

Article from

Predictive Analytics and Futurism

June 2017
Issue 15

 JUNE 2017 PREDICTIVE ANALYTICS AND FUTURISM | 21

Using Python to
Solve, Simplify,
Differentiate and
Integrate Mathematical
Expressions
By Jeff Heaton

This article introduces SymPy1, a computer algebra sys-
tem (CAS) for the Python programming language. All
software presented in this article is free and open source

software (FOSS). When SymPy and Numpy (another FOSS
package for Python) are combined with Python Jupyter note-
books, your computer becomes a sophisticated CAS. To make
use of the examples presented in this article you should have
Python 3.6 (or higher) installed. Additionally, the Python
packages Numpy and SymPy should also be installed. Ana-
conda Python is the suggested Python platform for this article
because of its inclusion of many packages needed for numerical
computation.

At first glance, programming languages such as Python might
seem very algebraic. Consider the following expression:

+x x2 3
2

In Python, this would be written as:

(2*x + 3*x) / 2

The grouping parentheses are necessary in Python because
the grouping implied by the algebraic ratio operator is not as
obvious as when represented in source code. To Python (and
most programming languages) this expression is simply a set
of instructions that specify something to be done with x. The
programming language is not concerned with simplifying the
expression to 1.5x or other mathematical processes such as root
finding, solving, differentiation or integration.

It is also important to note that because computer programs
lack some of the grouping capabilities of written algebra it is
always a good idea to use parentheses if you are unsure of how
the programming language handles precedence. Though most

programming languages follow the same rules of precedence
as defined by algebra, there are exceptions. Excel is one such
exception. The expression −2^2 evaluates to −4 in any program-
ming language that I’ve worked with (except Microsoft Excel).
The negative operator is evaluated after the power operator.
However, Excel treats the negative in −2 not as an operator,
but as an intrinsic part of the constant being squared. Thus, in
Microsoft Excel, this expression evaluates to 4.

MATHEMATICAL NOTATION IN
JUPYTER, WORD AND LaTEX
Mathematical formulas in Wikipedia are always expressed as
LaTex. For example, the familiar quadratic equation in LaTex is
written as follows:

x = \frac{- b \pm \sqrt{b^2 - 4ac}}{2a}

In a Python Jupyter notebook, LaTex can be rendered by
enclosing it in dollar signs ($):

$ x = \frac{- b \pm \sqrt{b^2 - 4ac}}{2a} $

Designate this as a markdown cell (via escape m), and Jupyter
renders this equation as:

=
− ± −x b b ac

a
4

2

2

You can also right- click a Jupyter notebook LaTex rendering
and export to MathML, which can be inserted into MS Word.
Simply right- click an equation rendering in Jupyter and choose
“Show Math As,” and then “MathML Code.” This will pop open
a window showing an XML rendering of your equation. Copy
this text into the clipboard and paste into Windows Notepad.
Then recopy the text from Notepad and paste into Word.
Unfortunately, the extra step of copying into Notepad over-
comes some weaknesses in Words’ import capabilities. I often
find that I must copy/paste text through Notepad to simplify
that text for Word consumption.

I’ve found this to be a very valuable feature of Jupyter note-
books. I often need to reference an equation from Wikipedia
in Word. Trying to transcribe the equation from Wikipedia to
Word’s equation editor is a tedious and error- prone process. All
the equations in this article were produced either by Jupyter or
LaTex and imported into Word by the process just described.

LaTex is very common in the scientific community, as well as
Wikipedia. Because of this, SymPy uses LaTex to display the
mathematical expressions being processed.

The code presented in this article makes use of SymPy 1.0.
An older version of SymPy might exist on your machine and
prevent all the code in this article from working. To check the

22 | JUNE 2017 PREDICTIVE ANALYTICS AND FUTURISM

Using Python to Solve, Simplify, Differentiate and Integrate Mathematical Expressions

version of SymPy installed on your machine, execute the follow-
ing code from a Jupyter notebook.

import sympy
print(sympy.__version__)

This should respond with 1.0 (or later). If it does not, use the
following command (from DOS/command line) to update
SymPy:

pip install sympy --upgrade

ALGEBRAIC CAPABILITIES OF SYMPY
To begin using SymPy, open a Jupyter notebook and add the
following lines of code as a cell:

from sympy import *
from IPython.display import display
from sympy.printing.mathml import mathml
from IPython.display import display, Math, Latex

x, y, z = symbols(‘x y z’)
init_printing(use_unicode=True)

The from commands import the necessary libraries to make use
of SymPy. The symbols definition lists the variables that will
be used in algebraic expressions. For the examples provided in
this article, the expressions will use the variables x, y and z. The
init_printing command will allow mathematical expressions to
be nicely formatted. To print mathematical equations we also
define an mprint function, which is used to graphically render
an expression:

def mprint(e):
 display(Math(latex(e)))

To demonstrate some of SymPy’s capabilities, consider the
following ratio of polynomials (note that ** means exponent in
Python; 2**4 is 2 to the power of 4):

expr = (x**3 + x**2 - x - 1)/(x**2 + 2*x + 1)

Usually a programming language would attempt to calculate the
expression, using the current value of x. Python would normally
assign this value to the variable expr. However, since we defined
x, y and z as SymPy symbols, something different happens. We
can ask Python what type of variable expr is with the following
command:

print(type(expr))

Python tells us that this expression is of type Add, which just
happens to be the root of the expression tree. However, the
point is that Python did not attempt to calculate the expression.

Rather, Python stored the expression itself. We can easily turn
this expression into a displayable equation with the following
command:

mprint(expr)

This results in the following expression being displayed:

+ − −

+ +

x x x
x x

1
2 1

3 2

2

This expression almost screams “simplify me,” which we can
easily accommodate with the following commands:

expr = simplify(expr)
mprint(expr)

This results in the following:

−x 1

Of course, this is true only if x is not equal to −1, or the original
expression would result in a division by zero. SymPy does not
check for such assumptions.

To evaluate the expression with a specific value of x, use the
following code:

print(expr.subs(x,5))

This code substitutes 5 for x and results in 4.

SymPy can also solve equations. There is considerable doc-
umentation provided by SymPy to discuss equation solving.
SymPy is able to solve systems of equations, differential equa-
tions, equations involving complex numbers and other options.
For this section we will see how to solve a simple algebraic
equation. The next section will discuss derivatives and integrals.
For more details on equation solving for advanced situations,
refer to Sympy’s documentation on equation solving.2

An equation is an expression that is equal to something. In
math, an expression that does not contain an equality sign is
typically assumed to equal zero. In computer programming, an
expression that does not contain an equality sign is assumed to
evaluate to a numeric quantity that will be printed or assigned
to another variable. In SymPy, equations are written using
the function Eq. It is not possible to write the following in
SymPy:

3*x +5 = 10

Though this equation is mathematically sound, it does not make
sense in computer programming. In computer programming
the above literally says “create an expression of 3*x+5 and assign

 JUNE 2017 PREDICTIVE ANALYTICS AND FUTURISM | 23

that expression to the constant value of 10.” That is a type
mismatch: an integer cannot be assigned into a expression. To
create a true equation in SymPy, use the following:

eql = Eq(3*x+5,10)

This expresses the equality (and stores it in eql). Now that we
have an equation, we can solve it:

z = solveset(eql,x)
display(Math(latex(z)))

This results in 5/3. Notice that Sympy keeps this value as a ratio,
rather than creating a repeating decimal. By evaluating expres-
sions algebraically, rather than converting everything to floating
point numbers, equations can be calculated more precisely than
most programming languages allow.

CALCULUS CAPABILITIES OF SYMPY
The following code demonstrates how to take the derivative of a
simple formula. To test this functionality I used a question from
my undergraduate calculus textbook. The derivative of sin(x)
divided by x squared can be obtained by:

from sympy import *
x, y, z = symbols(‘x y z’)
init_printing(use_unicode=True)
expr = diff(sin(x)/x**2, x)
mprint(expr)

This results in:

() ()−
x

x
x

x1 cos 2 sin2 3

My textbook gave an equivalent answer, though it combined the
difference into a single ratio. To test integration, we can calcu-
late the antiderivative of the expression we just obtained:

expr_i = integrate(expr,x)
mprint(expr_i)

This takes us right back to where we started:

()
x

x1 sin2

Definite integrals can be calculated as well.

OTHER APPLICATIONS
SimPy can be a very useful component of a data scientist’s tool-
box. At the most basic level SymPy can be used to transform a
Jupyter notebook into an advanced CAS. More advanced uses
allow Python code to be created to perform automated tasks that
require differentiation and integration of arbitrary expressions.

I often make use of genetic programming, which can fit an actual
expression to a set of training data. Genetic programming works
very similarly to linear regression and neural networks, except
the final model is a readable expression—the ultimate in trans-
parency. However, genetic programs are often very unwieldy
and can benefit greatly from algebraic simplification. Addition-
ally, gradient descent can be used to optimize the coefficients of
the genetic programs. By using SymPy to differentiate genetic
programming–generated expressions, gradient descent can be
used to optimize their coefficients.

A Jupyter notebook containing the source code presented in this
article can be found at the author’s github account.3 ■

Jeff Heaton , Ph.D., is the author of the AI
for Humans series of books and lead data
scientist at Reinsurance Group of America
(RGA) in Chesterfield, Mo. He can be reached
at jHeaton@rgare.com.

ENDNOTES

1 SymPy can be obtained from http://www.sympy.org/en/index.html.

2 Solving SymPy equations: http://docs.sympy.org/latest/tutorial/solvers.html.

3 Source code can be found at https://github.com/jeff heaton/present/blob/master/
SOA/paf -sympy/sympy -soa.ipynb.

	Using Python toSolve, Simplify,Differentiate andIntegrate MathematicalExpressions

