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P(z) denotes the probability generating function. M (z) denotes the moment generating
function.

(). denotes the a-quantile of a distribution, also known as the a-Value at Risk

ES.[X] denotes the a-Expected Shortfall of X. This is also known as the a—TailVaR, or
the a-CTE.

The distribution function of the standard normal distribution is denoted ®(x). The proba-
bility density function of the standard normal distribution is denoted ¢(x).

The g-quantile of the standard normal distribution is denoted z,, that is q)(zq) =q.

For counting distributions, p; denotes the probability function and p) denotes the proba-
bility function for the associated zero-modified distribution.

Continuous distributions

Pareto(«, §) Distribution
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Lognormal(, o) Distribution
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Exponential(¢) Distribution
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Gamma(a, ¢) Distribution
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Chi-squared(r) Distribution

Gamma distribution with a = /2 and 6 = 2.
v € N* is the degrees of freedom parameter.
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Beta(a, b) Distribution
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Normal(j, 0?) Distribution
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Weibull(#, 7) Distribution
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Counting Distributions

Poisson()\) Distribution
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Binomial(m,q) Distribution
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Bernoulli(q) Distribution
Binomial Distribution with m = 1.

Negative Binomial(r,3) Distribution
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E[N] = rp, Var[N] = rB(1 + B),
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Geometric Distribution
Negative Binomial Distribution with r = 1;

Zero-Modified Distributions
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Critical Values for Kolmogorov-Smirnov Test

o ‘ Critical Value

0.1 1.22/\/n
0.05 1.36//n

0.01 1.63//n

Recursions for Compound Distributions
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Discretization of the Severity Distribution

Method of local moment matching with k£ = 1:
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Empirical Bayes Credibility

Empirical Bayes parameter estimation for the Bithlmann model:
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Extreme Value Theory

The Gumbel Distribution

F(x):exp{—exp <—x;“)} 6> 0.

The Fréchet Distribution

F(:B):exp{—<xgu) }, x> a>0;60>0.
The Weibull EV Distribution

F(x):exp{—<M;x) }, x<pu;T>0;0>0.

The Generalized Extreme Value Distribution

The distribution function is H(x) where
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The GEV can be adjusted for scale and location, to give He , 9 where
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The Generalized Pareto Distribution (GPD)
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The Hill Estimator
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(Note: the version of the Hill estimator in QERM is incorrect.)



Outstanding Claims Reserves
Functions of development factors

If all claims are settled by the end of DY J, then
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Tests for correlated development factors
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Test for calendar year effects
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The Bithlmann-Straub Model of Outstanding Claims
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