

Session 044: Incorporating Predictive Analytics in the Insurance Value Chain

SOA Antitrust Compliance Guidelines SOA Presentation Disclaimer

SOCIETY OF ACTUARIES Antitrust Compliance Guidelines

Active participation in the Society of Actuaries is an important aspect of membership. While the positive contributions of professional societies and associations are well-recognized and encouraged, association activities are vulnerable to close antitrust scrutiny. By their very nature, associations bring together industry competitors and other market participants.

The United States antitrust laws aim to protect consumers by preserving the free economy and prohibiting anti-competitive business practices; they promote competition. There are both state and federal antitrust laws, although state antitrust laws closely follow federal law. The Sherman Act, is the primary U.S. antitrust law pertaining to association activities. The Sherman Act prohibits every contract, combination or conspiracy that places an unreasonable restraint on trade. There are, however, some activities that are illegal under all circumstances, such as price fixing, market allocation and collusive bidding.

There is no safe harbor under the antitrust law for professional association activities. Therefore, association meeting participants should refrain from discussing any activity that could potentially be construed as having an anti-competitive effect. Discussions relating to product or service pricing, market allocations, membership restrictions, product standardization or other conditions on trade could arguably be perceived as a restraint on trade and may expose the SOA and its members to antitrust enforcement procedures.

While participating in all SOA in person meetings, webinars, teleconferences or side discussions, you should avoid discussing competitively sensitive information with competitors and follow these guidelines:

- Do not discuss prices for services or products or anything else that might affect prices
- Do not discuss what you or other entities plan to do in a particular geographic or product markets or with particular customers.
- Do not speak on behalf of the SOA or any of its committees unless specifically authorized to do so.
- Do leave a meeting where any anticompetitive pricing or market allocation discussion occurs.
- · Do alert SOA staff and/or legal counsel to any concerning discussions
- Do consult with legal counsel before raising any matter or making a statement that may involve competitively sensitive information.

Adherence to these guidelines involves not only avoidance of antitrust violations, but avoidance of behavior which might be so construed. These guidelines only provide an overview of prohibited activities. SOA legal counsel reviews meeting agenda and materials as deemed appropriate and any discussion that departs from the formal agenda should be scrutinized carefully. Antitrust compliance is everyone's responsibility; however, please seek legal counsel if you have any questions or concerns.

Presentation Disclaimer

Presentations are intended for educational purposes only and do not replace independent professional judgment. Statements of fact and opinions expressed are those of the participants individually and, unless expressly stated to the contrary, are not the opinion or position of the Society of Actuaries, its cosponsors or its committees. The Society of Actuaries does not endorse or approve, and assumes no responsibility for, the content, accuracy or completeness of the information presented. Attendees should note that the sessions are audio-recorded and may be published in various media, including print, audio and video formats without further notice.

Session Presented By:

Predictive Analytics and Futurism Section

Provides opportunities for actuaries to deepen their understanding of predictive analytics and emerging technologies relevant to the future of the actuarial profession and insurance industry.

Section Developed Content & Benefits

Predictive Analytics and Futurism Newsletter

Discusses futurism and the latest predictive analytics trends. Published three times a year. Digital editions now available.

SOA Meetings and Seminars

Section developed content presented during meeting sessions and seminars.

Podcasts

Expert led technical podcasts exploring the latest predictive analytics concepts and techniques.

Webcasts

Discounts on section developed webcasts. Free access to section created webcasts over one-year old.

Join the PAF Section Today! SOA.org/PAF

Incorporating Predictive Analytics in the Insurance Value Chain

Adnan Haque

October 28, 2019

What is predictive analytics?

Capture relationships between explanatory variables and historical outcomes

Types of predictive analytics

The vast majority of predictive analytics in insurance is still at the first rung

Image from The Book of Why: The New Science of Cause and Effect by Judea Pearl

DATA & AI LANDSCAPE 2019

INFRASTRUCTURE	ANALYTICS & MACHINE INTELLIGENCE	APPLICATIONS – ENTERPRISE
HADOOP ON-PREMISE HADOOP IN THE CLOUD STREAMING / IN-MEMORY cloudera Hortomworks WS Microsoft Azure Immediate (IN-MEMORY MAPR Pivotal Immediate (IN-MEMORY Immediate (IN-MEMORY Immediate (IN-MEMORY IBM IndoSphere Google Cloud Immediate (IN-MEMORY Immediate (IN-MEMORY Immediate (IN-MEMORY jethro Microsoft Azure Immediate (IN-MEMORY Immediate (IN-MEMORY Immediate (IN-MEMORY jethro Immediate (IN-MEMORY Immediate (IN-MEMORY Immediate (IN-MEMORY Immediate (IN-MEMORY jethro Immediate (IN-MEMORY Immediate (IN-MEMORY Immediate (IN-MEMORY Immediate (IN-MEMORY	DATA ANALYST PLATFORMS Microsoft @ pentaho alteryx Bitadowng guAvus AYASDI ATTIV/O Datameer incorta. inter ana. MMODE ENDOR Construction Sisu witchboard @ statues	SALES MARKETING - B2B RADIUS App Alluic INSIDESALESCOM peoplear © conversica ma Clari A aviso tact.al [] Theore tubulor Clari A aviso tact.al [] Theore t
NoSOL DATABASES Coogle Cloud &WS CRACLE IM Monorth Asure Monorgo The *MarkLogie Couchbase DRTBSTAR Couchbase DRTBSTAR MONORTH Couchbase DRTBTAR MONORTH COUCHBASE D	BI PLATFORMS UODKER → CONSTRUCTION ATSCALE → CONSTRUCTION ATSCALE → CONSTRUCTION ↓ + c b c a ∪ → Dover B ↓ + c b c a ∪ → Dover B	HUMAN CAPITAL HUMAN
DATA TRANSFORMATION *talend @pentobo alteryx @ TRIACATA @ formation *talend @ pentobo alteryx @ TRIACATA @ formation *talend @ pentobo @ formation *talend @ pentobo @ formation *talend @ pentobo @ formation @ for	COMPUTER VISION Microsoft Azure Computer Vision Microsoft Azure Microsoft Azure Micros	APPLICATIONS - INDUSTRY APPLICATIONS - INDUSTRY APPLICATIONS - INDUSTRY Applexas
STORAGE WS Concerned Proversion Concerned	SEARCH COMMERCE ANALYTICS Splunk's Sumologic Sumolo	HEALTHCARE If fation Clover ATRUS @ number If fation Clover ATRUS & number If fation Clover ATRU
aws Coogle Cloud # Microsoft IBM SOF Heater Scare SSAS 1010DATA Vmwar	e TIBCØ TERADATA ORACLE TRADAP Syncson MAPR cloudera E	Anovacce Weing Description Anovacce Anovacce Weing Description Anovacce Anovace Anovacee Anovacce Anovaccee Anovaccee Anovacc
	OPEN SOURCE	
FRAMEWORKS OUERY / DATA FLOW Sport SQL Flink VARN TEZA Flink VARN TEZA	ON & MGMT STREAMING & STAT TOOLS & AI OPS AI / MACHINE LEAR MESSAGING Spack* Image: Answer answe answer answer answer answer answer answer a	NING / DEEP LEARNING Sano (Laborations) Augusto Sind & DIMSUM CeatureFu The Contractions Augusto Sind Augusto
	– DATA SOURCES & APIs	DATA RESOURCES
HEALTH WALIDIC Producefusion + fitbit GARMIN Winso Emer VALIDIC Producefusion + fitbit GARMIN Winso Emer VALIDIC Producefusion Pro	AIR / SPACE / SEA DOW JONES AIR / SPACE / SEA AIR / SPACE /	ATION INTELLIGENCE REQUARE Saco Saco Saco Saco Magliary Second Second Magliary Second Magliary Second Magliary Second Secon

Predictive analytics usage in life insurance

Areas involved in predictive analytics development

25% of predictive analytics projects are developed with external partners

Post-issue Management

Underwriting

People Involved in Design/Development of PA Model

Predictive Analytics and Accelerated Underwriting Survey Report May 2017

Marketing

Predictive analytics use cases

Accelerate underwriting

- Eliminate evidence
- Automate decisions

Price more accurately

- Incorporate more factors into mortality / morbidity prediction
- Provide finer segmentation or even individual pricing

Drive sales and marketing with data

- New models of IT
- Target for both marketing and risk

Accelerated underwriting landscape

Smoker detection

Objective: Manage incremental mortality risk as misrepresentation of smoking behavior increases in non-fluid program

Key predictors:

- Application: age, gender, height, weight, term & face amount, illegal drug/alcohol
- Census: occupations, population density, etc.

Two-Model Approach:

Model Smoker-Liar (SL):

 Based on all information in the app, incl. self-reported smoking history and medical drill down questions

Model Smoker-All (SA):

- Ignores all self-reported smoking questions
- Heavily relies on public data sources

Smoker detection

*Calculated as smoker liar rate * 100% (mortality multiplier for smokers) Extra mortality figures are illustrative

Underwriting class prediction

Objective: Manage incremental mortality risk in a non-fluid program by using a predictive model to identify the best fitting class for the case

Miodel Predicted Probabilities								
Case	Actual UW Class	Class 1	Class 2	Class 3	Decline	Predicted Class	Action	
1	Class 1	96%	3%	1%	0%	Class 1	AUW	
2	Declined	2%	29%	47%	23%	Class 3	FUW	
3	Class 2	11%	68%	16%	5%	Class 2	AUW	
4	Class 1	73%	16%	8%	3%	Class 1	AUW	
5	Class 3	63%	6%	29%	2%	Class 1	AUW	

Set thresholds to triage cases

- Maximum score for worse cases to be sent to full underwriting
- Minimum score for best cases to be allowed into accelerated underwriting

Mortality prediction

Objective: Discover misalignment between underwriting risk assessment and realized mortality by modeling claims directly

- Assign risk classes using the mortality model
- Model class assignment is controlled for age, gender, and smoking status
- Model classes have same or greater A/E differentiation than underwriting class

Cross sell

Proactive lapse management

Objective: Reduce lapses by identifying customers likely to lapse in the next 90 days.

Key predictors:

- Static: demographic, policy features, etc.
- Dynamic: disbursements, account transfers, service interactions, agent production level, etc.

Approach:

- Pro-active outreach to in-force customers that are likely to surrender
- Monthly retraining of model to identify new patterns associated with lapse

Predictive analytics - who

Predictive Analytics and Accelerated Underwriting Survey Report May 2017

Metamodels and the valuation of large variable annuity portfolios

Emiliano A. Valdez, PhD, FSA joint work with Guojun Gan, PhD, FSA

University of Connecticut

Efficient valuation of large variable annuity portfolios

3. Numerical results

2 3

What is a variable annuity?

A variable annuity is a retirement product, offered by an insurance company, that gives you the option to select from a variety of investment funds and then pays you retirement income, the amount of which will depend on the investment performance of funds you choose.

Variable annuities come with guarantees

Insurance companies have to make guarantee payments under bad market conditions

Example (An immediate variable annuity with GMWB)

- Total investment and initial benefits base: \$100,000
- Maximum annual withdrawal: \$8,000

Policy Year	INV Return	Fund Before WD	Annual WD	Fund After WD	Remaining Benefit	Guarantee CF
1	-10%	90,000	8,000	82,000	92,000	0
2	10%	90,200	8,000	82,200	84,000	0
3	-30%	57,540	8,000	49,540	76,000	0
4	-30%	34,678	8,000	26,678	68,000	0
5	-10%	24,010	8,000	16,010	60,000	0
6	-10%	14,409	8,000	6,409	52,000	0
7	10%	7,050	8,000	0	44,000	950
8	r	0	8,000	0	36,000	8,000
:	÷	÷	:	÷	:	:
12	r	0	8,000	0	4,000	8,000
13	r	0	4,000	0	0	4,000

Dynamic hedging

Dynamic hedging is a popular approach to mitigate the financial risk, but

- Dynamic hedging requires calculating the dollar Deltas of a portfolio of variable annuity policies within a short time interval.
- The value of the guarantees cannot be determined by closed-form formula.
- The Monte Carlo simulation model is time-consuming.

There is also the additional computational issue related to reflect the effect of dynamic hedging in (quarterly) financial reporting.

Use of Monte Carlo method

Using the Monte Carlo method to value large variable annuity portfolios is time-consuming:

Example (Valuing a portfolio of 100,000 policies)

- 1,000 risk neutral scenarios
- 360 monthly time steps

 $100,000 \times 1,000 \times 360 = 3.6 \times 10^{10}!$

$$\frac{3.6\times10^{10} \text{ projections}}{200,000 \text{ projections/second}} = 50 \text{ hours!}$$

Metamodeling

- A metamodel, also a surrogate model, is a model of another model.
- Metamodeling has been applied to address the computational problems arising from valuation of variable annuity portfolios: a number of work published by co-author G. Gan.
- It involves four steps:

Selecting representative policies

An important step in the metamodeling process is the selection of representative policies. Gan and Valdez (2016) compared five different experimental design methods for the GB2 regression model:

- Random sampling
- Low-discrepancy sequence
- Data clustering (hierarchical k-means)
- Latin hypercube sampling
- Conditional Latin hypercube sampling

Some metamodels proposed/examined

We have studied and proposed some metamodels for the valuation of large VA portfolios:

- Ordinary kriging
- Universal kriging
- GB2 regression model
- Rank-order kriging (quantile kriging)
- Tree-based models joint work with Z. Quan

Kriging has its origins in geostatistics or spatial analysis. It is in some sense an interpolation method that is closely related to the idea of regression.

A portfolio of synthetic variable annuity policies

Feature	Value
Policyholder birth date	[1/1/1950, 1/1/1980]
Issue date	[1/1/2000, 1/1/2014]
Valuation date	1/1/2014
Maturity	[15, 30] years
Account value	[50000, 500000]
Female percent	40%
Product type	DBRP, DBRU, BBSU, etc.
Fund fee	30, 50, 60, 80, 10, 38, 45, 55, 57, 46bps
	for Funds 1 to 10, respectively
Base fee	200 bps
Rider fee	depends on product type
Number of funds invested	[1, 10]

VA product types in the synthetic portfolio

Description	Rider Fee
GMDB with return of premium	0.25%
GMDB with annual roll-up	0.35%
GMDB with annual ratchet	0.35%
GMAB with return of premium	0.50%
GMAB with annual roll-up	0.60%
GMAB with annual ratchet	0.60%
GMIB with return of premium	0.60%
GMIB with annual roll-up	0.70%
GMIB with annual ratchet	0.70%
GMMB with return of premium	0.50%
GMMB with annual roll-up	0.60%
GMMB with annual ratchet	0.60%
GMWB with return of premium	0.65%
GMWB with annual roll-up	0.75%
GMWB with annual ratchet	0.75%
GMDB + GMAB with annual ratchet	0.75%
GMDB + GMIB with annual ratchet	0.85%
GMDB + GMMB with annual ratchet	0.75%
GMDB + GMWB with annual ratchet	0.90%
	Description GMDB with return of premium GMDB with annual roll-up GMDB with annual ratchet GMAB with return of premium GMAB with annual roll-up GMAB with annual ratchet GMIB with annual ratchet GMIB with annual ratchet GMMB with annual ratchet GMMB with annual roll-up GMMB with annual roll-up GMMB with annual ratchet GMWB with annual ratchet GMWB with annual ratchet GMWB with annual ratchet GMDB + GMAB with annual ratchet GMDB + GMMB with annual ratchet GMDB + GMMB with annual ratchet GMDB + GMMB with annual ratchet

VA provides guaranteed appreciation of the benefits base

Fair market values of the guarantees

Metamodeling for Variable Annuities

Training set - summary statistics - continuous variables

Response variables	Description	Min.	1st Q	Mean	Median	3rd Q	Max.
gmwbBalance	GMWB balance	0	0	27.8	0	0	422.26
gbAmt	Guaranteed benefit amount	51.88	183.98	323.29	306.89	437.36	920.62
FundValue1	Account value of the 1st fund	0	0	32.02	12.62	46.76	629.89
FundValue2	Account value of the 2nd fund	0	0	36.54	16.08	56.31	571.59
FundValue3	Account value of the 3rd fund	0	0	26.78	11.81	36.64	458.78
FundValue4	Account value of the 4th fund	0	0	25.8	10.48	38.29	539.36
FundValue5	Account value of the 5th fund	0	0	22.29	10.54	34.71	425.92
FundValue6	Account value of the 6th fund	0	0	37.15	19.64	53.96	654.64
FundValue7	Account value of the 7th fund	0	0	28.78	12.88	42.56	546.89
FundValue8	Account value of the 8th fund	0	0	31.27	15.59	46.24	529.57
FundValue9	Account value of the 9th fund	0	0	31.93	13.9	45.17	599.44
FundValue10	Account value of the 10th fund	0	0	32.6	13.86	45.09	510.43
age	Age of the policyholder	34.52	42.86	50.29	51.36	57.21	64.46
ttm	Time to maturity in years	0.75	10.09	14.61	14.6	19.12	27.52

Tree-based models

Quan, Gan and Valdez (2019) compared the prediction performance of various tree-based models:

- Classification and Regression Trees (CART)
 - pruned by introducing penalty
- Ensemble methods: aggregate several regression trees to improve prediction accuracy
 - Bagging and random forests
 - Gradient boosting
- Unbiased recursive partitioning:
 - Conditional inference trees
 - Conditional random forests

Unbiased recursive partitioning

CART algorithms employ what is called recursive binary partitioning, which uses greedy search causing some drawbacks:

- Overfitting
 - Use a pruning process by applying cross-validation
- Bias in variable selection
 - Especially true when the explanatory variables present many possible splits or have missing values
 - Hothorn, et al. (2006) introduced conditional inference trees based on a partitioning of a statistic that is used to measure the association between the response and the explanatory variables.

A regression tree

Metamodeling for Variable Annuities

A conditional inference tree

Prediction accuracy of various models

Model	Gini	R^2	CCC	ME	PE	MSE	MAE
Regression tree (CART)	0.786	0.845	0.917	1.678	-0.025	3278.578	31.421
Bagged trees	0.842	0.918	0.954	2.213	-0.033	1720.725	20.334
Gradient boosting	0.836	0.942	0.969	1.311	-0.019	1214.899	19.341
Conditional inference trees	0.824	0.869	0.930	0.905	-0.013	2754.853	26.536
Conditional random forests	0.836	0.892	0.940	1.596	-0.024	2273.385	23.219
Ordinary Kriging GB2	0.815 0.827	0.857 0.879	0.912 0.930	-0.812 0.106	0.012 -0.002	3006.192 2554.246	27.429 27.772

A heatmap of model performance

Metamodeling for Variable Annuities

Computational efficiency

Model	Computation Time
Regression tree (CART)	0.13 secs
Bagged trees	2.70 secs
Gradient boosting	4.69 secs
Conditional inference trees	0.25 secs
Conditional random forests	1214.72 secs
Ordinary Kriging GB2	277.49 secs 23.44 secs

Variable importance for tree-based models

Variable importance for tree-based models

Lift curve plots - performance visualization

Prediction and observed fair market values

Metamodeling for Variable Annuities

Concluding remarks

We explore tree-based models and their extensions in developing metamodels for predicting fair market values. Besides computational efficiency and predictive accuracy, they have several advantages as an alternative predictive tool:

- Tree-based models are considered as nonparametric models that do not require distribution assumptions.
- Tree-based models can perform variable selection by assessing the relative importance.
- Tree-based models, especially with single smaller-sized trees, are straightforward to interpret by a visualization of the tree structure. This visualization was illustrated both in the case of regression tree and conditional inference tree.
- When compared to other metamodels for prediction purposes, tree-based models require less data preparation as they preserve the original scale to be more interpretable.

Metamodeling book

Metamodeling for Variable Annuities

Appendix: Validation measures

Validation measure	Description	Interpretation
Gini Index	$Gini = 1 - \frac{2}{N-1} \left(N - \frac{\sum_{i=1}^{N} i\tilde{y}_i}{\sum_{i=1}^{N} \tilde{y}_i} \right)$	Higher Gini is better.
	where \tilde{y} is the corresponding to y after	
	ranking the corresponding predicted values \widehat{y} .	
Coefficient of Determination	$R^{2} = 1 - \frac{\sum_{i=1}^{N} (\widehat{y}_{i} - y_{i})^{2}}{\sum_{i=1}^{N} \left(y_{i} - \frac{1}{n} \sum_{i=1}^{n} y_{i}\right)^{2}}$	Higher R^2 is better.
	where \widehat{y} is predicted values.	
Concordance Correlation	$CCC = \frac{2\rho\sigma_{\widehat{y}_i}\sigma_{y_i}}{\sigma_{\widehat{y}_i}^2 + \sigma_{y_i}^2 + (\mu_{\widehat{y}_i} - \mu_{y_i})^2}$	Higher CCC is better
Coefficient	where $\mu_{\widehat{y}_i}$ and μ_{y_i} are the means	
	$\sigma_{\widehat{y}_i}^2$ and $\sigma_{y_i}^2$ are the variances	
	ho is the correlation coefficient	
Mean Error	$ME = \frac{1}{N} \sum_{i=1}^{N} (\widehat{y}_i - y_i)$	Lower $\left ME \right $ is better
Percentage Error	$PE = \frac{\sum_{i=1}^{N} \widehat{y}_i - \sum_{i=1}^{N} y_i}{\sum_{i=1}^{N} y_i}$	Lower $ PE $ is better
Mean Squared Error	$MSE = \frac{1}{N} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$	Lower MSE is bette
Mean Absolute Error	$MAE = \frac{1}{N} \sum_{i=1}^{N} \widehat{y}_i - y_i $	Lower MAE is bette

Appendix: Tuning hyperparameters

R package	Description
rpart	Classification and regression tree (CART)
cp minsplit maxdepth	complexity parameter minimum number of observations in a node in order to be considered for splitting maximum depth of any node of the final tree
randomForest	Bagging and Random Forests
mtry nodesize ntree	number of explanatory variables randomly sampled as candidates at each split minimum number of observations in the terminal nodes number of trees to grow/bootstrap samples
gbm	Gradient boosting
n.trees interaction.depth n.minobsinnode shrinkage	number of trees to fit/iterations/basis functions in the additive expansion maximum depth of variable interactions(1 implies an additive model, 2 means a model with up to 2-way interactions) minimum number of observations in the terminal nodes shrinkage parameter(learning rate or step-size reduction)
party/partykit	Conditional inference trees
teststat splitstat testtype alpha minsplit	type of the test statistic to be applied for variable selection type of the test statistic to be applied for split point selection the way to compute the distribution of the test statistic significance level for variable selection minimum sum of weights in a node in order to be considered for splitting
party/partykit	Conditional random forests
mtry ntree	number of explanatory variables randomly sampled as candidates at each split number of trees to grow/bootstrap samples

Metamodeling for Variable Annuities

References

Breiman, L., et al. (1984). Classification and Regression Trees. Taylor & Francis Group, LLC: Boca Raton, FL.

- : Gan, G. and Valdez, E.A. (2019). Metamodeling for Variable Annuities. CRC Press: Boca Raton, FL.
- Gan, G. and Valdez, E.A. (2017). Valuation of large variable annuity portfolios: Monte Carlo simulation and synthetic datasets. *Dependence Modeling*. 5:354-374.
- Gan, G. and Valdez, E.A. (2018). Regression modeling for the valuation of large variable annuity portfolios. North American Actuarial Journal. 22(1):40-54.
- Hothorn, T., Hornik, K. and Zeileis, A. (2006). Unbiased recursive partitioning: A conditional inference framework. *Journal of Computational and Graphical Statistics*. 15(3):651-674.
- Loh, W.-Y. (2014). Fifty years of classification and regression trees. International Statistical Review. 82(3):329-348.
- Quan, Z., Gan, G. and Valdez, E.A. (2019). Tree-based models for variable annuity valuation: Parameter tuning and empirical analysis. Submitted for publication.

