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Executive Summary 

This report is targeted to actuaries that are interested in identifying the adverse human health 

outcomes resulting from anthropogenic climate change. This is accomplished by providing a detailed 

framework to evaluate the impact of extreme heat on human health and identify the role that 

anthropogenic climate change has on extreme heat events. Although this document is designed around 

extreme heat, the concepts can be expanded to other climate-related events. As the primary focus of 

actuarial research is to promote human health and minimize the preventable economic burden, this 

document also provides recommendations to mitigate against excess heat related illness (HRI) due to 

extreme heat.  

This report is focused on three objectives to understand the dynamics of HRI emergency room (ER) 

visits. The first objective is to understand the relationship between extreme temperature and HRI ER visits. 

The second objective is to construct a methodology to evaluate different heatwave definitions. The third 

objective is to attribute the excess HRI ER visits and health care expenditure towards ER visits that could be 

attributed to anthropogenic climate change. The study was based on the three physiographic divisions 

(Mountain, Coastal, and Piedmont) of North Carolina based on the variance of temperature across the state; 

however, due to limitations in data from the Mountain region, the results are only focused on two 

physiographic divisions (Coastal and Piedmont). 

The HRI ER visits data was obtained from the North Carolina Disease Event Tracking and 

Epidemiologic Tool (NC DETECT), temperature data from Global Historical Climatology Network – Daily 

dataset and dew-point from PRISM dataset. Additionally, estimates of relative humidity and 6 most 

frequently used heat indices were derived from the literature. There were 28 heat wave definitions from 

the literature that were found to be sensitive to human health outcomes (mortality/morbidity). Heatwave 

definitions were used to divide the study period in heatwave and non-heatwave days to compare the 

sensitivity for excess HRI ER visits. To conduct the attribution analysis, historical natural simulations were 

obtained from the international CLIVAR climate of 20th Century Plus Detection and Attribution Project. 

Twenty-eight heatwave definitions were evaluated to estimate the sensitivity towards HRI ER visits 

using a negative binomial model along with population as an offset term. An absolute threshold of daily 

maximum temperature greater than or equal to 95°F was most effective to identify extreme HRI ER visits 

compared to the other heatwave definitions included in the study. The results were slightly different from 

existing literature; we identified that using daily maximum temperature greater than the 95th percentile 

threshold for at least two consecutive days to be more effective for the region. But the available literature 

is based on comparatively larger geographic areas (group of states) and using all-cause mortality as the 

health outcomes. Our study results using HRI ER visits as the health outcome using a decentralized approach 

(focusing on climate divisions within a state) adds value to the existing literature. From the attribution 

analysis, we estimated that an excess of 25.19% of the cost related to HRI ER visits in Coastal and 27.32% 

Piedmont region could be attributed to anthropogenic climate change. 
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Section 1: Introduction 

Climate change is already a threat to human health. Evidence has linked climate change to an increase in 

the frequency and intensity of some extreme weather events. Because of scientific advances in 

understanding the relationship between climate change and extremes, the conversation can now transition 

from identifying changes in historical trends of extreme events to determining the effect climate change 

has on a single extreme event. This new study area in climate science is called extreme event attribution. 

Understanding these relationships provides new opportunities to determine the current and future impacts 

of climate change on society and health delivery systems. The connection between extreme weather events 

and human health is already well established. With the advent of extreme event attribution, there is now 

an opportunity to identify the contribution that climate change has on human health and healthcare costs 

because of more intense and frequent extreme events in many parts of the world. This project aims to 

evaluate the relationship between extreme temperature and emergency room visits, while also estimating 

the health care cost associated with extreme temperature events. The goal of this report is to establish a 

framework for actuaries interested in evaluating the impacts of climate change on human health and 

determine additional costs.  

1.1 CLIMATE CHANGE AND EXTREME TEMPERATURE 

Changes in the Earth's climate since the early 19th Century is primarily the result of increases in 

anthropogenic greenhouse gases. As the concentration of these gases in the atmosphere continues to rise, 

the Earth's temperature is estimated to increase over time compared to the other natural drivers (volcanic, 

solar, and orbital). According to the recent Intergovernmental Panel on Climate Change special report, 

human-induced warming has reached approximately 1°C above pre-industrial levels and is projected to 

increase another 1.5°C by the end of the current Century (by 2100)  (IPCC, 2018). Based on several lines of 

evidence, the report also concludes that there is high confidence that many regions will be exposed to more 

extreme weather, including more frequent and intense extreme temperature events (IPCC, 2018). For 

example, central and western North America are among the top regions in the world expected to 

Figure 1. The graph shows average annual global temperatures since 1880 compared to the long-term 

average (1901-2000). The zero line represents the long-term average temperature for the whole planet; 

blue and red bars show the difference above or below average for each year (Lindsey & Dahlman, 2002). 
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experience higher warming rates and increased incidences of extreme heat (IPCC, 2018). Many areas 

around the world have already experienced increases in the frequency and intensity of extreme weather 

events over the last 50 to 100 years. In the United States, the frequency and duration of heatwaves 

significantly increased over last 50 years (1961 – 2018) (USGCRP, 2020). The U.S. Global Climate Change 

Research Program identified that a majority of the U.S. cities in the east coast region had statistically 

significant increase in the number of heatwaves, defined as two or more consecutive days with daily 

minimum temperature more than 85th percentile of historic summer period specific to the city (USGCRP, 

2020). For the study conducted in this report, the focus was on changes in extreme temperature.  

1.2 ATTRIBUTING HUMAN HEALTH OUTCOMES TO ANTHROPOGENIC CLIMATE CHANGE 

 In 2017, human-

induced warming 

reached about 1.5 °C 

above the pre-industrial 

age. The past emissions 

are not the standalone 

factors to raise the global 

average temperature to 

1.5 °C more than the pre-

industrial level. Human-

induced warming is a 

result of greenhouse 

gases (GHG) like carbon 

dioxide [Fig. 2], methane, 

chlorofluorocarbons, and 

nitrous oxide emissions. 

For the last few decades, 

there is an exponential 

rise in GHG that could 

worsen the warming 

trend (IPCC, 2018). 

 There are few 

studies based on 

probabilistic event 

attribution analysis to 

compare the difference 

between actual observed HRI mortality to the simulations based on natural scenario (Mitchell et al., 2016; 

Oudin et al., 2013). The impact of extreme temperature exposure on all-cause mortality was found to be 

doubled due to climate change (Oudin et al., 2013). As majority of literature on attribution analysis is 

focused on mortality, we focused our attention on morbidity using HRI ER visits as outcome. 

 

Figure 2. The graphs show monthly mean carbon dioxide measured at 

Mauna Loa Observatory, Hawaii. The carbon dioxide data on Mauna Loa 

constitute the longest record of direct measurements of CO2 in the 

atmosphere. They were started by C. David Keeling of the Scripps 

Institution of Oceanography in March of 1958 at a facility of the National 

Oceanic and Atmospheric Administration (Keeling, 1976). NOAA started 

its own CO2 measurements in May of 1974, and they have run in parallel 

with those made by Scripps since then (Thoning, 1989) (NOAA, 2020). 
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1.2.A DETECTION AND ATTRIBUTION OF CLIMATE CHANGE 

Determining the role that climate change 
has on extreme weather and climate 
events is an emerging scientific area of 
research, as indicated in the recent 
National Academy of Science report 
(National Academy of Sciences, 2016). 
Attribution analysis provides an 
opportunity to determine the role that 
climate change influences extreme 
weather events. This new and emerging 
field of extreme event attribution can 
assist other fields in identifying the 
impacts of climate change on their 
sectors (National Academy of Sciences, 
2016).  

Detection and attribution of climate 
change involves assessing the observed 
changes of the climate system through 
comparisons of climate models and/or 
observations using various statistical 
methods. Detection and attribution 
studies can determine if human-induced 
influence on climate variables (such as a 
temperature) varies from natural 
variability. Results from such studies can 
assist in decision making associated with 
climate policy and adaptation. 

1.3 IMPACT OF EXTREME TEMPERATURE ON HUMAN HEALTH 

A heatwave is an acute episode of consecutive days with temperatures exceeding a specific 

threshold (Mazdiyasni & AghaKouchak, 2015). In the United States, heatwaves are likely to result in more 

deaths than any other climate or weather-related disaster (NOAA, 2019). Heatwaves are expected to 

increase in intensity and frequency during the 21st century, and heatwave-related mortality is projected to 

increase in the United States (Anderson et al., 2018; Patz et al., 2014). About 30 percent of the current 

global population is exposed to extreme heat conditions, which is expected to increase to 50-75% by 2100 

(Mora et al., 2017). The frequency of heatwaves was highest in the southeast region of the United States 

from 1979 to 2011 (Smith et al., 2013).  

Human exposure to extreme heat often triggers a cascade of changes in the human body. The 

changes include depletion of water and electrolytes, abnormalities in cardiovascular, renal, hepatic, 

maternal, and coagulation functions (Atha, 2013). Additionally, it increases psychologic stress that could 

potentially trigger inflammatory responses (Danzl, 2018). Classic Heat-Related Illness (HRI) is an acute 

condition ranging from minor (edema, syncope, cramps, and exhaustion) to major (heat stroke) disorders 

(LoVecchio, 2016). Heat-related disorders could often be managed with public health mitigation plans or 

symptomatic care management and could lead to life-threatening conditions if untreated (LoVecchio, 2016; 

Nemer & Juarez, 2019). Furthermore, extreme heat, combined with different environmental drivers, could 

worsen the air quality that could increase the risk of adverse respiratory health outcomes (Nolte, 2018). 

Figure 3. Diagram illustrates the evidence of anthropogenic 

climate change on various types of extreme weather and 

climate events. This work can assist in determining possible 

studies attribution and detection studies for actuarial work on 

impacts (National Academy of Sciences, 2016).  
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1.4 FACTORS INFLUENCE HUMAN HEAT EXPOSURE 

There are multiple extrinsic and intrinsic factors associated with extreme heat exposure that could 

amplify heat-related morbidity and mortality. The extrinsic factors (e.g., urban housing) and intrinsic factors 

(e.g., individual's demographics, socioeconomic status, and pre-existing medical conditions) play a crucial 

role in exacerbating the vulnerability to HRI (Levy & Patz, 2015; McMichael et al., 2008). The majority of the 

world's population live in urban communities. Individuals living in urban communities are more vulnerable 

to HRI than those in rural communities, due to the urban heat island effect (UHI) and other societal factors. 

UHI is a common situation where the surface temperature in urban communities is higher than nearby rural 

regions (Zhao et al., 2014). 

1.5 MORBIDITY AND MORTALITY IN THE U.S. 

About 1.9 per 100,000 population per year were hospitalized due to heat-related illnesses. This 

was reported in 20 states of the United States during the summer seasons of 2001 - 2010 (Choudhary, 

2014). About 658 deaths per year were reported due to excess heat exposure in the United States from 

1999 – 2009. The mortality rate was higher in the elderly male population with peak death rate in July and 

August (David R. Fowler., 2013). In Florida, over eight years (2005-2012), 33.1 per 100,000 person-year 

emergency room visits, 5.9 per 100,000 person-year hospitalizations, and 0.2 per 100,000 person-year 

deaths related to non-occupational HRI were reported. This was higher than occupational related morbidity 

and mortality (Harduar Morano, Watkins & Kintziger, 2016).  

The direct effect of extreme heat exposure triggering HRI is an underestimate of adverse health 

outcomes, as extreme heat exposure could exacerbate multiple pre-existing conditions. A classic example 

from California accounted for up to 6-fold increase in HRI ER visits and 10-fold increase in HRI related 

hospitalizations during the 2006 summer (Knowlton et al., 2009). There was a significant increase in HRI, 

acute renal failure, nephritis, cardiovascular, diabetic, and electrolytic imbalance in the central Coastal 

region. The region has a higher number of children and elderly population, known to be more susceptible 

to extreme heat (Knowlton et al., 2009). Additionally, the cardiac and respiratory health outcomes 

worsened with the comorbid condition of HRI (Schmeltz et al., 2016).  

In North Carolina, there are a higher number of heat-related emergency department visits in the 

rural regions than the urban metropolitan cities during the warmest months (observed higher temperature 

during the calendar year relative to the annual average) from May through September. Increased mobile 

homes and socioeconomic status were associated with an increased risk of the HRI (Kovach et al., 2015). In 

North Carolina, heat-related emergency department visits were higher when the maximum daily 

temperature was between 87.8 to 100.4 °F (Sugg et al., 2016). 

1.6 COST ASSOCIATED WITH HEAT-RELATED ILLNESS 

 During 2001-2010, the median length of HRI hospital stays during the summer months in the past 

decade has been two days (IQR 1 – 3 days), with a median total hospital expenditure per admission of $ 

8,965 (IQR $ 5,017 - $ 17,047) [IQR stands for Interquartile Range]. From the National Inpatient Sample, 

about 48.9% of the patient hospitalizations were with Medicare/Medicaid as the primary payer and 27.9% 

with private or health maintenance organizations. Additionally, the U.S. southern region accounted for 

54.4% of the HRI hospitalizations (Schmeltz et al., 2016). 
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Section 2: Methods 

This study evaluated the relationship between extreme temperature and emergency department 

visits due to heat-related illness. A statistical model was trained to predict HRI ER visits, using the observed 

HRI ER visit data observed during the summer months from 2011-2016 (excluding 2013). Using the 

developed model, HRI ER visits were estimated based on the natural simulations (estimated daily 

temperature assuming that there is no climate change). Additionally, the cost percentage difference from 

the observed to the natural scenario was estimated (assuming that there is no climate change). 

2.1 STUDY AREA 

This study is focused on the three principal physiographic divisions in North Carolina: Coastal plains, 

Piedmont, and Mountain regions (Climate of North Carolina). The Coastal region includes 41 counties, the 

Piedmont region has 34 counties, and the Mountain region has 25 counties [Figure 4]. 

The average temperature 

across the climate regions varies by at 

least 20 °F (Climate of North Carolina). 

The temperature variance across the 

state is minimal during the summer 

compared to the winter season. The 

warmest temperature in North Carolina 

is recorded in the Coastal region during 

summer. Coastal region's daily 

maximum temperature would record 

up to 92 °F (Goldsboro) and up to 68 °F 

at the top of Mt. Mitchell (Climate of 

North Carolina). The historic average 

annual precipitation was found to be higher in the Mountain region. The Coastal region contains geographic 

areas with both drier and wetter areas, whereas the Piedmont region is drier. The Coastal and Piedmont 

regions have larger geographic areas categorized as urban compared to the Mountain region. 

2.2 CLIMATE DATA 

Climate data were extracted from three different sources: 1- Global Historical Climatology Network 

– Daily (GHCN-D) dataset, 2-Parameter-elevation Regressions on Independent Slopes Model (PRISM) 

climate data and 3-International CLIVAR Climate of the 20th Century Plus Detection and Attribution project. 

The exposure (temperature, relative humidity, and maximum apparent temperature) and outcome (heat-

related illness emergency room visits) data was aggregated by three physiographic divisions in North 

Carolina. 

The GHCN-D observations are based on ground observations (stations), and we extracted daily 

minimum, maximum, and mean temperatures for North Carolina from 2011 – 2016. The 28 heatwave 

definitions are based on the heatwave metric, the duration of the event and threshold intensity. They were 

adapted and modified from the literature. The heatwave definitions were based on heat metrics (maximum, 

minimum, and mean temperature), duration of events in two categories (event duration of 2 or more days 

/ 3 or more days), and four percentile threshold values (90th, 95th, 98th and 99th). The percentile threshold 

values are calculated using daily temperature values from 1895 – 2016 [Table 2]. 

Figure 4. Physiographic divisions - North Carolina 
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Daily dewpoint temperatures were extracted from the PRISM database from 2011 – 2016 and 

calculated the relative humidity following the methodology explained by Alduchov and Eskridge (Alduchov 

et al.,1996). Maximum apparent temperature (MAT) was calculated from the dew point data and maximum 

daily temperature (Baccini, 2008). Additionally, the Steadman's heat index (Steadman_HI), National 

Weather Service (NWS) heat index, Thermal Distress Index (TDI), and Excess Heat Factor were computed 

for the study period. 

For the purpose of the attribution analysis, historical natural simulations for the years 2011-2015 

were obtained from the International CLIVAR Climate of the 20th Century Plus Detection and Attribution 

project (C20C +D&A) (Stone et al., 2019). The historical natural simulations are the runs with the 

anthropogenic drivers maintained at pre-industrial values. They simulate weather under boundary 

conditions that would have been expected in the absence of anthropogenic interference (Stone et al., 

2019). The C20C and D&A project is designed to address concerns regarding the role of human interference 

in historical and current extreme weather. For the purpose of this project, we extracted maximum 

temperature and relative humidity from the Community Atmosphere Model (CAM5) outputs with the 

global average grid size of 580 km2. Using the CAM5 gridded data, the aggregate daily maximum 

temperature and relative humidity data was computed by physiographic region in North Carolina. 

2.3 HEALTH DATA 

The data on heat-related illness emergency room (ER) visits was obtained from NC-DETECT, 

maintained by the North Carolina Division of Public Health (NC DPH). There are 124 hospitals in North 

Carolina participating in the NC-DETECT program ("Participating Hospitals," 2020). The dataset contains ER 

visit count by day from 2011 – 2016, during the summer season (May 01 – Sep 30). About 7.4% of Coastal 

records, 5.4% of records from Piedmont, and 36.6% of the Mountain region records were missing. The days 

with less than 5 ER visits were censored, so 34% (n=239) records from Coastal, 31% (n=220) from the 

Piedmont region were imputed to 3 ER visits. For the Mountain region, 49% (n=382) of the available data 

was suppressed, making Mountain data unreliable for training a statistical algorithm to estimate the ER 

visits. Due to large number (~85%) of missing and suppressed data, we excluded Mountain region from the 

analysis. The HRI ER cost data was obtained from the North Carolina DHHS, the cost value is the annual 

average medical expenditure spent towards HRI ER visits in 2019 based on Medicaid claims. 

 

2.4 ANALYSIS 

The working dataset contains information on daily timescale by physiographic region. The variables 

include a continuous measure of meteorological variables, multiple heat indices, and heatwave days 

recorded as a binary variable. The heatwave day classification based on different heatwave definitions is 

based on temperature/heat-index metric, percentile threshold value, and duration (listed in the appendix). 

 

Descriptive statistics were conducted to compare the trend of ER visits between the two 

physiographic regions in North Carolina (Coastal and Piedmont). The annual rate of ER visits per 

day/100,000 population was calculated by region using population estimates from the 2010 Decennial 

Census. The analysis was conducted in three different steps  
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1. Epidemiologically evaluating the relationship between meteorological variables/heat-indices 

and HRI ER visits;  

2. Evaluating the sensitivity of heatwave definitions towards estimate the HRI ER visits by region; 

and  

3. Estimating the excess HRI ER visits and excess cost associated with anthropogenic climate 

change. 

2.4.1 EPIDEMIOLOGIC EVALUATION 

 A Pearson correlation coefficient matrix was computed between variables to understand the 

association's magnitude and relationship between meteorological variables/heat-indices and HRI ER visits. 

The predictor variables and ER visits were non-linearly associated. The non-linear relationship between the 

top five variables highly correlated with HRI ER visits was evaluated using the Generalized Additive Model 

(GAM). The GAM model is one of the statistical methods to understand the non-linear relationship between 

continuous predictor variables and the outcome variable. The advantage with using GAM model approach 

is the relationship is based on the sum of smoothing functions of continuous predictor terms within the 

model. 

2.4.2 HEATWAVE DEFINITION EVALUATION 

 As summarized in Table 2, 28 heatwave definitions were adapted from the literature identified to 

be sensitive for HRI morbidity/mortality. A majority of the studies that evaluated the heatwave definitions 

are based on a larger geographic area (combination of a few states as a group). In this study, the sensitivity 

of heatwave definitions were re-evaluated within the two subregions of North Carolina (Coastal and 

Piedmont). The analytic dataset contains a daily count of ER visits and a binary variable that describes if the 

day is a heatwave day according to each of the 28 heatwave definitions adopted in this study. To evaluate 

the sensitivity of heatwave definitions towards HRI ER visits, the negative binomial regression approach was 

used with the population as an offset term to account for population density. Additionally, based on the 

output from the negative binomial model, we ranked the sensitivity of heatwave definitions by region. 

2.4.3 IMPACT OF ANTHROPOGENIC CLIMATE CHANGE ON HRI 

 The analyses in this report have been performed using two scenarios; (1) In the first analysis we 

used historical observed data and developed the model (section 2.4.1), (2) The second analysis is a repeat 

of first analysis with the historical natural data to exclude the human-induced role from our analysis. Using 

the statistical algorithm trained using the historical observed data (2.5.1), the ER visits were estimated per 

day by physiographic region in North Carolina. The excess HRI ER visits and the excess cost associated with 

HRI ER visits due to anthropogenic climate change was calculated. Comparing the two scenarios enables us 

to address the role that human-induced changes in our climate influences morbidity.  

 The total number of HRI ER visits during a heatwave day / non-heatwave day data was utilized to 

estimate the difference. Similarly, the number of HRI ER visits and the healthcare cost using the natural 

scenario simulation data was estimated using the GAM model. The difference between modeled and 

observed HRI ER visits was combined with the estimated healthcare cost associated with HRI ER visits based 

on actual observations to show the attribution of heatwaves due to anthropogenic climate change.  
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Section 3: Results 

3.1 DESCRIPTIVE 

 The physiographic divisions are a group of counties with similar climate profiles but with different 

weather. The Coastal and Piedmont regions are significantly different in meteorological factors, population 

density, and population demographics. The Piedmont region contains a more significant number of cities, 

with a larger population size, than the Coastal region. Evaluating the relationship by physiographic region, 

even with the Mountain region excluded due to data withheld for privacy reasons, allows heatwaves and 

HRI ER visits to be better aligned. The summer of 2011 was the hottest in both the Coastal (maximum 

temperature (Tmax): 98.76°F) and the Piedmont regions (Tmax: 98.45°F). During the study period, July was 

the record hottest month in Coastal (Tmax: 98.76°F), and June was the hottest in the Piedmont (102.20°F) 

region. Whereas the annual rate of HRI ER visits was the highest during the summer of 2015 in Coastal 

(82.59 per 100,000) and Piedmont (45.69 per 100,000) [table.1]. In the Coastal region, the highest number 

of HRI ER visits (n=109) were observed on 

Jun 16, 2015 (Tuesday), the hottest day 

during the summer of 2015, with a record 

maximum temperature of 97.99 °F. 

Similarly, in the Piedmont region, the 

highest number of HRI ER visits (n=100) 

were observed on Jun 23, 2015 (Tuesday), 

with a recorded maximum temperature of 

95.70°F. In both physiographic divisions in 

North Carolina, we observed 14 days 

starting from Jun 13 – Jun 27 in 2015 that 

exceeded a maximum daily temperature threshold of 90°F.  

A similar pattern was observed anecdotally during the summer of 2012 and 2016, where the record 

highest number of ER visits were during the period where the daily maximum temperature exceed 90°F for 

a minimum of 10 consecutive days. We observed a higher rate of ER visits during the weekdays in both the 

physiographic regions in North Carolina. The rate of HRI ER visits was relatively higher during the weekdays 

while exposed to lower temperature compared to the weekends. 

3.2 EPIDEMIOLOGIC RELATIONSHIP 

 To evaluate the relationship between extreme temperature and HRI ER visits, a stratified by 

physiographic divisions was conducted (Coastal and Piedmont).  

3.2.1 COASTAL REGION 

 To evaluate the relationship, the correlation coefficient was calculated between all the 

meteorological/heat-indices (continuous) variables included in the study. Using a Pearson correlation 

coefficient matrix, the National Weather Service Heat Index (NWS HI) and daily maximum temperature 

were identified to be positively correlated with the rate of HRI ER visits (Figure 5-A). In Figure 5, the outcome 

of interest is the logarithmic rate of ER visits, with higher values representing stronger correlation with the 

independent variables included in the analysis. A non-linear pattern of association between 

Table 1. The annual rate of HRI ER visits per 100,000 

  2011 2012 2014 2015 2016 

Coastal 57.71 50.05 35.46 82.59 54.52 

Piedmont 39.12 33.66 19.00 45.69 45.22 

Rate = (observed HRI-ER visits / population) * 100,000 

Health data from year 2013 was not provided by the NC-

DETECT 
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NWS_HI/maximum temperature and HRI ER visits was observed. To expand the analysis a non-linear 

regression approach was used in this study.  

To evaluate the non-linear association between NWS HI/maximum temperature and HRI ER visits, 

the GAM model with cubic regression splines and gamma distribution with log link feature was used. The 

performance of statistical models was compared using an ANOVA test and identified that the predictor 

variable maximum temperature has an optimum model fit to estimate the rate of HRI ER visits. A seasonal 

trend in HRI ER visits was observed. To decompose the trend, we used day of the week (DOW), month of 

the year, and year as covariates in the prediction model [Equation 1].  

log(𝔼[Rate. ER visits])= ∑ 𝑏𝑗

𝑛

𝑗=1

(𝑇𝑚𝑎𝑥)𝛽𝑗+  DOW +  Month +  Year +  𝜀 … (1) 

In Equation 1, n is the number of splines, b represents the spline term, β represents coefficient 

specific to spline term and ε is the model error associated with the model. The model was built using three 

penalized cubic regression splines for daily maximum temperature variable (smoothing splines are 

optimized using Generalized Cross-Validation function), with an effective degree of freedom value of 1.99 

demonstrating non-linear association. We optimized model performance using the GAM model diagnostic 

summary [Figure 6-A]. 

A B 

Figure 5.  Association between meteorological variables/heat indices and HRI ER visits (A-Coastal & B-

Piedmont). The above figure is a Pearson correlation coefficient matrix that allows us to understand the 

association between two continous variables. In this figure, we would like to highlight  the correlation 

between daily maximum temperature and rate of HRI ER visits. The color bar represent the direction of 

association: red (negative association) and blue (positive association); darker colors represent stronger 

association. In this figure, we are interested to understand the association between the log rate of HRI ER 

visits and other indipendent variables included in the study. 
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3.2.1 PIEDMONT REGION 

 Similar to the Coastal region, we estimated the Pearson correlation coefficient between 

meteorological variables/heat indices and HRI ER visits. The variables, NWS HI and daily maximum 

temperature were positively correlated with HRI ER visits [Figure 5-B].  

 A non-linear pattern between NWS HI/maximum temperature and HRI ER visits was observed. To 

evaluate the non-linear association between the NWS HI/maximum temperature and HRI ER visits, the GAM 

model with cubic regression splines was used. The performance of the statistical models was compared 

using the ANOVA test and identified that using daily maximum temperature as a predictor to estimate the 

rate of HRI ER visits has an optimal fit. To decompose the time-series trend, the day of the week (DOW), 

the month of the year and year were used as covariates in the prediction model [Equation 1].  

The model was built using four penalized cubic regression splines for the daily maximum 

temperature variable (smoothing splines are optimized using Generalized Cross-Validation function), with 

an effective degree of freedom value of 2.95 demonstrating non-linear association [Figure 6-B]. 

3.3 HEATWAVE SENSITIVITY ANALYSIS 

 To evaluate the sensitivity of heatwave definitions in North Carolina, 28 Heatwave definitions were 

adapted from peer-reviewed literature. The heatwave definitions were based on a meteorological variable, 

variable threshold, and duration. Additionally, relative and absolute heatwave definitions were included 

based on extreme, high, and moderate threshold values. [Equation 2] 

log(#𝐻𝑅𝐼 𝐸𝑅 𝑣𝑖𝑠𝑖𝑡𝑠)= 𝛽0 + 𝛽1 (HWday) + ln(population) + 𝜀 … (2) 

B A 

Figure 6. Relationship between maximum temperature and HRI ER visits (A-Coastal & B-Piedmont). This is 

a plot generated using the GAM model to visually represent the relationship between daily maximum 

temperature and HRI ER visits. The x-axis reperesnt daily maximum temperature in Fahrenheit and the y-

axis represent residual rate of ER visits (difference between actual and estimated) From this plot we could 

observe an exponential trend. The lines on the x-axis represents number of observations, which explains 

the width of the confidence intervals (less number of observations could result wider confidence intervals).  
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Heatwave definitions were tested by physiographic division in North Carolina. The analytic dataset includes 

the daily aggregate count of HRI ER visits (outcome variable) with the population as an offset term, and 

every day in the summer during the study 

period was classified as heatwave or non-

heatwave day using multiple heatwave 

definitions (predictor variable). To understand 

the relative risk attributable to individual 

heatwave definition, the negative binomial 

regression approach was used [Equation 2] to 

estimate the incidence risk ratio along with a 

95% confidence interval.  

 Using an absolute threshold was 

found to be highly sensitive (higher probability 

of HRI ER visits during heatwave days) to 

identify HRI ER visits in both Coastal and 

Piedmont regions compared with other 

heatwave definitions available in the literature 

[Table. 2]. The incidence risk ratio (probability 

of an individual visiting the ER due to HRI during 

a heatwave day) was 4.28 times higher (95% CI 

3.21-5.87) in the Coastal region and 4.61 times 

higher (95% CI 3.56-6.09) in the Piedmont 

region during a heatwave day based on the 

definition with an absolute threshold where 

temperature maximum is greater or equal to 

95°F in a day. Based on this observation, using 

the above-mentioned heatwave definition 

would effectively minimize the HRI ER visits 

during extremely heat vulnerable days in North 

Carolina [Figure 7]. 

 

 

 

 

 

 

 

Figure. 7 Heatwave definition sensitivity 

This box plot shows the distribution of HRI ER 

visits during the study period, by physiographic 

division in NC. Each dot represents HRI ER visits 

per day. The orange dots are a count of ER visits 

during a heatwave day (daily maximum 

temperature >= 95°F) and the blue dots 

represent a count of ER visits during non-

heatwave days. In Figure 6, we highlight the 

finding from heatwave sensitivity analysis, that 

using heatwave definition using absolute 

threshold of daily maximum apparent 

temperature greater or equal to 95°F, could 

effectively minimize the extreme HRI ER visits. 
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3.4 IMPACT OF ANTHROPOGENIC CLIMATE CHANGE ON HRI 

 Figure 7 shows the maximum temperature probability distribution under the observed historical  

(Observed) and non-anthropogenic historical 

conditions (Natural). The plot shows that the 

probability of extreme hot days is higher in the 

actual observations than the natural simulations in 

both the Coastal and Piedmont regions [Figure 8]. 

Additionally, we estimated the rate of HRI ER visits 

during natural scenario by physiographic region in 

North Carolina for year 2011, 2012, 2014 and 2015 

using the GAM model (equation 1), trained using the 

actual observations.  

 A decrease in the pattern of HRI ER visits 

was observed during the natural scenario compared 

to the actual observed values [Figure 9]. Fewer HRI 

ER visits was consistent across the months during 

the study period. In the Coastal region during the 

summer of 2011 and 2015 there are a frequent 

number of days with a greater difference between 

the observed ER visits and ER visits estimated using 

natural simulations. In Piedmont the range of 

difference between observed and estimated ER 

visits using natural simulations was narrower 

compared to the Coastal region.  

Using the heatwave definition from the 

sensitivity analysis, "daily temperature maximum 

greater or equal to 

95°F in a day" would 

effectively detect the 

majority of the peaks 

in the rate of 

anomalies during the 

study period [Figure 

9]. In the Coastal 

region, using the 

heatwave definition 

"temperature 

maximum greater or 

equal to 95°F 

threshold could 

reduce the HRI ER 

visit related 

expenditure by 11.43%. Similarly, in Piedmont region we could reduce an average of 15.81% of the 

healthcare cost spent towards HRI ER visits. Additionally, we estimated that an excess of 25.19% of the cost 

Table 3. Healthcare cost by physiographic division 

Region    Measure 
Avg. 
Count Avg. Cost 

Percent 
difference 

Avg. 
healthcare 
cost 

Coastal 

Observed 11.63 1239.40 (V1)   

Estimated 8.70 927.15 (V2)   

   -25.19 (X1)  

Piedmont 

Observed 14.20  1513.29 (V1)    

Estimated 10.32 1099.80 (V2)   

      -27.32 (X2)  

North 
Carolina 

    

= [(X1+ X2)/2] 
= [(25.19 + 
27.32)/2] 
= 26.25 

Observed – Actual ER visit count 
Estimated – Calculated assuming non-anthropogenic climate change [Natural]  

A 

B 

Figure. 8 Probability distribution of the daily 

maximum temperature for historically observed 

and non-anthropogenic (Natural) simulations for 

(a) costal and (b) Piedmont regions. (summers of 

2011-2016) 
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related to HRI ER visits in Coastal and 27.32% Piedmont region could be attributed to anthropogenic climate 

change (percentage difference calculation available in appendix) [Table 3.]. 

 

Figure. 9 
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Section 4: Conclusion 

 The purpose of this study was to demonstrate a methodology to understand the relationship 

between extreme heat exposure and heat related illness ER visits using North Carolina data as a template 

that could be used elsewhere. This study consisted of an evaluation of the epidemiologic relationship 

between extreme heat exposure and HRI ER visits, a sensitivity analysis on heatwave definitions available 

from the literature, and a climate attribution analysis (includes morbidity and cost analysis). The 

meteorological variable "daily maximum temperature" was determined to be best suited for estimating the 

HRI ER visits compared to other meteorological variables and heat indices evaluated in the study. The results 

also indicate that using the heatwave definition "daily temperature maximum greater or equal to 95 °F in a 

day" was more effective at identifying HRI ER visits during the summer season compared to existing early 

warning systems in the Coastal and Piedmont regions of North Carolina. The Mountain region was not 

included since daily ER visits below three for a hospital were suppressed, leaving insufficient data to draw 

conclusions. 

 The results from this report also show that human induced climate change likely caused a 26.25% 

increase in healthcare expenditure spent towards HRI ER visits in North Carolina [Table 3]. Actuaries can 

use the framework of this report to identify health impacts from heat events and determine excess burden 

that human-induced climate change has on health impacts and cost on their coverage areas. Similar work 

can be done for other fields to determine current costs of climate change on human health. This report, 

along with the GitHub repository, was created to help actuaries perform similar analysis for their work. 

Section 5: Strength and Limitations 

 The study is based on a syndromic surveillance database that covers all the HRI ER visits (not a 

sample-based study) in North Carolina during the summers of the study period. We covered a longer 

timeframe (~5 years), containing daily observations, which aligns with the structure of the temperature 

data. We have used the physiographic divisions in North Carolina, instead of traditional geographic 

boundaries, which is significant while evaluating the relationship between temperature and health 

outcomes. We have tested the relationship with the lag temperature terms and did not identify significant 

relationships. To evaluate the relationship between exposure and outcome, we have used the generalized 

additive model, which is robust to evaluate non-linear relationships.  

 The major limitation of the study is the exposure assessment. The meteorological variables / heat 

indices are not personal measurements. Instead, we have used weather station ground observations as a 

proxy. The daily HRI ER visit data received from the NC DETECT syndromic surveillance database, contain 

censored information to protect the patient privacy according to the Health Insurance Portability and 

Accountability (HIPPA) regulation.  The daily HRI ER daily visit data that contain less than five visits per day 

by physiographic region are censored. As a result of censoring, about 85% of the HRI ER visit data from the 

Mountain region was missing. Due to missing and censored data, we excluded the Mountain region for the 

analysis. Additionally, the health care cost was estimated using the average Medicaid HRI ER visit 

expenditure in 2019. 
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Section 6: Recommendations to reduce health outcomes from extreme 

heat 

The following recommendations (6.1 and 6.2) come from the CDC  

6.1 PUBLIC HEALTH ACTIONS 

• Educating communities on heat health related illnesses (symptoms, when to consult a physician) 

• Providing designated cooling shelters during the summer season 

• Promoting community participatory events on planting tree in urban heat islands. 

6.2 INDIVIDUAL 

• Applying sunscreen at least 30 minutes prior to the exposure to sunlight. 

• Drinking more fluids, despite of thirst or engagement in an activity.  

• Avoid drinking alcoholic and high sugar beverages. 

6.3 ADDITIONAL HEAT HEALTH RESOURCES  

• CDC: https://www.cdc.gov/nceh/features/extremeheat/index.html 

• https://nihhis.cpo.noaa.gov/ 

• https://www.weather.gov/rah/heat 

• https://www.ready.gov/heat 

• https://www.who.int/globalchange/publications/heat-and-health/en/ 

Section 7: Future direction 

 The methods and framework from this report are designed to assist actuaries to calculate the 

impacts of extreme weather and climate events on human health outcomes. This report provides actuaries 

a methodology to use attribution and detection analysis in identifying the excess health burden from 

historical climate change on extreme events. The concepts in this report are focused on extreme 

temperature due to the strongest evidence linking it to climate change. However, this framework could be 

adjusted for other extreme events. As extreme heat likely kills more people every year than any other 

climate or weather-related event, the research also provides a framework to define heatwave sensitivity 

for other locations outside the study area. This document also serves as a way to estimate excess morbidity 

that leads to medical resource burden and preventable healthcare costs. By following the methods in this 

report, actuaries could replicate this project to understand the costs of human-caused climate change on 

other health data sources. Additionally, actuaries could use similar frameworks to understand the impact 

of climate change on other health outcomes (motor vehicle crash, depression, maternal health outcomes, 

etc.) or evaluating other extreme events.  

 

https://www.cdc.gov/nceh/features/extremeheat/index.html
https://nihhis.cpo.noaa.gov/
https://www.weather.gov/rah/heat
https://www.ready.gov/heat
https://www.who.int/globalchange/publications/heat-and-health/en/
http://soa.qualtrics.com/jfe/form/SV_2tsZN62eag6BIeW
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Appendix:  

The model summary for Coastal region include AIC : 189 ; R-sq (adj) : 78 ; deviance explained : 

78.4% and GCV : 0.1843. Similarly, for Piedmont the diagnostics include AIC: -1779; R-sq (adj): 76.8; 

deviance explained: 80.8% and GCV: 0.1879. 

To maintain research reproducibility, we documented the data frame properties and the R-code 

that we have used to generate the results. Additionally, any changes related to the analysis will be 

updated periodically. GitHub link: https://github.com/jagadeeshpuvvula/Heatwave-study 

GAM model summary: 

Coastal Region  

Family: Gamma  

Link function: log  

 

Formula: 

imp_rate ~ s(Max_temp, k = 3, bs = "cr") + dow + month +   year 

 

Parametric coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept) -1.69228    0.06937 -24.394  < 2e-16 *** 

dow2         0.21116    0.06348   3.326 0.000926 *** 

dow3         0.33835    0.06365   5.316 1.43e-07 *** 

dow4         0.41368    0.06383   6.481 1.74e-10 *** 

dow5         0.37877    0.06372   5.944 4.42e-09 *** 

dow6         0.11606    0.06369   1.822 0.068860 .   

dow7         0.32919    0.06412   5.134 3.70e-07 *** 

month6       0.14727    0.05992   2.458 0.014229 *   

month7       0.13571    0.06478   2.095 0.036529 *   

month8      -0.07159    0.06009  -1.192 0.233865     

month9      -0.12350    0.05835  -2.117 0.034655 *   

year2012     0.13208    0.05432   2.432 0.015290 *   

year2014     0.10086    0.05544   1.819 0.069328 .   

year2015     0.51136    0.05341   9.575  < 2e-16 *** 

year2016     0.40283    0.05358   7.518 1.74e-13 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Approximate significance of smooth terms: 

              edf Ref.df     F p-value     

s(Max_temp) 1.995      2 508.9  <2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

R-sq.(adj) =   0.78   Deviance explained = 78.4% 

GCV = 0.18653  Scale est. = 0.19875   n = 704 

https://github.com/jagadeeshpuvvula/Heatwave-study
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Piedmont Region 

Family: Gamma  

Link function: log  

Formula: imp_rate ~ s(Max_temp, k = 4, bs = "cr") + dow + month +   year 

 

Parametric coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept) -1.89360    0.06413 -29.529  < 2e-16 *** 

dow2         0.16088    0.06056   2.656 0.008076 **  

dow3         0.19780    0.05955   3.321 0.000942 *** 

dow4         0.15663    0.05978   2.620 0.008978 **  

dow5         0.15425    0.05955   2.590 0.009794 **  

dow6         0.07769    0.05960   1.303 0.192864     

dow7         0.37400    0.05962   6.273 6.19e-10 *** 

month6       0.07053    0.05613   1.257 0.209339     

month7       0.04138    0.05971   0.693 0.488528     

month8      -0.29223    0.05575  -5.241 2.11e-07 *** 

month9      -0.31797    0.05315  -5.982 3.51e-09 *** 

year2012     0.03454    0.05097   0.678 0.498213     

year2014    -0.15769    0.05234  -3.013 0.002684 **  

year2015     0.24904    0.05018   4.963 8.72e-07 *** 

year2016     0.24925    0.04976   5.009 6.94e-07 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Approximate significance of smooth terms: 

              edf Ref.df     F p-value     

s(Max_temp) 2.959  2.999 505.5  <2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

R-sq.(adj) =  0.768   Deviance explained = 80.8% 

GCV = 0.18792  Scale est. = 0.18291   n = 719 

 

Avg. cost = Avg. count * 106.57 (cost value obtained from NC Medicaid)  

 

Coastal cost difference calculation: 

=((V2−V1)/|V1|)×100 
=(( 927.15−1239.4)/|1239.40|)×100 
=(−312.25/1239.4)×100 
=−0.251936×100 
=−25.1936%change 
=25.19% decrease 
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Piedmont cost difference calculation: 
=((V2−V1)/|V1|)×100 
=((1099.8−1513.29)/| 1513.29|)×100 
=(−413.49/1513.29)×100 
=−0.273239×100 
=−27.3239%change 
=27.32% decrease 
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