

Article from
Predictive Analytics & Futurism
December 2017
Issue 16

 DECEMBER 2017 PREDICTIVE ANALYTICS AND FUTURISM NEWSLETTER | 27

prediction, and validation are often intertwined in the R script
that the actuary produces. While this sort of organization
might work for rapid model development, it will not support
the deployment of a real-time model. To deploy the model, the
scoring process must be completely separated from the model
fitting which is a computationally expensive process, that often
uses a large amount of potentially sensitive data. The model
should be fit and saved to a binary file, without evaluation or
fitting code included. This file will be loaded by the R scoring
script that is deployed.

There are two important considerations for the real-time
scoring script that will be deployed. First, manual steps will
not allow our model to be real time; so, we should remove
manual steps. One of our models had a column in the training
data that was created by an underwriter, using our under-
writing manual. Obviously, this will not work for a real-time
system. For this column, we had to devise a lookup table that
accomplished a similar result as the underwriter. This resulted
in inconsistencies between fitting and deployment with the
underwriting column and this is not a recommended practice.
Always look for manual steps ahead of time and think of how
they will be addressed by a deployed real-time model. The sec-
ond difference between a real-time model and fitting is that
the real-time model will only process one row of data at a time.
During model fitting the script might normalize columns by
the standard deviation and mean of the entire training set.
These kinds of statistical measures cannot be calculated for a
single row. Such statistics, such as mean or standard deviation,
must be calculated on the training set and then essentially
hard-coded into the deployed R script that does the scoring.

From R Studio to Real-
Time Operations
By Jeff Heaton and Edmond Deuser

Today more and more data is being created and of ever
more importance is the ability to provide real-time
access to capabilities on that data and how companies

operate those capabilities. This age of data insights will drive
how we deliver and communicate these insights. There are sev-
eral examples of model delivery yet how does the delivery and
the self-service capabilities of modeling get operationalized for
customers and legacy systems in real time. In this paper, we
will explore moving predictive modeling capabilities in R to
real time operations. Though this paper specifically targets R,
some of these techniques discussed could be applied to other
languages. Below describes a basic data science workflow that
we will be describing in detail in this paper.

HOW DO WE GO FROM R TO WEB SERVICE?
An application programming interface (API) is an interface
to your models provided by a web service. Creating an API
involves somewhat different steps than creating a model. The
steps of data preprocessing, model fitting, model scoring/

Figure 1
https://docs.microsoft.com/en-us/r-server/deployr/deployr-about

28 | DECEMBER 2017 PREDICTIVE ANALYTICS AND FUTURISM NEWSLETTER

From R Studio to Real-Time Operations

WHAT DOES OUR MODEL NEED AS
INPUT AND PROVIDE AS OUTPUT?
The recommended format for communication between mod-
els, model consumers and service provider is JavaScript Object
Notation (JSON). Another common choice is eXtensible
Markup Language (XML). As an example, consider a simple
web service designed to predict the survival probability of a
Titanic passenger (using the very popular Kaggle Titanic
Dataset). The JSON model input could appear as:

{
 “class”: 1,
 “gender”: “female”,
 “age”: 35,
 “siblings”: 1,
 “parents”: 0,
 “fare”: 57.5,
 “embarked”: “S”
}

The above data will be transmitted to the deployed R script as
JSON. We use the “jsonlite” library to parse this input format
into individual variables for the model to use for prediction. The
above JSON intentionally contains minimal personally identifi-
able information (PII). Only pass PII, such as name, address, date
of birth, etc., if necessary. If PII is necessary one should include
appropriate compliance and legal teams in the process.

The data that is sent by the client (JSON) is often quite differ-
ent than the actual input to the model. Gender will probably
be passed as M, F, U and be transformed into 0 or 1. The
age might be transformed into a Z-Score, which will require
knowledge of the mean and standard deviation of all ages in
the training data. Similarly, the age and gender might together
be used to lookup a value in one of the company’s mortality
tables. There are options for technologies to transform the
high-level client data into the low-level model input. After all
this is completed, the deployed R script will produce another
JSON, such as the following:

{
 “date”:”2017-08-19 17:18:14”,
 “id”:”4b495b7a-852c-11e7-9ef7-f7deab256915”,
 “decision”:”survive”,
 “confidence”:0.9026,
 “version”:”titanic model v1.0 (build 1)”
}

ROBUSTNESS OF DEPLOYMENT SCRIPT
Once the model is trained, a simple script should be created that
accepts a sample JSON file and produces the correct output.

This script will become the scoring R script that will be ulti-
mately deployed and the robustness of this script is critical.
One such area is to know how long the script takes to produce
a single prediction. How long the script takes to execute is how
long the client must wait for a single prediction. If the script
takes more than a few seconds to run, this might be a problem.
Another area to consider is how much memory the script needs
to execute. We have seen models that will sometimes require the
loading of several gigabytes of binary models to make a single
prediction. When this is done the loading of this file may take
up precious time, before predictions can even be made. If such
complex models are truly required they can be preloaded into
RAM. However, such a system’s complexity is more difficult
to implement and it decreases the ability to scale the model to
many requests. Ideally, the deployed R script should take less
than 10 seconds to execute. The following R code shows a sam-
ple scoring script for R that could be deployed:

 DECEMBER 2017 PREDICTIVE ANALYTICS AND FUTURISM NEWSLETTER | 29

library(jsonlite)
library(uuid)

model_version <- ‘titanic model v1.0 (build 1)’

json_data <- fromJSON(model_input)

Extract only what we need from JSON
Age <- as.numeric(json_data[‘age’])
Sex <- toString(json_data[‘gender’])
Pclass <- as.numeric(json_data[‘class’])
SibSp <- as.numeric(json_data[‘siblings’])
Parch <- as.numeric(json_data[‘parents’])
Fare <- as.double(json_data[‘fare’])
Embarked <- toString(json_data[‘embarked’])

Load model and predict
inp <- data.frame(Age,Sex,Pclass,SibSp,Parch,
Fare,Embarked)
load(file=” titanic_glm.rdata”)
pred <- predict(model,newdata=inp,type=’response’)

Build response JSON’s
l <- list()
l[[‘date’]] <- Sys.time()
l[[‘id’]] <- UUIDgenerate()

if (pred>0.5) {
 l[[‘decision’]] <- “survive”
 l[[‘confidence’]] <- as.numeric(pred)
} else {
 l[[‘decision’]] <- “perish”
 l[[‘confidence’]] <- as.numeric(1.0-pred)
}
l[[‘version’]] <- model_version

model_response <- toJSON(l,auto_unbox=TRUE)

The above code has three main parts. First, the JSON is parsed
from the variable model_input. Next, the model is loaded and
the passenger is scored. Finally, the model output is encoded
into the JSON response and is stored into the model_output
variable. This code does not perform any validation. For a real
system, validation is important and should generate an appro-
priate error response.

OPERATIONAL CONSIDERATIONS
Now that an operational model has exposed an API that will
allow systems to communicate and integrate with, how does
the API that the model has exposed get secured and accessible

for others in the world to utilize so we can realize our data
insights more broadly? There are several questions a team
should ask and/or prove when trying to complete this objec-
tive, here are a few that we will cover in this paper to get to the
finished version as seen below.

Figure 2
Target State Model

The target state depiction above shows how requests from the
client are accepted by the WebService API routed through
DeployR, which is an integration technology for deploying R
analytics of one or more models that might be made available to
clients. There are other technologies the team utilized to realize
capabilities such as authorization, authentication, logging, mon-
itoring, etc., yet we will not discuss those in this paper.

HOW DO WE INTEGRATE WITH DEPLOYR 8.0.5?
How we interact with the DeployR 8.0.5 API and how we effi-
ciently spin up and spin down the DeployR model was a critical
decision in achieving agreed upon service level commitments.
In a real-time model, the processing should take seconds for
the response(s); and starting up DeployR and how the data
gets posted to the model might take up precious time that
could be used for the calculation. DeployR is a batch oriented
system, so how do we take these individual calls and work with
them? An analogy of how DeployR works is how an airplane
operates, whether it carries one passenger or 100 passengers
it takes the same amount of time to complete. What we had
to do was determine how we could setup a collection of these
projects that would fill an itinerary for the plane then send
on to DeployR for execution. As a practice, stateful services
is almost always seen as an anti-pattern, yet with this version
of DeployR there was no good way to complete the operation
in a performant way using a stateless service given that the
DeployR would have to spin up to complete the operation for
each call. For this reason and the performance requirement,
we needed to figure out how to complete these operations in a
couple seconds. The method that was completed was a project
queue for the requests and responses. In a future article, we
will describe more technical details of this process.

30 | DECEMBER 2017 PREDICTIVE ANALYTICS AND FUTURISM NEWSLETTER

From R Studio to Real-Time Operations

HOW DO I SECURE THE INTELLECTUAL
PROPERTY OF THE MODEL?
In the age of data insights, the one with the best algorithm wins;
so, securing those algorithms or models is of utmost importance.
First thing we need to realize is with unlimited time and budget
someone could compromise what we are trying to protect. Secu-
rity is not about whether the feat is impossible to complete, but
more of how much time and money is needed to be able to get
what you are trying to protect without being detected. That is
why with any project, especially one exposed publicly, we should
take a step back and understand how a potential attacker would
compromise our system and mitigate appropriately to the risk
and exposure. A simple technique to use when going through
this exercise is “threat modeling,” which is “a procedure for opti-
mizing Network/Application/Internet Security by identifying
objectives and vulnerabilities, and then defining countermeasures
to prevent, or mitigate the effects of, threats to the system.”1

version of the library and would take some time to understand
how to decompile. The final strategy is robust monitoring and
logging. The naysayers will tell you that robust monitoring is
over engineering, yet when an attack is occurring this monitor-
ing can help the team understand the attack is occurring and
allow precious time to find the holes they used in the threat
model. The monitoring needs to understand that this attack
is occurring and lock the doors to our intellectual property.
Which is why monitoring and logging needs to be a discussion
the team has as this will give the team all the context available
so a game time decision can be made.

This paper explored moving modeling capabilities in R to real
time operations. The age of data insights will continue to evolve
and the methods at which we analyze the data and base our
predictions will change, but having those insights faster and in
varied ways will not. Like anything else, decisions are relative
to the situation at hand. And while we focused on answering a
subset of questions, we would expect the team to understand all
requirements as the service is operationalized and there may be
many more questions that could and should be considered. ■

ACKNOWLEDGEMENT
As always a project takes a team to complete and we wouldn’t
have been able to complete this project without the help of
RGA Automation and Monitoring, Global Research, Devel-
opment and Analytics, Actuarial Solutions and Underwriting
teams, and last but not least, Larry Anderson from Ocelot
Consulting (www.ocelotconsulting.com) for the wonderful work
on the delivery of this service.

Figure 3
Threat Model

As seen from Figure 2, we identified three principle attack sur-
faces we needed to mitigate or prevent the attack. We will only
focus on the last one as this is the most jermaine to the article.
The scenario we will discuss is when a role that has access to
the models decides to put in a threat or divulge that sensitive
information.

Access control lists that are reviewed and approved regu-
larly start the security. All code for the library is stored in a
source control system that does builds and verifications, so if
someone does decide to merge in a vulnerability, the tests will
catch the issue before it gets deployed. The other item is how
this model is promoted to DeployR8.0.5 which we did a fair
amount of research on and decided to compile the libraries
with the critical algorithms for use in the model, much like a
local CRAN mirror would do for us. What this does is, even
if someone has access control they can only see a compiled

Jeff Heaton, Ph.D., is lead data scientist,
Reinsurance Group of America (RGA) in
Chesterfield, Mo. He can be reached at jheaton@
rgare.com.

Edmond Deuser is technical architect and
developer, Reinsurance Group of America (RGA) in
Chesterfield, Mo. He can be reached at edeuser@
rgare.com

REFERENCE

Threat modeling 1 – https://www.owasp.org/index.php/Application_Threat_Modeling

ONLINE RESOURCE

Swagger Hub API - https://swaggerhub.com/apis/RGA/ROperational/1.0.0

	From R Studio to Real-Time OperationsBy Jeff Heaton and Edmond Deuser

