

Article from:

The Actuary Magazine

December 2012/January 2013 – Volume 9 Issue 6

16 | The AcTuAry | December 2012/January 2013

Complexity or
SimpliCity?

GeneTic AlGoriThms sound very complicATed. yeT, A
GeneTic AlGoriThm is jusT AnoTher Technique To find
soluTions To problems. This ArTicle describes jusT
how simple This Technique cAn be. by dAve snell

the opportunity to share my enthusiasm for complexity sciences at SOA annual meetings,

health meetings, the Life & Annuity Symposium and lots of regional meetings has been

a lot of fun. But then, after a keynote presentation I gave at the Actuarial Research

Conference, an attendee came up to me and said that she had a suggestion for a major improvement.

She said that instead of “Complexity,” I should rename the title “Simplicity.” She shared that she is an

expert in her field of actuarial focus; and although she enjoyed my presentation, she almost skipped it

because she did not want to have to listen to yet another complex actuarial topic outside her immediate

area of expertise.

I thought a lot about what she said. She was correct. I was wrong. This is not more difficult than classical,

deterministic, actuarial techniques. It is simpler. It is a way of solving problems with simple rules and

building blocks. When you stop and seriously think about it, the complexity science techniques are

actually more intuitive than some of our classical deterministic actuarial techniques. Complexity

science seems to be an umbrella term for many topics; but in this article I shall try to explain just two of

them, deterministic chaos and genetic algorithms, with fairly simple examples.

Deterministic chaos is a topic that sounds daunting but really is more simple than complex. My favorite

example of this is the logistic equation for population growth that Pierre François Verhulst proposed in

1838. The famous actuary Benjamin Gompertz proposed a similar model for human mortality in 1825.

Darwin noted a similar growth pattern in action on isolated islands he visited on the famous sea voyage

in the 1830s that led to his theory of evolution. Assume you have a population of some animal on an

island with no natural predators and a surplus of food. An actuary would be able to project that the

population would, initially, increase rapidly—in fact, it would likely increase exponentially. As we all

know though, exponential growth is seldom sustainable. Eventually, the food supply starts to become

scarce and population growth is limited accordingly. Verhulst determined that the population growth

rate at time ‘t+1’ is going to be some constant, R (related to the Malthusian parameter of maximum

growth rate), times the rate at time ‘t’ times the quantity ‘[1 - the rate at time t]’. More concisely,

P(t+1)=R * P(t) * [1 - P(t)] where -1 <= P(t) <= 1

[Pierre François Verhulst’s Logistic Equation—originally proposed in 1838]

December 2012/January 2013 | The AcTuAry | 17

The Logistic Map: X(t=1)=R * X (t)* [1 – X(t)]

When R is small, say R=2, it does not matter what starting value

you choose for x(0). The resulting iterations will always converge

to a single attractor of 0.5. As R increases, the number of attractors

doubles (according to Feigenbaum’s constant: 4.6692016), as shown

in Figure 1, and the later iterations oscillate between them.

This seems orderly. Some grand mathematical process is controlling

the affair; and we might expect the trend to continue. We would be

wrong.

Looking at Figure 2, we see that once you reach R=4, just a tiny

change in one of your assumptions may cause an undetermined

effect on the validity of your model. The two graphs are somewhat

similar; but there are definite differences in some areas.

Everyone has heard of the butterfly effect. Here is the butterfly effect

in action in very basic algebra. Keep in mind the only thing that

caused the two graphs to differ so noticeably at the later durations is

a starting assumption difference beyond the trillion decimal place.

That’s 0.2 versus 0.2000 blah, blah, blah, 001.

The implication for actuarial models, which may be far more

complicated than the logistic equation, is that very small variations

in starting values may have huge unforeseen consequences. Try

stopping one of your projection models after 10 years and input the

numbers you have at that point into the same model. Do you get the

same results at the ending year? What if you reentered your output

each year as the next year’s starting values? The results 50 years from

now may be significantly different from your expectations.

18 | The AcTuAry | December 2012/January 2013

Figure 1. Logistic Map with R=2 and R=3.1

x(t+1)=Rx(t)[1-x(t)] with R=2 and x(0)=0.5

X(91) … X(100): .5, .5, .5, .5, .5, .5, .5, .5, .5, .5

x(t+1)=Rx(t)[1-x(t)] with R=2 and x(0)=0.2

X(91) … X(100): .5, .5, .5, .5, .5, .5, .5, .5, .5, .5

x(t+1)=Rx(t)[1-x(t)] with R=2 and x(0)=0.99

X(91) … X(100): .5, .5, .5, .5, .5, .5, .5, .5, .5, .5

x(t+1)=Rx(t)[1-x(t)] with R=3.1 and x(0)=0.5

X(91) … X(100): .765, .558, .765, .558, .765, .558, .765, .558, .765, .558

x(t+1)=Rx(t)[1-x(t)] with R=3.1 and x(0)=0.2

X(91) … X(100): .558, .765, .558, .765, .558, .765, .558, .765, .558, .765

x(t+1)=Rx(t)[1-x(t)] with R=3.1 and x(0)=0.99

x(91) … X(100): .765, .558, .765, .558, .765, .558, .765, .558, .765, .558

Note: 0≤X(t) ≤ 1

For R=2, the starting point is

unimportant and there is a

single attractor of .5

For R=3.1, the starting point is

unimportant and there are two

attractors of .558 and .765

0

0.1

0.2

0.3

0.4

0.5

0.6

t0 t2 t4 t6 t8 t1
0

t1
2

t1
4

t1
6

t1
8

t2
0

t2
2

t2
4

t2
6

t2
8

t3
0

t3
2

t3
4

t3
6

t3
8

t4
0

t4
2

t4
4

t4
6

t4
8

t5
0

t5
2

t5
4

t5
6

t5
8

t6
0

t6
2

t6
4

t6
6

t6
8

t7
0

t7
2

t7
4

t7
6

t7
8

t8
0

t8
2

t8
4

t8
6

t8
8

t9
0

t9
2

t9
4

t9
6

t9
8

t1
00

0

0.1

0.2

0.3

0.4

0.5

0.6

t0 t2 t4 t6 t8 t1
0

t1
2

t1
4

t1
6

t1
8

t2
0

t2
2

t2
4

t2
6

t2
8

t3
0

t3
2

t3
4

t3
6

t3
8

t4
0

t4
2

t4
4

t4
6

t4
8

t5
0

t5
2

t5
4

t5
6

t5
8

t6
0

t6
2

t6
4

t6
6

t6
8

t7
0

t7
2

t7
4

t7
6

t7
8

t8
0

t8
2

t8
4

t8
6

t8
8

t9
0

t9
2

t9
4

t9
6

t9
8

t1
00

0

0.2

0.4

0.6

0.8

1

1.2

t0 t2 t4 t6 t8 t1
0

t1
2

t1
4

t1
6

t1
8

t2
0

t2
2

t2
4

t2
6

t2
8

t3
0

t3
2

t3
4

t3
6

t3
8

t4
0

t4
2

t4
4

t4
6

t4
8

t5
0

t5
2

t5
4

t5
6

t5
8

t6
0

t6
2

t6
4

t6
6

t6
8

t7
0

t7
2

t7
4

t7
6

t7
8

t8
0

t8
2

t8
4

t8
6

t8
8

t9
0

t9
2

t9
4

t9
6

t9
8

t1
00

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

t0 t2 t4 t6 t8 t1
0

t1
2

t1
4

t1
6

t1
8

t2
0

t2
2

t2
4

t2
6

t2
8

t3
0

t3
2

t3
4

t3
6

t3
8

t4
0

t4
2

t4
4

t4
6

t4
8

t5
0

t5
2

t5
4

t5
6

t5
8

t6
0

t6
2

t6
4

t6
6

t6
8

t7
0

t7
2

t7
4

t7
6

t7
8

t8
0

t8
2

t8
4

t8
6

t8
8

t9
0

t9
2

t9
4

t9
6

t9
8

t1
00

0

0.2

0.4

0.6

0.8

1

t0 t2 t4 t6 t8 t1
0

t1
2

t1
4

t1
6

t1
8

t2
0

t2
2

t2
4

t2
6

t2
8

t3
0

t3
2

t3
4

t3
6

t3
8

t4
0

t4
2

t4
4

t4
6

t4
8

t5
0

t5
2

t5
4

t5
6

t5
8

t6
0

t6
2

t6
4

t6
6

t6
8

t7
0

t7
2

t7
4

t7
6

t7
8

t8
0

t8
2

t8
4

t8
6

t8
8

t9
0

t9
2

t9
4

t9
6

t9
8

t1
00

0

0.2

0.4

0.6

0.8

1

1.2

t0 t2 t4 t6 t8 t1
0

t1
2

t1
4

t1
6

t1
8

t2
0

t2
2

t2
4

t2
6

t2
8

t3
0

t3
2

t3
4

t3
6

t3
8

t4
0

t4
2

t4
4

t4
6

t4
8

t5
0

t5
2

t5
4

t5
6

t5
8

t6
0

t6
2

t6
4

t6
6

t6
8

t7
0

t7
2

t7
4

t7
6

t7
8

t8
0

t8
2

t8
4

t8
6

t8
8

t9
0

t9
2

t9
4

t9
6

t9
8

t1
00

Deterministic chaos merely means that a simple non-periodic system

may be completely determinable over the short term but it becomes

unpredictable past its horizon of predictability, and according to

James Gleick, a pioneer in chaos theory, “any physical system

that behaves non-periodically is unpredictable.” Common examples

include weather predictions (highly accurate over a few days, seldom

accurate past a couple of weeks) and financial markets—perhaps

even actuarial financial models!

Read more about the science of chaos theory in Chaos: Making a

New Science, by James Gleick.1

Genetic algorithms sound very complicated. Yet, a genetic algorithm

is just another technique to find solutions to problems. It uses

simple rules, comparative scoring, and selective modifications for

the subsequent iterations. Even bacteria effectively employ them

(to evolve stronger bacteria that are resistant to antibiotics). Is a

fifth grader bacterium smarter than an actuary? In my workshops

(with Brian Grossmiller, a kindred spirit in complexity sciences) on

genetic algorithms, I often start with basic genetics: genes, alleles,

mitosis and meiosis; but that is probably too complicated.2

A genetic algorithm can be ideal for a situation where:

1. You have no direct algorithm for an exact solution (or an exact

solution would be too complicated or too time-consuming);

 December 2012/January 2013 | The AcTuAry | 19

Figure 2. Logistic Map with R=4 — Deterministic Chaos Emerges

Complexity or
SimpliCity?

Deterministic Chaos
The Logistic Map: X(t+1)=R * X (t)* [1 – X(t)]

x(t+1)=Rx(t)[1-x(t)] with R=4 and x(0)=0.2

X(91) … X (100): .453, .991, .035, .133, .462, .994, .023, .089, .324, .876

x(t+1)=Rx(t)[1-x(t)] with R= 4 and x(0)=0.200000000001

X(91) … X(100): .994, .023, .091, .33, .884, .411, .968, .124, .434, .982

0

0.2

0.4

0.6

0.8

1

1.2

t0 t2 t4 t6 t8 t1
0

t1
2

t1
4

t1
6

t1
8

t2
0

t2
2

t2
4

t2
6

t2
8

t3
0

t3
2

t3
4

t3
6

t3
8

t4
0

t4
2

t4
4

t4
6

t4
8

t5
0

t5
2

t5
4

t5
6

t5
8

t6
0

t6
2

t6
4

t6
6

t6
8

t7
0

t7
2

t7
4

t7
6

t7
8

t8
0

t8
2

t8
4

t8
6

t8
8

t9
0

t9
2

t9
4

t9
6

t9
8

t1
00

0

0.2

0.4

0.6

0.8

1

1.2

t0 t2 t4 t6 t8 t1
0

t1
2

t1
4

t1
6

t1
8

t2
0

t2
2

t2
4

t2
6

t2
8

t3
0

t3
2

t3
4

t3
6

t3
8

t4
0

t4
2

t4
4

t4
6

t4
8

t5
0

t5
2

t5
4

t5
6

t5
8

t6
0

t6
2

t6
4

t6
6

t6
8

t7
0

t7
2

t7
4

t7
6

t7
8

t8
0

t8
2

t8
4

t8
6

t8
8

t9
0

t9
2

t9
4

t9
6

t9
8

t1
00

A provider group will either be in our network or not. These are the

only allowable choices so we can represent our set as a long string

(analogous to the long DNA strands we have in each of our human

cells) of zeros and ones representing whether a provider group is in

(one) or out (zero) of our network.4

If we randomly generated 100 solution sets they might be as shown

in Figure 3 below.

Here, we see that solution set 1 includes provider groups 2, 3

and 5 while solution set 100 includes provider groups 3, 5 and

6. I also added the relative scores for these sets (the score takes

into account cost and coverage and potentially lots of other

criteria) in the last column. Details of the scoring algorithm are

unimportant here (but you can see them in the referenced Excel

workbook). The point is that via the score we have an easy way

to see if one set is better than another one.5

Given a situation like this, an actuary might try to figure out an

exact solution; but the number of simultaneous equations (not

necessarily linear) is immense (3,000+) and the result might take

a very long time and effort. Alternatively, the option of trying

out each potential set is unthinkable. There are 23000 possible

solution sets; and if you are suspecting that is a big number, you

are correct—big time! The number 23000 > 10903, but the number

of atoms in the known universe is around 1082 and the number of

seconds since the beginning of time (the Big Bang) is around 1017;

even multiplying these numbers together we are not even close

to the number of possible solution sets.6 Clearly, we do not have

time to try comparing all the solutions. Yet, we can easily and

quickly check to see if one potential solution set is better (i.e.,

gets a lower score) than another one.

This is a perfect place to try a genetic algorithm approach.

2. The number of potential solutions is too large to try them all; and

3. Solutions can be scored such that you can compare the value

of solution X versus solution Y and easily see which is better.

In a genetic algorithm, we usually assign a set of actions or

conditions and then we evolve better and better sets in a

process that mimics the evolutionary process. The genetics

terms and metaphors are historical. John Holland introduced

them back in 1975 when he first described genetic algorithms

in his book, Adaptation in Natural and Artificial Systems.3 He

was impressed by the speed at which species had evolved, as

evidenced by the fossil record, and he developed ways for us

to emulate evolution as a technique for solving problems too

time-consuming by other means.

Let’s take a simple example that Brian and I used in our workshop.

Say you want to manage a health care provider system to reduce costs

and still provide adequate coverage for the plan participants. In our

example, Brian had empirical cost data from more than 3,000 provider

groups. Each provider group offered one or more specialty services.

These might range from acupuncture to urology. Each specialty has a

relative cost (e.g., the average charge from an ophthalmologist might

be higher than that from a pediatrician) and each provider group also

has a relative cost (provider group 5 may be in a fancy location and

charge, on the whole, much more than provider group 253).

We want to lower costs while maintaining some desired level of

access to at least some minimum number of choices for each of

the various specialties. If we only wanted to minimize cost, this

would be easy. We could just include the lowest cost provider

groups and exclude the higher priced ones. Unfortunately, some

of those needed specialties are not available from the lowest cost

provider groups. We might also want to include relative quality of

services measures, based on patient feedback or a number of other

comparative criteria.

20 | The AcTuAry | December 2012/January 2013

PRovideR GRouP 1 2 3 4 5 6 3000 ScoRe
(lower is better)

Set 1 0 1 1 0 1 0 0 0.9873

Set 2 1 1 0 0 0 1 1 0.8206

Set 100 0 0 1 0 1 1 0 1.1393

Figure 3. Sample Sets of Provider Groups for a Health Care Network

We will start out with 100 potential provider

sets.7 Each of them will have a gene string

of 3,000 genes, and each gene can be only

a zero or a one (each gene represents

the inclusion or exclusion of a specific

provider group). Our first step will be to

randomly assign zeros and ones to all of

the genes in every set. For example, let’s

say we randomly generated the sets shown

in Figure 3.

Then, we rank those sets according to their

scores. The winners (lowest scoring sets) in

this generation will not be terribly impressive.

After all, they were randomly generated

sets—no brainpower needed here.

Next, we’ll decide upon some way to

determine mating rights so that we can

use these sets to spawn a new, hopefully

smarter, next generation. Oh, that word “hopefully” is bothersome,

isn’t it? We don’t want to risk our next generation being dumber; but

if all we do is combine randomly created sets together—even the

brighter ones—we could get bad combinations and our “species”

might devolve instead of evolve. How does nature handle this?

In nature, the various members of a generation do not all live the

same length of time. In essence, some die young and never get to

have children; some have children and then die (perhaps even in

childbirth); and some live on to coexist with the new kids on the

block. In genetic algorithms, we call these latter ones “elites.” In

order to guarantee that our generations do not get dumber instead

of smarter, we will specify that a certain number of the sets in

generation 1 (the favored ones) will self-replicate into generation 2.

For now, let’s set the percentage of elites to 10 percent. That means

when we get around to building generation 2 from generation 1, the

top 10 sets (of our 100 sets) of generation 1 will copy over exactly.

Our next task then is to figure out how to generate the remaining 90

sets of the new generation 2.

Again, let’s look at what happens in genetics. In most species of

mammals, the biggest, or prettiest, or smartest, or strongest member

or members of the group are deemed the most attractive mates for

reproduction. For example, the norm in a kangaroo mob is that only

the dominant male of the entire mob gets to mate with the various

females. Among humans, we are not quite that strict (although

in history, emperors and kings had many, many mates) and most

folks have a chance at finding a mate; but still the smartest, richest,

strongest or prettiest seem to have more choices.8

We will arbitrarily say that the top 20 percent of the sets will be the

parents of the next generation. This will, of course, include our elites

(our top 10 percent). I have to emphasize that these percentages

are not scientifically determined and this is not the usual method I

would employ; but it works fine for this example, and it shows that

there is still a lot of “art” in the making of genetic algorithms.9

Now that we have established our pool of potentially preferred parents

we can address the actual reproduction process. In nature, a child gets

a DNA string that is composed of pieces from two parents. Let’s say that

we choose sets 2 and 5 as the parents. Then, on a gene-by-gene basis,

each gene of the child will have either a copy of the corresponding gene

from set 2 or the corresponding gene from set 5. The child will end up as

some combination of sets 2 and 5. (See Figure 4 on page 22.)

OK, that works. However, we are limiting our possibilities here

because of our experience. When Ben Wadsley, another genetic

 December 2012/January 2013 | The AcTuAry | 21

For More Info
if you would like more informATion on this topic, please visit www.

soa.org, click on the Presentation Archives link under the Professional Development

tag, and then click on the Purchase Webcast and Virtual Session Recordings link. Or

you can use the QR code provided here.

The following is a description of one of the sessions available for purchase: “This ses-

sion will contain discussions on potential risks that may be emerging, and how to

identify these risks and understand them. The discussion will include how to triage

the identified emerging risks based on what would have a material impact on an

organization. This session will leverage the emerging risk survey published earlier in

the year by the Joint Risk Management Section.

At the conclusion of the session, attendees will be able to identify emerg-

ing risks to their organization, evaluate the impact on their organization

and, ultimately, explain the resultant impact to their stakeholders.”

Complexity or
SimpliCity?

the time) mutations result in a weaker cell; but sometimes it is

an improvement. Some bacteria have developed the ability to

mutate rapidly and thereby build immunity to antibiotics. We

will generate our children as usual, and then randomly mutate

some genes in the string. Assume we set our mutation rate

to alter 30 genes of the 3,000. Again, play around with these

parameters. You can learn (as do your genetic algorithms)

through experimentation.

Figure 5 below is a revised picture of how the genes might be

populated from five parents.

After we build all the sets for generation 2 (total = elites + children: 100

= 10 + 90), we repeat our test runs with this new generation and sort

the scores again. Then, we repeat the process for many generations

and watch as our “best set” results get better (lower) numbers. In the

sample Excel workbook, all of the scores are normalized such that a

solution set containing every provider group would have a score of

1.000. Initially, some solution sets will have scores larger than 1.000

since a random selection will likely include some sets drawn from

the more expensive providers. Within just a few generations, though,

algorithm cohort of mine, wrote an asset-liability management

genetic algorithm he got faster results by drawing from five parents

rather than two. As I thought more about this, I remembered that

when we lived in Northern California, my older daughter once

brought home her date, and he was surprised to discover that she

had only two parents … and they were still married … and to each

other! Clearly, I was naïve in assuming that we had to limit our

genetic algorithms in this manner. In this example, we’ll draw from

our top 20 percent and let any one of the 20 of them be the dominant

parent (gene contributor) for any gene in the child’s gene string.

This will provide a far better level of diversity, and our generations

will continue to improve for a far longer time. Once I switched

from two potential parents per child to 20 or more, I got a lot more

diversity much sooner. Perhaps it does take a village.

Remember, inbreeding is bad among humans; and it is also bad

in genetic algorithms. We want to keep the gene pool as diverse

as we reasonably can in order to avoid marrying siblings or first

cousins. Once again, I go back to genetics and see that a built-

in mechanism exists to adapt to changing circumstances and

add diversity. It’s called mutation. Sometimes (perhaps most of

22 | The AcTuAry | December 2012/January 2013

Gene 1 Gene 2 Gene 3 Gene 2,500 Gene 2,501

Set 1 0 1 0 1 0

Set 2 1 1 0 0 1

Set 3 1 0 0 1 1

Set 4 1 0 0 0 1

Set 5 0 1 1 1 0

child 0 0 0 1 1

SouRce Set 1 Set 3 Set 4 Set 1 Set 2

Gene 1 Gene 2 Gene 3 Gene 2,500 Gene 2,501

Set 2 1 1 0 0 1

Set 5 0 1 1 1 0

child 1 1 1 0 1

SouRce Set 2 Set 5 Set 5 Set 2 Set 2

Figure 4. Heredity in Action—Two Parents (Set 2 and Set 5)

Figure 5. Five Parents (Our runs actually used more parents.)

 December 2012/January 2013 | The AcTuAry | 23

we are seeing what looks like intelligence emerging. By generation

10, the score was below 0.85.10 A few actuaries familiar with the

problem were able to use their standard minimization techniques to

beat that with scores around 0.78 and they projected that an optimal

solution would score around 0.75. However, the genetic algorithm

easily beat that within an hour and went on to reach results as low

as 0.70. For a different set of adequacy conditions, the actuaries still

thought the likely best case configuration was around 0.75, but the

genetic algorithm got down to 0.55. Considering the amount of claim

payments involved in a large health care network, this could result

in a significant savings.

We instructed the program to repeat this process until we stopped

getting any improvements (e.g., when the best score stayed the

same for 25 generations) and that happened in a couple of days on

a relatively inexpensive PC that did not have to be paid overtime for

working through the night. The result was a dramatic improvement

over the best analytical solutions we were able to achieve by

classical actuarial means. The simple emulation of basic evolution

got better results without any knowledge of multiple decrement

contingencies, or advanced statistics, or differential equations …

and yes, I think a student could be taught to do this without any

knowledge of algebra!

Let’s summarize what we did:

1. We chose a solution set (aka gene string) length of 3,000

where each respective provider group (aka gene) had to be

0 (not included) or 1 (included in our health care network).

2. We formed generation 1 by randomly assigning zeros and

ones throughout each set; and we decided to have 100 sets

per generation.

3. We tested each set of the generation and saved its score

(penalizing, but not eliminating, any set that did not meet our

coverage adequacy requirement).

4. We ranked the scores in order from best to worst.

5. We chose the top 10 sets and designated them as elites. Elites

get to advance to the next generation intact.

6. We chose to have 20 parents per child, and we built the 90

children needed (to fill out the next generation) drawing

from portions of the top-scoring 20 sets.

7. Each gene was chosen from some corresponding gene of one

of the 20 parents (randomly choosing the dominant parent

for that gene).

8. We went back through the children and randomly mutated 30

of the 3,000 genes (but we did not mutate genes of the elites).

9. We repeated steps 3 through 8 until the scores stopped

improving.

10. We went out and partied while the genetic algorithm did

all the grunt work for us; meanwhile the theoretical purist

actuaries worked through the night trying to come up with a

deterministic solution at our top competitor; and thousands

of chimps at typewriters tried to pound out the exhaustive

best solutions at our not-quite-top competitor.

Lessons learned: Building a genetic algorithm solution is pretty easy;

but it is not a cookbook recipe process. The speed and the final

solutions are influenced heavily by the starting assumptions. My first

algorithms were plagued by inbreeding. Initially, I was so focused

on early improvements that I placed too much weight on the scores

when I assigned mating rights to the winners of a generation. I was

assigning higher parenting probabilities in a direct proportion to

better scores. Gradually, I backed off from that approach and found

that by increasing the number of potential parents, and decreasing

the relative probability of parent A contributing a gene rather than

parent B contributing that gene, I avoided inbreeding for a longer

time and ended up with better results. I recommend to the reader

that you experiment with larger generations (i.e., much more than

100 sets per generation—I normally use at least 1,000), but still keep

the number small enough to fit all of a generation into available

program memory. I also found it useful to increase the mutation

rate as the incremental improvement between generations starts to

decrease. Another lesson I learned quickly was that it was important

to be able to start from a previous generation of solution sets. That

way I could experiment with my assumption parameters (parents,

Complexity or
SimpliCity?

yahoo.com/question/index?qid=20080525070816AAaZAOU. Likewise, the number

of atoms in the observable universe is obviously not known precisely; but it is gener-

ally thought to be in the range of 1078 to 1082 (http://www.universetoday.com/36302/

atoms-in-the-universe/). If we say 23000=10x then x=3000*log(2)/log(10)=903.09.

Taking the outside estimate, 1082 times 1017 = 1099 which is a tiny fraction of 10903.

7 In a typical genetic algorithm application, you may decide to have thousands of

sets per generation. I am choosing just 100 here to keep the example simple. The

advantage of more sets per generation is a greater diversity and higher probability

the smarter sets will be a lot smarter. The disadvantage is that your algorithm will

run slower as you have to test every set in the generation before you see your

comparative results. It also may be more difficult to hold this information in

memory, which can result in a lot of slower disk drive interaction.

8 An excellent book about this concept is The Red Queen: Sex and the Evolution of

Human Nature, by Matt Ridley (April 29, 2003), Penguin Books, Ltd.

9 My earliest algorithms for mating rights would base the probability of being cho-

sen as a parent on the absolute score the robot (or set) obtained. Thus, a robot

getting a score twice as good as the next robot would have twice the chance of

mating. This approach works well in early generations; but gradually leads to

inbreeding. A better approach was to base mating probabilities on the relative

score. In this case, the top scoring robot of 100 would have 100/99 times the prob-

ability of mating versus the second place robot, and 100/90 times the probability

of the 10th place robot. Try different reproduction schemes to see what fits your

particular applications.

10 These numbers are illustrative but your results will vary from them based upon

the randomization of initial sets, the PC computing power and other factors.

The trend though will be rapid improvement in the first several generations and

decreasing improvements as the score becomes closer to an optimal mix of

provider groups.

elites, mutations, etc.) and avoid having to wait for hours to see

the impact of those changes. There are many other tips I learned

(and many more I am still learning) through these exercises.

Whenever I hit a wall though, it was very handy to question my

own initial assumptions; and to read more about genetics and

then get another inspiration from how evolution accomplishes

continual improvements.

Deterministic chaos and genetic algorithms sound like really

complex topics. I believe they are not as complex to understand

as many of the tools you are currently using. Let’s think of them

as potential topics in the simplicity sciences and embrace some of

these handy tools. A

dave Snell is technology evangelist with RGA Reinsurance Company

 in Chesterfield, Mo. He can be reached at dsnell@rgare.com.

endnoteS
1 Chaos: Making a New Science, by James Gleick, 1987, Viking Penguin Inc.,

New York, New York. Gleick describes the history of Chaos Theory; and how

Feigenbaum’s constant (4.6692016) became so pervasive throughout seem-

ingly independent science applications. My quote about chaos in non-periodic

systems is from p. 18 of this book. You can also read more about this example,

and some related ones, in the January, 2012 issue of the Forecasting & Futurism

newsletter in my article “When Algebra Gets Chaotic.”

2 If you would like a more detailed, step-by-step description of how to design a

genetic algorithm, see my article “Genetic Algorithms—Useful, Fun and Easy!” In

the December 2012 issue of the Forecasting & Futurism newsletter. It also gives

you a reference to a free workbook for the health provider network problem

I discuss briefly in this article. Another good actuarial application of genetic

algorithms, for asset and liability management, is in Ben Wadsley’s article “Are

Genetic Algorithms Even Applicable to Actuaries?” in the July 2011 issue of the

Forecasting & Futurism newsletter.

3 Adaptation in Natural and Artificial Systems: An Introductory Analysis with

Applications to Biology, Control, and Artificial Intelligence (Complex Adaptive

Systems), by John Holland, 1992, The MIT Press, Cambridge, Mass. This is the

seminal work that started the genetic algorithm movement.

4 In human genetics, a DNA strand has a limited number of choices at each posi-

tion (A-T, T-A, C-G or G-C); but the 3.2 billion positions result in a lot of potential

variety.

5 See note 2 for a reference to the details for this example.

6 Current thought is that the Big Bang occurred around 14 billion years ago, which

is a little over 1017 seconds. An interesting thread can be found at http://answers.

24 | The AcTuAry | December 2012/January 2013

Complexity or
SimpliCity?

