Article from

Predictive Analytics and Futurism

April 2018
Issue 17



Feature Importance in
Supervised Training

By Jeff Heaton

a model is trained to produce a specific result for a given

input. These inputs and expected outputs form the train-
ing data for a model. Because the expected outputs are known,
this type of training is referred to as supervised learning. If there
are no expected outcomes, then the technique is referred to as
unsupervised learning. The process of using these data is called
training or fitting. Whether to use supervised or unsupervised
learning depends upon the project goal. If the desire is to create
a model that can be trained to produce some sort of output from
input data, then you are using supervised training. The focus of
this article is determining the importance of columns of your
input data for supervised training.

Supervised learning is the class of machine learning where

In the domain of supervised learning, predictive models accept
a feature vector and return a prediction. For example, a model
might be asked to accept inputs that specify the face amount,
annual premium, term, age of applicant, and other values to
predict the likelihood of the policy being lapsed. These inputs
are typically referred to as the feature vector or the x-values.
The output from the model is typically referred to as the score,
prediction or y-hat value. Some of the input features are more
important to making an accurate prediction than others. For
example, term length might be more important to predicting
lapse than the face amount. There are a wide variety of tech-
niques that can be used to measure the importance of the input
features.

MODEL-SPECIFIC FEATURE RANKING

Depending on the type of model to be evaluated, there are a
number of different ways to evaluate feature importance.
These model-specific, feature-ranking techniques will change
depending on what model you are using. For example, if you are
dealing with a generalized linear model (GLM), the coefficients
can provide an importance measure. Similarly, neural network
feature importance can be gauged by examining the outbound
weights from each of the input neurons.! Additionally, the
importance of features in tree-based models, such as gradient
boosting machines (GBMs), random forests, and classification
and regression trees (CARTS) can be determined by evaluating

22 | APRIL 2018 PREDICTIVE ANALYTICS AND FUTURISM 3859

the number and weighting of splits that the given feature was
involved in.

Of course, these techniques are only valid for GLMs, neural
networks and tree-based models. If you are making use of other
model types, such as support vector machines (SVMs), k-nearest
neighbors or any other, you will need to use a technique that
is specifically designed for that model type. Furthermore, your
importance will remain the same over time.

The importance of the model features is generated from the
model parameters that were defined when the model was fit.
It is not possible to see how important these features are with
newer data sets that your model might need to score. Fitting a
model and deploying it to production are only the first battles
that a data scientist must face. It is important to ensure that your
model remains relevant with new data sets and external condi-
tions that might affect the validity of your model. Evaluating the
importance of features for your trained model on new data sets
can be an important piece of information in ensuring the con-
tinued robustness of your deployed model. Most model-specific,
feature-ranking algorithms only analyze the model, and not the
importance of features in entirely new data sets.

MODEL-AGNOSTIC FEATURE RANKING

Model-agnostic, feature-ranking algorithms consider the intrin-
sic characteristics of the data in evaluating the fitness of the
feature subset. Model-agnostic, feature-ranking techniques do
not require a learning algorithm and require fewer computing



resources. Rather, the model-agnostic algorithm makes use of
an already trained model and a data set.

Correlation-coefficient feature importance is a very simple
model-agnostic, univariate algorithm that calculates the abso-
lute value of the correlation coefficient between each of a
model’s expected outputs. This value can be used to estimate the
importance of each input feature to the model. The higher the
correlation coefficient between an input (x) and the target (y),
the greater a feature’s importance. To calculate this coefficient,
the first step is to calculate the covariance (Cl.].) between the
two features 7 and j. Usually, feature 7 will be the input feature
currently being evaluated and j will be the target value. This is
performed by the following equation:

(i~ X~ 1)

n—1

The value 7 represents the number of rows in the training data.
The value x represents each vector of predictors and y represents
the expected value. The Pearson product-moment correlation
coefficient is given by the following equation (which makes use
of the previous equation):

Cii

ij = To——
Cii - Gjj

R

The resulting value (R) gives the correlation between any of the
inputs () and the target (). The absolute value of R indicates
how strongly correlated the input is to the target. Higher values
are more strongly correlated. We provide a Python implementa-
tion of the correlation-coefficient, feature-importance-ranking
algorithm that can be used with any Scikit-Learn model.?

The input perturbation algorithm® is a more complex agnostic,
feature-importance algorithm that calculates the loss of a model
when each of the input features to the neural network is per-
turbed by the algorithm. The idea is that when an important
input is perturbed the neural network should have a consid-
erable increase in error, that corresponds to the importance
of that input. Because the inputs are being perturbed, rather
than removed entirely, it is not necessary to train a new neu-
ral network for each evaluated feature. Rather, the feature is
perturbed in the provided data set. The feature is perturbed
in such a way that it provides little or no value to the neural
network, yet the neural network retains an input neuron for that
feature. No change is made to the neural network as each input
is evaluated.

To effectively use feature-perturbation ranking it is necessary
to evaluate the loss (E) of a model. If the model is regression,

the following equation evaluates the loss between the expected
output (y) and the model output () over 7 data items:

Yie1 (U - Yi)z
n

E =

If there are multiple outputs, they are simply considered as addi-
tional y and y values. If the neural network is classification, then
a multi-logloss evaluate is performed:

1 n
E= _£Z.=1(3’i log(®) - (1 — y) log(1 — 9))

4

To successfully perturb a feature for the input-perturbation,
feature-importance algorithm two objectives must be met. First,
the input feature must be perturbed to the point that it now
provides little or no predictive power to the neural network.
Secondly, the input feature must be perturbed in such a way that
it does not have adverse effects on the neural network beyond
the feature being perturbed. Both objectives are accomplished
by shuffling, or perturbing, the column that is to be evaluated.
By shuffling the column, the wrong input values will be pre-
sented for each of the expected targets. Secondly, the shuffle
ensures that most statistical measures of the column remain the
same, as the column will maintain the same distribution.

To effectively use feature-
perturbation ranking it is

necessary to evaluate the
loss (E) of a model.

Feature importance is usually reported as a table that shows the
name of each feature, its relative importance, and the error that
the model reported when that feature was perturbed. For exam-
ple, Table 1 might represent the importance of four features:

Table 1
Sample Feature Importance Ranking
Feature Name Importance Loss
D 1 5
B 0.6 3
A 0.4 2
C 0.1 0.5

The higher the loss, the more important a feature is. The per-
turbation effectively removes the feature from the prediction.
Removing an important feature will result in a higher loss than

299% APRIL 2018 PREDICTIVE ANALYTICS AND FUTURISM | 23



Feature Importance in Supervised Training

removing a less important feature. Each feature has an impor-
tance that is reported as the value of that feature’s loss divided
by the highest loss. Because of this, the most important feature
will always have an importance of 1. The importance values will
not sum to 1.0. Rather, the importance values show the relative
importance of each feature to the most important feature. We
provide a Python implementation of the perturbation-ranking
algorithm that can be used with any Scikit-Learn model.*

MULTIVARIATE FEATURE RANKING

It is also possible to use the perturbation feature-ranking algo-
rithm to evaluate multivariate features. It is possible that two
features are more important together than they are separately.
"To evaluate this, a pair-wise feature importance could be gener-
ated for each of the possible pairs of features, similar to how a
covariance matrix is often calculated to determine which feature
pairs are strongly correlated to each other.

The generation of a pair-wise multivariate feature importance
report is produced similarly to the univariate-perturbation,
feature-ranking algorithm presented in the previous section.
The primary difference is that two columns will be perturbed
at a time, rather than a single column. To perform this, it will be
necessary to loop over every combination of features taken two
ata time. For example, 10 features result in 45 evaluations. This
is because 10 items, taken two at a time, yield 45 combinations.

Visually, this can be thought of as a pair-wise matrix. The diag-
onal is discarded, because that would consider each feature with
itself. Likewise, the upper or lower triangle of the matrix can
be discarded because the pair-wise importance of feature-1 and
teature-2 is the same as the pair-wise importance of feature-2
and feature-1. Considering triplets, quadruplets and higher
multiples would considerably increase the amount of processing
that would be necessary.

24 | APRIL 2018 PREDICTIVE ANALYTICS AND FUTURISM 3859

SUMMARY

Feature-importance ranking is a very important consideration
for data science. It can be used to optimize your data set and
remove unimportant features to improve the performance of
your model. This decreases the computation time needed for
your model and often increases the accuracy. Feature engineer-
ing also benefits greatly from feature importance evaluation.
As additional features are engineered, they can be evaluated
to see their relative importance to the model. When using
feature importance in conjunction with feature engineering, it
is important to remember that the perturbation-ranking algo-
rithm will typically share the importance between two closely
correlated features. Because engineered features are mathemati-
cal combinations and transformations of the original feature set,
the engineered features are usually strongly correlated to the
original feature set. Therefore, it is important to keep in mind
that the engineered features are usually sharing importance with
the original features from which they were constructed. M

Jeff Heaton, Ph.D., is lead data scientist,
Reinsurance Group of America, in Chesterfield,
Mo. He can be reached at JHeaton@rgare.com.

ENDNOTES

1 Goh, Anthony T. C. 1995. Back-Propagation Neural Networks for Modeling Com-
plex Systems. Artificial Intelligence in Engineering 9, no. 3:143-151.

2 Heaton, Jeff, Steven McElwee, and James Cannady. Early Stabilizing Feature
Importance for TensorFlow Deep Neural Networks. May 2017. In International Joint
Conference on Neural Networks (IJCNN 2017). |EEE.

3 Olden, Julian D., Michael K. Joy, and Russell G. Death. 2004. An Accurate Compar-
ison of Methods for Quantifying Variable Importance in Artificial Neural Networks
Using Simulated Data. Ecological Modelling 178, no. 3-4:389-397.

4 Supra, note 2.




	Feature Importance inSupervised TrainingBy Jeff Heaton

