

Session 024: Applying FinTech and IT Principles to Actuarial Modeling

SOA Antitrust Compliance Guidelines
SOA Presentation Disclaimer

http://www.soa.org/legal/antitrust-disclaimer/
https://www.soa.org/legal/presentation-disclaimer/

Session 24: Applying FinTech
and IT Principles to Actuarial

Modeling

Igor Nikitin, ASA and M. Crew Sullivan, FSA
October 28, 2019

SOCIETY OF ACTUARIES
Antitrust Compliance Guidelines

Active participation in the Society of Actuaries is an important aspect of membership. While the positive contributions of professional societies and associations are
well-recognized and encouraged, association activities are vulnerable to close antitrust scrutiny. By their very nature, associations bring together industry competitors
and other market participants.

The United States antitrust laws aim to protect consumers by preserving the free economy and prohibiting anti-competitive business practices; they promote
competition. There are both state and federal antitrust laws, although state antitrust laws closely follow federal law. The Sherman Act, is the primary U.S. antitrust law
pertaining to association activities. The Sherman Act prohibits every contract, combination or conspiracy that places an unreasonable restraint on trade. There are,
however, some activities that are illegal under all circumstances, such as price fixing, market allocation and collusive bidding.

There is no safe harbor under the antitrust law for professional association activities. Therefore, association meeting participants should refrain from discussing any
activity that could potentially be construed as having an anti-competitive effect. Discussions relating to product or service pricing, market allocations, membership
restrictions, product standardization or other conditions on trade could arguably be perceived as a restraint on trade and may expose the SOA and its members to
antitrust enforcement procedures.

While participating in all SOA in person meetings, webinars, teleconferences or side discussions, you should avoid discussing competitively sensitive information with
competitors and follow thse guidelines:

• Do not discuss prices for services or products or anything else that might affect prices
• Do not discuss what you or other entities plan to do in a particular geographic or product markets or with particular customers.
• Do not speak on behalf of the SOA or any of its committees unless specifically authorized to do so.
• Do leave a meeting where any anticompetitive pricing or market allocation discussion occurs.
• Do alert SOA staff and/or legal counsel to any concerning discussions
• Do consult with legal counsel before raising any matter or making a statement that may involve competitively sensitive information.

Adherence to these guidelines involves not only avoidance of antitrust violations, but avoidance of behavior which might be so construed. These guidelines only provide
an overview of prohibited activities. SOA legal counsel reviews meeting agenda and materials as deemed appropriate and any discussion that departs from the formal
agenda should be scrutinized carefully. Antitrust compliance is everyone’s responsibility; however, please seek legal counsel if you have any questions or concerns.

Presentation Disclaimer

Presentations are intended for educational purposes only and do not replace
independent professional judgment. Statements of fact and opinions expressed are
those of the participants individually and, unless expressly stated to the contrary, are
not the opinion or position of the Society of Actuaries, its cosponsors or its
committees. The Society of Actuaries does not endorse or approve, and assumes no
responsibility for, the content, accuracy or completeness of the information
presented. Attendees should note that the sessions are audio-recorded and may be
published in various media, including print, audio and video formats without further
notice.

©

Why do we change platforms?

At some point every model was new and awesome!
And at some point the time comes to refactor it!

• Scalability issues

• Too difficult to update

• Technological advancements

• Better alternatives in the market

Advantages and Disadvantages of In-house
Models

Advantages Disadvantages

Innovation

Speed of change

Cost of original build

Maintenance

Expertise required for original
build

Necessary
Resources

People with the right
skillsets:

• Software engineer
• Actuary
• Programmer

Time:
• Design
• Implement
• Test

Stakeholder Buy-in

• Describe a future state that:
• Addresses their priorities / pain

points
• Explains how payoff over time is

worth the upfront investment
• Broader benefits (e.g., cross

functional use)
• Long term maintenance plan

Design Phase

• Pick one or two qualities that your software should maximize.
• These will act as your tie breakers when multiple valid choices exist.

Runtime Time to Completion

Design goals

Code organization
Procedural Programming – operates on data using functions and
procedures.

+ Easiest to conceptually grasp

+ Fastest possible runtime

+ Great choice for small programs

- Hardest to maintain

Object Oriented Programming – managing data and functionality with
classes.

+ Easiest to maintain

+ Easiest to develop with large team

- Conceptually more complex

Functional Programming - treats functions as data.

+ Most flexible

+ Fastest to develop with

- Least controlled & hardest to debug

Software design principles
• Set of the most general and highest- level aspirations for

software
• Examples include:

• Separate code that varies from code that stays the same.
• Program to an interface, not an implementation.
• Favor composition over inheritance.

A good introductory discussion is available here: https://wiki.base22.com/display/btg/Core+Software+Design+Principles

Blueprint

Unified Modeling Language (UML):
• Define object responsibilities and

communication protocols
• Enable parallel development by

multiple programmers
• Conduct review of the system prior

to writing code

Design patterns

• A design pattern is a general repeatable
solution to a commonly occurring problem
in software design.

• Examples of design patterns are:
- Strategy pattern
- Factory pattern

• An outstanding introduction to design
patterns is Head First Design Patterns by
Eric Freeman and Elisabeth Robson.

Programming language choice
Language choice
considerations:
• Higher or lower level?
• Specialized libraries?
• Grid?
• Availability of developers?

VBA is generally a poor choice
due to scalability and runtime
issues!

Execution Phase

Utilize a Style Guide

• Clearly lays out the rules for writing
perfect code.

• Promotes code readability and uniformity.
• One of the most popular style guides is

Google C++ style guide, which is available:
https://google .github.io/styleguide/cppguide.html.

Because we all write perfect code, but somehow
a lot of code is less than perfect.

XML Doc
• Writing documentation is

easiest when you are
coding the logic, not a
month later when the
testing is complete.

• XML doc allows you to
integrate documentation
into the code and
automatically produce
html documentation.

Version Control System (Git)

• Enables orderly co-development with
multiple people

• Merging code is easy and straightforward
• Provides audit trail and rollback capability

Learn more about GIT
http://nvie.com/posts/a-successful-git-branching-model/

Input Structure

• Consider multiple formats:
csv, Excel, XML, JSON,
database, something else?

• Consider generic data
transfer capabilities

Error Handling
• Error messages should be:

• Descriptive
• Targeted to the audience:

Age 154 exceeds maximum allowed age 120.

Age.Calculate(…) encountered an exception.

Policy.Calculate(…) of Policy 53453 encountered an exception.

Contract.RunContract(folderPath C:\Test, inforceName testInforce.xml,

parametersName testParameters.xml) encountered an exception.

• The can be implemented:
• Using try catch blocks
• Using logging libraries

Build Order

• Objects in an object oriented platform
can be built in different orders.

Recommendations:
• Launcher
• Empty base classes and interfaces
• Input classes
• Detailed report
• Implementations of actual calculations

Unit Testing Framework

Testing is largely driven by
amount of time that could
be practically spent on it
• Unit testing frameworks

enable very efficient
regression testing on class
level

Optimization

• Optimization is definitely
worth an investment of
time and effort.

• Same code can be
hundred times faster
with relatively minor
efficiency tweaks.

• Tools are available in
visual studio and other
IDEs to help with
optimization.

Testing phase

Build a quality test bank

A well thought out Test bank will:

• Be fairly comprehensive

• Have reasonable run time

• Ensure nothing was broken

• Evolve as features are added

Automate regression testing
• The system should handle 1 test just as easily as 1 million tests.

• Efficiency of regression test often drives its quality.

Maintenance Phase

Maintain UML

• Large systems are hard to
learn and maintain without
UML

• Must keep up to date!

Don’t make a mummy

How do I unwrap the midsection but not
touch the other parts?

Maintain documentation
• It is easiest to describe changes

when you are making them.

• Remember you are writing for
everyone who comes after you.

• There is no such thing as too
much documentation (well
maybe).

Questions

	Cover Page
	Nikitin/Sullivan

