
   

 

 
 

 
Session 044: Incorporating Predictive Analytics in the Insurance Value Chain 

 
 
 
 
 
 
 
 
 
 
 

SOA Antitrust Compliance Guidelines 
SOA Presentation Disclaimer 

http://www.soa.org/legal/antitrust-disclaimer/
https://www.soa.org/legal/presentation-disclaimer/


1October 28, 2019



2October 28, 2019



3October 28, 2019



Incorporating Predictive Analytics in the 
Insurance Value Chain

Adnan Haque

October 28, 2019



What is predictive analytics?
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Capture relationships between explanatory variables and 
historical outcomes 

Observed 
Customers Target

New Customers Prediction

Past

Future

Present

Model



Types of predictive analytics

6October 28, 2019Image from The Book of Why: The New Science of 
Cause and Effect by Judea Pearl

The vast majority of predictive 
analytics in insurance is still at 

the first rung
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Predictive analytics usage in life insurance
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Areas involved in predictive analytics development
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25% of predictive analytics projects are developed with external partners 



Predictive analytics use cases
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• Eliminate evidence
• Automate decisions

Accelerate underwriting

• Incorporate more factors into mortality / morbidity prediction
• Provide finer segmentation or even individual pricing

Price more accurately

• New models of IT
• Target for both marketing and risk

Drive sales and marketing with data



Accelerated underwriting landscape
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Predictive models:
• risk selection
• misrep: smoker/BMI

Lifestyle / 
social
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Smoker detection
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Key predictors: 

 Application: age, gender, height, weight, term & face amount, 
illegal drug/alcohol

 Census: occupations, population density, etc.

Two-Model Approach:

Model Smoker-Liar (SL):  

 Based on all information in the app, incl. self-reported 
smoking history and medical drill down questions

Model Smoker-All (SA): 

 Ignores all self-reported smoking questions 
 Heavily relies on public data sources

Objective: Manage incremental mortality risk as misrepresentation of smoking behavior 
increases in non-fluid program

Self-declared 
Nonsmoker

Self-declared 
Nonsmoker

Smoker-liar model:

Smoker-liar

All applicants

Self-declared 
Nonsmoker

Smoker-all model:

Self-declared Smoker 
+ Smoker liars



Smoker detection
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Fluid Test Non-disclosure Extra Mortality*

I All 25% 0%

II None 25% 2.7%

III None 50% 5.3%

IV None 100% 10%

 Currently all applicants are sent for fluid tests; 
extra mortality is 0%

 When fluids are eliminated without routing 
likely smokers for tests, mortality will increase 

 At current self-disclosure, Model SL minimizes 
extra mortality cost (slightly)

 As non-disclosure increases, Model SA 
minimizes extra mortality cost

*Calculated as smoker liar rate * 100% (mortality multiplier for smokers)
Extra mortality figures are illustrative



Underwriting class prediction
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Objective: Manage incremental mortality risk in a non-fluid program by using a predictive model 
to identify the best fitting class for the case

Model Predicted Probabilities

Case
Actual 

UW Class 
Class

1
Class 

2
Class 

3 Decline
Predicted 

Class Action
1 Class 1 96% 3% 1% 0% Class 1 AUW
2 Declined 2% 29% 47% 23% Class 3 FUW
3 Class 2 11% 68% 16% 5% Class 2 AUW
4 Class 1 73% 16% 8% 3% Class 1 AUW
5 Class 3 63% 6% 29% 2% Class 1 AUW

Set thresholds to triage cases
 Maximum score for worse cases to be sent to full 

underwriting
 Minimum score for best cases to be allowed into 

accelerated underwriting Refer to full 
underwriting

Process through Accelerated UW



Mortality prediction
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Objective: Discover misalignment between underwriting risk assessment and realized mortality 
by modeling claims directly

o Assign risk classes using the mortality model
o Model class assignment is controlled for age, 

gender, and smoking status
o Model classes have same or greater A/E 

differentiation than underwriting class
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Cross sell
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Objective: Cross sell life insurance to existing P&C customers

MVRDemo-
graphic Credit

Credit-
based 

mortality 
score

Prescriptions MIBDisclosures

P&C data Life data

Propensity to buy Risk selection

Likely to purchase life insurance

Likely to be low risk

OverlapP&C
data

Life 
data

Propensity to 
have Life 
insurance

Score existing 
or new auto 
insurance 

policyholders

2. Build 
Model

3. Score 
prospects

1. Assemble 
Data



Proactive lapse management
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Objective: Reduce lapses by identifying customers likely to lapse in the next 90 days.

• Adam Smith - $10k
• Bob Joseph - $250k 
• Greg Michaels - $100k
• Adnan Haque - $1mm

Key predictors: 

 Static: demographic, policy features, etc.
 Dynamic: disbursements, account transfers, service interactions, agent production 

level, etc.
Approach:
 Pro-active outreach to in-force customers that are likely to surrender
 Monthly retraining of model to identify new patterns associated with lapse

Treatment
No treatment

List of policyholders most 
likely to surrenderPolicy

Financial 
transactions

Agent

Service

Tailored outreach



Appendix
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Predictive analytics - who
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Thank you!
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Metamodels and the valuation of large variable annuity portfolios

Emiliano A. Valdez, PhD, FSA
joint work with Guojun Gan, PhD, FSA

University of Connecticut



Efficient valuation of large variable annuity portfolios
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What is a variable annuity?
A variable annuity is a retirement product, offered by an insurance company, that gives you
the option to select from a variety of investment funds and then pays you retirement income,
the amount of which will depend on the investment performance of funds you choose.

Policyholder

Separate
Account

General
Account

Purchase
Payments

Withdrawals/
Payments

Charges

Guarantee
Payments
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Variable annuities come with guarantees

GMxB

GMDB GMLB

GMWB GMAB GMMB GMIB
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Insurance companies have to make guarantee payments under bad market
conditions

Example (An immediate variable annuity with GMWB)

Total investment and initial benefits base: $100,000

Maximum annual withdrawal: $8,000

Policy
Year

INV
Return

Fund
Before
WD

Annual
WD

Fund
After
WD

Remaining
Benefit

Guarantee
CF

1 -10% 90,000 8,000 82,000 92,000 0
2 10% 90,200 8,000 82,200 84,000 0
3 -30% 57,540 8,000 49,540 76,000 0
4 -30% 34,678 8,000 26,678 68,000 0
5 -10% 24,010 8,000 16,010 60,000 0
6 -10% 14,409 8,000 6,409 52,000 0
7 10% 7,050 8,000 0 44,000 950
8 r 0 8,000 0 36,000 8,000
...

...
...

...
...

...
...

12 r 0 8,000 0 4,000 8,000
13 r 0 4,000 0 0 4,000
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Dynamic hedging

Dynamic hedging is a popular approach to mitigate the financial risk, but

Dynamic hedging requires calculating the dollar Deltas of a portfolio of variable annuity
policies within a short time interval.

The value of the guarantees cannot be determined by closed-form formula.

The Monte Carlo simulation model is time-consuming.

There is also the additional computational issue related to reflect the effect of dynamic
hedging in (quarterly) financial reporting.

Metamodeling for Variable Annuities



Use of Monte Carlo method

Using the Monte Carlo method to value large variable annuity portfolios is time-consuming:

Example (Valuing a portfolio of 100,000 policies)

1,000 risk neutral scenarios

360 monthly time steps

100, 000× 1, 000× 360 = 3.6× 1010!

3.6× 1010 projections

200, 000 projections/second
= 50 hours!

Metamodeling for Variable Annuities



Metamodeling

A metamodel, also a surrogate model, is a model of another model.

Metamodeling has been applied to address the computational problems arising from
valuation of variable annuity portfolios: a number of work published by co-author G. Gan.

It involves four steps:

Select representative VA policies

Value representative VA policies

Build a metamodel

Use the metamodel

Metamodeling for Variable Annuities



Selecting representative policies

An important step in the metamodeling process is the selection of representative policies. Gan
and Valdez (2016) compared five different experimental design methods for the GB2 regression
model:

Random sampling

Low-discrepancy sequence

Data clustering (hierarchical k-means)

Latin hypercube sampling

Conditional Latin hypercube sampling

Metamodeling for Variable Annuities



Some metamodels proposed/examined

We have studied and proposed some metamodels for the valuation of large VA portfolios:

Ordinary kriging

Universal kriging

GB2 regression model

Rank-order kriging (quantile kriging)

Tree-based models - joint work with Z. Quan

Kriging has its origins in geostatistics or spatial analysis. It is in some sense an interpolation
method that is closely related to the idea of regression.

Metamodeling for Variable Annuities



A portfolio of synthetic variable annuity policies

Feature Value

Policyholder birth date [1/1/1950, 1/1/1980]
Issue date [1/1/2000, 1/1/2014]
Valuation date 1/1/2014
Maturity [15, 30] years
Account value [50000, 500000]
Female percent 40%
Product type DBRP, DBRU, BBSU, etc.
Fund fee 30, 50, 60, 80, 10, 38, 45, 55, 57, 46bps

for Funds 1 to 10, respectively
Base fee 200 bps
Rider fee depends on product type
Number of funds invested [1, 10]

Metamodeling for Variable Annuities



VA product types in the synthetic portfolio

Product Description Rider Fee

DBRP GMDB with return of premium 0.25%
DBRU GMDB with annual roll-up 0.35%
DBSU GMDB with annual ratchet 0.35%
ABRP GMAB with return of premium 0.50%
ABRU GMAB with annual roll-up 0.60%
ABSU GMAB with annual ratchet 0.60%
IBRP GMIB with return of premium 0.60%
IBRU GMIB with annual roll-up 0.70%
IBSU GMIB with annual ratchet 0.70%
MBRP GMMB with return of premium 0.50%
MBRU GMMB with annual roll-up 0.60%
MBSU GMMB with annual ratchet 0.60%
WBRP GMWB with return of premium 0.65%
WBRU GMWB with annual roll-up 0.75%
WBSU GMWB with annual ratchet 0.75%
DBAB GMDB + GMAB with annual ratchet 0.75%
DBIB GMDB + GMIB with annual ratchet 0.85%
DBMB GMDB + GMMB with annual ratchet 0.75%
DBWB GMDB + GMWB with annual ratchet 0.90%
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VA provides guaranteed appreciation of the benefits base
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Fair market values of the guarantees

Fair market values
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fmv -68.37 -5.55 64.63 11.7 64.84 1210.32
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Training set - summary statistics - continuous variables

Response
variables Description Min. 1st Q Mean Median 3rd Q Max.

gmwbBalance GMWB balance 0 0 27.8 0 0 422.26
gbAmt Guaranteed benefit amount 51.88 183.98 323.29 306.89 437.36 920.62
FundValue1 Account value of the 1st fund 0 0 32.02 12.62 46.76 629.89
FundValue2 Account value of the 2nd fund 0 0 36.54 16.08 56.31 571.59
FundValue3 Account value of the 3rd fund 0 0 26.78 11.81 36.64 458.78
FundValue4 Account value of the 4th fund 0 0 25.8 10.48 38.29 539.36
FundValue5 Account value of the 5th fund 0 0 22.29 10.54 34.71 425.92
FundValue6 Account value of the 6th fund 0 0 37.15 19.64 53.96 654.64
FundValue7 Account value of the 7th fund 0 0 28.78 12.88 42.56 546.89
FundValue8 Account value of the 8th fund 0 0 31.27 15.59 46.24 529.57
FundValue9 Account value of the 9th fund 0 0 31.93 13.9 45.17 599.44
FundValue10 Account value of the 10th fund 0 0 32.6 13.86 45.09 510.43
age Age of the policyholder 34.52 42.86 50.29 51.36 57.21 64.46
ttm Time to maturity in years 0.75 10.09 14.61 14.6 19.12 27.52
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Tree-based models

Quan, Gan and Valdez (2019) compared the prediction performance of various tree-based
models:

Classification and Regression Trees (CART)

pruned by introducing penalty

Ensemble methods: aggregate several regression trees to improve prediction accuracy

Bagging and random forests
Gradient boosting

Unbiased recursive partitioning:

Conditional inference trees
Conditional random forests

Metamodeling for Variable Annuities



Unbiased recursive partitioning

CART algorithms employ what is called recursive binary partitioning, which uses greedy search
causing some drawbacks:

Overfitting

Use a pruning process by applying cross-validation

Bias in variable selection

Especially true when the explanatory variables present many possible splits or have missing
values
Hothorn, et al. (2006) introduced conditional inference trees based on a partitioning of a
statistic that is used to measure the association between the response and the explanatory
variables.

Metamodeling for Variable Annuities



A regression tree
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A conditional inference tree
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Prediction accuracy of various models

Model Gini R2 CCC ME PE MSE MAE

Regression tree (CART) 0.786 0.845 0.917 1.678 -0.025 3278.578 31.421
Bagged trees 0.842 0.918 0.954 2.213 -0.033 1720.725 20.334
Gradient boosting 0.836 0.942 0.969 1.311 -0.019 1214.899 19.341
Conditional inference trees 0.824 0.869 0.930 0.905 -0.013 2754.853 26.536
Conditional random forests 0.836 0.892 0.940 1.596 -0.024 2273.385 23.219

Ordinary Kriging 0.815 0.857 0.912 -0.812 0.012 3006.192 27.429
GB2 0.827 0.879 0.930 0.106 -0.002 2554.246 27.772
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A heatmap of model performance
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Computational efficiency

Model Computation Time

Regression tree (CART) 0.13 secs
Bagged trees 2.70 secs
Gradient boosting 4.69 secs
Conditional inference trees 0.25 secs
Conditional random forests 1214.72 secs

Ordinary Kriging 277.49 secs
GB2 23.44 secs
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Variable importance for tree-based models
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Variable importance for tree-based models
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Lift curve plots - performance visualization
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Prediction and observed fair market values
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Concluding remarks

We explore tree-based models and their extensions in developing metamodels for predicting
fair market values. Besides computational efficiency and predictive accuracy, they have several
advantages as an alternative predictive tool:

Tree-based models are considered as nonparametric models that do not require distribution
assumptions.

Tree-based models can perform variable selection by assessing the relative importance.

Tree-based models, especially with single smaller-sized trees, are straightforward to interpret by a
visualization of the tree structure. This visualization was illustrated both in the case of regression
tree and conditional inference tree.

When compared to other metamodels for prediction purposes, tree-based models require less data
preparation as they preserve the original scale to be more interpretable.

Metamodeling for Variable Annuities



Metamodeling book

Metamodeling for Variable Annuities



Appendix: Validation measures
Validation measure Description Interpretation

Gini Index Gini = 1− 2

N − 1

(
N −

∑N
i=1 iỹi∑N
i=1 ỹi

)
Higher Gini is better.

where ỹ is the corresponding to y after
ranking the corresponding predicted values ŷ.

Coefficient of Determination R2 = 1−
∑N

i=1(ŷi − yi)2∑N
i=1

(
yi −

1

n

∑n
i=1 yi

)2 Higher R2 is better.

where ŷ is predicted values.

Concordance Correlation CCC =
2ρσŷiσyi

σ2
ŷi
+σ2

yi
+(µŷi−µyi )

2 Higher CCC is better.

Coefficient where µŷi and µyi are the means
σ2ŷi and σ2yi are the variances

ρ is the correlation coefficient

Mean Error ME =
1

N

∑N
i=1(ŷi − yi) Lower |ME| is better.

Percentage Error PE =

∑N
i=1 ŷi −

∑N
i=1 yi∑N

i=1 yi
Lower |PE| is better.

Mean Squared Error MSE =
1

N

∑N
i=1(ŷi − yi)2 Lower MSE is better

Mean Absolute Error MAE =
1

N

∑N
i=1 |ŷi − yi| Lower MAE is better.
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Appendix: Tuning hyperparameters
R package Description

rpart Classification and regression tree (CART)

cp complexity parameter
minsplit minimum number of observations in a node in order to

be considered for splitting
maxdepth maximum depth of any node of the final tree

randomForest Bagging and Random Forests

mtry number of explanatory variables randomly sampled as
candidates at each split

nodesize minimum number of observations in the terminal nodes
ntree number of trees to grow/bootstrap samples

gbm Gradient boosting

n.trees number of trees to fit/iterations/basis functions
in the additive expansion

interaction.depth maximum depth of variable interactions(1 implies an additive model,
2 means a model with up to 2-way interactions)

n.minobsinnode minimum number of observations in the terminal nodes
shrinkage shrinkage parameter(learning rate or step-size reduction)

party/partykit Conditional inference trees

teststat type of the test statistic to be applied for variable selection
splitstat type of the test statistic to be applied for split point selection
testtype the way to compute the distribution of the test statistic
alpha significance level for variable selection
minsplit minimum sum of weights in a node in order to

be considered for splitting

party/partykit Conditional random forests

mtry number of explanatory variables randomly sampled as
candidates at each split

ntree number of trees to grow/bootstrap samples
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