

Article from

Predictive Analytics and Futurism
December 2015
Issue 12

N eural networks are the phoenix of artificial intelligence.
Right now neural networks are rising from the ashes
for the third time since their introduction in the 1940s.

There are many design decisions that a neural network practitioner
must make. Because of their long history, there is a diverse amount
of information about the architecture of neural networks. Because
neural networks have essentially been invented (and reinvented)
three times, much of this information is contradictory. This arti-
cle presents what most current research dictates about how neural
networks should be architected in 2015.

The goal of this article is to provide a tour of the most current
technologies in the field of neural networks. A rigorous discussion
of why these methods are effective is beyond both the scope, and
space requirements, of this article. However, citations are provided
to lead you to papers that provide justifications for the architectur-
al decisions advocated by this article.

At the most abstract level, a neural network is still the weighted
summation of its inputs, applied to an activation/transfer function,
as shown in Figure 1.

The Third Generation of
Neural Networks
By Jeff Heaton

The above unit is still calculated using Equation 1, which has been
the same formula since the first generation of neural networks.

Equation 1: Neural Network Calculation

The neural network output vector is dependent upon the input
vector (x), the weights (w), and choice of activation function (phi,
φ). Most implementations also use bias neurons that essentially
become the y-intercept. To implement bias, most neural networks
add a one to the x-vector and the bias-value to the weight vector.
These values are both added at the beginning of these vectors.
This is effectively the same as adding the bias/intercept term to the
equation with a coefficient of one.

When these units are connected together, third generation neural
networks still look the same as before. Figure 2 shows a two-input,
single output neural network with two hidden layers.

FIGURE 1: SINGLE UNIT OF A NEURAL NETWORK

FIGURE 2: MULTILAYER FEEDFORWARD NETWORK

The above diagram shows how the biases (indicated by B’s) are
added to each of the layers.

NUMBER OF LAYERS
How many layers and how many hidden neurons has always been
the primary question of the neural network practitioner. There is
research that indicates that a single hidden layer in a neural net-
work can approximate any function (Hornik, 1991). Because of
this it is extremely tempting to use a single hidden layer neural

36 | DECEMBER 2015 PREDICTIVE ANALYTICS AND FUTURISM

network for all problems. For several years, this was the suggested
advice. However, just because a single layer network can, in theo-
ry, learn anything, the universal approximation theorem does not
say anything about how easy it will be to learn. Additional hidden
layers make problems easier to learn because they provide the hi-
erarchical abstraction that is an inherent component in the human
neocortex. Additional hidden layers are great, but the problem has
been that we had no means of training such deep networks.

Deep learning is a very general term that describes a basket of
technologies that allow neural networks, with more than two hid-
den layers, to be trained. Initially methods were discovered to train
a deep belief neural network (DBNN), using clever techniques
based on Gibbs sampling.1 However, DBNN’s can only accept
binary inputs for classification. DBNN’s showed the potential of
deep learning and further research discovered the changes nec-
essary to allow regular deep feedforward neural networks to be
trained as well.

A deep modern neural network appears in Figure 3.
are often called dense layers, because every neuron is connected
to the next layer. Prior to the third generation of neural networks,
every layer was dense. Dropout layers are not dense, as will be
demonstrated later. You will also notice that the layers of the neu-
ral network decrease in their number of neurons. This forces the
neural network to learn more and more abstract features of the
input as the layers become deeper.

HIDDEN ACTIVATION FUNCTIONS
For years the choice of activation function for the hidden layers of
a neural network was a choice between the two most common sig-
moidal functions: the logistic and the hyperbolic tangent. Unfor-
tunately, all sigmoidal (s-shaped) activation functions are difficult
to train for deep neural networks. Because of this sigmoidal activa-
tion functions have largely fallen out of favor for neural networks.
The activation function that has replaced them is the rectified lin-
ear unit (ReLU). The very simple equation for the ReLU is shown
in Equation 2.

Equation 2: Rectified Linear Unit (ReLU)

There are many papers written that provide more rigorous (Nair
& Hinton, 2010) descriptions of the superiority of the ReLU ac-
tivation function than I will give here. One obvious advantage to
the ReLU is that the range of the function is not squashed to val-
ues less than one. This frees the practitioner of many of the data
normalization requirements typically associated with neural net-
works. However, the true superiority of the ReLU comes from

FIGURE 3: DEEP NEURAL NETWORK

The above diagram shows how additional pairs of hidden and
dropout layers are added. These dropout layers, which help to
avoid overfitting, will be discussed later in the article. Hidden lay-
ers and dropout layers usually occur in pairs. These hidden layers

DECEMBER 2015 PREDICTIVE ANALYTICS AND FUTURISM | 37

CONTINUED ON PAGE 38

the somewhat contrived derivative of the ReLU, which is shown
in Equation 3.

Equation 3: Generally Accepted Partial Derivative of the ReLU

 Technically the ReLU does not have a derivative at x=0; however,
most neural network implementations simply treat this undefined
value as 0. Figure 4 shows the derivatives of the less effective logis-
tic and hyperbolic tangent activation functions.

the softmax function should be used. Never use a ReLU as the
output layer activation function.

The softmax activation function is very advantageous for a classi-
fication problem. Consider a classification with five classes. Such
a problem is represented by a five output neuron network. If the
neural network were to output the vector [.5, 0.1, 0.75, 0.1, 0.2]
you would know that the neural network had selected the third
class (indicated by 0.75) as the prediction. However, 0.75 is not the
probability, it is simply the largest value. The softmax activation
function forces these outputs to sum to one, giving the predicted
probability of the data representing each class. The softmax acti-
vation function is shown in Equation 4.

Equation 4: The Softmax Activation Function

Essentially you divide the natural exponent of each of the elements
by the sum of all natural exponents. The value K above represents
the number of output neurons present. For the vector presented
above, the logloss would be [0.23 , 0.15 , 0.29 , 0.15 , 0.17]. The
following URL provides a utility to calculate softmax.

http://www.heatonresearch.com/aifh/vol3/softmax.html

WEIGHT INITIALIZATION
Neural networks are initialized with random weights and biases.
This creates inherently unpredictable results. This can make it very
difficult to evaluate different neural network architectures to see
which works best for the task at hand. While random number seeds
can help produce consistent results, it is still very difficult to evaluate
two different networks that have different numbers of weights. One
of your candidate architectures might owe its perceived superiority
more to its starting weights than the actual structure.

The Xavier weight initialization algorithm (Glorot & Bengio, 2010)
has become the standard in weight initialization for neural network.
This initialization samples the weights from a normal distribution
with a mean of zero and a variance specified by Equation 4.

Equation 4: Xavier Weight Initialization

The variance is equal to two divided by the sum of the number of
input and output neurons for the layer. The weights resulting from

FIGURE 4: SIGMOIDAL (S-SHAPED) ACTIVATION
FUNCTION DERIVATIVES

The above graph shows both the logistic (sigmoid) and its deriv-
ative. The hyperbolic tangent function would look similar but
shifted. The shape of the derivative indicates the problem in both
cases. S-shaped activation functions saturate to zero in both direc-
tions about the x-axis. This is sometimes referred to as the vanish-
ing gradient problem. This can cause the gradients, as calculated
by the derivatives, for these neurons to drop to zero as the absolute
values of these x-values become more extreme. Once the gradient
for a neuron flattens to zero, the neuron will no longer train. The
neural network training algorithms use this gradient to indicate
what direction to move the weights.

OUTPUT ACTIVATION FUNCTIONS
Traditionally, the output layer of a neural network would use ei-
ther the sigmoid, hyperbolic tangent, linear or softmax for the out-
put activation function. Many of these choices have fallen out of
favor (A. Maas, A. Hannun, A. Ng, 2014). For a regression model
a linear output function should be used, for a classification model,

38 | DECEMBER 2015 PREDICTIVE ANALYTICS AND FUTURISM

The Third Generation ...

Xavier create neural networks that converge much faster than oth-
er initialization techniques. Additionally, these weight sets pro-
duce much more consistent results than many of the other weight
initialization techniques.

STOCHASTIC GRADIENT DESCENT TRAINING
Stochastic Gradient Descent (SGD) with Nesterov momentum
(Nesterov, 1983) has become the most commonly used training al-
gorithm for neural networks. SGD is very similar to standard batch
back propagation. Back propagation works by calculating the partial
derivative of the neural network’s error function for each weight.
The derivatives, called gradients, are scaled by a learning rate and
then added to the weights of the neural network. The gradient can
be used to maximize the error of the neural network, using gradient
ascent. Because we seek to minimize the error of the neural network
we use the inverse of the gradient and descend to lower error levels.

Usually these changes to the weights are not applied immediate-
ly. Rather, a batch of training set elements is calculated and their
gradients are summed. Once the batch is complete the weights
are modified. SGD is exactly like regular batch back propagation
except that a small batch size of 100-1000 elements is used. This
smaller batch size is called a mini-batch. Additionally, the mini-
batch is randomly sampled from the training set, with replace-
ment. This random sampling greatly decreases overfitting.

The actual update to the weights is performed using Nesterov mo-
mentum. This is a technique that was invented by Nesterov (1983)
as a general-purpose gradient descent technique. Geoffrey Hin-
ton later recognized its value to neural network training. Nesterov
momentum is a mathematically complex technique that I will not
fully describe in this article. Nesterov momentum seeks to limit
the damage to the weights that can be done by choosing a particu-
larly bad mini-batch from the training elements.
CROSS ENTROPY
Neural network training algorithms have traditionally calculated

error as the difference between the output neuron’s actual output
and expected output. This is called the quadratic error function.
Research from Geoffrey Hinton has caused the quadratic error
function to fall from favor. The replacement is the cross entropy
function, which is shown in Equation 5.

Equation 5: Cross Entropy Error

In the above equation the number of training elements (n), the
actual output (a) and the expected output (y) are used. The cross
entropy function forces much steeper gradients for larger errors.
These larger gradients cause the weights to be adjusted much fast-
er when the error is greater and in turn causes the neural network
training to converge to a lower error quicker.

L1 AND L2 REGULARIZATION
Regularization seeks to prevent overfitting by directly adjusting
the weights of a neural network. The most common types of regu-
larization are L1, L2 and dropout. The first two, L1 and L2 work
by adding the neural network weights, but not the biases, to the
error function. This encourages the training to keep the weights
lower. This is a form of Occam’s razor, in that simple weight struc-
tures are likely superior. The only differences between L1 and L2
are how they apply the weight penalty. L1 is shown in Equation 6.

Equation 6: L1 Regularization

The parameter λ1 represents the relative importance of L1, a value
of 1.0 means that the L1 regularization penalty is just as important

DECEMBER 2015 PREDICTIVE ANALYTICS AND FUTURISM | 39

CONTINUED ON PAGE 40

as the actual error of the neural network. A value of zero turns off
L1 regularization. In practice, L1 values are very low, typically less
than a hundredth.

You should use L1 regularization to create sparsity in the neural
network. In other words, the L1 algorithm will push many weight
connections to near zero. When a weight is near zero, the program
drops it from the network. Dropping weighted connections will
create a sparse neural network.

Feature selection is a useful byproduct of sparse neural networks.
Features are the values that the training set provides to the input
neurons. Once all the weights of an input neuron reach zero, the
neural network training determines that the feature is unnecessary.
If your data set has a large number of input features that may not
be needed, L1 regularization can help the neural network detect
and ignore unnecessary features.

L2 regularization works similar to L1, except there is less of a focus
on the removal of connections. L2 is implemented using Equation 7.

Equation 7: L2 Regularization

The primary difference between L1 and L2 is that L1 uses the
absolute value of the weights, whereas L2 uses their square. Both
L1 and L2 work differently in the way that they penalize the size
of a weight. L1 will force the weights into a pattern similar to a
Gaussian distribution; the L2 will force the weights into a pattern
similar to a Laplace distribution, as demonstrated by Figure 5.
As you can see, the L1 algorithm is more tolerant of weights fur-
ther from zero, whereas the L2 algorithm is less tolerant. We will

highlight other important differences between L1 and L2 in the
following sections. You also need to note that both L1 and L2
count their penalties based only on weights; they do not count
penalties on bias values.

DROPOUT FOR REGULARIZATION
Hinton, Srivastava, Krizhevsky, Sutskever, & Salakhutdinov (2012)
introduced the dropout regularization algorithm. Although drop-
out works in a different way than L1 and L2, it accomplishes the
same goal—the prevention of overfitting. However, the algorithm
goes about the task by actually removing neurons and connec-
tions—at least temporarily. Unlike L1 and L2, no weight penalty
is added. Dropout does not directly seek to train small weights.

Most neural network frameworks implement dropout as a separate
layer. Dropout layers function as a regular, densely connected neu-
ral network layer. The only difference is that the dropout layers
will periodically drop some of their neurons during training. You
can use dropout layers on regular feedforward neural networks.
Figure 6 shows dropout in action.

The above neural network has two input neurons and two output
neurons. There is also a dense and dropout layer. For each training

FIGURE 5: L1 VS L2

FIGURE 6: DROPOUT

iteration, a different set of hidden neurons is temporally dropped
from the dropout layer. The dashed lines indicate the dropped
neurons, and their connections. The bias neuron is never dropped.
When a neuron drops out, so does its connections. Training is per-
formed as though the dropped out neurons are not present. This
forces the neural network to learn to perform even without a full

40 | DECEMBER 2015 PREDICTIVE ANALYTICS AND FUTURISM

The Third Generation ...

Jeff Heaton is the author of the Artificial Intelligence for
Humans series of books. He is data scientist, Global R&D
at RGA Reinsurance Company in Chesterfield, Mo. He can
be reached at jheaton@rgare.com.

REFERENCES

X. Glorot & Y. Bengio. (2010). Understanding the difficulty of training deep feedforward
neural networks. Journal of Machine learning Research.

K. Hornik (1991) Approximation Capabilities of Multilayer Feedforward Networks, Neural
Networks, 4(2), 251–257

A. Maas, A. Hannun, A. Ng (2014). Rectifier Nonlinearities Improve Neural Network Acous-
tic Models

V. Nair, G. Hinton, G (2010). Rectified linear units improve restricted Boltzmann machines
(PDF). ICML.

Y. Nesterov. A method of solving a convex programming problem with convergence rate
O(1/sqr(k)). Soviet Mathematics Doklady, 27:372–376, 1983.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov; Dropout: A Simple
Way to Prevent Neural Networks from Overfitting . Journal of Machine Learning Re-
search (JMLR).15(Jun):1929−1958, 2014.

ENDNOTES

1 Gibbs sampling is a Markov chain Monte Carlo (MCMC) algorithm for obtaining a se-
quence of observations which are approximated from a specified multivariate proba-
bility distribution. https://en.wikipedia.org/wiki/Gibbs_sampling

complement of neurons. The neurons become less dependent on
each other.

OTHER TYPES OF NEURAL NETWORKS
It is a very exciting time for neural network research. Additional
types of neural networks are actively being developed. This article
focused primarily upon feedforward neural networks. However,
other types of neural networks are very common. Convolution-
al neural networks (CNN) have become very popular for image
recognition. Recurrent neural networks, particularly, gated re-
current units (GRU) have become very popular for deep time-se-
ries learning. Additionally, spiking neural networks (SNN) have
found great application in the field of robotics

DECEMBER 2015 PREDICTIVE ANALYTICS AND FUTURISM | 41

