
ACTUARIAL TECHNOLOGY TODAY | 1Copyright © 2020 Society of Actuaries. All rights reserved.

 JULY 2020
ACTUARIAL TECHNOLOGY TODAY

MODELING
SECTION

Ethical Issues in any
Automated Decision-
Making Model
By Neil Raden

Editor’s note: The views expressed in this article are solely those of
the author and do not necessarily represent the views of the Society of
Actuaries.

The pace of new technology creates difficult ethical ques-
tions for insurance companies. The accelerating use of
unattended decision-making applications opens the door

to risk of reputation and liability. AI and Machine Learning
(ML) models can contain bias, provoke discrimination, intrude
on privacy, and unwittingly violate regulations. Unlike your
other applications, there is no code to follow when something
goes wrong; AI models are devilishly difficult to explain. Risk
arises from the skill of the team, the quality of the data and is-
sues of placing algorithms into production systems.

There are a multitude of risks from the development process
itself such as: unclear goals, improper and unprepared data, data
produced by unregulated third parties, overly enthusiastic desire
to fit a model, and overconfidence when the first few “proofs of
concept succeed,” but plans to scale are incomplete.

In September 2019, the SOA released my research report,
“Ethical Use of Artificial Intelligence for Actuaries,” to cover
the essential concepts of risk, how AI works, how to form an AI
team for actuaries and other topics, such as:

• AI, the social context and the five pillars of ethical AI;
• digital transformation, future technologies and InsurTech;
• ethical risk in general: data, bias and do-It-yourself risk;
• ethical aspects of automation;
• organizing the actuarial department for: skills, team, diver-

sity;
• IT, AI engineer and actuary team;
• government and regulatory initiatives;

September 2019

Innovation and Technology

Ethical Use of Artificial Intelligence
for Actuaries

• advanced analytics types;
• review boards: discussion and examples; and
• path forward.

We presented our findings at the SOA Annual Meeting in To-
ronto, in an SOA podcast, at the Enterprise Risk Management
Symposium of the Casualty Actuarial Society in Tampa, Fla. (I
was not able to attend, but Al Klein of Milliman artfully present-
ed) and in an SOA webinar and newsletter in June.

The report is available to download from our website; we de-
veloped the subject matter for actuarial organizations but found
a wider audience of insurance organizations such as general in-
surance, reinsurers, and insurance industry professional organi-
zations, all of whom find the material current and relevant. We
know that many of the issues in this paper will resonate with you.

ISSUES THAT DEMAND MORE DISCUSSION
AI is moving so fast, and new ethical issues are apparent. It is
time to review the subject, first by commenting on what has ma-
terially changed in the last few years, and what ethical issues have
arisen.

ACTUARIAL TECHNOLOGY TODAY | 2Copyright © 2020 Society of Actuaries. All rights reserved.

Ethical Issues in any Automated Decision-Making Model

Specifically, the White House Office of Science and Technolo-
gy Policy (OSTP) announced 10 Principles for Stewardship of
AI Applications. These are important indications of the federal
government’s direction. Some states in the U.S. already put a
stake the ground, not to mention the EU, and the Organization
for Economic Co-operation and Development (OECD), an in-
tergovernmental organization that represents 37 countries for
economic concerns and world trade. OSTP probably shouldn’t
have bothered, as there was nothing new or even provocative in
the 10 principles, and it has no teeth. If anything, it most resem-
bled similar doctrines from China.

EIGHT AI ETHICS ISSUES TO CONFRONT

Ethical issue #1
How can organizations follow an ethical path with AI when
the central government gives no guidance? The State of
Washington just signed into law landmark legislation about
facial recognition. According to the WSJ, “Washington state
adopted a Microsoft Corp-backed law enshrining the most de-
tailed regulations of facial recognition in the U.S., potential-
ly serving as a model for other states as use of the technology
grows.” But should we entrust these issues to be addressed at a
per-state level?

Ethical issue #2
Should a mega-tech company be writing legislation about
a controversial AI application? Not everyone is comfortable
with this, according to the WSJ article. Some feel the bill gives
Washington State too much leeway. One provision allows police
to use the technology without a warrant if “exigent circumstanc-
es exist.”

We covered data bias in a report, “Ethical Uses for Artificial
Intelligence for Actuaries,” but it needs some explaining here.
Data is an ethical problem, and always has been. Businesses
should take every effort to minimize risks from data, especially
when the data is from a third party, even Data.gov or CDC.gov,
because data on its own has no context. How it was recorded and
under what logic is missing when looking at a table.

There must be transparency around lineage, acquisition meth-
ods, and model assumptions, both initially and on an ongoing
basis when the data is changing. There must be mandated secu-
rity procedures to prevent loss from tampering and introduction
of malware—all reinforced by comprehensive rights to audit,
seek injunctive relief and terminate. The problem is that data
brokers are mostly unwilling and unable to provide this.

Ethical issue #3
AI engineers, data scientists and predictive modelers crave
new data. There is an aching desire to try all kinds of data to
see if they can improve their models. The issue is that many
data brokers are unscrupulous, and developers are wittingly or
unwittingly poisoning their models with bad data. The problem

is even worse when the data is reliable but the motivations of the
modelers are less than pristine.

A good example is the use of credit scores for underwriting
personal auto insurance. While there is an undeniable correla-
tion between poor credit and risk, the causal relationship is not
the same. Poor credit is a function of many societal factors, it
is not the driver. The working poor are forced to carry car auto
insurance which is expensive, a regressive tax, and if they fail
to make a payment, they are likely to get a ticket or have their
vehicle impounded for hundreds of dollars, depriving them of
the right to have a vehicle to go to work, to transport their kids
to school, to travel to a decent grocery store, all exacerbating
their situation.

Some decisions cannot be made by matching against known pat-
terns. According to Vegard Flovik in “How do You Teach Phys-
ics to Machine Learning Models”:

“If there is no direct knowledge available about the behavior of a
system it is not possible to formulate any mathematical model to
describe it in order to make accurate predictions.”

In “Deep Learning for Physical Processes: Incorporating Prior
Scientific Knowledge,” Emmanuel de Bezenac adds that the most
prevalent use of AI (outside defense and intelligence, where it is
not possible to gauge its breadth) is in targeted selling. The rea-
son is in selling applications en mass produces the cost of being
wrong sometimes is almost zero. If you process 100,000 credit
requests a day and get 1,000 wrong, you still made 99,000 cor-
rectly. There are other kinds of decisions that require a higher
percentage of correct responses. Little decisions add up—those
judged unfairly will notice at some point in time.

Ethics issue #4
The people building AI are not sophisticated enough to en-
gineer-in domain expertise. Here is the big potato: job loss
from automation. One school of thought is that most jobs have
unseen complexities that currently require a human in the loop,
such as different types of data a machine can’t cope with, or the
person who remembers birthdays with thoughtful presents. This
subtlety and finesse is never described. Automation can only go
so far as the AI engineer understands the job.

In many periods of realignment, organizations found that staff
made redundant were responsible for many tasks that were nev-
er recognized. AI obviously cannot replace things it isn’t aware
of. However, learning AI watches and learns, and as time goes
on, more work is done by the machine than the person—and you
get a mix of human agents and cognitive robots working togeth-
er. But as time goes by, the proportion of work done by the robot
could increase and the human part could decrease.

ACTUARIAL TECHNOLOGY TODAY | 3Copyright © 2020 Society of Actuaries. All rights reserved.

Ethical Issues in any Automated Decision-Making Model

Ethical issue #5
Good intentions are that the AI will augment workers not
replace them. This overlooks the learning aspect of AI, and
organizations may fail to plan for the situation where the em-
ployee actually becomes redundant. And why is all this on the
employer?

Because AI as a machine doesn’t have an ethical framework; we
have to give it an ethical framework.

If you put in enough data at the right level of quality, the AI will
eventually become very good at spotting a pattern, and can tell
you about it. That may be good for making recommendations to
buyers, but for more multiplex problems, the question of what
to do next is complex. AI cannot, at this point, tell you what to
do next. The only way is through modeling and simulation. Data
never speaks for itself. With ML, the action is not learned. It
is predetermined: “If you see this pattern, perform this action.”

Ethical issue #6
Understand the limits of what the AI can tell you. Conway’s
Law: organizations which design systems are constrained to pro-
duce designs which are copies of the communication structures
of these organizations. In implementing AI solutions, develop-
ers must be aware that people are diverse and complex and live
within groups and cultures. AI is not like coding. In many cas-
es, there is no coding at all. There is nothing to examine for
potential bias. As a result, data selection and labeling, feature
engineering, model development and review all reflect the atti-
tudes and belief of the group. No diversity in the group leads to
insensitiveness to those affected.

Ethical issue #7
It is too easy to be lulled into exposing personal informa-
tion. In fact, it is too easy for bad actors to snatch personal
data when you’re not looking. Federated learning is a powerful
idea for distributed applications and data, https://ai.googleblog.
com/2017/04/federated-learning-collaborative.html, but first mov-
ers have chosen medical data as a testbed. Tread carefully.

Ethical issue #8
Using AI ethically ought to reflect that diversity is essential.
“Fairness” isn’t uniform; there are different versions of it. The
emergence of Federated Learning, on the one hand, has positive
implications for privacy, but on the other, is likely to exacerbate
the explainability issue.

This is hardly a complete list—so it will be a recurring series. ■

Neil Raden is an active industry analyst,
consultant, speaker and author of “Ethical Use
of Artificial Intelligence for Actuaries.” He can be
contacted at nraden@hiredbrains.com.

ACTUARIAL TECHNOLOGY TODAY | 4Copyright © 2020 Society of Actuaries. All rights reserved.

 JULY 2020
ACTUARIAL TECHNOLOGY TODAY

TECHNOLOGY
SECTION

2. transform the connections into useful data tables,

3. join up tables to create a consolidated model,

4. create advanced calculations to measure and analyze the
data trends,

5. design visualizations to communicate key trends and met-
rics, and

6. upload and share these scalable dashboards with the larger
audience of business users.

Creating dashboards enables you to gain scalability and eliminate
duplicated work. The key questions we are trying to answer is
why something occurs and how the drivers affect the numbers.

To illustrate this, I will showcase an example dashboard. One
of the most prevalent business intelligence tools in the industry
market is Microsoft’s Power BI, which combines the features of
many applications like Excel and SQL Server Analysis Services,
but also allows for an incredible amount of flexibility in creating
models. You can really create any kind of financial model you want
to within Power BI. However, a drawback is that you can only
develop models on Windows and online, and sharing your work
can be cumbersome if you don’t have a paid subscription account.

Another intelligence tool is Tableau, which does have a public
version of the desktop application, and has a public visualization
gallery that enables us to explore data analytics with public data
sources. While the modeling capabilities are more limited in
Tableau, it does have beautiful visuals that serve us well for illus-
trating the impact of effective data visualizations. For my exam-
ple, I’m going to analyze the financials for the city of Houston,
where I live. They have a public portal to obtain the data that

Changing Your Analysis
Mindset: Visualizing the
Data
By Helen Wall

In today’s world, the lines between technology and business
areas are blurring into a less segmented and more integrated
structure. Less than 10 years ago, IT would manage databases

and produce business reports on this data through processes like
SQL queries. The business would then consume these reports to
analyze why they are encountering variances through their own
tools like Microsoft Excel.

Today, however, we’re beginning to see how businesses are le-
veraging applications that enable them to do much of the ad-
vanced analysis themselves and even dive into new analytics
frontiers such as machine learning and AI. These new areas of
explorations, in part, come from the increased volume and speed
of today’s data and a demand by the business to understand more
about this data and make decisions with it. The newest applica-
tions enable a more efficient and flexible way to approach the
process. Widely used platforms like Microsoft’s Power BI and
Tableau sit at the forefront of letting business users take control
of how they interact and learn about the data on their own.

DIVING INTO THE PROCESS
While many people associate data tools with the beautiful vi-
sualization outputs illustrating the data trends, visualization
represents just one segment of the entire data analytics process.
Much like an iceberg where you only see about an eighth of it
above the water, these data visualization applications require a
lot of hard work and thinking on the backend to get them set
up correctly.

The process for creating a final data visualization dashboard
goes like this:

1. Determine data sources and set up connections to them,

ACTUARIAL TECHNOLOGY TODAY | 5Copyright © 2020 Society of Actuaries. All rights reserved.

Changing Your Analysis Mindset: Visualizing the Data

or scheme because it benefits colorblind users, who cannot
typically differentiate between the common default red and
green colors, illustrating value magnitudes on heat maps.

2. Shape balance: Bar shapes throughout the dashboard rep-
resent the actuals, while the floating lines hovering around
the bars represent the budgets. This makes it easy to differ-
entiate them but also eliminates too much noise going on in
this view.

3. Minimal visual count, but maximum effectiveness: Uti-
lizing more than three or four large visuals in a dashboard
can cause it to become cluttered and difficult to read.

4. Nudge prompts: Right now, we see a stagnant view. How
do we change what we see? Notice the prompts at the top to
interact with the dashboard visuals. Think of them as subtle
instructions that gently tell the user how to use the charts.
I often refer to this as nudging prompts, and they’re key
to getting the appropriate amount of user engagement that
you’re aiming for when you design a dashboard.

5. Put the elements within the chart in a sensible order:
Notice how I ranked the categories of both the revenue and
expenditures, so it shows the highest numbers at the top of
the visuals. This makes it easy for the dashboard consumers
to identify the biggest drivers of the budgeted and actual
numbers. The revenues versus expenses visual over time are
in chronological order by year because this makes the most
sense for time-series analysis.

you can explore on your own, or you can also search for datasets
from many other municipalities on the internet.

DATA VISUALIZATION BEST PRACTICES
To get the data into a workable format to create visualizations,
it often takes a bit of legwork to shape and transform the data.
The data field names and values within the fields differed by
year, and since I wanted to use a uniform set of keys to compare
the data across a 10-year time span, I had to go through the data
quite thoroughly to line up the segments by year. After that, it
could create the keys to identify the segmented areas to exam-
ine these data trends across the entire time span. You can see
the end results below. The visual that occupies the top part of
the dashboard illustrates the revenue and expenses over the 10-
year period. It also compares the actual amounts to the budgeted
amounts by revenue and expenses each year. On the bottom left,
you can see the comparison of revenue breakdown by area, and
on the bottom right, you can see the comparison of the expense
breakdown over the same time period.

While I could go through the steps undertaken to create these
views, I think it’s more important to highlight key approaches
that you can implement in your own work to make it an effective
communication tool. As you’ll see, simplicity is often the best
approach!

1. Color theme: I used blue for revenue and orange for ex-
penditures consistently throughout this dashboard. You’re
not limited to these colors (I often incorporate gray into the
color scheme as well). I am using a blue-orange-grey col-

ACTUARIAL TECHNOLOGY TODAY | 6Copyright © 2020 Society of Actuaries. All rights reserved.

Changing Your Analysis Mindset: Visualizing the Data

for CODE Magazine that walks through how to create an ad-
vanced financial model for life insurance calculations in Power
BI. It walks through how to set up DAX measure calculations
for both term life insurance premiums and reserves where the
end-user can update the numbers directly by changing the input
parameters in the dashboard.

There are many tutorials online that can offer a quick start to
data visualization. For example, Power BI Data Methods focuses
on the Power Query Editor, which also works in Excel! Power
Query is one of the biggest things to happen to Excel in the last
20 years. Another example can be found at, Advanced Microsoft
Power BI which gives a walk-through on how to create an inter-
active loan dashboard.

Happy data visualizing! ■

6. Remove duplicated or unnecessary labels: Tableau ini-
tially sets up all these charts with more labels and compo-
nents than what you see in the view. The key to being a
good communicator through these visualization tools is to
decide strategically what you need to include and what you
can leave out to make your end communication of the data
trends clearer and less cluttered for the viewer’s eyes.

7. Format tooltips: One of the benefits of interactive visu-
alizations are these third-dimensional components you can
add to charts called tooltips. Don’t just let the application
automatically set up the tooltips and stick with its default
displays. Try to experiment with creating your own views
and key details about the data in these tooltips.

REFERENCES AND TUTORIALS
When the end-user interacts with the model, they can create
their own view to analyze and understand the data. Try it out
on your own in my Tableau public dashboard library! I spend
most of my time exploring data analytics and creating data visu-
alizations in Microsoft’s Power BI. This City of Houston finan-
cial dashboard is a straightforward analysis of the consolidated
dataset, but you can check out how to incorporate some neat
models into these tools by experimenting on your own or fol-
lowing along with example projects. I recently wrote an article

Helen Wall is the owner of Helen Data Design
(www.helendatadesign.com). She can be
contacted on LinkedIn https://www.linkedin.com/
in/helenrmwall/.

ACTUARIAL TECHNOLOGY TODAY | 7Copyright © 2020 Society of Actuaries. All rights reserved.

 JULY 2020
ACTUARIAL TECHNOLOGY TODAY

TECHNOLOGY
SECTION

Building a Modularized
and Reusable Formula
Table Code in Moody’s
Axis Using Formula Link
By Bryon Robidoux

When I ask actuaries about Moody’s Axis, I get the im-
pression that people think it’s a black box system
without the ability to customize pragmatically, but

this couldn’t be farther from the truth. Axis allows actuaries to
customize its routines with VB.NET, which is a standard .NET
Microsoft programming language. This article will be focused
on maximizing the reuse of code using features available within
Moody’s Axis specifically targeted at using Formula Link.

AN INTRODUCTION TO MOODY’S AXIS
Non-Axis users may need a frame of reference for its two ma-
jor components: Enterprise Link (E-Link) and the dataset. The
dataset is the model, such as variable annuity or life insurance
valuation model. E-Link has a very Windows Explorer feel.
E-Link’s main goal is to manage the collection of the organi-
zation’s models and orchestrate their execution. E-Link can be
automated with scripts to externally manipulate datasets and
customize orchestration using Axis Jobs and E-Link scripts,
respectively. For example, actuaries can write scripts to load in
assumptions from a database with Axis Jobs for multiple datasets
and then run each dataset’s calculations using E-Link scripts.

One of the most important enhancements to E-Link in the last
year or so is Formula Link. This extension builds reusable li-
braries that can be shared among multiple datasets and E-Link
scripts. From E-Link’s point of view, the dataset is like a big zip
file full of Axis proprietary and user-created files. From within
the dataset’s interface, it contains formula tables, code snippets,
and other components which are not important for this article.

Formula Table Introduction
Within a formula table, the user can write specialized code. A
formula table can be defined for many different calculation types.
The calculation type will dictate the Axis specific variables and
functions that are available for use in the custom code. A code
snippet is a special formula table that can be used within any
calculation type. The caveat is that it will not expose in the user
interface what variables and functions are available because the
variables and functions available will not be resolved and linked
until runtime. This may seem like an issue or disadvantage, but
actually, it is their greatest strength and gives them maximum
reusability. It definitely makes them a little more challenging to
use, though. Just note, the less specific the code is on what it
does, the more versatile and reusable the code will be.

Now each formula table only supports Axis Script by default.
Back in the day, Axis Script only supported VBA \ VB6 code.
When formula tables were updated to support VB.NET, the
precompiler was enhanced to force modelers to still code in the
VB6 style to maintain backward compatibility for Axis’s func-
tionality. This evolution of formula tables has a major impact on
their behavior because the Axis Script has different and much
more restrictive syntax rules relative to VB.NET. As a person
that has spent many years focused on improving coding methods
in Axis, it is highly recommended to only use Axis Script for very
simple products. As the complexity of the products increases,
the more difficult it is to write clean and maintainable code. It
is recommended for the organization to invest in the modeler’s
productivity and purchase Formula Link.

ACTUARIAL TECHNOLOGY TODAY | 8Copyright © 2020 Society of Actuaries. All rights reserved.

Building a Modularized and Reusable Formula Table Code in Moody’s Axis Using Formula Link

The Problem
Now let’s go one step further and pretend that these functions
were developed by one modeler that has moved onto another
company. Shortly thereafter, a stakeholder reports an issue with
a particular set of policies in product A. The new modeler deter-
mines the issue to be in the first 23 lines of FTA. She only chang-
es FTA not realizing the redundancy or not wanting to cause an
impact for products B. Maybe it was correct that the first 23
lines differ for product A and they should be changed. Maybe
the code needs to be the same for A and B, so it is wrong only to
change A. At best, the code is unclear. At worst, the modeler has
just created an unintended model divergence that should not ex-
ist. The business requirement may be lost to the sands of time or
not very clear itself. This is why it is important to write code that
is very explicit on its intent. It should be written in a fashion that
readers in the future can quickly assess what it’s doing without
having to find the original documentation. The code is not just
for the compiler! It is also for the actuary to read.

The Option 1 Solution
How can development methods be improved to avoid this issue?
The best way to prevent this situation is to create three code
snippets called A, B, and Common. In each code snippet, A and
B put a method called Calc on the Functions and Variables tab.
They all must have the same signature.

“A function signature (or type signature, or method signature)
defines input and output of functions or methods. A signa-
ture can include: parameters and their types, a return value, and
type, exceptions that might be thrown or passed back.”1

Then in code snippet A, copy and paste the five lines that spe-
cialized for FTA and save. Do the same process for code snippet
B using FTB as displayed below. (Do not worry at this point if
code snippets won’t compile.) (See Fig. 2)

If the organization has upgraded to Formula Link, the formula
table contains three tabs for code development: Formula Text,
Functions and Variables, External Declarations and Classes. The
Axis Script becomes the Formula Text tab after the upgrade. The
Functions and Variables, External Declarations, and Classes tabs
are far more compatible with VB.NET coding style. The three
tabs do have different syntax rules, which lead to preferred cod-
ing behaviors that should be addressed.

It is encouraged to do most coding on the Functions and Vari-
ables, External Declarations and Classes tabs because they will
force writing in functions and classes for better modularization.
Only use Formula Text tab for calling functions created in the
other two tabs and declaring constants because the Formula Text
tab has heavy manipulation during pre-compilation. This ma-
nipulation makes writing clean code and using .NET language
features very difficult or impossible. It is highly recommended
to use Visual Studio as the debugger to immensely improve the
modeler’s productivity.

LOGIC PROLIFERATION AND CODE
DIVERGENCE WITHIN THE DATASET
A common problem I have witnessed—which leads to logic pro-
liferation and code divergence—is multiple formula tables hav-
ing mostly identical code. (Code divergence is when different
blocks of code should behave the same, but they don’t because
they are copies of each other and only a subset of the copies have
been modified or enhanced.) To demonstrate, let’s have two for-
mula tables called FTA and FTB. Let’s pretend that each formu-
la table represents products A and B, respectively, and contains
51 lines of code each on the Formula Text tab. The first 23 and
the last 23 lines are identical between both formula tables, but
the middle five lines are slightly different for products A and B,
which are displayed in Figure 1.

FIGURE 1
PRODUCTS A AND B CODE DIFFERENCES

 ‘FTA ‘FTB

 ‘Common init. for 23 lines ‘Common init. for 23 lines

 Const myArray() As Integer = {1,2,3,4} Const myArray() As Integer = {1,4,8,10}

 Dim reserve as Double Dim reserve as Double

 reserve=0 reserve=0

 For Each item In myArray For Each item In myArray

 reserve += 2 * item + 3 reserve += 2.5*item+3.5

 Next Next

 ‘Common Summary 23 lines ‘Common Summary 23 lines

ACTUARIAL TECHNOLOGY TODAY | 9Copyright © 2020 Society of Actuaries. All rights reserved.

Building a Modularized and Reusable Formula Table Code in Moody’s Axis Using Formula Link

FIGURE 2
CODE SNIPPETS A AND B

 ‘Code Snippet A ‘Code Snippet B

 Public Function Calc(ma() As Integer) As Double Public Function Calc(ma() As Integer) As Double

 Dim reserve as Double=0 Dim Reserve as Double=0

 For Each item In ma For Each item In ma

 reserve += 2 * item + 3 reserve += 2.5 * item + 3.5

 Next Next

 Return reserve Return reserve

 End Function End Function

In the Common code snippet on the Functions and Variables tab, as displayed below, create a sub routine called Common. Within
the Common sub routine, move the first set of 23 lines from FTA, call the Calc function that has the same signature as the Calc
functions that are in code snippets A and B, move the last set of 23 lines from FTA and save. (Do not worry that this will not compile
at this point because it is missing the definition of Calc. It is all part of the plan.) (See Fig. 3)

FIGURE 3
CODE SNIPPET COMMON

 ‘Code Snippet Common

 Public Sub Common(myArray() As Integer)

 ‘Common init. for 23 lines

 Dim reserve As Double = Calc(myArray)

 ‘Common Summary 23 lines

 End Sub

Next, delete all the previous code in FTA and FTB from all tabs and save because it will now be replaced. In the Functions and
Variables tab of FTA and FTB, do what is displayed in Figure 4.

FIGURE 4
FORMULA FOR TABLE A AND B

 ‘Formula Table A ‘Formula Table B

 IncludeScriptFromTable(“A”) IncludeScriptFromTable(“B”)

 IncludeScriptFromTable(“Common”) IncludeScriptFromTable(“Common”)

 Public Sub CalcProd() Public Sub CalcProd()

 Const myArray() As Integer= {1,2,3,4} Const myArray() As Integer = {1,4,8,10}

 Common(myArray) Common(myArray)

 End Sub End Sub

Lastly, on the Formula Text tabs of FTA and FTB place the following function call:
FormulaTable.CalcProd()

ACTUARIAL TECHNOLOGY TODAY | 10Copyright © 2020 Society of Actuaries. All rights reserved.

Building a Modularized and Reusable Formula Table Code in Moody’s Axis Using Formula Link

FIGURE 5
COMMON CODE SNIPPET’S CALCULATE METHOD

Public Class Common

 Public Sub Calculate(theProduct As IProduct)

 ‘Common init. for 23 lines

 Dim reserve As Double = theProduct.Reserve()

 ‘Common Summary 23 lines

 End Sub

End Class

Within the same Common code snippet and External Decla-
rations and Classes tab, create an interface IProduct that has
one method called Reserve, which has the same signature as the
functions in code snippets A and B. (An interface is a special
class that contains methods that do not have any implementa-
tion. The reader can think of them as defining a set and its be-
havior. The classic example of an interface is the shape, which
can have a method draw. Each implementation of an interface,
such as circle and square, will define the specifics of how to draw
it.) (See Fig. 6)

FIGURE 6
RESERVE SNIPPET

Public Interface IProduct

 Function Reserve() As Double

End Interface

The pre-compiler will merge the two snippets together at com-
pile time, and each formula table will work as it originally did,
and the redundancy is removed. (At this point, FTA and FTB
should compile. If the user of the dataset wants to see the results
of the merge, they will have to debug the code.) This is a really
neat feature of Axis, which is typically not available in .NET.
Anyone familiar will C++ will recognize this as a poor man’s stat-
ic polymorphism.

“The word polymorphism means having many forms.
Typically, polymorphism occurs when there is a hierarchy
of classes, and they are related by inheritance. C++ poly-
morphism means that a call to a member function will
cause a different function to be executed depending on the
type of object that invokes the function.”2

In this case, the type of the object that invokes the function is
code snippet A or B.

Solution Option 2—Avoid Code Snippets and Use
Classes Instead
Now let’s imagine that the actuaries developing models are in-
timidated by the static polymorphism described above because
they cannot look at the formula table and directly read the code
without debugging. Is there another way to accomplish this level
of reuse? Yes. The External Declarations and Classes tab allows
users to create classes using dynamic polymorphism.

Hence, the actuary could create a code snippet called Common
and write a class called Common on the External Declarations
and Classes tab. It would contain a method called Calculate,
which takes a parameter of an interface of type IProduct. The
Calculate method comprises all the code from the Common
code snippet’s Calc method from Figure 3. (See Fig. 5)

ACTUARIAL TECHNOLOGY TODAY | 11Copyright © 2020 Society of Actuaries. All rights reserved.

Building a Modularized and Reusable Formula Table Code in Moody’s Axis Using Formula Link

In FTA, create a subclass A that implements IProduct on the External Declarations and Classes tab and do the same for FTB. Each
subclass A and B contains the code that is in the Calc methods of code snippets A and B, respectively, mentioned above. The results
of the transformation are displayed in Figure 7.

FIGURE 7
IMPLEMENTATION OF IPRODUCT

IncludeScriptFromTable(“Common”) IncludeScriptFromTable(“Common”)

Public Class A Public Class B

 Implements IProduct Implements IProduct

 Private Dim myArray={1,2,3,4} Private Dim myArray={1,4,8,10}

 Public Function Reserve() As Double _ Public Function Reserve() As Double _

 Implements IProduct.Reserve Implements IProduct.Reserve

 Dim reserve as Double=0 Dim Reserve as Double=0

 For Each item In myArray For Each item In myArray

 reserve += 2 * item + 3 reserve += 2.5*item + 3.5

 Next Next

 Return reserve Return reserve

 End Function End Function

End Class End Class

In FTA on the Functions and Variables tab, create a method called CalcProd, which will instantiate a Common object and an A
object and pass the A object to the Calculate method of the Common object. Do the same for FTB. This is displayed in Figure 8.
(An instantiated class is called an object.)

FIGURE 8
CALCPROD METHOD

‘Formula Table A ‘Formula Table B

Public Sub CalcProd() Public Sub CalcProd()

 Dim mediator = New Common() Dim mediator = New Common()

 Dim prod = New A() Dim prod = New B()

 mediator.Calculate(prod) mediator.Calculate(prod)

End Sub End Sub

Now, to make the static and dynamic polymorphism examples equivalent, write the following line FTA and FTB on the Formula
Text tabs.

FormulaTable.CalcProd()

Advanced Topic and Full Disclosure
The astute reader may have noticed that I put the IncludeScriptFromTable call in the External Declarations and Classes tabs of the
formula tables. This was no accident. Remember when I mentioned in the introduction of formula tables that different tabs have
different syntax rules due to the evolution of the formula tables and code snippets? The behavior that I expected is that the pre-com-
piler would line up the the tabs of the code snippets with the tabs of the formula tables and then merge the code snippet code with
formula table code. This would ensure that all the code stays in its homogenous tab and gets compiled correctly, regardless of which
tab the IncludeScriptFromTable call is made from in the formula table.

ACTUARIAL TECHNOLOGY TODAY | 12Copyright © 2020 Society of Actuaries. All rights reserved.

Building a Modularized and Reusable Formula Table Code in Moody’s Axis Using Formula Link

But instead, the precompiler looks at the tab that the Include-
ScriptFromTable call was made from in the formula table. It then
merges all the code snippet code into this one tab and compiles all
the code. The code that was on a different tab in the code snippet
versus the tab the IncludeScriptFromTable call in the formula ta-
ble will fail to compile because an incompatible version of syntax
rules will be applied. This is why the directions are very specific
in the examples on the tab that the IncludeScriptFromTable call
is located.

This has some undesired consequences because this means that
multiple tabs cannot be used within the code snippets because
one of the tabs would have compilers’ errors because the syntax
rules wouldn’t match up. This means that if the common code
grew and multiple tabs were needed to best express and abstract
the concepts, they would have to be put into multiple code snip-
pets. This really forces the actuary to make less readable code
to overcome this issue, which makes the static polymorphism
appear a little less slick. I am hoping that in the future, Moody’s
will change the behavior so that placement of the IncludeScript-
FromTable call can be in any tab and not impact the rules of the
compilation of the code within the code snippet.

OPTION 1 VS. OPTION 2
When should the actuary use static polymorphism versus dy-
namic polymorphism? The advantage of the dynamic polymor-
phism is that it is more transparent, which is always a good thing.
There is still an issue, though. It can never be simple! The real
determination of which method to use is the frequency at which
the calculation will be called. If the code is called for every sce-
nario, policy, time point, and whatever, then the system is al-
locating and deallocating memory at this frequency. This can
be computationally expensive and time-consuming or can cause
memory to become fragmented. These issues can be solved by
declaring classes as static so that the instantiated classes keep
their state between formula table calls. This causes another is-
sue; the actuary is in the memory management business deciding
when objects should be created and destroyed. Depending on
the situation then, the run could crash due to a lack of memory.
(For example, assume the Common class had a list that need-
ed to be reset on a periodic, predictable basis. If a bug existed,
the list might not be reset properly and grow unbounded.) The
advantage of the static polymorphism is that the actuary can un-
derstand the polymorphism, but Axis is responsible for all the
memory. Axis has the DIM_STATIC_VARIABLE to hold static
between formula table calls to replace the need for the list used
in the dynamic polymorphism example. Memory management
is very difficult to implement correctly, so it is best to delegate
it away to Axis because the platform is focused on the problem.
The difficulty of memory is why static polymorphism is pre-
ferred, and C++ lost its popularity.

RESULTS OF REFACTORING
This pattern of separating common from specialized code can
be repeated over and over again. It is highly recommended to

avoid coding directly in formula tables so that the above pattern
is encouraged. It has many advantages:

1. It clearly defines the parts of the algorithm that are common.

2. It specifies exactly where code variations occur.

3. If the algorithm is wrong in the common code, it can be
changed in one location and fix everything at once.

4. It allows the code to be compressed as much as possible.

5. It allows the code to be divided into smaller and smaller
pieces for better maintenance and comprehension.

6. It can be easily extended for a future product C, and so on,
by creating the code snippet and following the pattern.

LOGIC PROLIFERATION AND CODE
DIVERGENCE AMONG THE DATASETS
The redundancy and logic proliferation might be caught with-
in one model, but now imagine the variations exist in different
models. There is no native tool from within the dataset that
can overcome it. Luckily in September 2019, Formula Link
code snippets were introduced to save the day! The only code
that would change from handling redundancy within a dataset
versus among datasets is to change line 4 from IncludeScript-
FromTable(“Common”) to IncludeScriptFromFormulaLinkTa-
ble(“Common”) in each of the FTA and FTB formula tables dis-
played above. Lastly, the code snippet would have been removed
from the dataset and saved in Formula Link.

This way the user can keep the common code in a centralized
location that is visible to all models. The unique variations of
each model are stored in the dataset and injected into the code
at compile time. For example, imagine that the common code
was an economic scenario generator (ESG) that both a Fixed
Indexed Annuity and Variable Annuity dataset would need for
projecting liability values. They could keep the common code
of interacting with the ESG in Formula Link and keep all the
specifics of how the liability needed to interact with it inside
the dataset. Code snippets in Formula Link give the modeler
the ability to avoid copying regardless of where the redundancy
exists—which is exactly what good software engineering princi-
ples dictate.

Now for Transparency
Now that the beauty of Formula Link was addressed with code
snippets, the difficult side of using Formula Link needs to be
exposed. The “Formula” in Formula Link comes from the ability
to write code outside the dataset. The purpose is to allow the
user to:

1. Write reusable Dynamic Link Libraries (DLL) within the
Moody’s environment using object-oriented C# or VB.NET
classes; and

ACTUARIAL TECHNOLOGY TODAY | 13Copyright © 2020 Society of Actuaries. All rights reserved.

Building a Modularized and Reusable Formula Table Code in Moody’s Axis Using Formula Link

2. to link-in external libraries’ DLLs that were written outside
of Axis.

Bullet 2 is an awesome feature, and its potential will be shown in a
future Modeling Section article, “The Importance of Centraliza-
tion of Actuarial Modeling Functions – Part 4 DevOps and Auto-
mated Model Governance.” Bullet 1 is where the difficulties arise.

The difficultly with Formula Link has to do with using the For-
mula Link library classes directly. Formula Link library classes
cannot directly call the functions or variables inside the dataset.
There is no library that can be referenced to expose them. (This
limitation is for justified technical reasons beyond the scope of
this article.) In order to get a hold of the internal dataset func-
tions and variables, the developer has to pass them to the Formu-
la Link library classes directly. Passing functions requires using
function pointers and lambda expressions, which are advanced
programming skills. The library gets cumbersome and difficult
to understand if it requires tons of parameters, especially func-
tions as parameters. This is why it is highly recommended to
use Formula Link code snippets over calling the Formula Link
classes directly. When the formula table in the dataset calls the
Formula Link code snippet(s), the dataset’s pre-compiler will
link all the datasets functions and resolve the dependencies. Fol-
lowing this rule of thumb will greatly reduce the complexity of
the code and increase its readability.

The last suggestion is to set the dataset and Formula Link to
Option Strict, which shuts off the ability to do implicit type con-
version. This feature is especially important when using Formu-
la Link because the types in the Formula Link library are not re-
solved until runtime. Hence, the dataset would compile and start
a run, but possibly stop running due to a type mismatch error.
The Option Strict will prevent this from happening because it

will find the type mismatch during compilation. The directions
on how to set Option Strict can be found in the knowledge base.

CONCLUSION
In conclusion, this article focused on code reusability and mod-
ularization by using code snippets. The art of coding is to be
able to encapsulate the changes between similar concepts and
then inject the variations. The injection of differences is accom-
plished through polymorphism, of which there are two types:
static polymorphism or dynamic polymorphism. The static poly-
morphism is the modeler’s only option without Formula Link.
(The reason that static polymorphism wasn’t shown using Axis
Script is that Axis Script is so verbose.) The preference was on
using static polymorphism because dynamic polymorphism can
be computationally expensive and tricky to implement. Regard-
less of which method is used, it is important to write clear code
so that future developers can understand its intent and therefore
reduce confusion. The methods shown will help reduce redun-
dancy of code in the model and make it easier to maintain. n

ENDNOTES

1 https://developer.mozilla.org/en-US/docs/Glossary/Signature/Function

 2 https://www.tutorialspoint.com/cplusplus/cpp_polymorphism.htm

Bryon Robidoux, FSA, CERA, is a lead and
corporate actuary, Actuarial Transformation at
The Standard. He can be reached at Bryon.
Robidoux@standard.com “

ACTUARIAL TECHNOLOGY TODAY | 14Copyright © 2020 Society of Actuaries. All rights reserved.

 JULY 2020
ACTUARIAL TECHNOLOGY TODAY

TECHNOLOGY
SECTION

Technology Section Tidbits
Stay engaged with your community

SECTION COMMUNITY
Have you thought about the future of the actuarial profession and
how future technology will revolutionize it? Take part in Disrup-
tions to the Actuarial Profession Contest to showcase your ideas
about how actuaries can contribute to this process. To participate,
submit a video, YouTube hyperlink or essay to aof@soa.org
no later than Aug. 3. Up to five prizes will be awarded for ideas
including most reformative, most creative and most innovative
uses of technology. See our contest flyer for more information on
how to enter.

PROFESSIONAL DEVELOPMENT
Take part in the Tech Webcast Series—Emerging Tools &
Technologies which consists of four webcasts being presented
on Wednesday’s from July 28 through Aug. 18. This webcast
series kicks-off with an introduction and use-cases relevant to
the emerging tools and technologies. The subsequent webcasts
take a deeper dive into solutions, considerations, and use-cases
for each topic including cloud computing, data transformation
and warehousing, and data visualization. Sign up for the entire
series by Aug. 16 to take advantage of the special discount.

Get access to more info at SOA.org/sections/technology

