PANNUAL ÖMEETING

Session 087: Cashflows: A New Dimension

Cashflows: A New Dimension

Michael Carse, FSA EA CERA CFA
Katalin Szeles, FSA FCIA CERA
October 29, 2019

SOCIETY OF ACTUARIES Antitrust Compliance Guidelines

Active participation in the Society of Actuaries is an important aspect of membership. While the positive contributions of professional societies and associations are well-recognized and encouraged, association activities are vulnerable to close antitrust scrutiny. By their very nature, associations bring together industry competitors and other market participants.

The United States antitrust laws aim to protect consumers by preserving the free economy and prohibiting anti-competitive business practices; they promote competition. There are both state and federal antitrust laws, although state antitrust laws closely follow federal law. The Sherman Act, is the primary U.S. antitrust law pertaining to association activities. The Sherman Act prohibits every contract, combination or conspiracy that places an unreasonable restraint on trade. There are, however, some activities that are illegal under all circumstances, such as price fixing, market allocation and collusive bidding.

There is no safe harbor under the antitrust law for professional association activities. Therefore, association meeting participants should refrain from discussing any activity that could potentially be construed as having an anti-competitive effect. Discussions relating to product or service pricing, market allocations, membership restrictions, product standardization or other conditions on trade could arguably be perceived as a restraint on trade and may expose the SOA and its members to antitrust enforcement procedures.

While participating in all SOA in person meetings, webinars, teleconferences or side discussions, you should avoid discussing competitively sensitive information with competitors and follow these guidelines:

- Do not discuss prices for services or products or anything else that might affect prices
- Do not discuss what you or other entities plan to do in a particular geographic or product markets or with particular customers.
- Do not speak on behalf of the SOA or any of its committees unless specifically authorized to do so.
- Do leave a meeting where any anticompetitive pricing or market allocation discussion occurs.
- Do alert SOA staff and/or legal counsel to any concerning discussions
- Do consult with legal counsel before raising any matter or making a statement that may involve competitively sensitive information.

Adherence to these guidelines involves not only avoidance of antitrust violations, but avoidance of behavior which might be so construed. These guidelines only provide an overview of prohibited activities. SOA legal counsel reviews meeting agenda and materials as deemed appropriate and any discussion that departs from the formal agenda should be scrutinized carefully. Antitrust compliance is everyone's responsibility; however, please seek legal counsel if you have any questions or concerns.

Presentation Disclaimer

Presentations are intended for educational purposes only and do not replace independent professional judgment. Statements of fact and opinions expressed are those of the participants individually and, unless expressly stated to the contrary, are not the opinion or position of the Society of Actuaries, its cosponsors or its committees. The Society of Actuaries does not endorse or approve, and assumes no responsibility for, the content, accuracy or completeness of the information presented. Attendees should note that the sessions are audio-recorded and may be published in various media, including print, audio and video formats without further notice.

Agenda

- Objectives
- Introduction to Liability Cashflows
- New Dimension of Liability Cashflows
- Practical Considerations and Applications

Objectives

- By the end of this session, attendees will be able to:
- Explain how introducing a new dimension to liability cashflows can enable better modeling of complex plan design features
- Describe the most effective way to model different parts of a complex plan from a cashflow perspective
- Apply the introduced techniques to practical examples to improve accuracy and quality of analysis provided to the plan sponsors

Introduction to Liability Cashflows

How are Projected Liability Cashflows Used?

Traditional vs. Cashflow based Valuation

	Traditional Valuation	Cashflow based Valuation
AL_{0}	PV of accrued benefits	PV of Liability CFs after time 0
NC_{0}	One year's worth of service accruals	PV of accrual CFs
BP_{0}	First year expected liability CF	First year expected liability CF
AL_{1}	$\left[\mathrm{AL}_{0}+\mathrm{NC} C_{0}\right] \times(1+\mathrm{i})-\mathrm{BP}_{\text {exp, } 0-1} \times(1+\mathrm{i} / 2)$	PV of Liability CFs after time 1 incl. adjustment for accruals

PUC only

Traditional vs. Cashflow based Valuation (cont.)

	Traditional Valuation	Cashflow based Valuation
AL_{0}	PV of accrued benefits	PV of Liability CFs after time 0
NC_{0}	One year's worth of service accruals	PV of accrual CFs
BP_{0}	First year actual liability CF	First year actual liability CF
AL_{1}	$\left[\mathrm{AL}_{0}+\mathrm{NC}_{0}\right] \times(1+\mathrm{i})-\mathrm{BP}_{\text {act, },-1} \times(1+\mathrm{i} / 2)$	PV of Liability CFs after time 1 incl. adjustment for accruals and actual BPs

PUC only

New Dimension of Liability Cashflows

New Dimension

- By applying actuarial techniques, cashflows by payment year can be:
- "Rolled forward" with actual benefit payments and service costs
\rightarrow sufficient for simple plans
- Transformed to two dimensions - payment year and commencement year to capture pre- and post- indexation, and pre- and post- discount rates
\rightarrow important for complex plans
- 2D Transformation especially useful for modelling:
- Cash balance and pension equity plans with interest crediting rates
- Lump sum paying plans
- Plans paying COLAs

Cashflow Example 1

Example 1	
Member status	Active
Age	55
Plan type	Final average
Retirement decrement	100% at age 60
Other decrements	None
Pre-retirement interest crediting	None
Post-retirement indexing	None
Lump sum election	0%

Cashflow Example 2

Example 2	
Member status	Active
Age	55
Plan type	Final average
Retirement decrement	20% at age 55,
	15% at ages 56-59,
	100% at 60
Other decrements	None
Pre-retirement interest crediting	None
Post-retirement indexing	None
Lump sum election	0%

Cashflow Example 3

Example 3	
Member status	Active
Age	55
Plan type	Final average
Retirement decrement	20% at age 55,
	15% at ages 56-59,
	100% at 60
Other decrements	None
Pre-retirement interest crediting	None
Post-retirement indexing	80% of CPI*
Lump sum election	0%

* $\mathrm{CPI}=2 \%$

Cashflow Example 3 - Shock Indexing

Example 3	
Member status	Active
Age	55
Plan type	Final average
Retirement decrement	20% at age 55,
	15% at ages 56-59,
	100% at 60
Other decrements	None
Pre-retirement interest crediting	None
Post-retirement indexing	80% of CPI*
Lump sum election	0%

${ }^{*} \mathrm{CPI}=3 \%$

Cashflow Example 4

Example 4	
Member status	Active
Age	55
Plan type	Cash balance (paid as annuity)
Retirement decrement	20% at age 55, 15% at ages 56-59, 100% at 60
Other decrements	None
Pre-retirement interest crediting	$30-$-year treasury yield*
Post-retirement indexing	80% of CPI**
Lump sum election	0%

*Interest Crediting Rate (ICR) $=2 \%$
**CPI $=2 \%$

Cashflow Example 4 - Shock Interest Credit

Example 4	
Member status	Active
Age	55
Plan type	Cash balance (paid as annuity)
Retirement decrement	20% at age 55, 15% at ages 56-59, Other decrements Pre-retirement interest crediting
Post-retirement indexing	30 -year treasury yield*
Lump sum election	80% of CPI**

*Interest Crediting Rate (ICR) = 3\%
${ }^{* *} \mathrm{CPI}=2 \%$

Cashflow Example 2 - With Lump Sum Election Option

Example 2	
Member status	Active
Age	55
Plan type	Final average
Retirement decrement	20% at age 55,
	15% at ages 56-59,
	100% at 60
Other decrements	None
Post retirement indexing	None
Lump sum election	$0 \% / 50 \% / 80 \% / 100 \%$

Lump sum discount rate can be a flat rate or yield curve based

Practical Considerations and Applications

Practical Considerations

Common Issues	Solution
Cashflows outdated	Rollforward cashflows with actual benefit payments and service costs Chopping off first year cashflow is dangerous!
Service cost cashflows not available	Prorate active past service cashflows using (SC/Active Liability) ratio
2D cashflows not available	Apply 1D to 2D annuity cashflow transformation
Complex plan (COLA, crediting rates)	Adjust 2D cashflows to reflect desired indexation and crediting rates
Interest rate sensitive lump sums	Use 1D annuity substitution cashflows to capture correct duration But use "collapsed" 2D cashflows for ALM projections
Plan has multiple benefit structures	Request more granular CFs - split by participant type, plan design type and form of payment; request sensitivity cashflows, if applicable

1D to 2D Annuity Cashflow Transformation

$C F_{y}=$ Expected cashflow paid in year y
$C F_{x y}=$ Expected cashflow commencing in year x and paid in year y
$p_{x}=$ assumed one year survival probability of cashflows paid in year x
$\mathrm{I}_{\mathrm{y}}=$ inflationary increase factor in year y
Helps capture LS paying plans, CB plans paying annuities (with fixed conversion rates) and plans paying COLAs

Collapsing 2D Annuity Cashflows to Lump Sums

Commencement year

Commencement year

		1	2	3	
	1	$\begin{aligned} & (1-L S) \times C F_{1,1} \\ & +L S \times L S C F_{1,1} \end{aligned}$	0	0	\ldots
	2	$(1-L S) \times C F_{1,2}$	$\begin{aligned} & (1-L S) \times C F_{2,2} \\ & +L S \times L S C F_{2,2} \end{aligned}$	0	...
	3	$(1-L S) \times C F_{1,3}$	$(1-L S) \times C F_{2,3}$	$\begin{aligned} & (1-L S) \times C F_{3,3} \\ & +L S \times L S C F_{3,3} \end{aligned}$	\ldots
	4	$(1-L S) \times C F_{1,4}$	$(1-L S) \times C F_{2,4}$	$(1-L S) \times C F_{3,4}$	\ldots
	\ldots	...	\ldots	...	\ldots

$C F_{x y}=$ Expected cashflow commencing in year x and paid in year y
$L S=$ assumed percentage of benefits taken as a lump sum
$L S C F_{i, j}=$ Lump sum cashflow, where $L S C F_{i, i}=\sum C F_{i, j} D F_{i, j}$
$D F_{i, j}=$ Discount factor for cashflow paid in year j back to year i
Helps capture interest sensitive lump sum payments.

Practical Application: Case study

- MK Industries Super Complex Pension Plan
- Cash balance component (A+B approach)
- Traditional final salary benefits (some payable as lump sums)
- Post-retirement COLAs
- 1D cashflows provided for modelling
- Split by participant type
- Split by plan design feature (i.e. COLA/non-COLA, CB/Traditional benefit)
- Split by form of payment (Annuity/LS), where applicable
- Annuity substitution cashflows provided for traditional lump sum eligible benefits
- Cash balance benefits converted to annuities using fixed conversion rate
- 100% of actives assumed to take traditional benefit as a lump sum

To Participate, look for Polls in the SOA Event App or visit annual.cnf.io in your browser

Find The Polls Feature Under More

 In The Event App or Under This Session in the AgendaType annual.cnf.io In Your Browser

When playing as a slideshow, this slide will display live content

Poll: We are looking to generate ALM projections as of 12/31/2019, but the 1D cashflow profile provided is as of $12 / 31 / 2018$. Which of the following adjustments are appropriate?

Poll: We are looking to project cashflows under various CPI scenarios to recommend an appropriate inflation hedge. The cashflows provided have 2\% post-retirement CPI embedded in them. What's the best way to adjust active cashflows for this purpose?

Poll: We are looking to project cashflows for the cash balance component of the plan under various ICR assumptions. The annuity cashflows provided have 2\% preretirement ICR embedded in them. What's the best way to adjust the cashflows for this purpose?

Poll: We are looking to perform ALM projections for the lump sum component of the plan. Both annuity substitution and lump sum cashflows were provided for traditional lump sum eligible benefits. What's the best way to adjust the CFs for this purpose?

Modelling extensions

- "Greater of" plan provisions
- Participant receives max (PV of frozen annuity, Cash balance account)
- Derive "Real/Nominal" cashflow split to capture ICR exposure
- Granular cashflow splits can minimize the modelling simplification impact
- Mortality assumptions
- Analyze impact of changes to base/improvement tables
- Utilizes 2D cashflow grids - no individual participant data needed
- "Ratio of Lx" approach

