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Logistic GLM Credibility

By Matthias Kullowatz

or a recent project, our team built a logistic generalized
F linear model (GLM) to predict the probability of a binary
outcome—in this case, whether or not the policyholder
commenced lifetime withdrawals in a given quarter. We were
naturally interested in determining the credibility of our prob-
ability estimates, and turned to our trusty Actuarial Standards

of Practice (ASOPs) for some advice.

ASOP 25 specifically addresses credibility, and touches on
extensions related to predictive modeling:

More recent advancements in the application of cred-
ibility theory incorporate credibility estimation into
generalized linear models or other multivariate model-
ing techniques. The most typical forms of these models
are often referred to in literature as generalized linear
mixed models, hierarchical models, and mixed-effects
models. In such models, credibility can be estimated
based on the statistical significance of parameter esti-
mates, model performance on a holdout data set, or the
consistency of either of these measures over time.!

It’s left to us as the actuaries to
develop defensible credibility

methods from predictive
models.

ASOP 25 comes across as purposefully open-ended as to what consti-
tutes credible estimates from a predictive model. Because predictive
modeling is relatively new to the life insurance industry, and because
there exists a plethora of viable predictive modeling options, this
open-endedness is essendal. It’s left to us as the actuaries to develop
defensible credibility methods from predictive models.

It turns out there is a very familiar credibility method that
GLMs are well equipped to utilize: limited fluctuation cred-
ibility. Before diving into a GLM implementation of this
actuarial classic, we provide a helpful review for the reader.
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LIMITED FLUCTUATION CREDIBILITY

Limited fluctuation credibility is why everyone loves the num-
ber 1,082. We’ll come back to that in a moment. The method
essentially revolves around calculating the probability that an
estimate is within a chosen error tolerance of the true value
being estimated, making it very much a frequentist approach.
If that probability is high enough, then the estimate is deemed
credible. Let’s use a specific example that focuses on random
binary outcomes.

Assume that we observe 100,000 policyholders over a defined
period of time and that 1,082 of them die. Our estimate of
mortality among this cohort would be approximately 0.0108.
As the actuaries in charge, we decided that we want to be at
least 90 percent confident that the true mortality lies within 5
percent of the estimated mortality. In probabilistic terms, that
means we are requiring the following inequality to hold true to
assure full credibility of the mortality estimate §:

Formula 1
(0 95. 982 _ o 10502 o 100,000,q =0 0108) > 0.90
(095" 750,000 = 9 = 195 150,000 | ™ = 100.000.¢ = 0. =5

Note that confidence (90 percent) and proportional error tol-
erance (5 percent) are two parameters that we, as actuaries,
selected somewhat arbitrarily. We assume that ng is a binomially
distributed random variable with the aforementioned parameter
values n and q. Recall that a single binary observation has a vari-
ance of q(1 - g), so we can normalize the probability statement
and invoke the central limit theorem (CLT):

Formula 2
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That probability in this formula is just a shade over 90 percent,
and we deem this mortality estimation credible. As you may
have guessed, it’s no coincidence that 1,082 mortality claims
led to a barely fully credible cohort. If you play with binomial
distributions and the CLT long enough, you’ll arrive at the
following modified rule for the number of deaths required for
full credibility, where K is the proportional error tolerance:

Formula 3
Za\?
ng = (f) 1-9

For the 90 percent confidence and 5 percent error tolerance
parameters, the required number of deaths would be 1,082.22
times (1-g). Given that mortality rates are typically lower than 1



percent, the required number of deaths for full credibility is likely
to be close to 1,082 in any given cell. Thus, that number 1,082
comes directly from our choices of error tolerance and required
confidence, along with some elementary probability theory.

There is one final rule to share for the credibility of binary
proportion estimates, which can be derived algebraically from
the one above. In words, if the margin of error on a confidence
interval with a chosen probability (e.g., 90 percent) is smaller
than the chosen proportional error tolerance of the estimate
(e.g., 0.05§), then the estimate is fully credible. The general
requirement is shown below:

Formula 4
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In his featured article in Risk Management’s August publication,
Mark Griffin stressed that the actuarial field is overdue to start
thinking about limited fluctuation credibility as a hypothesis
test.? Due to the close relationship between hypothesis test-
ing and confidence intervals, it’s a natural extension to also
start thinking about limited fluctuation credibility as a com-
parison between confidence intervals and tolerance intervals,
as described above. In fact, it’s this connection to confidence
intervals that paves the way to understanding the GLM credi-
bility method outlined below.

A GLM CREDIBILITY METHOD

We presented the limited fluctuation credibility method as a
comparison between a confidence interval and an error toler-
ance interval because it helps us to understand how the method
can be applied to GLM output. Simple proportion estimates
from a sample of binary outcomes and log-odds estimates (or
“predictions”) from a logistic GLM both have asymptotically
normal distributions and calculable variances. So applying this
GLM method is really just an exercise in finding the analogs
between those two estimates, while navigating between the
probability space [0, 1] and the log-odds space (-0, o).

It is important to understand how to go mathematically
between probability and log-odds because the logistic GLM
explicitly models log-odds as a linear function of the selected
covariates. The logit function takes us from probability (p)
to log-odds (W), and its inverse, the logistic function, takes us
back. Both functions are shown below:

Formulas5&6

_ . _ p
u = logit(p) = In (1 — p)

— logistic(u) = et _ 1
p = logistic(W) = 7 =

To create the error tolerance interval in the log-odds space,
we first create the interval around the probability estimate as
we did in the classical limited fluctuation credibility example.
Recall that error tolerance is based on the actuary’s selection of
k. The two endpoints of the error tolerance interval are then
translated into the log-odds space via the logit function shown
above. Separately, the standard error of a GLM’ log-odds
estimate is constructed using the GLM’s variance-covariance
matrix of coefficient estimates. Standard errors of GLM esti-
mates can be calculated and outputted very easily in most
statistical software packages.

Once we’ve moved the error tolerance bounds into the log-
odds space and calculated the standard error of each log-odds
estimate, then basic normal theory takes over—that is, if the
actuary desires 90 percent confidence, then she should use
1.645 standard errors, or if she desires 95 percent confidence,
then she should use 1.960 standard errors, etc. If the confi-
dence interval with chosen confidence level lives completely
inside the error tolerance interval, then the GLM estimate is
fully credible.
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Logistic GLM Credibility

More formally, if the lower- and upper-bound conditions
below are satisfied, then the GLM estimate is credible:

Formulas 7 &8
logit[(1 — k)p;] = i — Za - stderr(fi)
2

logit[(1 + k)p;] < i + Za - stderr(fi)
2

Effectively, this approach uses model variance in the log-odds
space as the analog for the binomial variance of a proportion
estimate. Statistical theory supporting this method can be
found in the article “Full Credibility with Generalized Linear
and Mixed Models.”

CREDIBILITY CONSIDERATIONS

The limited fluctuation credibility method has one noted blind
spot, described below, and now we are proposing moving into
the log-odds space. The normality of GLM estimates is more
fickle here than under the assumptions of the binomial distri-
bution, and thus it’s reasonable to question the utility of this
GLM method. However, we found it useful for our GLM, and
we think you will, too. Here are some things worth consid-
ering before applying this method to assess the credibility of
GLM estimates:

1. Defining error tolerance. Using proportional error tol-
erance can be misleading when estimates range relatively
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close to zero, as they often do when estimating such things as
mortality, lapse and withdrawal commencement rates. Using
proportional error stresses how far the estimate is from zero
as a driving force behind credibility, when we’d rather cred-
ibility be primarily a function of exposure and the amount
at risk. Consider two cohorts, one with a 1 percent estimate
and one with a 50 percent estimate. The proportional error
tolerance would be 50 times greater for the 50 percent esti-
mate, but we shouldn’t expect the estimates’ standard errors
to vary nearly that much.

It seems that credibility should be more closely tied to the
potential bottom-line effect of estimation errors and the
probability distribution of such errors, rather than to the size
of the estimate itself. Those using this method should con-
sider alternative error tolerance functions to appropriately
account for such things as liabilities.

2. Assumption of asymptotic normality in the log-odds
space. The cited paper on this GLM credibility method
notes that the determination of full credibility relies on the
asymptotic normality of the fitted coefficients—which in
turn implies asymptotic normality of the log-odds estimates
themselves. That is, the distribution of any given GLM log-
odds estimate converges to normality as the training sample
size increases to infinity. Thankfully, that has been proven
before.* However, that does not guarantee normality for a



particular GLM’s estimations, which are quite likely to base
themselves on a finite data set.

To convince oneself that a GLM estimate has an approxi-
mate normal distribution, one method is to bootstrap sample
the model’s training data and produce a distribution of esti-
mates. Using the training data for our GLM, we went back
and randomly bootstrapped 100 samples of 2 million records
each, and then refit the model to each sample to create dis-
tributions of the log-odds estimate for each policy. Figure
1 shows a sample histogram of estimates from one of our
policies. Most histograms showed an approximately normal
distribution with a little skewness like this one. However,
each sample of 2 million records represented just 12 percent
of our training sample size, so we took additional comfort

Figure 1
Distribution of Log-Odds Estimates From 100
Bootstrapped Models for a Single Policy

knowing that with increased sample size comes even closer
proximity to normality.

. Probability space versus log-odds space. Nonlinear link
functions distort the error tolerance intervals when they are
translated from the outcome space (i.e., probability space) to
the link space (i.e., log-odds space). This can have a system-
atic effect of credibility becoming dependent on the value of
the estimate itself. For the logistic model, this effect actually
helps to soften the proportional error tolerance issue, dis-
cussed in the first consideration, for estimated probabilities
less than 0.50. We encourage the modeler to investigate how
her GLM’s link function affects the relationship between the

estimate’s value and the estimate’s credibility.

4. Relative credibility. Producing a credibility score is a
natural extension of this GLM method. In addition to
determining whether the credibility condition is met—see
formula 3 or formula 4—one can back into the probability
required so that the two sides of the condition are equal.
"That probability can be used to gauge how close the estimate
is to being credible. The score can then be used in blending
assumptions, such as between actuarial judgment and the
GLM, or between a company’s assumption and industry
experience.

CONCLUDING REMARKS

While this is still an open area of research, the method pre-
sented here gives a viable option for quantifying credibility
of an entire family of predictive models, presuming care is
taken in defining the error tolerance desired. There are other
methods of modeling and assessing credibility that each have
advantages and disadvantages. For example, Bayesian analysis
may allow the modeler to assess credibility directly, but Bayes-
ian analysis is also limited by computational power.

Practitioners should expect to find that using a GLM offers
greater credibility of predictions than a corresponding tabular
study from the same size of data set. This is due to the fact that
it absorbs information from the full domain of each predictor
and that it can factor in the effect of individual predictors addi-
tively, rather than slicing the data into relatively small subsets.
This GLM credibility method can help the actuary to translate
the advantages of GLMs to the language of credibility. It’s all
about communicating what your models do and don’t say to
make your users comfortable with your assumptions and confi-
dent they are using them appropriately. W

Matthias Kullowatz is an actuarial analyst and data
scientist at Milliman in Seattle. He can be reached
at matthias.kullowatz@milliman.com.
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