

Session 056: Specialty Pharmacy Pipeline Update and Management Concepts for Gene Cell Therapies

SOA Antitrust Compliance Guidelines SOA Presentation Disclaimer

Session 56: Specialty Pharmacy Pipeline Update and Management Concepts for Gene and Cell Therapies

GABRIELA DIEGUEZ, ASA, MAAA, FCA KENT WANGSNESS, PHARMD SANJIT PURI, FSA, MAAA, MD

October 28, 2019

SOCIETY OF ACTUARIES Antitrust Compliance Guidelines

Active participation in the Society of Actuaries is an important aspect of membership. While the positive contributions of professional societies and associations are well-recognized and encouraged, association activities are vulnerable to close antitrust scrutiny. By their very nature, associations bring together industry competitors and other market participants.

The United States antitrust laws aim to protect consumers by preserving the free economy and prohibiting anti-competitive business practices; they promote competition. There are both state and federal antitrust laws, although state antitrust laws closely follow federal law. The Sherman Act, is the primary U.S. antitrust law pertaining to association activities. The Sherman Act prohibits every contract, combination or conspiracy that places an unreasonable restraint on trade. There are, however, some activities that are illegal under all circumstances, such as price fixing, market allocation and collusive bidding.

There is no safe harbor under the antitrust law for professional association activities. Therefore, association meeting participants should refrain from discussing any activity that could potentially be construed as having an anti-competitive effect. Discussions relating to product or service pricing, market allocations, membership restrictions, product standardization or other conditions on trade could arguably be perceived as a restraint on trade and may expose the SOA and its members to antitrust enforcement procedures.

While participating in all SOA in person meetings, webinars, teleconferences or side discussions, you should avoid discussing competitively sensitive information with competitors and follow these guidelines:

- Do not discuss prices for services or products or anything else that might affect prices
- **Do not** discuss what you or other entities plan to do in a particular geographic or product markets or with particular customers.
- **Do not** speak on behalf of the SOA or any of its committees unless specifically authorized to do so.
- Do leave a meeting where any anticompetitive pricing or market allocation discussion occurs.
- Do alert SOA staff and/or legal counsel to any concerning discussions
- **Do** consult with legal counsel before raising any matter or making a statement that may involve competitively sensitive information.

Adherence to these guidelines involves not only avoidance of antitrust violations, but avoidance of behavior which might be so construed. These guidelines only provide an overview of prohibited activities. SOA legal counsel reviews meeting agenda and materials as deemed appropriate and any discussion that departs from the formal agenda should be scrutinized carefully. Antitrust compliance is everyone's responsibility; however, please seek legal counsel if you have any questions or concerns.

Presentation Disclaimer

Presentations are intended for educational purposes only and do not replace independent professional judgment. Statements of fact and opinions expressed are those of the participants individually and, unless expressly stated to the contrary, are not the opinion or position of the Society of Actuaries, its cosponsors or its committees. The Society of Actuaries does not endorse or approve, and assumes no responsibility for, the content, accuracy or completeness of the information presented. Attendees should note that the sessions are audio-recorded and may be published in various media, including print, audio and video formats without further notice.

To Participate, look for Polls in the SOA Event App or visit <u>annual.cnf.io</u> in your browser

Find The Polls Feature Under **More** In The Event App or Under This Session in the Agenda

Search

Attendees

Speakers

Sponsors

Sponsors*

Maps

Surveys

Messages

Meetings

Baltimore Local Attractions

SOA Antitrust Compliance Guideli

Ξ

More

Polls

R

U

23

*

M

51

R

n

Type <u>annual.cnf.io</u> In Your Browser

Update on Biosimilar Uptake and Pipeline

Live Content Slide

When playing as a slideshow, this slide will display live content

Poll: How are biosimilars different from generics?

What are biosimilars?

- Highly similar (but not identical) to a *reference biologic*
 - Biologic: Large, complex drugs derived from a living organism
- No clinically meaningful difference in terms of safety, purity and potency

Reference medicine

Biosimilar medicine

https://www.fda.gov/drugs/biosimilars/biosimilar-and-interchangeable-products

Biosimilars are not generics

- Biosimilars are *not interchangeable*
 - Slight variations between different batches of the same product, even those of reference products
- Complex manufacturing process
 - It takes years to bring a biosimilar to market
- Typically *large molecules*
- *Modest discounts (20-30%)* relative to reference products
 - Discounts expected to increase with multiple competing biosimilars
- Potential for \$25 to \$150 billions in savings in the next 10 years¹
 - Generic savings of \$1.7 trillion between 2004 and 2016 (\$250 billion in 2016 alone)²
- 1 <u>www.</u>rand.org

2 www.accessiblemeds.org/resources/reports/2017-aam-annual-report

Automatic Generic Substitution

	FOR				DATE	
	Rx	ADDRE <u>SS</u>				
	٨					
\sum	7	SUBSTITUTION	N PERMITTED	. Dr	DISPENSE AS	WRITTEN
	DEANO					
	Reorder Item #6106 Total Pha			armacy Sup	ply, Inc.	1-800-878-2822

Biosimilars are not interchangeable

- Per the Hatch-Waxman Act of 1984, biosimilars approved under section 351(k) rely on safety and efficacy data from the reference product
- Biosimilar manufacturers must provide additional data showing that switching between the reference product and the biosimilar will have no effect on safety or efficacy
- Switching studies may be considered an unnecessary obstacle
 - A recent study from March 2018, comparing global data spanning over 20 years, shows that when patients switch from reference product to biosimilar, there were no meaningful differences in safety or efficacy
- Due to the nature of how biologics are produced, there are slight variations between different batches of the same product including reference products

Live Content Slide

When playing as a slideshow, this slide will display live content

Poll: How many biosimilars have been approved in the US?

Biosimilar approvals in the U.S. lag behind Europe by almost a decade

Biosimilar (and biosimilar-like) FDA approvals

Product	Class	Reference Product	Approval Date	Recipient
Herzuma; trastuzumab-pkrb	Her2 mAb	Herceptin	12/15/2018	Teva; Celltrion (manuf.)
Truxima - rituximab-abbs	CD20 mAb	Rituxan	11/28/2018	Celltrion
Udenyca; pegfilgrastim-cbqv	G-CSF, PEG-, rec. protein	Neulasta	11/2/2018	Coherus BioSciences; KBI Biopharma (manuf.)
Hyrimoz; adalimumab-adaz	TNF mAb	Humira	10/31/2018	Sandoz/Novartis
Nivestym; filgrastim-aafi	G-CSF, rec. protein	Neupogen	7/18/2018	Pfizer
Fulphila; pegfilgrastim-jmdb	G-CSF, PEG-, rec. protein	Neulasta	6/4/2018	Mylan GmbH
Retacrit; epoetin alfa-epbx	EPO, rec. protein	Epogen/Amgen and Procrit/J&J	5/17/2018	Hospira, Pfizer Inc
brili; infliximab-qbbx	TNF mAb	Infliximab	12/13/2017	Hospira, Pfizer Inc
Admelog; insulin lispro*	Insulin analog	Humalog	12/5/2017	Sanofi
Ozempic; semaglutide*	GLP-1 analog	Victoza	12/5/2017	Novo Nordisk
Ogivri - trastuzumab-dkst	Her2 mAb	Herceptin	12/5/2017	Mylan and Biocon
Mvasi ; bevacizumab-awwb	VEGF mAb	Avastin	9/14/2017	Sanofi
Admelog; insulin lispro*	Insulin analog	Humalog	9/1/2017	Sanofi
Cyltezo; adalimumab-adbm	TNF mAb	Humira	8/25/2017	Boehringer Ingelheim
Lusduna Nexvue; insulin glargine*	Insulin analog	Lantus	7/24/2017	Merck & Co., Inc. (with Samsung)
Amjevita; adalimumab-atto	TNF mAb	Humira	9/23/2016	Amgen
Ereizi; etanercept	TNF mAb	Enbrel	8/26/2016	Sandoz/Novartis
Inflectra; infliximab-dyyb	Remicade	Remicade	4/5/2016	Janssen/Johnson & Johnson (Celltrion manuf.)
Basaglar; insulin glargine*	Insulin analog	Lantus	12/16/2015	Boehringer Ingelheim
Zarxio; Zarzio; filgrastim-sndz	G-CSF, rec. protein	Neupogen	3/6/2015	Sandoz/Novartis

Despite accelerating approvals, litigation and agreements between biologic manufacturers and biosimilar approval recipients are likely to delay their launch.

Source: https://www.biosimilardevelopment. com/doc/biosimilars-pipeline-showsremarkable-sustained-growth-0001

Live Content Slide

When playing as a slideshow, this slide will display live content

Poll: How many biosimilars have been launched in the US?

Comparison of U.S. Approvals vs. Launch

U.S. Approvals 2015 – 2018

Reference Approval Launch Biosimilar Date Drug Date Neupogen | Granix 3/6/2015 Zarxio Sep-15 Remicade 4/5/2016 Inflectra Nov-16 Erelzi **Enbrel** 8/30/2016 9/23/2016 2023 Amjevita Humira **Renflexis** Remicade 4/21/2017 Jul-19 Cvltezo Humira 8/25/2017 2023 **Mvasi** Avastin 9/14/2017 Jul-19 12/1/2017 2019? Ogivri Herceptin lxifi Remicade 12/13/2017 N/A^* Epogen | Procrit 5/15/2018 Jun-19 Retacrit **Fulphila** Neulasta 6/4/2018 Jul-19 Nivestym Neupogen | Granix 7/20/2018 Mar-19 Hyrimoz 10/30/2018 2023 Humira Udenyca Neulasta 11/2/2018 Nov-19 12/14/2018 Herceptin Herzuma 2019?

*Will not be launched in the US

U.S. Biosimilar Launches as of August 2019

Overall Biosimilar Utilization in U.S.¹

Reference Product vs. Biosimilar Market Share¹

* Comparison is against the 100 Unit/mL formulation only. Currently insulins are not-considered biologics and biosimilars, but will make that transition in 2020.

Sources: 1. MedImpact: 2018-2019 Pharmaceutical Marketplace Trends. Available at: https://conference.medimpact.com/documents/398252/453336/MedImpact+2019+0415.pdf/e440e7d0-8e65-4bc4-90c0-457ef25cf004. Published April 15, 2019. Accessed September 10, 2019.

Pipeline: biologics with expired or near expiring patents in the U.S.

Biosimilars for at least 23 different original biologics are currently navigating biosimilar pathways or are in late stage development in the U.S.

Source:

https://www.biosimilarsip.com/2019/05/07/how-the-u-s-compares-toeurope-on-biosimilar-approvals-and-products-in-the-pipeline-4/

Drug Product	Primary U.S. Patent Expiry		
OnabotulinumtoxinA (Botox [®])	Primary patents long-expired, various use patents pending		
Fligrastim (Neupogen®)	2013		
Epoetin alfa (Epogen®)	2013		
Pegfilgrastim (Neulasta®)	2015		
Adalimumab (Humira®)	2016		
Rituximab (Rituxan®)	2018		
Cetuximab (Erbitux®)	2018		
Omalizumab (Xolair®)	2018		
Infliximab (Remicade®)	2018		
Bevacizumab (Avastin®)	2019		
Trastuzumab (Herceptin®)	2019		
Tocilizumab (Acetmra®)	2019		
Abatacept (Orencia*)	2019		
Ranibizumab (Lucentis®)	2020		
Eculizumab (Soliris®)	2021		
Aflibercept (Eylea®)	2023		
Denosumab (Prolia [™] and Xgeva [™])	2023		
Ustekinumab (Stellara®)	2023		
Certolizumab pegol (Cimzia®)	2024		
Golimumab (Simponi®)	2024		
Darbepoetin alfa (Aranesp®)	2024		
Ipilimumab (Yervoy®)	2025		
Etanercept (Enbrel®)	2028		

Emerging Gene & Cellular Therapies

Rare Diseases / Orphan Drugs

- Rare Diseases¹
 - A condition affecting ≤ 200,000 people in the [United States]
 - A condition affecting less than 1 in 2,000 [European Union]
 - Approximately 7,000 rare diseases impacting ~25-30M Americans
 - "In the United States, only a few types of rare diseases are tracked when a person is diagnosed. These include certain infectious diseases, birth defects, and cancers. It also includes the diseases on state newborn screening tests. Because most rare diseases are not tracked, it is hard to determine the exact number of rare diseases or how many people are affected."
- Orphan Drug Act (1983)
 - Passed to encourage the development of drugs for rare disorders
 - Created the prevalence definition (above), in situations where, "there is no reasonable expectation that the cost of developing and making available in the United States a drug for such disease or condition will be recovered from the sale in the United States."²

¹ <u>https://rarediseases.info.nih.gov/diseases/pages/31/faqs-about-rare-diseases</u>

² Health Promotion and Disease Prevention Amendments of 1984, Pub. L. 98–551, 98 Stat 2815 (1984)

Gene & Cell Therapies are Making Headlines

HEALTHCARE NOVEMBER 5, 2018 / 8:39 AM / 6 MONTHS AGO

Novartis says SMA gene therapy is costeffective at \$4-5 mln per patient

Reuter's Healthcare, 11/5/2018

Cigna aims to expand affordable access to gene therapies

SHELBY LIVINGSTON, Modern Healthcare, 9/6/2019

New gene editing technology could correct 89% of genetic defects

By Jessie Yeung, CNN, 10/22/2019

Scientists Designed a Drug for Just One Patient. Her Name Is Mila.

NY Times, Gina Kolata, October 9,20189

Gene Modifying Therapy vs. CAR T¹

Gene Therapy

- Gene Therapy involves the transferring of genetic material into a patient.
- The genetic material changes how protein(s) is/are produced by targeted cells.
- The result is the introduction, removal, or change in the content of a person's genetic code to treat or cure the disease.
- Carriers/vectors transport the genetic material to the targeted cells.

Cell Therapy

- Cell therapy is the transfer of intact, live cells into a patient to help lessen or cure a disease. The cells may originate from the patient (autologous cells) or a donor (allogeneic cells).
- The type of cells administered depends on the treatment (e.g., pluripotent, multipotent, and primary).
- Chimeric Antigen Receptor (CAR) T-cell therapy modifies a patient's own immune cells (Tcells), which attach to antigens on the surface of cancer cells.

Currently Marketed Gene / Cell Products

Therapy	Company	Approval Date	Therapy Type	Indication	Treatment Cost
				Asymptomatic or minimally	
				symptomatic metastatic castrate	
	Dendreon	April 2010		resistant (normone refractory)	C2 000 par dasa
Provenge	Pharmaceuticais	April-2010	CART	l ocal troatmont of uprosoctable	363,000 per dose
				cutaneous subcutaneous and	
				nodal lesions in patients with	\$150.000 annually
				melanoma recurrent after initial	(\$6,000 every 2
Imlygic	Amgen	October-2015	Viral	surgery	weeks)
				Specific instances of B cell acute	
Kymriah	Novartis	August-2017	CAR T	lymphoblastic leukemia	\$570,000
				Relapsed or refractory large B-	
Yescarta	Kite/Gilead	October-2017	CAR T	cell lymphoma	\$450,000
				Leber congenital amaurosis or	\$500,000
Luxterna	Spark Therapeutics	December-2017	Gene	retinitis pigmentosa	(per eye)
Zolgensma	Novartis	May-2019	Gene	Type 1 Spinal Muscular Atrophy	\$2.1M

Robust Pipeline of Orphan Therapies

- Worldwide orphan drug sales are forecast to total \$209 billion and growing at a rate of 11.1% from 2017 to 2022, more than twice the rate predicted for conventional drugs
- The market for orphan drugs is anticipated to be **21.4%** of worldwide prescription sales by 2022 (excluding generics)
- The worldwide pipeline includes over 1,100 therapies targeting over 60 rare conditions

Source: Estimating the Clinical Pipeline of Cell and Gene Therapies and Their Potential Economic Impact on the US Healthcare System. Casey Quinn, PhD, * Colin Young, PhD, Jonathan Thomas, BSc, Mark Trusheim, MSc, and the MIT NEWDIGS FoCUSWriting Group VALUE HEALTH. 2019; 22(6):621–626.

Why Payers Should Care

- Gene Therapies carry significant actuarial risk
 - Unknown and potentially volatile number of affected patients
 - Anticipated costs per treatment in the range of \$500K to \$5M
 - Durability, or endurance, of these new therapies is typically unknown.
 - Treatment costs are all front-loaded, rather than over time for traditional medicine/therapies/claim costs
 - Benefit design and adverse selection
 - Type and time horizon of value will vary dramatically from disease state to disease state
 - Patient migration
 - FDA hiring additional reviewers to expedite review of anticipated INDs
- Internal inefficiencies in developing management plans for a small number of potential patients
- External inefficiencies in establishing treatment networks and contracting with manufacturers

Source: Improving Management of Gene and Cell Therapies: The Orphan Reinsurer and Benefit Manager (ORBM). Trusheim, M et. al. Pharmaceutical Executive, September 10, 2018

Recent Orphan Drug Strategy Project

The goal

Assess current membership and claims experience to forecast the cost of gene therapies over the next 3-5 years.

Recent Orphan Drug Strategy Project (Cont'd)

- *Medicare* includes estimates for the following disease states: Scleroderma, Amyotrophic lateral sclerosis (ALS), Huntington's disease, Alpha-1 antitrypsin deficiency, sickle cell Anaemia, and Spinal muscular atrophy
- **Commercial** includes estimates for the following disease states: Cystic fibrosis, sickle cell Anaemia, Hemophilia A & B, Amyotrophic lateral sclerosis, Aromatic L-amino acid decarboxylase (AADC) deficiency, and Spinal Muscular Atrophy

Orphan Reinsurer & Benefit Manager Concept

 Creating financing solutions for durable/potentially curative therapies with large, upfront costs whose benefits accrue over time

Financial Challenges

- Timing of claim payments
- Actuarial risk
- Therapeutic outcomes risk (e.g,. durability, efficacy)

Key Features

- Consolidate risk—carve-out and pool risk
- Contracting and payment
- Care coordination services
- May be National or Regional in scope

Source

Trusheim M, Mytelka DS, Warren GL, Han D, Ciarametaro M. Improving Management of Gene and Cell Therapies: The Orphan Reinsurer and Benefit Manager (ORBM). PharmExec 2018 Sept 10. Available at: http://www.pharmexec.com/improving-management-gene-and-cell-therapies

Orphan Reinsurer and Benefit Manager (ORBM) interactions

Outcomes-Based Risk-Sharing Agreements (OBRSA)

- Potential payer benefits:
 - Optimized resource utilization and patient outcomes
 - Competitive product offerings
 - Member retention and growth
 - Financial sustainability
 - Positive public relations
 - Move away from a rebate-based reimbursement model

- Potential manufacturer benefits:
 - Maintained or improved formulary access
 - Competitive differentiation and growth
 - Financial sustainability
 - Generation of real-world evidence of value
 - Move away from a rebate-based reimbursement model

Source: Warren GL, Ou W, Gregor K. Partnering to Share the Risk. The Actuary Dec 2018/Jan 2019, Vol 15, Issue 6. Available at: https://theactuarymagazine.org/issue/december-2018-january-2019/

Cigna/Express Scripts Roll-out Early Offering

• Key concepts[†]:

- Targets health plans, employers and union trust funds
- 'Anticipated' fee of < \$1.00PMPM, still to be finalized
- Unclear what 'best possible price tag' for plan sponsors means relative to 'predictable plan costs'
- Currently applies to the two marketed gene therapies
- Prior authorization process determines patient eligibility
- No cost share to patients/members
- Embarcsm manages payment for the cost of therapies
- Open to additional therapies (e.g., Car-T)
- Appears to be open to competitors

⁺ <u>https://www.modernhealthcare.com/payment/cigna-aims-expand-affordable-access-gene-therapies</u>. Accessed October 22, 2019.

Source: Cigna Corp, accessible at https://www.multivu.com/players/English/8600151-cigna-express-scripts-embarc-benefit-protection/

Case Study—Outcomes-Based Risk Share Arrangements

Considerations for outcomes-based contracting for gene & cell therapies

- Manufacturer
 - Risk
 - Anti-Kickback Statute
 - Medicaid best price rule
- Government (CMS)
 - CMS is encouraging value-based contracting
 - Could waive Medicaid best price and anti-kickback barriers
- Payer
 - Possibility of patient 'clustering' (genetic disorders may appear in siblings)
 - Reinsurance 'lasering'

