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INTRODUCTION 

APPROXIMATIONS in actuarial formulas are used because of the 
and function g . ~  mathematically complex form of the mortality the 

fact that the number living is often defined only for integral 
values of age. The approximations used for different functions are selected 
for convenience and are often not consistent with each other. Different 
approximations imply different forms of the function l~t between integral 
values of age. 

The method in this paper is to derive expressions for a/, underlying the 
approximations employed and to compare such expressions. For two par- 
ticular assumptions, namely, the assumption of linearity of l~+t, herein- 
after referred to as Basis A, and the assumption of linearity in the com- 
mutation function D~t, hereinafter referred to as Basis B, a comparison 
of the values of several annuity and insurance functions is made. A differ- 
ent approach is used in the last sections in examining the linearity of re- 
serves between integral values of age. 

The results are illustrated throughout with figures based on the 1958 
CSO table with 3~o interest. In this paper the variable t will be limited to 
the range 0 < t < 1. Superfixes A, B, etc., are used to identify the bases 
being dealt with. 

co  ausoN or AND 

Basis A, which is usually referred to as assuming a uniform distribution 
of deaths within each year of age, is in general use for insurances payable 
at the moment of death. Basis B underlies the formulas in general use for 
annuities payable more frequently than annually. 

By definition, 
= (1  - t) l= + 
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By definition, 

D ~ t  = 

l~+t = 

,p~, = 

, q S  = 

,~ - ,q~, = 

> 

OQ 

OOe 

OgO 

OIO 

(1 - t )D .  + t D ~  

(1 "~- i) l[(1 - -  /)/ ,  "~ tT)/~-a] 

(1 + i) '[(1 - dO - tvq,] 

(1 + i)'[tvq~ - (1 - dO + v'] 

(1 -t- i) '[(1 -- dr) -- ,'1 + tq,[1 -- v( 1 -t- i) ']  

0 .  

In  conclusion, the / -curve  traced by  Basis B between two consecutive 
ages will lie above the / -curve  traced by  Basis A. Basis B will therefore 
produce higher annui ty  and lower insurance values than  Basis A at  in- 
tegral ages, 

RELATIVE ACCITRACIIgS OF 13ASIS A AND BASIS B 

In  order to compare the relative accuracies of Basis A and Basis B it 
will be instructive to compare each with a third and presumably more 
accurate  basis. The  third basis which we shall select, hereinafter  referred 
to as Basis S, is one which assumes that/s~+t is a third degree curve passing 
through l, and l~+a with slopes of - - / ~  and --l~+l~.+x respectively. 

I t  can be shown by  testing the function and its derivative for t = 0 and 
t = 1 tha t  

~ t  = (2~' --  3F + 1)1. --  (2t t --  3F)g+a --  (t 3 - -  2t '  + t ) ( l .~)  

- ( : -  : )  ( l .+lU.+~) 

. ' .  , f .  = t - tq.  + t(1 - 0 [ t ~  - ( I  - t) ,~] 

• ". , g  = t ~  - -  t(1 --  t ) [ t , , -  (1 - -  t ) , d ,  

where ~ = ~ - q, and ~2 = p,#=+~ - q , .  

To compare the values of ~/, on Bases A, B, and S we shall obtain ex- 
pressions for the mean value M ( t q , )  of ,q, on each basis. 

(,q~) = f o ~ t q  d t  M 

= ½ q , .  

fo' M ( , q ~ , )  -- { [ 1 - - ( l + i ) ' ( 1 - - d t ) l + ( l + ~ ) " t ~ % l d t  

6 - -  d i d  - -  ~2 
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f 0  1 M(,qs )  =½q -- t 2 ( 1 - - t ) ~ t - - t ( 1 - - t ) 2 e t d t  

= ½q, -  ~ (,, - , p .  

In Table 1 the mean values of tq= on the three bases are tabulated for 
several ages. Values of ~ were obtained using the formula: 

7 ( d , - x  + d.)  - -  ( d , - i  + d=+t) 

12/. 

The figures in Table 1 indicate that Basis A is in general more accurate 
than Basis B. We shall now compare the values of several actuarial rune- 

T A B L E  1 

Age 

15... 
30. , ,  
45. . .  
60.•.  
75..• 

1,000mt 

1.425 
2.106 
5.141 

19.631 
73.287 

1,000 P=~+l 

1.498 
2.157 
5.567 

21.055 
73.413 

1,000 Gt 

- .035 
- . 0 2 4  
--  .209 
--  .709 
- .083 

1,000 ¢= 

+ . 0 3 6  
+ . 0 2 7  
+ . 2 1 7  
+ . 7 1 5  
+ . 0 4 3  

1,000 

.730 
1.065 
2.675 

10.170 
36.685 

1,000 
u(tq~) 

•650 
•982 

2.576 
9.998 

36.253 

1 ,O00 
M(tqB,) 

• 724 
1.061 
2.639 

10.051 
36.674 

tions on Bases A and B. Only the results are shown in the text, the devel- 
opment appearing in the appendix. 

ANN'U1TIES PAYABLE MORE fREQUENTLY THAN ANNUALLY 

For Basis A we have 

i - -  d i - -  d('~) 
a~'~)A - i (" ) -  dC=) a i(m)- d (m 

i - -  d i - -  i(~') 
a(=) A = i(~,),  d(=~. a i (= ) .  d(=) 

i - - d  i - - ~  - A  

For Basis B we have 
m + l  

a~") s = a 2 m 

m - 1  
di(s")r~ = d 2m 

dBz = d z - -  ½" 
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The approximations given by Basis B are the ones in general use. See 
formulas (2.18), (2.21), and (2.26) in Jordan's Life Contingencies. 

By expanding the expression for a~ ~')B -¢~,)A ~, as a power series in 
and ignoring terms higher than the second degree the following approxi- 
marion to the difference is obtained: 

m ~ -  1 

a~")B - -  a~'~)* - 6m '  
Similarly 

~B _ dA "_ 

• ~ [ 1 +  ~ ~ax] ~ - ~  • 

~ d ] .  

To obtain a measure of the errors in the annuity formulas the use of 
Basis S as a standard is not convenient. However, more accurate formulas 
than derived by Basis B can be obtained using Woolhouse's formula. By 

TABLE 2 - - ~  

] 

-,t Error in 1,000 d. n Error in 
Age 1,000 a.  1.000 ~i~ 1.000 ~ 

15 . . . . .  26,321.52 -- .44 26,324.53 + 2 . 5 8  
?,0 . . . . .  22,974.37 -- .61 22,977.62 + 2 . 6 4  
1-5 . . . . .  18,074.30 -- .72 18,077.91 + 2 . 8 9  
50 . . . . .  12,130.67 + .06 12,134.71 + 4 . 1 0  
15 . . . . .  6 ,643.97 + 4 . 1 3  6,648.41 + 8 . 5 7  

using Woolhouse's formula a measure of the error in a¢. ")B is given by 
[(m 2 --  1)/(12m2)](te + 6) and in a~ the error is ~(p~ + 6). See Jordan's 
formula (2.17). 

In Table 2 the error in a~ is compared with the error in a~ for several 
ages. The error in a(~) on the two bases is in the same proportion. 

CONTINTJOUSL¥ I~CREASING ANR~UITIES 

For Basis A we have 

,, _-i--d~j, ,C/a),, d(2+5) 6'--/'(2-- 6) a.4i5--2(/.-~)5. 

Expanding as a power series in ~, the following approximation is ob- 
tained: 

r~  5al  d 1 

For Basis B we have 
(la), B --- (Ia), + { .  
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By using Woolhouse's formula the following accurate formula for the 
continuously increasing annuity is obtained 

(ia), -- (ia), + ~.  

See Jordan's formula (2.47). I t  is interesting to note how simple an accu- 
rate formula is in this instance. There is no incentive to use either Basis A 
or Basis B. 

In Table 3 the error in (Ia) B is compared with the error in (I~), A for 
several ages. 

INSURANCES PAYABLE AT THE MOMENT OF DEATH 

For Basis A we have 
A~ = i 

The approximation given by Basis A is one in general use. See Jordan's 
formula (3.18). 

For Basis B we have 

A, ~ = 1 + ~ -  ~ a  

1 ~-B 

The error in .~. is -- $ times the error in a~. Table 4 makes a comparison 
of A~ and A~. 

TABLE 3--(Ia). 

Age [ 1.000 (Td)~ Error 1,000 (Id)~ Error 

1 5 . . . . .  ] 543,097.67 -- 6.80 543,187.81 +83 .34  
30 . . . . .  392,430.98 -- 1.28 392,515.60 +83 .34  

. . . . .  235,529.18 +11 .43  235,601.09 +83 .34  
107,625.08 + 3 1 . 4 0  107,677.02 +83 .34  

7511111 34,436.91 + 5 3 . 1 0  34,467.15 +83 .34  

TABLE 4 . - - ~  

Age 1,000 , ~  Error 1,000 , ~  Error 

15 . . . . . . .  221.97 + .01 221.88 -- .08 
30 . . . . . . .  320.91 + . 0 2  320.81 - - .08  
45 . . . . . . .  465.75 + . 0 2  465,64 - - .  09 
60 . . . . . . .  641.43 -- .00 641.31 -- .12 
75 . . . . . . .  803.61 - - .12  803.48 - - .25  
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CONTINUOUSLY INCREASING INSURANCES 

For Basis A we have 

_ -A _ ~ d a )  

For Basis B we have 
-- (1  ~)  

(IA ) ~ = a - ~ a a ) - ~ + -d 

= a"~ - 8 ( i a )  ~ .  

A formula commonly used in practice, which we shall call (~)$,  is 
given by Jordan's formula (3.30): 

_ ~ M ,  

D. 

_ i j R .  - ~ M ~ ]  

~L D; J 

i 
= -~ [ (IA) ~ - -  ½A.] 

-- (I.,~): + ~ [ ~ d  d ~ ] A ~ - ( a ) :  +~-~A..i 

The errors in (L~) A and ( ~ ) $  are equal to the corresponding error in 
less 6 times the corresponding error in (ia),. The error in (iA)$ is ob- 

tained by adding (i/12)A, to the error in (L~) A. Table 5 makes a comparison 
of (~A) A, (~).s and (~k)~. 

TABLE 5 

A g e  ! t , o o o ( i ~ ) ~  
i 

15 . . . . . . .  10,268.20 
30 . . . . . . .  ~ 11,374.58 
t5 . . . . . . .  11,112.34 
50 . . . . . . .  8,949.40 
75 . . . . . . .  5,626.05 

Error 

- -  . 2 3  
- .57 
-1.05 
- .87 
+2.56 

1,ooo (i,~). ~ 

10,268.55 
11,375.33 
11,113.82 
8,951.91 
5,629.60 

E r r o r  

-}- .12 
+ .18 
+ .43 
+1.64 
+6.11 

1,000 (IA)~ Error 

10,268.75 + .32 
11,375.$7 + .22 
11,113.49 + .09 
8,950.98 + .71 
5,628.04 +}-4.54 

ASSUMPTION OF LINEARITY OF 1/~+¢ REFERRED TO AS BASIS C 

By definition 
1 1 - t  t 

/c+, l, l.+ 1 
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1zinc + I 

"" l'c+' = tL, + (I - t) l,+~ 

tq~ 
. , q c , - - l _ ( l _ t )  q, 

-- tq -+.t(l--t) q~ 

. ' .M C, q£) - ½ q , + ~ q : .  

Table 6 below compares M($q. c) and M(,~) .  I t  will be seen that the 
/-curve traced by Basis C lies below the one traced by Basis A. 

I t  can be shown that l_,qC~_, = (1 -- t)q.. 
This is the weB-known Balducci hypothesis used in exposure work. 

T A B L E  6 

Age t,000 u(te, ~) 1,ooo ~(te,  c) 

15 . . . . . . . . . . . . .  730 . 730  
30 . . . . . . . . . . . .  1 . 0 6 5  11 ~ 
45 . . . . . . . . . . . .  2 . 6 7 5  2 . 6 8 0  
60 . . . . . . . . . . .  1 0 . 1 7 0  1 0 . 2 3 9  
"/5 . . . . . . . . . . .  36 .  685 37 .  582 

ASSUMPTION OF LINEARITY OF I//Dz+t REFERRED TO AS BASIS D 

By definition 

1 l - t  t - ~ 
D v D. z+ $ D z +  1 

• qD ---- V t (1 - -Oq .  - [ v t ( l + t i )  --1] 
• •1- -$  z + t  

C "< 1-:%+$ 

• pD > pc 
1--$ x+$ 1--$ x+$ 

• ,P~ < , H .  

In conclusion the/-curve traced by Basis D lles below that traced by 
Basis C, and hence below those traced by Bases A and B. 

Basis D is used in the approximation 

i-t] a~ = ( 1 - 0  a.+ta~+l a:+ # 

As Basis D understates the value of l~+: it will overstate the value of 
1/D,+t. The above approximation therefore overstates results. 
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ASSUMPTION OF LINEARITY 01~ RESERVES 

The assumption of lineafity in reserves between integral values of dura- 
tion is general and accounts for the usual formulas for mean reserves. As 
we shall be considering the reserve during one policy year only, we shall, 
for convenience, use the symbol Vt to represent the reserve at time t 
during the year for which the initial reserve is V0 and the terminal reserve 
is V1. Premiums are assumed to be payable annually. 

Our approach will be to examine the first and second derivatives of the 
reserve formula and then to make some observations about the curve 
traced by the reserve during the year. We can then draw some conclusions 
about the assumption of linearity in reserves. We shall first assume the 
payment of claims at the moment of death. 

Reserve during Policy Year Assuming Claims Payable 
at Moment of Death 

The reserve can be evaluated from the following retrospective equation. 

Vo" D,  - (M~ - M,+,) 
V t -  

D~+t 

t t  

KI + a _ K1 -[- ~--~--~ ( |  - -  K1) 

The derivatives are as follows: 

dVt xT = - , ( u + ~ ) - - u  

d~V, _ V, [ (u + ~) ~ + u'] - [u (u + ~) + ~'1 
dr2 

where ta is the force of mortality and #'  is the derivative of the force of 
mortality at time t. 

The first derivative is positive or negative and the reserve will increase 
or decrease according as 

Vt~ U - K1. ~ + ~  

K~ is the critical value of the reserve where the interest earned is just suf- 
ficient to pay claims without encroaching on the reserve. 

The second derivative is positive or negative and the reserve slope will 
increase or decrease according as 

u ( u + ~ )  + U ' _ K 2 .  v , ~  ( U +  a ) i + u  , 

I t  can be shown that 
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where a = # ' / (~ + $)~. I t  will be evident t h a t / ~  > K1 as long as the 
force of mortality is increasing. 

At any point the reserve and its slope will both be increasing if the 
reserve exceeds K~. The reserve will be increasing but with decreasing slope 
if it lies between K~ and K~. Both the reserve and its slope will be decreas- 
ing if the reserve is below/Q. 

For a whole policy year, however, the analysis is complicated by the 
fact that KI and K~ are variables. The conclusions made about the be- 
havior of the reserve at the beginning of the year might not be valid 
throughout the year. 

As long as the force of mortality is increasing, K1 will be an increasing 
function and although K2 may not necessarily increase when Kt is increas- 
ing it must in general be an increasing function in order to exceed Kv The 
usual situation then is one in which both K~ and K~ increase through the 
year. 

If the reserve at the beginning of the year is much larger than K2, the 
reserve will increase with increasing slope throughout the whole year 
since it will be greater than Ks throughout the whole year. In such cases 
the reserve at midyear will be less than the mean of initial and terminal 
reserves and the usual mean reserve formula will overstate results. 

If the reserve at the beginning of the year is less than K~, both re- 
serve and slope will decrease throughout the whole year, resulting in a 
plunging effect. For such cases the reserve at midyear will be greater than 
the mean of initial and terminal reserves and the usual mean reserve 
formula will understate results. 

If the reserve at the beginning of the year lies between KI and/G,  it 
will start to increase with decreasing slope. Unless further premiums are 
paid the reserve will reach a maximum and start to plunge, although the 
maximum will not necessarily occur in the current year. For such cases the 
reserve at midyear will be greater than the mean of initial and terminal 
reserve and the usual mean reserve formula will understate results. 

Finally, if the reserve at the beginning of the year exceeds K~, it will 
start to increase with increasing slope. If the initial reserve is not suf- 
ficiently greater than K~, the rate of increase will be slow and at a later 
point the reserve may fail to be greater than K2. When such a stage is 
reached the reserve will commence a stage of increasing with decreasing 
slope and eventually will plunge unless further premiums are paid. For 
such cases it is not possible, without a table of values of Kt and K~, to 
draw conclusions about the accuracy of the usual mean reserve. 

The analysis of the reserve during the year would be improved if values 
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of K1, Ks, and the reserve at the beginning and end of the year are avail- 
able. 

Table 7 gives the values of Ka and K~ on the 1958 CSO table with 3% 
interest for a number of ages. The values of tz -~ were developed from the 
following approximate formula accurate to fourth differences: 

1 5  (dz  - -  d z - 1 )  - -  ( d ~ + l  - d~ -~ )  

u', - 1 2t. 

Reserve during Policy Year Assuming Claims Payable at the End 
of the Year of Death 

Although the assumption that claims are payable at the end of the 
poficy year is artificial, it is commonly used in the calculation of reserves 
for practical reasons and by custom. Such an assumption is equivalent to 
assuming an increasing death benefit during each year, since the payment 

TABLE 7 

Age 1,000/~z 1,000 Kt 1,000 ~ 1,000 Kt 

15 . . . . . .  1.425 45.99 .067 108.41 
30 ...... 2.106 66.51 .045 106.48 
45 ...... 5.141 148.16 .405 362.55 
60 ...... 19.631 399.09 1.400 619.36 
75 ...... 73. 287 712.59 .263 719.56 

of benefits on claims occurring early in a year is postponed for the longest 
period. Although such an assumption has a relatively small effect on the 
values of the reserves themselves and on the value of K1, the effect on the 
value of Kt is remarkable. 

The reserve can be evaluated from the following prospective equation: 

V, = v 1-* [V1 + l - t q , + ,  (1 -V1) ] 

dVt 
- V ,  ( ~  + 8) - ~ - ' ~  

- V t [ ( u - [ - 8 ) ~ + / ]  - v ~ - t [ ~ ( # + 2 ~ )  +# '1  

u + ~  

v ' - '  [ ~ ( ~ + 2 ~ )  +~, ']  
K~ --" ( u + ~ ) ~ + ~ '  

In Table 8 we show values of K1 and K2 for a number of ages. It  is 
interesting to compare these values with Table 7. 

dl 

dWt 
dP 

.'.K1 
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CONCLUSION 

In the introduction it was stated that actuarial approximations are 
often inconsistent with each other. Such inconsistencies are tolerated be- 
cause in practical work extreme accuracy is unnecessaxy. However, there 
is one assumption that is artificial and dispensable, namely, the assump- 
tion of the payment of claims at the end of the year of death. The publish- 
ing of commutation columns assuming payment of claims at  the moment 
of death would be consistent with common practice and there would ap- 
pear to be no real need for the commutation functions C,, M,, R,. 

TABLE 8 

Age [ t,O00 Kt 

15.. . . .- '~. .  . . . . .  ]1 44.65 30 . . . . . . . . . . . .  
45 . . . . . . . . . . . .  
60 
7siiiiiiiiiill  

1,000 K~ 

145.07 
64.57 161.08 

143.84 443.68 
387,47 748,81 
691.83 892.62 

APPENDIX 

A nnuities Payable More Frequently Than Annually 

a~ '~ = ~ ÷/~'h/.,P, 
h m l  

where 

and 

(,~) ~ (,,) -- 
= D= -'}- 1)~+I--P... 

Dx 
. (0~) iNlz 

D~-' 

wi 

I)(") = ~ h ~  1 D +hi,. 

co 

Zts  
s=0 

For Basis A 

D A = ~:+t trY+ t~xA+ t 

= ¢ [ (1 - t )  D z + t  (1 + 0  D~+d 
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= -~h~_~ l D*+h/'~ 

d ( ~ ) - - d  i - - d ( = )  
- i ( ~ ) "  d(~) D ff i(=) . d ( ~ D + l  

i - d i --  d(") 
• ". N~") a _ i(")" dr ' )  N i f " ) ,  dr") D 

~ - - d  
• a ~ ) A  - i t ' ) ,  d ( ' )  a 

For Basis B 

1 '~ 
D~,,,)~ = ~ ~ DB z+hlm 

i --  d(") 
i('~) • d(")" 

m 

m - - 1  D. ' m + l  
= 2 ~ "  - t - ~  D.+I 

. . .N~, . )B=N.  m + l  D 
2m 

m + l  

• a~")~= a -  2---d-" 

Continuously Increasing Annui t i es  

(la),= fo®sv.p.ds 

where 
I ) z  

n--0 
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oo 

n=0 

j~0 1 F,  = (1 -- t) D~+,dt.  

For Basis A 

- A  i - - d  i - - 6  
N;  = 6' N 6' D 

• - ,  i - - d  i - -  

S~ = 6~ S 62 N 

_ i - - d  
62 S~+l+ N. 

~*~ = (1 - t) D2+,d t  

= v' ( 1 -- t) [ ( 1 -- t) D,, + t ( 1 + i) D,+a] dt 

6~--2 ( 6 - - d )  i 6 - - 2  ( i - -  6) 
- D~ q D~+~ 6a 63 

--a 6 ( i +  6) - -2  ( i - - d )  i 6 - - 2  ( i - -  6) 
• G, = 6~ N,-- 68 D 

• - - A _ _ - - A  i - - d  S+I  d ( 2 + 6 )  - - i ( 2 - - 6 )  
• .S= G= - 62 -- ~s 

(-a)-I ~ i - d  @ = 6---- ~- (Ia) 

For Basis B 

--B N. = N - - ½ D  

N ~ + i S -  2 ( i -  ~) - " ~z , D 

d ( 2 + ~ )  - - i ( 2 - - ~ )  i ~ - - 2 ( i - - ~ )  

• s ~ = S - ½ N  

= S~+l+ ½N~ 

= (i -0 DL/t 

= (1 - - 0 [  (1 - 0  D , + t D , + d  d 
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" ~ =½N,-' 

..S_*-" -~ ~, = S~+~ +~D 

• ( I a )  B = ( l : ) , q - [ .  

Insurances Payable at tke Moment of Death 
/o 

~,, = v . p , ~ + , d  s 

M, 
D~.' 

where 

~ 0  

and 

C-', = / 'D,+t# ,+tdt .  

For Basis A 

C$ = D d~ ,dr 

=/'v' (1 +i) C, dt 

i 
~ C z  # 

• - - A =  i ..M~ -~lVl 

• AA= i . . ,  ~ A  

= 1 - ~a 2 .  

For Basis B 
1 

= f D s..~B.,dt 
"!0 s t ~  ,~"~ 

= [ 1 - - ~ ( 1 - - O l  D , - -  [1 + M] D~+~dt 
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- -~  D o(, ~) .-(~+~)o.+~ 

6 

Continuously Increasing Insurances 

~- f o  °~ 
(IA) ~ = tvttp~#~+tdt 

Dx ' 

where 

and 

g,= ~L+. 
n~0 

j .  = f o  x (1 --t)  D.+,# .+ ,d t .  

For Basis A 

~------ R z  

J~ f o 1 ( 1 - O  * A = D:+t #~+,dt 

# = ( l - - t )  C (1 + i )  C~d 

6 (1 + i )  -- iC~ 
62 

101 
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• - ,  6 ( l + i ) - i  

i R ~d d 

For Basis B 
¢o 

- - B  

n ~ 0  

L" fo' = (1 - -  t) D~+,u~+,d t  

= I ( 1 - - O [ l - - ~ ( 1 - - O ] D . - - ( 1 - - O ( l + ~ O D . + ~ } d t  

[1 8]D 
- L ~ - ~ J  " -  [ ½ +  

• - . - -  D . [ ~ + ~ - ] - ~  K. N,, 

( '9 = a , , -  ~ ( I a ) , -  - ~ + - ~  . 



DISCUSSION OF PRECEDING PAPER 

H A R R Y  M. S A R A S O N :  

Mr. Mereu has discussed approximations from a strictly actuarial 
viewpoint. In certain important areas, however, actuarial computations 
have a precise legal meaning. When an actuary makes computations 
which have an exact legal meaning, he is not making an approximate 
calculation: he is making an exact calculation--actuarially approximate, 
but legally exact. 

Laws, regulations and judicial decisions establish straight line inter- 
polation as an exact method of interpolating cash values, single premiums 
for paid-up equivalents, and mean reserves. Legally the present values of 
each day of extended insurance in a year of age are identical. Actuarially, 
these calculation methods may be looked upon as approximations, but 
the laws have the last and strongest word--actuarial refinements in- 
volving g~ and ~ are not, legally, refined approximations. Legally either 
they give legal values and are legally exact or else they don't give legal 
values and are wrong. 

C. J .  N E S B I T T :  

On reading this paper, I was reminded of an approximation basis which 
Mrs. Butcher and I encountered in our paper, "Rate Functions and their 
Role in Actuarial Mathematics," R A I A  XXXVII, 202 (see formulas 
[46] and [47]). This basis, which I shall refer to as Basis *, was obtained 
by considering D~+t as a function of two decrements (discount and mor- 
tality) and for 0 < I < 1 assuming uniformity in respect to each decre- 
ment, or equivalently, linearity of w "+t and l,+t. Another way of expressing 
it is to say that in addition to the assumption of uniform distribution of 
deaths one assumes simple discount, in each year of age. Thus: 

D*+, = v ~ ( 1 - - t d ) t (  1 --tq~) = D ~ ( 1  -- td) (1- -  tq~). 

Comparing with D~-t of the paper, we have 

D*+,/DA+t-- ( i + i ) ' ( 1  --td)----(i - t d )  / (1 - d ) '  ; 

and since, for 0 < t < 1 and a given rate of discount, simple discount 
present values exceed those under compound discount, it follows that 

D*+t > D A 0 < t <  1 z + t  ~ " 

103 
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Basis * will then give higher annuity and lower insurance values than 
Basis A at integral ages. 

To show that Basis * is not entirely unfamiliar, I define 

m - - 1  

c ~ )  = ~ v~+<S+l)/m (L+h/~ - ~+(~+1)/~) 
h = 0  

Then 

m-~ ( ~ ' h + l  )d._m C~ ~ )*=~*~  1 -  d 

It follows that 

M(') * = ( 1  + m2m-- 1 .i~,] M~ 

~* = limoo c(~)* --- ( 1 + ½ i ) c  

~I* = ( 1 + ½ i ) M  

o r  

~* = ( 1 + ½i)~ $ 

the last two of which formulas are frequently used in practical work. 
Less familiar are the corresponding approximations for annuity values. 

These may be obtained as follows: 

N(2), 1 -- d(';) [ D  -- M(~ m) *] 

m + l  d m - 1  i 
= 2m "d-2~-7"N+ 2m .d(,~ ) . N + ~ .  

a(=) m + l  d . a + m - 1  i 
- 2m 'd(~') 2m "d(~ ) 'a"  

and 
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As such, these formulas appear as modifications of the formulas given by 
the author's Basis B, but could also be considered in relation to his Basis 
A. 

Final examinations preclude further exploration of this interesting 
paper. The author is to be congratulated on the ingenuity and thorough- 
ness of his analysis. At the very least, the paper will provide a fruitful 
source for class discussion, and we thank him for it. 

GEOrZ~EY caorrs: 

When students (and others) are confronted with more than one ap- 
proximation for functions which arise from the same premise, the question 
invariably arises, "Which is best?" The answer is, "It depends on the 
truth." I t  could be possible that one of the approximations actually is 
the truth. However, the questioner is not usually satisfied with this 

BASIS B 

" t  

Iz,~ 
*~ BASIS S 

' l 
o I 

, t  

answer. What he wants is a comparison with the truth (which is usually 
impossible) or with a model which intuitively appeals to him as being 
much closer to the truth than the approximations. Mr. Mereu has been 
rather ingenious in constructing models which have this appeal. 

I find that a graphic method goes a little further in demonstrating the 
nature of the approximations and the comparison model. The questioner 
can graphically supply the truth any way he sees fit. He is able to judge 
under what condition one approximation would be better than another. 

Mr. Mereu's bases A, B, and S could be demonstrated by drawing the 
l,  curve for each basis as shown in the accompanying graphs. 

By using a little imagination or with careful construction it is possible 
to consider various results for Basis S with different given slopes. I have 
shown a rather unusual case for Basis S in which the slope is the same at 
t = 0 and t = 1 but of such steepness that ff the curve continued to 
decrease at this rate for the whole year it would be lower than the given 
height at t = 1. A more usual case would be one in which the slope at 
t = 0 is not as steep as the slope of the line joining the heights at l = 0 
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and I = 1; and the slope at t = 1 is steeper than the slope of such line. 
Mr. Mereu determines the slopes to be used in his comparison by intui- 
tively appealing models taking account of the heights of the curve at 
other integral values of the argument. 

His method of analyzing the linearity of reserve assumption is also 
clever. I have one comment here. He states that if the reserve at the be- 
ginning of the year is between K1 and K,, the reserve will reach a maxi- 
mum and start to plunge unless further premiums are paid. Is it not 
possible to conceive of a function increasing indefinitely with a continually 
decreasing slope? 

We now have another answer to the question, "Which approximation 
is best?" That answer is "See Mereu's paper." 

MAR]0RIE V. BUTCHER: 

To me, studying Mr. Mereu's paper has been a fascinating adventure 
in life contingencies, and I unqualifiedly recommend it to every student 
of the subject. The author skillfully explores and compares the effects on 
basic functions of some traditional actuarial approximations. These are 
linearity assumptions for 0 < t < 1 of each of the following: l~t,  D~, ,  
1/l,+,, 1/D~+t and reserves V~ at fractional durations. My comments 
which follow are offered in a spirit of appreciation for what Mr. Mereu 
has accomplished. 

One could add u,+, to his group of basic functions. The various bases 
of the paper produce 

q" ( 1 )  ph  - -  
. + t  1 - -  t q . '  

which is Jordan's formula (1.24), 

and 

i + q ,  . _ 8 = v l _ t . i + q _ _ _ ~ _ ~ ,  ( 2 )  ~# = v" p ~  
~+t 1 -- d r - -  vtq,  

z 

e = q* = qC/t ( 3 )  
#.+t 1 - ( 1 - t ) q .  t 

i + q ,  - - 8 .  (4 )  D 
uz+t l + i t - ( 1 - t ) q ,  

Although ,qA, < e~, whenever 0 < t < 1, 

< 1  , 

= 1 , 

> 1 ,  

B D The same relations hold for u ,+t /u~, .  

o<t<½ 
t = ½  
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It  appears to me that in his Appendix Mr. Mereu gives an unusual 
definition to .,~xT("), essentially 

1 ** 
N(Z) = ~ ~ D:+h/~" 

This commutation symbol is not defined in the international code and is 
somewhat obscurely placed in Jordan, where it is defined as 

m - 1  
N(*'~)=N~-- 2m "Dx" 

However, it seems preferable to have 

o0 

N( ~ ) = ~  - D+h/,, , .  ( 5 )  

An advantage of definition (5) is that it produces the standard 

N x = ~ D~+h 
h = 0  

when m = 1; and 
a(~ m) = N ( " ) / D  

is an exact formula, although it is generally impossible to calculate N[ ") 
exactly. The only formulas affected in the paper are those in the Appendix 
for a t") and D(. ") ---- N(~ ~) -- ~,r(~) and N(~ ") on Bases A and B. The ad- 
justments are, of course, a simple matter. 

To be consistent, approximations for/~(~"~) and A(- "~) must satisfy the 
equation 

1 = d(m)a~ '~) q-A(") . ( 6 ) 

Equivalently, 
D = d(~) N(m) -t- M~ (m) , ( 7 ) 

where N(~ m) is given by (5) and 

M(~) = ~ ~+ch+l)/. ( l~+v ~ _ t +oh+,)/~). (8) 
h ~ 0  

There are analogues for the continuous case and the cases of increasing 
annuities and insurances. Once a convenient approximation, say for an 
a or N, is found, use of one of the preceding formulas yields the consistent 
A or M. Thus from 

m - 1  
a(") ~ = a 2 m 
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and equation (6), 
m - 1  

A(Z)B = l - - d ( ' ~ ) (  d~ 2 m  ) "  

The same method furnishes a convenient way of determining G(x re)A, by 
first finding A~ re)A, where 

co 

(9) 

Now the Basis A assumption of linearity of l,~ g, 0 < t < 1, implies that 

1 d ,  0 < h < m ,  ( 1 0 )  l+hl,. -- l~+(h+l) / , ,  , = ~-. 

i.e., that deaths are uniformly distributed within each year of age. Ac- 
cordingly, 

m - - |  

C(j ~) = M(v") -- M( ' )  = Z vv+(h+O/m ~+1 ( l +hl,. -- l~+(h+ l)l,~ ) 
h~O 

becomes 

C(v,.) A = ( vv+l d ) 1 ' ~  ( 1 _i)x-(a+l)/ , .  

i 
= ~ C~. 

Then 

By use of (6), 

1 ~ = *-~" A 

a(m)A 1 ( 1  i A 
= -/-~ ,), 

d(,~) 

(11) 

( 1 2 )  

which upon substitution of 1 - d~, for A, readily yields the result in the 
paper. 

Another familiar approximation arises from combining the assumption 
of linearity of the/-function within a year of age with the assumption of 
simple discount in the year of death (Basis E). Here 

h-o"-I ( h + l . d )  dz --m ( 1 3 )  

,)c 
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so that 
A~ ~')r = ( 1  + m  - 1 .i'~ 2m / A .  ( 1 4 /  

and 

The corresponding consistent forms for annuities are 

d : m ) Z = d ( _ ~ ( m - - 1  i + m + l  ) m - - 1  z 
k- - T d - "  - -~- f f - .  d a . -  2 m " d (") (16)  

and 
-z i + d  i 
a, = 23 "d*--2-~" (17)  

By extension of the preceding method (I (=) A)~ =)z, (L~t)z,, (I ¢") a)~ ")z 
and (ia)~ are expressible. 

Another common approximation (Basis F) is 

2i,~ -= ( 1 +i)V~A,, ( 1 8) 

coupled with the consistent but unfamiliar 

-r 1 a, -----~ [1 -- ( 1 -{-i)l/2A,] 

i 
---- v~/2.],  a -- sl/-~" ( 1 9 )  

The set of inequalities 

(2o1 

result after expansion (in powers of 3) of the interest factors in the various 
approximations to A,. For a, the inequalities are reversed. The accom- 
panying tables extend Tables 4 and 2 of the paper. 

TABLE I~A~ 

A o E  

1 5  . . . . . . . . . . . .  

30 . . . . . . . . . . . .  
45 . . . . . . . . . . . .  
6 0  . . . . . . . . . . . .  
75 . . . . . . . . . . . .  

1,000 A z 

221.96 
320.89 
465.73 
641.43 
803.73 

E~ROR m APPRO~MATION TO 1,000 A z 

Basis B 

- -  . 0 8  

- .08 
- - . 0 9  

- -  .12 
- -  . 2 5  

Basis F 

+.00 
+.01 
+.00 
- .02 
- - . 1 5  

Basis A 

+ ,01 
+.02 
+.02 
m . 0 0  
--.12 

Basis E 

+ .03 
+.04 
+.05 
+ .05 
- -  .06 
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TABLE I I - - ~ .  

AGz 

1 5  . . . . . . . . . . .  

30 . . . . . . . . . . .  
45 . . . . . . . . . . .  
6 0  . . . . . . . . . . .  

75 . . . . . . . . . . .  

1,ooo 

26,321.95 
22,974.98 
18,075.02 
12,130.61 

6 ,639.84 

E~ROR IN APPROXlIt[AI~ON I0 1,000 ffz 

B a s i s  B 

+ 2 . 5 8  
+ 2 . 6 4  
+ 2 . 8 9  
+ 4 . 1 0  
+ 8 . 5 7  

Basis F 

- -  . 1 5  
- -  . 2 2  
- -  . 1 5  
+ .85 
+ 3 . 1 2  

Basis A 

- -  . 4 3  
- -  . 6 1  
- -  .72 
+ .06 
+4.13 

BaMs E 

- -  .97 
- 1 . 4 0  
- -1 .87  
- 1 . 5 2  
+ 2 . 1 5  

I t  is interesting to note that the present value of each level annuity, on 
every basis, has been given in the formfa,  -4- g, where f and g are functions 
of m (or constants), w i t h / -  1 and g < 0. 

The paper increases one's awareness of lack of consistency in some of the 
formulas in use for net premiums and reserves. For example, Jordan's 
formula (p. 81), 

P(A.)  - ( 1 +i /2  )M, 
N , - -  ~D,  ' 

combines Bases E and B. Consistency can, of course, be assured by using 
formulas containing just a single function, such as 

1 P(~) = _ - - -  a ,  
th 

on any basis whatsoever. 
The analysis of the direction of the error in the traditional mean re- 

serves is interesting. The case of an increasing force of mortality is pre- 
sented, with the direction of concavity of the graph of Vt in general deter- 

TABLE I I I  

I 1 , 0 0 0  Ks  1 ,000  K2 
Age 1,000 u~ [ (Table 7) (Table 8) 

t5 . . . . . . . . . .  ' .069 109.96 146.50 
30 . . . . . . . . . .  ' .049 110.00 164.24 
15 . . . . . . . . . . . .  431 372.70 452.08 
50 . . . . . . . . . .  1. 786 654.27 769.16 
15 . . . . . . . . . .  5.634 812.48 918.55 

mining the direction of the error. For the derivative of the force of mor- 
tality, I would suggest the addition of #~ to the form given. The results in 
Tables 7 and 8 which are thereby changed are given in Table III. These 
three tables all deal with the case t --~ 0 +. 
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With the conclusions of the paper I concur wholeheartedly. Once again, 
may I express appreciation to Mr. Mereu for the significant addition to 
actuarial theory which his thorough, stimulating paper contributes. 

(AUTHOR'S REVIEW OF I)ISCUSSlON) 

JOHN A. MEREU: 

I would like to thank Mr. Crofts, Dr. Nesbitt, Mrs. Butcher and Mr. 
Sarason for their penetrating observations on my observations on actuari- 
al approximations. 

Mr. Crofts shows in his diagrams how the I, curves underlying the 
various approximations can be compared graphically. Such a method is 
very appealing because of the ready manner in which it gives insight into 
the nature of an approximation. Although other functions besides l= could 
be used as the gauge for comparing approximations they would not lend 
themselves to such a revealing graphic approach. All the possible l~ curves 
trace paths which have for any year of age the starting and end points in 
common. 

The ls curve defined by Basis S in the paper is one of a family of cubic 
curves with fixed beginning and end points and with predetermined slopes 
at those points. If the l, curve so selected is to be realistic, satisfactory 
values of the initial and final slopes must of course be assigned. I t  is 
obvious that for the/-curve sketched by Mr. Crofts the assigned slope 
values were not intended to be realistic. 

Mr. Crofts asks whether it is possible to conceive of a reserve function 
increasing indefinitely with a continually decreasing slope, assuming of 
course that there are no further premium payments. To answer this ques- 
tion the reserve can be equated to some single premium for level insurance. 
If the reserve exceeds the single premium for whole life insurance it will be 
equivalent to an endowment single premium for some period and if the 
reserve is less than the single premiums for whole life insurance it will be 
equivalent to a term single premium for some period. If  we have the en- 
dowment situation it is clear that the reserve at maturity will, since it 
equals the face amount, exceed Kl and therefore in the final phase of the 
period at least the curve will be increasing with increasing slope. If we 
have the term situation the reserve at expiry will, since it vanishes, be less 
than K1, and therefore in the final phase of the period at least the curve 
will be decreasing. If we have the whole life situation the reserve and K~ 
both exceed K~ and approach the face amount, and the slope of the re- 
serve curve at any point will depend on how the reserve compares with 
K,. The following table compares K2 and/~, on the CSO table for a hum- 
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! ,000 Ks 
x 1,000 . ~  (from 

Mrs. Butcher) 

15 . . . . . . . . . . . .  2 2 1 . 9 6  1 0 9 . 9 6  
3 0  . . . . . . . . . . . .  3 2 0 . 8 9  1 1 0 . 0 0  
45 . . . . . . . . . . . .  4 6 5 . 7 3  3 7 2 . 7 0  
60 ............ 6 4 1 . 4 3  654.27 
73 ............ 803.73 812.48 

ber of ages. It  is interesting to note that A, exceeds K, throughout most 
of the range indicated. Thus the function Ax increases continuously but 
not always with increasing slope. 

In the paper it was stated that if the reserve at the beginning of the 
year lies between K~ and K2, then unless further premiums are paid the 
reserve will reach a maximum and then decrease. This statement is not 
correct, since from the table above it is obviously possible for a curve 
which increases with decreasing slope to figuratively recover and increase 
with increasing slope. It  would be interesting to have a comparison of K~ 
and Ax made for some table subject to Gompertz's or Makeham's Law. I 
believe the above analysis answers Mr. Crofts' question except for the 
intriguing single premium whole life situation. The above analysis and 
that in the paper assumed level death and maturity benefits. Varying 
benefits have a material effect on the shape of the reserve curve. 

Both Dr. Nesbitt and Mrs. Butcher discuss another basis of approxima- 
tion (let us use Mrs. Butcher's notation and refer to Basis E) which as- 
sumes that both the decrements of discount and mortality are linear. The 
introduction of an element of approximation in the handling of the interest 
function makes an analysis of Basis E significantly different from that of 
Basis A to D respectively. The need for recognizing this difference be- 
comes more apparent when we try to reconcile Dr. Nesbitt 's relationship 
that D,~+, > D~+~ with Mrs. Butcher's relationship that A, r > A, A. These 
two relationships are incompatible if we attempt to distinguish Basis E 
from Basis A by means of underlying/-curves alone. 

I t  is necessary to consider that Basis E and Basis A make identical 
assumptions on the behavior of the/-curve between integral ages, and that 
they differ in the treatment of interest. Whereas Basis A just as the other 
bases discussed in the paper assumes a constant force of interest, Basis E 
in effect assumes a varying force of interest. 

Basis E assumes that P0 = Pt(1 - dr), where Pt is the accumulation of 
P0 with interest alone to time t. It  can be shown that the force of interest 
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~t at time t under Basis E is given by ~ = d/(1 -- dO. A slightly different 
approach to the formula for ~ than that given by Dr. Nesbitt and Mm. 
Butcher is then possible using the relationship: 

1 
= f ,u ,dl 

J 0  + z~- 

f0  ~ [D~ ~ ) _ ~E] 
g E ! D E dt z+e ~" ~ z + 1 - 1 -  z+e 

f0  "k- D,+t ~, 1 dt 

fox{ [ d T q  2dqt] td)(1 tq) = D  -- - - 6 , [ ( 1 - E  -- ]}dr 

• = D  vq 

From this we have the familiar formula A[ -- A, (1 -{- i/2). 
Proceeding however to a(- ")~ and d[ I must take exception with the 

formulas derived by Mrs. Butcher and Dr. Nesbitt. Their formulas are 
derived f r o m / ~  using the familiar A - 1 - 8a relationship. This rela- 
tionship presupposes a constant force of interest which, of course, conflicts 
with initial hypothesis defining Basis E. Using the formula 

fo ~)E~ = D +tdt 

1 d i 

I obtain the following expressions on Basis E: 

1 d 1 i ( ) 

Similarly 

- -  L~.2"--2-m/ - 6 m  2 " 

Mrs. Butcher develops formulas for the force of mortality on the vari- 
ous assumptions. In some ways this function lends itself to being a com- 
mon denominator better than the/-function. The/-curves have the prop- 
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erty of sharing initial and final values. The u-curves have the interesting 
property of subtending equal areas. This follows from the relationship 

f0'#x+ t = Colog p= = Constant. dt 

By using the u-curves as the common denominator of comparison it is 
possible to readily incorporate the relationships true for Gompertz and 
Makeham tables. The following interesting features are true of the deriva- 
tives of the u-curves: 

A 2 ,A = [u=+,] 
~ z +  t 

tB ~ B 

tC __. C ] 2 
#~+t  - -  [ # ~ + t  

# ~ t  I, = - [ u , + , +  ~ ]  

Mrs. Butcher has remarked that my definition of D(, m) appearing in the 
Appendix is not consistent with standard actuarial notation and that it 
leads to the incongruous result of D= = D,+, if used for m --- 1. I t  would 
certainly have been preferable if the standard definition had been used. I 
also agree that annuity formulas can be readily derived from correspond- 
ing insurance functions using the A = I -- da and IA = / / -  d(Ia) rela- 
tionships. However, the independent derivations for the continuous func- 
tions at least did permit these relationships to be used for checking pur- 
poses. 

Mrs. Butcher's Basis F is equivalent to assuming that all deaths in a 
year are concentrated at the mid-point of the year. Her extension of my 
Tables 2 and 4 to Bases E and F are appreciated. However, the values for 
1,000 ~ if the formula above is accepted should appear as: 

L 
Ag___ee I 1.000 a~, Error 

15. I 26,323.44 + t  .49 30. 22,976.04 +1.06 
45. 18,075.62 + .60 
60. 12,131.55 + .94 
75. 6,644.45 +4.61 

Mrs. Butcher has uncovered an error in my formula for #~'. The formula 
given in the paper is an approximation for -l~". She is correct in giving the 
formula as #z -- uS , .  The correction affects the values of uz and of 
Ks appearing in both Tables 7 and 8 of the paper. I t  should have been 



DISCUSSION 115 

obvious that an error was developing in the paper on these tables, as one 
t 

would expect #x to be an increasing function. This is certainly true for a 
mortality table following Gompertz's or Makeham's Law. 

Finally I would like to discuss briefly the nonmathematical discussion 
of the paper by Mr. Sarason. Mr. Sarason raises a question of semantics. 
Once an approximation has received statutory or official recognition, in 
some way it then in a manner of speaking becomes exact. I t  then follows 
that the theoretically exact formula or one with less theoretical error 
would be considered as an approximation relative to the official formula. 
Although such considerations as well as many others must be recognized 
in practice, they nevertheless do not disturb the underlying theories of 
actuarial science. 


