SOCIETY OF ACTUARIES

Article from:

The Actuary Magazine

December 2012/January 2013 — Volume 9 Issue 6

COMPLEXITY O

GENETIC ALGORITHMS SOUND VERY COMPLICATED. YET, A
GENETIC ALGORITHM IS JUST ANOTHER TECHNIQUE TO FIND
SOLUTIONS TO PROBLEMS. THIS ARTICLE DESCRIBES JUST
HOW SIMPLE THIS TECHNIQUE CAN BE. BY DAVE SNELL

he opportunity to share my enthusiasm for complexity sciences at SOA annual meetings,

health meetings, the Life & Annuity Symposium and lots of regional meetings has been
a lot of fun. But then, after a keynote presentation [gave at the Actuarial Research
Conference, an attendee came up to me and said that she had a suggestion for a major improvement.
She said that instead of “Complexity,” I should rename the title “Simplicity.” She shared that she is an
expert in her field of actuarial focus; and although she enjoyed my presentation, she almost skipped it
because she did not want to have to listen to yet another complex actuarial topic outside her immediate
area of expertise.
[thought a lot about what she said. She was correct. [was wrong. This is not more difficult than classical,
deterministic, actuarial techniques. It is simpler. It is a way of solving problems with simple rules and
building blocks. When you stop and seriously think about it, the complexity science techniques are
actually more intuitive than some of our classical deterministic actuarial techniques. Complexity
/0 science seems to be an umbrella term for many topics; but in this article I shall try to explain just two of
them, deterministic chaos and genetic algorithms, with fairly simple examples.
Deterministic chaos is a topic that sounds daunting but really is more simple than complex. My favorite

example of this is the logistic equation for population growth that Pierre Francois Verhulst proposed in
1838. The famous actuary Benjamin Gompertz proposed a similar model for human mortality in 1825.
Darwin noted a similar growth pattern in action on isolated islands he visited on the famous sea voyage
in the 1830s that led to his theory of evolution. Assume you have a population of some animal on an
island with no natural predators and a surplus of food. An actuary would be able to project that the
population would, initially, increase rapidly—in fact, it would likely increase exponentially. As we all
know though, exponential growth is seldom sustainable. Eventually, the food supply starts to become
scarce and population growth is limited accordingly. Verhulst determined that the population growth
rate at time ‘t+1’ is going to be some constant, R (related to the Malthusian parameter of maximum
growth rate), times the rate at time ‘t’ times the quantity ‘[1 - the rate at time t]’. More concisely,

P(t+1)=R * P(t) * [1 - P(t)] where -1 <= P(t) <= 1

[Pierre Francois Verhulst’s Logistic Equation—originally proposed in 1838]
DECEMBER 2012/JANUARY 2013 | THE ACTUARY | 17

06
05

03

02

01

18

The Logistic Map: X(t=1)=R * X (t)* [1 — X(t)]

X(t+1)=Rx(t)[1-x(t)] with R=2 and[x(0)=0.5 |
X(91) ... X(100): .5, .5, .5, .5, .5, .5, .5, .5, .5, .5

x(t+1)=Rx(t)[1-x(t)] with R=2 and[x(0)=0.2 |

X(91) ... X(100): .5, .5, .5, .5, .5, .5, .5, .5, .5, .5

va
/
x(t+1)=Rx(t)[1-x(t)] with R=2 and|x(0)=0.99
X(91) ... X(100): .5, .5, .5, .5, .5, .5, .5, .5, .5, .5
|
|
|
|
L/

For R=2, the starting point is
unimportant and there is a
single attractor of .5

Figure 1. Logistic Map with R=2 and R=3.1

When R is small, say R=2, it does not matter what starting value
you choose for x(0). The resulting iterations will always converge
to a single attractor of 0.5. As R increases, the number of attractors
doubles (according to Feigenbaum’s constant: 4.6692016), as shown
in Figure 1, and the later iterations oscillate between them.

This seems orderly. Some grand mathematical process is controlling
the affair; and we might expect the trend to continue. We would be
wrong.

Looking at Figure 2, we see that once you reach R=4, just a tiny
change in one of your assumptions may cause an undetermined
effect on the validity of your model. The two graphs are somewhat
in some areas.

similar; but there are definite differences

| THE ACTUARY | DECEMBER 2012/JANUARY 2013

x(t+1)=Rx(t)[1-x(t)] with R=3.1 and

X(91) ... X(100): .765, .558, .765, .558, .765, .558, .765, .558, .765, .558

09

x(t+1)=Rx(t)[1-x(t)] with R=3.1 and

X(91) ... X(100): .558, .765, .558, .765, .558, .765, .558, .765, .558, .765

x(t+1)=Rx(t)[1-x(t)] with R=3.1 and x(0)=0.99)

x(91) ... X(100): .765, .558, .765, .558, .765, .558, .765, .558, .765, .558

" JAVAY

NNNNNNNNNNNNNNNNNNNNN

CEECNCNOQCSO2RRCRITITIIIILLLSLESLSEETDODTERTRRESTSS22E

For R=3.1, the starting point is
unimportant and there are two
attractors of .558 and .765

Everyone has heard of the butterfly effect. Here is the butterfly effect
in action in very basic algebra. Keep in mind the only thing that
caused the two graphs to differ so noticeably at the later durations is
a starting assumption difference beyond the trillion decimal place.
That’s 0.2 versus 0.2000 blah, blah, blah, 001.

The implication for actuarial models, which may be far more
complicated than the logistic equation, is that very small variations
in starting values may have huge unforeseen consequences. Try
stopping one of your projection models after 10 years and input the
numbers you have at that point into the same model. Do you get the
same results at the ending year? What if you reentered your output
each year as the next year’s starting values? The results 50 years from
now may be significantly different from your expectations.

COMPLEXITY OR
SIMPLICITY™?

Deterministic Chaos
The Logistic Map: X(t+1)=R * X (t)* [1 — X(t)]

x(t+1)=Rx(t)[1-x(t)] with R=4 and

X(91) ... X (100): .453, .991, .035, .133, .462, .994, .023, .089, .324, .876
1.2
1
o IIMllIl-'AVIII'lllll.l.lll'l.llllllﬂl"I"VIII-I.MII.
N I'Illll-.llIIVIIIl.l'llIIIIII'II-I-II.IIIIIII
0.4 -
0.2 +
L A / v vV V.
0 4
ON < OO NS V0O ANS VWO AN S OVWWWONS OO NS OVWOWO NS OWWWO N OWVOANT OO NI O 0O
S E P OSSN PPN III NN ERREENTNTNRRERER2R2222 S
x(t+1)=Rx(t)[1-x(t)] with R= 4 and [x(0)=0.200000000001] \\\/
X(91) ... X(100): .994, .023, .091, .33, .884, .411, .968, .124, .434, .982
1.2

t48

t98
£100

Figure 2. Logistic Map with R=4 — Deterministic Chaos Emerges

Deterministic chaos merely means that a simple non-periodic system
may be completely determinable over the short term but it becomes
unpredictable past its horizon of predictability, and according to
James Gleick, a pioneer in chaos theory, “any physical system
that behaves non-periodically is unpredictable.” Common examples
include weather predictions (highly accurate over a few days, seldom
accurate past a couple of weeks) and financial markets—perhaps

even actuarial financial models!

Read more about the science of chaos theory in Chaos: Making a
New Science, by James Gleick.!

Genetic algorithms sound very complicated. Yet, a genetic algorithm

is just another technique to find solutions to problems. It uses
simple rules, comparative scoring, and selective modifications for
the subsequent iterations. Even bacteria effectively employ them
(to evolve stronger bacteria that are resistant to antibiotics). Is a
fifth grader bacterium smarter than an actuary? In my workshops
(with Brian Grossmiller, a kindred spirit in complexity sciences) on
genetic algorithms, | often start with basic genetics: genes, alleles,
mitosis and meiosis; but that is probably too complicated.?

A genetic algorithm can be ideal for a situation where:
1. You have no direct algorithm for an exact solution (or an exact

solution would be too complicated or too time-consuming);

DECEMBER 2012/JANUARY 2013 | THE ACTUARY | 1 9

20 | THE ACTUARY

2. The number of potential solutions is too large to try them all; and
3. Solutions can be scored such that you can compare the value
of solution X versus solution Y and easily see which is better.

In a genetic algorithm, we usually assign a set of actions or
conditions and then we evolve better and better sets in a
process that mimics the evolutionary process. The genetics
terms and metaphors are historical. John Holland introduced
them back in 1975 when he first described genetic algorithms
in his book, Adaptation in Natural and Artificial Systems.®> He
was impressed by the speed at which species had evolved, as
evidenced by the fossil record, and he developed ways for us
to emulate evolution as a technique for solving problems too
time-consuming by other means.

Let’s take a simple example that Brian and [used in our workshop.
Say you want to manage a health care provider system to reduce costs
and still provide adequate coverage for the plan participants. In our
example, Brian had empirical cost data from more than 3,000 provider
groups. Each provider group offered one or more specialty services.
These might range from acupuncture to urology. Each specialty has a
relative cost (e.g., the average charge from an ophthalmologist might
be higher than that from a pediatrician) and each provider group also
has a relative cost (provider group 5 may be in a fancy location and
charge, on the whole, much more than provider group 253).

We want to lower costs while maintaining some desired level of
access to at least some minimum number of choices for each of
the various specialties. If we only wanted to minimize cost, this
would be easy. We could just include the lowest cost provider
groups and exclude the higher priced ones. Unfortunately, some
of those needed specialties are not available from the lowest cost
provider groups. We might also want to include relative quality of
services measures, based on patient feedback or a number of other

comparative criteria.

A provider group will either be in our network or not. These are the
only allowable choices so we can represent our set as a long string
(analogous to the long DNA strands we have in each of our human
cells) of zeros and ones representing whether a provider group is in
(one) or out (zero) of our network.*

If we randomly generated 100 solution sets they might be as shown
in Figure 3 below.

Here, we see that solution set 1 includes provider groups 2, 3
and 5 while solution set 100 includes provider groups 3, 5 and
6. I also added the relative scores for these sets (the score takes
into account cost and coverage and potentially lots of other
criteria) in the last column. Details of the scoring algorithm are
unimportant here (but you can see them in the referenced Excel
workbook). The point is that via the score we have an easy way
to see if one set is better than another one.’

Given a situation like this, an actuary might try to figure out an
exact solution; but the number of simultaneous equations (not
necessarily linear) is immense (3,000+) and the result might take
a very long time and effort. Alternatively, the option of trying
out each potential set is unthinkable. There are 23 possible
solution sets; and if you are suspecting that is a big number, you
are correct—big time! The number 2% > 10°3 but the number
of atoms in the known universe is around 10¥? and the number of
seconds since the beginning of time (the Big Bang) is around 10'%;
even multiplying these numbers together we are not even close
to the number of possible solution sets.® Clearly, we do not have
time to try comparing all the solutions. Yet, we can easily and
quickly check to see if one potential solution set is better (i.e.,
gets a lower score) than another one.

This is a perfect place to try a genetic algorithm approach.

PROVIDER GROUP 1 2 3 5 6 3000 SCORE

(lower is better)
SET1 0 1 0 0 0.9873
SET 2 1 1 0 0 1 1 0.8206
SET 100 0 0 1 1 1 0 1.1393

Figure 3. Sample Sets of Provider Groups for a Health Care Network

DECEMBER 2012/JANUARY 2013

We will start out with 100 potential provider

sets.” Each of them will have a gene string
of 3,000 genes, and each gene can be only
a zero or a one (each gene represents
the inclusion or exclusion of a specific
provider group). Our first step will be to
randomly assign zeros and ones to all of
the genes in every set. For example, let’s
say we randomly generated the sets shown
in Figure 3.

For More Info

COMPLEXITY OR
SIMPLICITY™?

IF YOU WOULD LIKE MORE INFORMATION on this topic, please visit www.
soa.org,click on the Presentation Archives link under the Professional Development
tag,and then click on the Purchase Webcast and Virtual Session Recordings link. Or
you can use the QR code provided here.

The following is a description of one of the sessions available for purchase:“This ses-
sion will contain discussions on potential risks that may be emerging, and how to
identify these risks and understand them.The discussion will include how to triage

the identified emerging risks based on what would have a material impact on an

Then, we rank those sets according to their
scores. The winners (lowest scoring sets) in
this generation will not be terribly impressive.
After all, they were randomly generated
sets—no brainpower needed here.

organization.This session will leverage the emerging risk survey published earlier in
the year by the Joint Risk Management Section.

At the conclusion of the session,attendees will be able to identify emerg- [m] 270 [=]

ing risks to their organization, evaluate the impact on their organization ot

and, ultimately,explain the resultant impact to their stakeholders” [w]

Next, we’ll decide upon some way to
determine mating rights so that we can
use these sets to spawn a new, hopefully
smarter, next generation. Oh, that word “hopefully” is bothersome,
isn’t it? We don’t want to risk our next generation being dumber; but
if all we do is combine randomly created sets together—even the
brighter ones—we could get bad combinations and our “species”
might devolve instead of evolve. How does nature handle this?

In nature, the various members of a generation do not all live the
same length of time. In essence, some die young and never get to
have children; some have children and then die (perhaps even in
childbirth); and some live on to coexist with the new kids on the
block. In genetic algorithms, we call these latter ones “elites.” In
order to guarantee that our generations do not get dumber instead
of smarter, we will specify that a certain number of the sets in
generation 1 (the favored ones) will self-replicate into generation 2.

For now, let’s set the percentage of elites to 10 percent. That means
when we get around to building generation 2 from generation 1, the
top 10 sets (of our 100 sets) of generation 1 will copy over exactly.
Our next task then is to figure out how to generate the remaining 90
sets of the new generation 2.

Again, let’s look at what happens in genetics. In most species of
mammals, the biggest, or prettiest, or smartest, or strongest member
or members of the group are deemed the most attractive mates for

reproduction. For example, the norm in a kangaroo mob is that only
the dominant male of the entire mob gets to mate with the various
females. Among humans, we are not quite that strict (although
in history, emperors and kings had many, many mates) and most
folks have a chance at finding a mate; but still the smartest, richest,
strongest or prettiest seem to have more choices.’

We will arbitrarily say that the top 20 percent of the sets will be the
parents of the next generation. This will, of course, include our elites
(our top 10 percent). I have to emphasize that these percentages
are not scientifically determined and this is not the usual method I
would employ; but it works fine for this example, and it shows that
there is still a lot of “art” in the making of genetic algorithms.’

Now that we have established our pool of potentially preferred parents
we can address the actual reproduction process. In nature, a child gets
a DNA string that is composed of pieces from two parents. Let’s say that
we choose sets 2 and 5 as the parents. Then, on a gene-by-gene basis,
each gene of the child will have either a copy of the corresponding gene
from set 2 or the corresponding gene from set 5. The child will end up as
some combination of sets 2 and 5. (See Figure 4 on page 22.)

OK, that works. However, we are limiting our possibilities here
because of our experience. When Ben Wadsley, another genetic

DECEMBER 2012/JANUARY 2013

THE ACTUARY | 21

22 | THE ACTUARY

GENE 1 GENE 2 GENE 3 GENE 2,500 GENE 2,501
SET 2 1 1 0 0 1
SET 5 0 1 1 1 0
CHILD 1 1 1 0 1
SOURCE SET 2 SET 5 SET 5 SET 2 SET 2

Figure 4. Heredity in Action—Two Parents (Set 2 and Set 5)

algorithm cohort of mine, wrote an asset-liability management
genetic algorithm he got faster results by drawing from five parents
rather than two. As I thought more about this, | remembered that
when we lived in Northern California, my older daughter once
brought home her date, and he was surprised to discover that she
had only two parents ... and they were still married ... and to each
other! Clearly, I was naive in assuming that we had to limit our
genetic algorithms in this manner. In this example, we’ll draw from
our top 20 percent and let any one of the 20 of them be the dominant
parent (gene contributor) for any gene in the child’s gene string.
This will provide a far better level of diversity, and our generations
will continue to improve for a far longer time. Once [switched
from two potential parents per child to 20 or more, I got a lot more
diversity much sooner. Perhaps it does take a village.

Remember, inbreeding is bad among humans; and it is also bad
in genetic algorithms. We want to keep the gene pool as diverse
as we reasonably can in order to avoid marrying siblings or first
cousins. Once again, I go back to genetics and see that a built-
in mechanism exists to adapt to changing circumstances and
add diversity. It’s called mutation. Sometimes (perhaps most of

the time) mutations result in a weaker cell; but sometimes it is
an improvement. Some bacteria have developed the ability to
mutate rapidly and thereby build immunity to antibiotics. We
will generate our children as usual, and then randomly mutate
some genes in the string. Assume we set our mutation rate
to alter 30 genes of the 3,000. Again, play around with these
parameters. You can learn (as do your genetic algorithms)
through experimentation.

Figure 5 below is a revised picture of how the genes might be
populated from five parents.

After we build all the sets for generation 2 (total =elites + children: 100
=10+ 90), we repeat our test runs with this new generation and sort
the scores again. Then, we repeat the process for many generations
and watch as our “best set” results get better (lower) numbers. In the
sample Excel workbook, all of the scores are normalized such that a
solution set containing every provider group would have a score of
1.000. Initially, some solution sets will have scores larger than 1.000
since a random selection will likely include some sets drawn from
the more expensive providers. Within just a few generations, though,

GENE 1 GENE 2 GENE 3 GENE 2,500 GENE 2,501
SET 1 0 1 0 1 0
SET 2 1 1 0 0 1
SET 3 1 0 0 1 1
SET 4 0 0 0 1
SET S 0 1 1 1 0
CHILD 0 0 0 1 1
SOURCE SET 1 SET 3 SET 4 SET 1 SET 2

Figure 5. Five Parents (Our runs actually used more parents.)

DECEMBER 2012/JANUARY 2013

we are seeing what looks like intelligence emerging. By generation
10, the score was below 0.85.1° A few actuaries familiar with the
problem were able to use their standard minimization techniques to
beat that with scores around 0.78 and they projected that an optimal
solution would score around 0.75. However, the genetic algorithm
easily beat that within an hour and went on to reach results as low
as 0.70. For a different set of adequacy conditions, the actuaries still
thought the likely best case configuration was around 0.75, but the
genetic algorithm got down to 0.55. Considering the amount of claim
payments involved in a large health care network, this could result
in a significant savings.

We instructed the program to repeat this process until we stopped
getting any improvements (e.g., when the best score stayed the
same for 25 generations) and that happened in a couple of days on
a relatively inexpensive PC that did not have to be paid overtime for
working through the night. The result was a dramatic improvement
over the best analytical solutions we were able to achieve by
classical actuarial means. The simple emulation of basic evolution
got better results without any knowledge of multiple decrement
contingencies, or advanced statistics, or differential equations ...
and yes, | think a student could be taught to do this without any
knowledge of algebra!l

Let’s summarize what we did:

1. We chose a solution set (aka gene string) length of 3,000
where each respective provider group (aka gene) had to be
0 (not included) or 1 (included in our health care network).

2. We formed generation 1 by randomly assigning zeros and
ones throughout each set; and we decided to have 100 sets
per generation.

3. We tested each set of the generation and saved its score
(penalizing, but not eliminating, any set that did not meet our
coverage adequacy requirement).

4. We ranked the scores in order from best to worst.

5. We chose the top 10 sets and designated them as elites. Elites
get to advance to the next generation intact.

6. We chose to have 20 parents per child, and we built the 90
children needed (to fill out the next generation) drawing
from portions of the top-scoring 20 sets.

7. Each gene was chosen from some corresponding gene of one
of the 20 parents (randomly choosing the dominant parent
for that gene).

8. We went back through the children and randomly mutated 30
of the 3,000 genes (but we did not mutate genes of the elites).

COMPLEXITY OR

9. We repeated steps 3 through 8 until the scores stopped

improving.

10. We went out and partied while the genetic algorithm did
all the grunt work for us; meanwhile the theoretical purist
actuaries worked through the night trying to come up with a
deterministic solution at our top competitor; and thousands
of chimps at typewriters tried to pound out the exhaustive
best solutions at our not-quite-top competitor.

Lessons learned: Building a genetic algorithm solution is pretty easy;
but it is not a cookbook recipe process. The speed and the final
solutions are influenced heavily by the starting assumptions. My first
algorithms were plagued by inbreeding. Initially, [was so focused
on early improvements that I placed too much weight on the scores
when [assigned mating rights to the winners of a generation. [was
assigning higher parenting probabilities in a direct proportion to
better scores. Gradually, [backed off from that approach and found
that by increasing the number of potential parents, and decreasing
the relative probability of parent A contributing a gene rather than
parent B contributing that gene, | avoided inbreeding for a longer
time and ended up with better results. | recommend to the reader
that you experiment with larger generations (i.e., much more than
100 sets per generation—I normally use at least 1,000), but still keep
the number small enough to fit all of a generation into available
program memory. [also found it useful to increase the mutation
rate as the incremental improvement between generations starts to
decrease. Another lesson [learned quickly was that it was important
to be able to start from a previous generation of solution sets. That
way | could experiment with my assumption parameters (parents,

DECEMBER 2012/JANUARY 2013

THE ACTUARY | 23

24 | THE ACTUARY

elites, mutations, etc.) and avoid having to wait for hours to see
the impact of those changes. There are many other tips [learned
(and many more [am still learning) through these exercises.
Whenever [hit a wall though, it was very handy to question my
own initial assumptions; and to read more about genetics and
then get another inspiration from how evolution accomplishes

continual improvements.

Deterministic chaos and genetic algorithms sound like really
complex topics. | believe they are not as complex to understand
as many of the tools you are currently using. Let’s think of them
as potential topics in the simplicity sciences and embrace some of
these handy tools.

Dave Snell is technology evangelist with RGA Reinsurance Company

in Chesterfield, Mo.He can be reached at dsnell@rgare.com.

ENDNOTES
' Chaos: Making a New Science, by James Gleick, 1987, Viking Penguin Inc.,
New York, New York. Gleick describes the history of Chaos Theory; and how
Feigenbaum’s constant (4.6692016) became so pervasive throughout seem-
ingly independent science applications. My quote about chaos in non-periodic
systems is from p. 18 of this book. You can also read more about this example,
and some related ones, in the January, 2012 issue of the Forecasting & Futurism

newsletter in my article “When Algebra Gets Chaotic.”

2 If you would like a more detailed, step-by-step description of how to design a
genetic algorithm, see my article “Genetic Algorithms—Useful, Fun and Easy!” In
the December 2012 issue of the Forecasting & Futurism newsletter. It also gives
you a reference to a free workbook for the health provider network problem
I discuss briefly in this article. Another good actuarial application of genetic
algorithms, for asset and liability management, is in Ben Wadsley’s article “Are
Genetic Algorithms Even Applicable to Actuaries?” in the July 2011 issue of the

Forecasting & Futurism newsletter.

3 Adaptation in Natural and Attificial Systems: An Introductory Analysis with
Applications to Biology, Control, and Artificial Intelligence (Complex Adaptive
Systems), by John Holland, 1992, The MIT Press, Cambridge, Mass. This is the

seminal work that started the genetic algorithm movement.

4 In human genetics, a DNA strand has a limited number of choices at each posi-
tion (A-T, T-A, C-G or G-C); but the 3.2 billion positions result in a lot of potential
variety.

> See note 2 for a reference to the details for this example.

6 Current thought is that the Big Bang occurred around 14 billion years ago, which

is a little over 10" seconds. An interesting thread can be found at http://answers.

DECEMBER 2012/JANUARY 2013

COMPLEXITY OR

yahoo.com/question/index?qid=20080525070816AAaZAOU. Likewise, the number
of atoms in the observable universe is obviously not known precisely; but it is gener-
ally thought to be in the range of 10 to 10® (http://www.universetoday.com/36302/
atoms-in-the-universe/). 1If we say 2%°=10x then x=3000*log(2)/log(10)=903.09.

Taking the outside estimate, 10% times 7 = 10° which is a tiny fraction of 10°®.

In a typical genetic algorithm application, you may decide to have thousands of
sets per generation. [am choosing just 100 here to keep the example simple. The
advantage of more sets per generation is a greater diversity and higher probability
the smarter sets will be a lot smarter. The disadvantage is that your algorithm will
run slower as you have to test every set in the generation before you see your
comparative results. It also may be more difficult to hold this information in

memory, which can result in a lot of slower disk drive interaction.

An excellent book about this concept is The Red Queen: Sex and the Evolution of
Human Nature, by Matt Ridley (April 29, 2003), Penguin Books, Ltd.

My earliest algorithms for mating rights would base the probability of being cho-
sen as a parent on the absolute score the robot (or set) obtained. Thus, a robot
getting a score twice as good as the next robot would have twice the chance of
mating. This approach works well in early generations; but gradually leads to
inbreeding. A better approach was to base mating probabilities on the relative
score. In this case, the top scoring robot of 100 would have 100/99 times the prob-
ability of mating versus the second place robot, and 100/90 times the probability
of the 10th place robot. Try different reproduction schemes to see what fits your

particular applications.

These numbers are illustrative but your results will vary from them based upon
the randomization of initial sets, the PC computing power and other factors.
The trend though will be rapid improvement in the first several generations and
decreasing improvements as the score becomes closer to an optimal mix of

provider groups.

