS
An autoencoder is a type of neural network that has the same
number of input neurons as output neurons. The number of
input/output neurons you have corresponds to the size of your
feature vector after the data source has been encoded. For
instance, you might have a single input for continuous and a
set of dummy variables for each of your categorical inputs. The
autoencoder is trained in a supervised fashion; however, the x
(inputs) and y (targets) are the same. It is also important to note
that the autoencoder is using the ability of a neural network to
perform a multi-output regression. The neural network is learn-
ing to directly copy the inputs to the outputs. This structure is
seen in Figure 1.

At first glance the autoencoder may not seem that useful. We
are training a neural network to simply pass the input through
to the output. However, there is always at least one hidden layer
with fewer neurons than the input and output layers. These
hidden layers teach the neural network to compress the input
data. You can think of the connections between the input and
hidden layers as learning to be a data decompressor and the
connections between the hidden and output layers as learning
to be a decompressor. It is common to separate the autoencoder
into two neural networks. This way the hidden layer becomes
the output layer for the compressor.

Extracting the output from the hidden layer can be thought of as
a form of dimension reduction, similar to principal component
analysis (PCA) or t-distributed Stochastic Neighbor Embedding

(t-SNE). Because the neural network shown in Figure 1 contains
only two hidden neurons, it would reduce the dimensions from
the five input neurons down to two dimensions.

Despite the fact that an autoencoder is trained like a normal
supervised neural network, usually using some variant of back-
propagation, this training process is considered unsupervised.
This is because no one value from the dataset is the target—all
of the values from the dataset are the target value. In this regard,
the autoencoder training is unsupervised in the same sense as
PCA or t-SNE are not provided with a target. However, unlike
PCA or t-SNE, the autoencoding neural network also includes
a decoder. T-SNE and PCA both lack a well-defined means of
returning to the high-dimension input that they processed. In
this regard, an autoencoder shares more with a compression
algorithm, such as PKZIP, than a dimensionality reduction
algorithm.

You can essentially think of the training process of the auto-
encoder as creating a compression algorithm optimized to the
data you provided. Such domain-specific compression-decom-
pression (codec) algorithms are not uncommon. Portable Net
Graphics (PNG) format is a lossless codec for image compres-
sion. The Joint Photographic Experts Group (JPEG) format is a
lossy codec for image compression. A lossy codec will lose some
of the original detail from the source data; a lossless codec main-
tains absolute data integrity. For images and audio, absolute data
integrity is not always required.

This specialization among codecs is what allows an autoencoder
to be used for anomaly detection. Early cellphone compression
algorithms were designed to compress human voice as effec-
tively as possible and make the best utilization of the very slow

Figure 1
Autoencoder Structure

16 | DECEMBER 2019 PREDICTIVE ANALYTICS AND FUTURISM

Autoencoders for Anomaly Detection

cellular networks. When non-voice sounds, such as music, were
compressed with these early voice-centric codecs, the music
would clearly sound distorted. These early cell phones were
anomaly detectors. They produced very little distortion among
the human voice data that they were designed for and very high
distortion on all other sounds. The more noise introduced into
the signal, the less similar that signal was to the original type of
data the codec was designed for. Essentially, the effectiveness of
the specialized lossy codec for a particular dataset shows how
much of an anomaly the new dataset is when compared to the
original dataset the codec was designed for.

Now consider an autoencoder. We create an anomaly detector
by training this autoencoder on data that we consider “normal.”
Overfitting is not that big of a concern, since this is effectively
an unsupervised learning; however, a k-fold or similar scheme
might be used for early stopping of the neural network training
once the out of sample error ceases to improve.

INTRODUCTION TO THE KDD-99 DATASET
The KDD-99 dataset is famous in the security field and almost
a “hello world” of intrusion detection systems in machine
learning. This dataset was used for the Third International
Knowledge Discovery and Data Mining Tools Competition,
held in conjunction with the Fifth International Conference on
Knowledge Discovery and Data Mining. According to the KDD
archive, “The competition task was to build a network intrusion
detector, a predictive model capable of distinguishing between
‘bad’ connections, called intrusions or attacks, and ‘good’ nor-
mal connections. This database contains a standard set of data to
be audited, which includes a wide variety of intrusions simulated
in a military network environment.”1 This dataset is commonly
used for computer security and anomaly detection examples.
This is the dataset that I used for this example on autoencoder
anomaly detection.

The KDD-99 dataset includes a target that identifies the type of
attack or if the transaction was normal. We will not directly use
this target in the training. Rather, we will separate the data into
normal and attack rows. We will train the neural network on
the normal rows. We will then compare the difference between
the root mean square error (RMSE) for normal vs. error. This
RMSE is the difference between the data before and after the
autoencoder compresses and decompresses it. The RMSE effec-
tively measures the amount of noise added by running through
the autoencoder. Just to be sure there is no overfitting, we will
compare out-of-sample normal to the error rate for normal
as well.

ANOMALY DETECTION EXAMPLE
This example is from a college course that I teach on deep
learning. I will not reproduce all of the code here.2 This example

is in the Python programming language, using TensorFlow 2.0
for deep-learning support.

The TensorFlow autoencoder neural network is set up by the
following lines of code:

model = Sequential()
model.add(Dense(25, input_dim=x_normal.shape[1],

activation=’relu’))
model.add(Dense(3, activation=’relu’))
model.add(Dense(25, activation=’relu’))
model.add(Dense(x_normal.shape[1])) # Multiple

output neurons
model.compile(loss=’mean_squared_error’,

optimizer=’adam’)
model.fit(x_normal_train,x_normal_

train,verbose=1,epochs=100)

You can see that the number of input neurons and output neu-
rons are the same, specified by the value x_normal.shape[1].
These both correspond to the number of predictors in the
feature vector generated from the KDD-99 dataset. There are
additionally 25 neurons added before and after the three bot-
tleneck neurons to assist with compression and decompression.
The three hidden layer neurons specify the number of dimen-
sions that the autoencoder is reducing the data to.

The results from the experiment are shown below.

In-Sample Normal Score (RMSE): 0.30
Out of Sample Normal Score (RMSE): 0.31
Attack Underway Score (RMSE): 0.53

The in-sample and out-of-sample normal data RMSE were
approximately the same, between 0.30 and 0.31. The attack rows
were noticeably higher at an RMSE of 0.53. This is consistent
with anomaly detection in that the anomaly data is compressed
with more noise than normal data. ■

Je� Heaton, Ph.D., is vice president and data
scientist at RGA Reinsurance Company, Inc.
He can be reached at jheaton@rgare.com.

ENDNOTES

1 University of California, Irvine. KDD Cup 99 Data: Abstract. KDD Archive. Last modi-
fied, Oct. 28, 1999. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

2 For the complete Python source code for the example, see Heaton, Je� . T81-588:
Applications of Deep Neural Networks. GitHub. Last updated, Aug. 20, 2019. https://
github.com/je� heaton/t81_558_deep_learning/blob/master/t81_558_class_14_03
_anomaly.ipynb.

