
Ruin with Delayed Claims and Investments
Actuarial Research Conference - Drake

University - August 1 2023

Sooie-Hoe Loke∗, Enrique Thomann

Oregon State University, Central Washington University∗



Introduction - Talk Objectives

▶ Setting up of the problem

▶ IBNR, RBNS, IBNS.
▶ The Settlement process - Non homogeneous Poisson Process.
▶ Integro-Differential Equation for ruin probability - Stochastic

returns on investments.
▶ Analysis of solutions - Mild formulation - Energy estimates.
▶ Deterministic delay - Certainty of ruin for large volatility case.
▶ Concluding remarks
▶ References.



Introduction - Talk Objectives

▶ Setting up of the problem
▶ IBNR, RBNS, IBNS.

▶ The Settlement process - Non homogeneous Poisson Process.
▶ Integro-Differential Equation for ruin probability - Stochastic

returns on investments.
▶ Analysis of solutions - Mild formulation - Energy estimates.
▶ Deterministic delay - Certainty of ruin for large volatility case.
▶ Concluding remarks
▶ References.



Introduction - Talk Objectives

▶ Setting up of the problem
▶ IBNR, RBNS, IBNS.
▶ The Settlement process - Non homogeneous Poisson Process.

▶ Integro-Differential Equation for ruin probability - Stochastic
returns on investments.

▶ Analysis of solutions - Mild formulation - Energy estimates.
▶ Deterministic delay - Certainty of ruin for large volatility case.
▶ Concluding remarks
▶ References.



Introduction - Talk Objectives

▶ Setting up of the problem
▶ IBNR, RBNS, IBNS.
▶ The Settlement process - Non homogeneous Poisson Process.
▶ Integro-Differential Equation for ruin probability - Stochastic

returns on investments.

▶ Analysis of solutions - Mild formulation - Energy estimates.
▶ Deterministic delay - Certainty of ruin for large volatility case.
▶ Concluding remarks
▶ References.



Introduction - Talk Objectives

▶ Setting up of the problem
▶ IBNR, RBNS, IBNS.
▶ The Settlement process - Non homogeneous Poisson Process.
▶ Integro-Differential Equation for ruin probability - Stochastic

returns on investments.
▶ Analysis of solutions - Mild formulation - Energy estimates.

▶ Deterministic delay - Certainty of ruin for large volatility case.
▶ Concluding remarks
▶ References.



Introduction - Talk Objectives

▶ Setting up of the problem
▶ IBNR, RBNS, IBNS.
▶ The Settlement process - Non homogeneous Poisson Process.
▶ Integro-Differential Equation for ruin probability - Stochastic

returns on investments.
▶ Analysis of solutions - Mild formulation - Energy estimates.
▶ Deterministic delay - Certainty of ruin for large volatility case.

▶ Concluding remarks
▶ References.



Introduction - Talk Objectives

▶ Setting up of the problem
▶ IBNR, RBNS, IBNS.
▶ The Settlement process - Non homogeneous Poisson Process.
▶ Integro-Differential Equation for ruin probability - Stochastic

returns on investments.
▶ Analysis of solutions - Mild formulation - Energy estimates.
▶ Deterministic delay - Certainty of ruin for large volatility case.
▶ Concluding remarks

▶ References.



Introduction - Talk Objectives

▶ Setting up of the problem
▶ IBNR, RBNS, IBNS.
▶ The Settlement process - Non homogeneous Poisson Process.
▶ Integro-Differential Equation for ruin probability - Stochastic

returns on investments.
▶ Analysis of solutions - Mild formulation - Energy estimates.
▶ Deterministic delay - Certainty of ruin for large volatility case.
▶ Concluding remarks
▶ References.



Introduction - Talk Objectives

▶ Setting up of the problem
▶ IBNR, RBNS, IBNS.
▶ The Settlement process - Non homogeneous Poisson Process.
▶ Integro-Differential Equation for ruin probability - Stochastic

returns on investments.
▶ Analysis of solutions - Mild formulation - Energy estimates.
▶ Deterministic delay - Certainty of ruin for large volatility case.
▶ Concluding remarks
▶ References.



General description and objectives
▶ Claims occur according to a Poisson process with intensity λ.

Delay in settlement is model as IID random variables,
independent of the Claim arrival process, with distribution L(t).

▶ Capital is invested in a possibly risky asset modeled as a
Geometric Brownian motion with drift a and volatility σ.

▶ Claims are modeled as IID random variables with distribution F
and denoted by X

▶ Objective: Capture delay in settlement of claims combining the
Incurred But Not Reporter (IBNR) with Reported But Not Settled
(RBNS) into the Incurred But Not Settled (IBNS).

▶ Objective: Model the Ruin Probability after time t with initial
capital u, ψ(u, t)

▶ Tools: Integro-Partial Differential Equation for ψ with time
dependent coefficients. Main departure from standard models in
which these equations are autonomous.

▶ Objective: Establish existence and uniqueness of solutions of the
IPDE under general conditions

▶ Example: Deterministic delay by time t∗. Show certainty of ruin
for large volatility, extending results of Frolova et al (2002)
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Settlement, Investment and Surplus Process
Settlement Process. T ∗

k = Tk + Sk ,
{Tk}∞k=1 IID λ > 0 Exp rvs. modelling claims inter-arrival time.

{Sk}∞k=1 IID rvs, independent of {Tk} with distribution L(t)
supported on t > 0 modeling the delay in settling the k th claim.

Remark While claims occur according to a homogeneous Poisson
process with intensity λ, the delay process gives rise to a
non-homogeneous Poisson process with intensity λL(t).
N(t) =number of claims that have been settled by time t

Investment Process Z
Premium is collected at rate c and capital is invested in asset
modeled by GBM with drift a and volatility σ ≥ 0.

dZt = (c + aZ )dt + σZdW

where W is a standard BM. We denote by Z u
t the value of the

investment process at time with initial investment u.

Surplus Process U

Ut = u + ct + a
∫ t

0
Usds + σ

∫ t

0
UsdWs −

N(t)∑
k=1

Xk
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Ruin time - Ruin Probability
Definitions

Time of ruin after t , τt = inf{s > t : Us < 0}.

Probability of ultimate ruin after time t with initial capital u,
ψ(u, t) = P(τt <∞|Ut = u).
Probability of ultimate ruin with initial capital u assuming
instantaneous settlement, ψ(u,∞) = P(τ̃t <∞|Ũt = u),
Ũt = u + ct + a

∫ t
0 Ũsds + σ

∫ t
0 ŨsdWs −

∑Ñ(t)
k=1 Xk , and Ñ(t) is a

(homogeneous) Poisson process with intensity λ
Example (Dassios-Zhao (2013)). Case of no-investments
(a = 0 = σ). Asymptotic behavior of Ruin Probability as u → ∞.
Decrease in probability of ultimate ruin is independent of initial capital:

ψ(u, t)
ψ(u,∞)

≍ e−cR
∫ ∞

t (1−L(s))ds,

where, with R = Lundberg coefficient, µ = E(X ),

ψ(u,∞) ≍ c − λµ

λ
∫∞

0 xeRxdF (x)− c
e−Ru
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Equation for ψ(u, t)
Theorem (L-T). Assuming regularity, ψ satisfies the IDPE

∂ψ

∂t
+ (c + au)

∂ψ

∂u
+

u2

2σ2
∂2ψ

∂u2 + λL(t)G(t ,u,F , ψ) = 0. (1)

with final data limt→∞ ψ(u, t) = ψ(u,∞)
and G(t ,u,F , ψ) =

∫ u
0 ψ(u − x , t)dF (x) + (1 − F (u))− ψ(u, t)

Idea of proof Fix (u, t) and let h > 0,

ψ(u, t) = E(1[τt<∞]1[N(t+h)−N(t)=0]|Ut = u) + E(1[τt<∞]1[N(t+h)−N(t)=1]|Ut = u)
+E(1[τt<∞]1[N(t+h)−N(t)>1]|Ut = u) ≡ I + II + III

I = E(1[τt+h<∞]|Ut = u,1[N(t+h)−N(t)=0])P(N(t + h)− N(t) = 0)
= E(1[τt+h<∞]|Ut+h = Z u

h )P(N(t + h)− N(t) = 0)
≍ E(ψ(Z u

h , t + h)) (1 − λL(t)h).

Thus, using Itö,

lim
h→0

I − ψ(u, t)
h

= lim
h→0

E(ψ(Z u
h , t + h))− ψ(u, t)

h
− λL(t) lim

h→0
E(ψ(Z u

h , t + h))

=
∂ψ

∂t
+ (c + au)

∂ψ

∂u
+
σ2u2

2
∂2ψ

∂u2 − λL(t)ψ(u, t)



Equation for ψ(u, t)
Theorem (L-T). Assuming regularity, ψ satisfies the IDPE

∂ψ

∂t
+ (c + au)

∂ψ

∂u
+

u2

2σ2
∂2ψ

∂u2 + λL(t)G(t ,u,F , ψ) = 0. (1)

with final data limt→∞ ψ(u, t) = ψ(u,∞)

and G(t ,u,F , ψ) =
∫ u

0 ψ(u − x , t)dF (x) + (1 − F (u))− ψ(u, t)
Idea of proof Fix (u, t) and let h > 0,

ψ(u, t) = E(1[τt<∞]1[N(t+h)−N(t)=0]|Ut = u) + E(1[τt<∞]1[N(t+h)−N(t)=1]|Ut = u)
+E(1[τt<∞]1[N(t+h)−N(t)>1]|Ut = u) ≡ I + II + III

I = E(1[τt+h<∞]|Ut = u,1[N(t+h)−N(t)=0])P(N(t + h)− N(t) = 0)
= E(1[τt+h<∞]|Ut+h = Z u

h )P(N(t + h)− N(t) = 0)
≍ E(ψ(Z u

h , t + h)) (1 − λL(t)h).

Thus, using Itö,

lim
h→0

I − ψ(u, t)
h

= lim
h→0

E(ψ(Z u
h , t + h))− ψ(u, t)

h
− λL(t) lim

h→0
E(ψ(Z u

h , t + h))

=
∂ψ

∂t
+ (c + au)

∂ψ

∂u
+
σ2u2

2
∂2ψ

∂u2 − λL(t)ψ(u, t)



Equation for ψ(u, t)
Theorem (L-T). Assuming regularity, ψ satisfies the IDPE

∂ψ

∂t
+ (c + au)

∂ψ

∂u
+

u2

2σ2
∂2ψ

∂u2 + λL(t)G(t ,u,F , ψ) = 0. (1)

with final data limt→∞ ψ(u, t) = ψ(u,∞)
and G(t ,u,F , ψ) =

∫ u
0 ψ(u − x , t)dF (x) + (1 − F (u))− ψ(u, t)

Idea of proof Fix (u, t) and let h > 0,

ψ(u, t) = E(1[τt<∞]1[N(t+h)−N(t)=0]|Ut = u) + E(1[τt<∞]1[N(t+h)−N(t)=1]|Ut = u)
+E(1[τt<∞]1[N(t+h)−N(t)>1]|Ut = u) ≡ I + II + III

I = E(1[τt+h<∞]|Ut = u,1[N(t+h)−N(t)=0])P(N(t + h)− N(t) = 0)
= E(1[τt+h<∞]|Ut+h = Z u

h )P(N(t + h)− N(t) = 0)
≍ E(ψ(Z u

h , t + h)) (1 − λL(t)h).

Thus, using Itö,

lim
h→0

I − ψ(u, t)
h

= lim
h→0

E(ψ(Z u
h , t + h))− ψ(u, t)

h
− λL(t) lim

h→0
E(ψ(Z u

h , t + h))

=
∂ψ

∂t
+ (c + au)

∂ψ

∂u
+
σ2u2

2
∂2ψ

∂u2 − λL(t)ψ(u, t)



Equation for ψ(u, t)
Theorem (L-T). Assuming regularity, ψ satisfies the IDPE

∂ψ

∂t
+ (c + au)

∂ψ

∂u
+

u2

2σ2
∂2ψ

∂u2 + λL(t)G(t ,u,F , ψ) = 0. (1)

with final data limt→∞ ψ(u, t) = ψ(u,∞)
and G(t ,u,F , ψ) =

∫ u
0 ψ(u − x , t)dF (x) + (1 − F (u))− ψ(u, t)

Idea of proof Fix (u, t) and let h > 0,

ψ(u, t) = E(1[τt<∞]1[N(t+h)−N(t)=0]|Ut = u) + E(1[τt<∞]1[N(t+h)−N(t)=1]|Ut = u)
+E(1[τt<∞]1[N(t+h)−N(t)>1]|Ut = u) ≡ I + II + III

I = E(1[τt+h<∞]|Ut = u,1[N(t+h)−N(t)=0])P(N(t + h)− N(t) = 0)

= E(1[τt+h<∞]|Ut+h = Z u
h )P(N(t + h)− N(t) = 0)

≍ E(ψ(Z u
h , t + h)) (1 − λL(t)h).

Thus, using Itö,

lim
h→0

I − ψ(u, t)
h

= lim
h→0

E(ψ(Z u
h , t + h))− ψ(u, t)

h
− λL(t) lim

h→0
E(ψ(Z u

h , t + h))

=
∂ψ

∂t
+ (c + au)

∂ψ

∂u
+
σ2u2

2
∂2ψ

∂u2 − λL(t)ψ(u, t)



Equation for ψ(u, t)
Theorem (L-T). Assuming regularity, ψ satisfies the IDPE

∂ψ

∂t
+ (c + au)

∂ψ

∂u
+

u2

2σ2
∂2ψ

∂u2 + λL(t)G(t ,u,F , ψ) = 0. (1)

with final data limt→∞ ψ(u, t) = ψ(u,∞)
and G(t ,u,F , ψ) =

∫ u
0 ψ(u − x , t)dF (x) + (1 − F (u))− ψ(u, t)

Idea of proof Fix (u, t) and let h > 0,

ψ(u, t) = E(1[τt<∞]1[N(t+h)−N(t)=0]|Ut = u) + E(1[τt<∞]1[N(t+h)−N(t)=1]|Ut = u)
+E(1[τt<∞]1[N(t+h)−N(t)>1]|Ut = u) ≡ I + II + III

I = E(1[τt+h<∞]|Ut = u,1[N(t+h)−N(t)=0])P(N(t + h)− N(t) = 0)
= E(1[τt+h<∞]|Ut+h = Z u

h )P(N(t + h)− N(t) = 0)
≍ E(ψ(Z u

h , t + h)) (1 − λL(t)h).

Thus, using Itö,

lim
h→0

I − ψ(u, t)
h

= lim
h→0

E(ψ(Z u
h , t + h))− ψ(u, t)

h
− λL(t) lim

h→0
E(ψ(Z u

h , t + h))

=
∂ψ

∂t
+ (c + au)

∂ψ

∂u
+
σ2u2

2
∂2ψ

∂u2 − λL(t)ψ(u, t)



Equation for ψ(u, t)
Theorem (L-T). Assuming regularity, ψ satisfies the IDPE

∂ψ

∂t
+ (c + au)

∂ψ

∂u
+

u2

2σ2
∂2ψ

∂u2 + λL(t)G(t ,u,F , ψ) = 0. (1)

with final data limt→∞ ψ(u, t) = ψ(u,∞)
and G(t ,u,F , ψ) =

∫ u
0 ψ(u − x , t)dF (x) + (1 − F (u))− ψ(u, t)

Idea of proof Fix (u, t) and let h > 0,

ψ(u, t) = E(1[τt<∞]1[N(t+h)−N(t)=0]|Ut = u) + E(1[τt<∞]1[N(t+h)−N(t)=1]|Ut = u)
+E(1[τt<∞]1[N(t+h)−N(t)>1]|Ut = u) ≡ I + II + III

I = E(1[τt+h<∞]|Ut = u,1[N(t+h)−N(t)=0])P(N(t + h)− N(t) = 0)
= E(1[τt+h<∞]|Ut+h = Z u

h )P(N(t + h)− N(t) = 0)
≍ E(ψ(Z u

h , t + h)) (1 − λL(t)h).

Thus, using Itö,

lim
h→0

I − ψ(u, t)
h

= lim
h→0

E(ψ(Z u
h , t + h))− ψ(u, t)

h
− λL(t) lim

h→0
E(ψ(Z u

h , t + h))

=
∂ψ

∂t
+ (c + au)

∂ψ

∂u
+
σ2u2

2
∂2ψ

∂u2 − λL(t)ψ(u, t)



Equation for ψ(u, t) - Continued
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t
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t
E
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s−t
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ψ(Z u
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λL(t)

Since III = o(h), the IPDE satisfied by ψ follows.
Finally, limt→∞ L(t) = 1, limt→∞ ψt = 0, ψ(t ,∞) satisfies with
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Bounded delay, L(t) = 1∀t > t∗
For t > t∗ the solution of (1) is given by the time independent solution
of (2).
Mild Formulation of IPDE (1) Using Feynman-Kac formula, regarding
the term λL(t)G(t ,u,F , ψ) as a ‘forcing’ term, ψ satisfies

ψ(u, t) = Eu

(
λ

∫ t∗

t
L(r)G(Zr , r ,F , ψ)dr + ψ(Zt∗ ,∞)

)
(3)

Theorem - (L-T). Asume that ψ(u,∞) is a bounded and measurable
function. Then (3) has a solution defined on 0 ≤ t ≤ t∗.
Idea of Proof Follows Picard iteration principle. Define
ψ0(u) = ψ(u,∞) and for n ≥ 1 define recursively

ψn(u, t) = Eu

(
λ

∫ t∗

t
L(r)G(Zr , r ,F , ψn−1)dr + ψ0(Zt∗)

)
Recall G(t ,u,F , ψ) =

∫ u
0 ψ(u − x , t)dF (x) + (1 − F (u))− ψ(u, t).

Then ∆n = ψn − ψn−1 satisfies

∆n+1(u, t) = λEu

(∫ t∗

t
L(r)

∫ Zr

0
(∆n|(Zr−x,r)dF (x)−∆n|(Zr ,r))dr

)
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Mild Formulation - Continued

The L∞((0, t∗)× (0,∞)) norm of ∆n can be easily estimated by

||ψn+1 − ψn|| ≤ 2λ(t∗ − t)||ψn − ψn−1||

Thus, taking 0 ≤ t (1) < t∗ so that 2λ(t∗ − t (1)) < 1, ψn is a Cauchy
sequence in L∞((t (1), t∗)× (0,∞)).
The limiting function ψ(1) satisfies (3) in the interval [t (1), t∗].
One can repeat this process to define a Cauchy sequence in
L∞((t (2), t (1))× (0,∞)) for 0 ≤ t (2), t (1) so that 2λ(t (2) − t (1)) < 1. This
process defines a solution of (3) on [0, t∗] as claimed.
Remark. Energy type estimates can be used to show uniqueness of
solutions.
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Certainty of ruin for large volatility and deterministic
delay

Theorem (L-T) Assume that L(t) = 0,∀0 ≤ t < t∗, L(t) = 1∀t ≥ t∗ and
that σ2/2 > a. Then ψ(u, t) ≡ 1.

Idea of Proof. From Frolova et al (2002), it is known that if σ2/2 > a,
ψ(u,∞) ≡ 1.
Note, ϕ(u, t) = 1 − ψ(u, t) satisfies on 0 < t < t∗,

∂ϕ

∂t
+ (c + au)

∂ϕ

∂u
+
σ2u2

2
∂2ϕ

∂u2 = 0

with final value ϕ(u, t∗) = 0.
One can show that ϕ(0, t) = 0 ∀0 < t < t∗. Indeed, the equation at
u = 0 gives ϕt(0, t) = −cϕu(0, t) ≤ 0 since ϕ is non-decreasing as a
function of u. Since ϕ(0,0) = 0 and ϕt(0, t) ≤ 0, we get ϕ(0, t) = 0.
Use maximum principle developed by Cosner (1980) to show that
ϕ(u, t) = 0 ∀0 ≤ u and ∀0 < t < t∗ as claimed.
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ψ(u,∞) ≡ 1.
Note, ϕ(u, t) = 1 − ψ(u, t) satisfies on 0 < t < t∗,
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One can show that ϕ(0, t) = 0 ∀0 < t < t∗. Indeed, the equation at
u = 0 gives ϕt(0, t) = −cϕu(0, t) ≤ 0 since ϕ is non-decreasing as a
function of u. Since ϕ(0,0) = 0 and ϕt(0, t) ≤ 0, we get ϕ(0, t) = 0.
Use maximum principle developed by Cosner (1980) to show that
ϕ(u, t) = 0 ∀0 ≤ u and ∀0 < t < t∗ as claimed.
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Concluding Remarks - Future work

Analysis of non-autonomous IPDE describing probability of ruin
using tools from analysis.

Model ruin probability with delayed settlements and risky
investments.
Establish certainty of ruin even for delayed settlements in large
volatility setting.
Develop numerical methods for solving IPDE.
Analyze examples with simple distributions for X to understand
effect of delay in asymptotic behavior
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