

guage (e.g., C++, Java, C#) is an abstraction of a lower level
language (assembly language). The user at the higher level
language layer doesn’t have to worry about the low level as-
sembly language layer. Domain specific languages (DSLs) are
also higher levels of abstraction of lower level languages that
process them. In the field of artificial intelligence, the highest
level of abstraction would be natural language.

2 Flexible Implementation—A direct consequence of (i) above
is the opportunity to carve out the specific implementation
details and appropriately deal with them in a lower layer. In
a solution that outputs data for example, one could have an
abstract representation of the data and deal with the details
of the various physical output formats like, Excel, JSON,
HTML, etc. The flexibility stems from the fact that different
implementations can be built for the same general purpose.

Different layers of abstraction could be identified for a given con-
text/scenario. Typically, (i) would represent a higher level of ab-
straction and (ii) a lower level of abstraction. But it may be neces-
sary, to further carve out a lower level of abstraction from (ii) and
so on. In addition, in the programming language example noted
in (i), an assembly language is a level of abstraction above the ma-
chine language (a language whose syntax consists of 0’s and 1’s).

In software development, one can identify three types of ab-
stractions: data abstraction, procedural abstraction and config-
uration abstraction. Data abstraction is concerned with unifying
different input sources and coming up with a simplified and ge-
neric representation. Procedure abstraction is concerned with
defining different types of functionality in generic ways without
specifying the details. For example, if the actuary wants to value
a future, swap or option, they define a common way of valuing
a derivative. The details of valuing each individual are ignored
at this level (of abstraction). This allows the ability to design
functionality without getting overwhelmed in details and allows
for easier extension to other types of derivatives in the future.
Configuration abstraction deals with changing the behavior of
the software without requiring more code modifications. At its
simplest level, this minimizes or in some cases avoids completely
the coding of any details needed for the model to run.

FIXED AND VARIABLE PARTS OF
SOFTWARE SOLUTION
One can classify AI into the categories of classical, machine
learning and machine intelligence. At the highest level of ab-
straction, AI is software. In that regard, let’s assume we have a
system’s logic as SysLogic, and the input (structure) that goes with
the logic, SysInput2. That will constitute a logic-input pair, i.e.,
(SysLogic,SysInput). For a given software system, Sys, we can consid-
er the input structure as a function of the logic, i.e.,

I n the article “2036: An Actuarial Odyssey with AI” that ap-
peared in the July 2016 issue of Predictive Analytics and Fu-
turism, we explored the impact of artificial intelligence (AI)

on actuarial work in particular and white collar work in general.
Though there is the tendency to sensationalize the apocalyptic
scenarios vis-à-vis, an “AI-calypse,” there is a still a possibility
(even if small) that net outcomes could be, well, apocalyptic (e.g.,
drastic reduction in employment in traditional jobs without oth-
ers springing up, leading to social upheavals). Although the full
implications cannot be forecast with certainty, we can say with
certainty that the humans will increasingly continue to work
alongside machines (artificial intellects1). Without a good frame-
work to conceptualize and implement the partnership between
humans and machines, very suboptimal utilization of technology
can occur. This article specifically is about how abstraction, an
important software development concept, can help in this re-
gard. In addition, while there will be more emphasis on abstrac-
tions in the framework of software, the concept of abstraction is
not limited to that domain.

ABSTRACTION
The concept of abstraction is ubiquitous. In everyday commu-
nication, it is summed up in the notion of communication based
on one’s audience. Another use of this notion is captured in the
phrase “keeping information at a high-level.” One definition of
the word abstraction (See [3]) is: “The process of formulating
generalized ideas or concepts by extracting common qualities
from specific examples.” Informally, abstraction can be said to
be a way of specifying the “what” rather than the “how.” In soft-
ware development circles, abstractions are a means of managing
complexity by thinking of software in terms of levels where each
level has the right amount of information with more detailed
information residing in the lower levels of the hierarchy. Ab-
stractions can serve two related purposes:

1 Generalization—The purpose here is to focus attention on
relevant components in a given layer. By abstracting away the
lower level details, one can focus on the key components in
a given layer. As an example, a high-level programming lan-

Abstractions & Working
Effectively Alongside
Artificial Intellects
By Dodzi Attimu and Bryon Robidoux

18 | DECEMBER 2016 PREDICTIVE ANALYTICS AND FUTURISM

where τ is the function that translates the logic of system to its
input structure.

Given two software designs A and B to solve a problem, we
would have their mathematical representation as

and

respectively. The importance of the representation is that for a
given system, there is a correspondence between the software
code and the input structure.

Conversely, observe that given an input structure, there is a logical
model specification that works with the structure to meet system
requirements. In other words, given an input structure SysInput, one
can obtain the corresponding logic, via the inverse transformation
SysLogic=τ←(SysInput). This begs the question whether there is a bet-
ter starting point viz τ← and τ. Using a user experience (UX) par-
adigm (See [2]), the input design/structure should come first. In
our context, it is the input structure that should be mapped first,
i.e., τ←, should be the first focus as it maps the input to the logic.
In addition, the exact details of how the input is structured can
be abstracted away as well into another layer where emphasis is
placed first on what data is required before getting to how (where)
it is stored (e.g., txt file, xml, etc). We will consider the coded logic
as the fixed part of the system and the input as the variable part.
Designing a system where different behavior can be achieved via
changes to input enhances flexibility and transparency in the use

of the system. In model building projects for example, there is
potential to get unnecessarily held up over choice of methodology
but with the appropriate abstraction, the system can be designed
to support alternative approaches via the inputs. This effectively
defers and delegates the decision on the choice of methodology
to the end user.

CLASSICAL AI—ABSTRACTION IN MODEL DESIGN
Designing flexible models is an imperative in the fast-paced
world of actuaries these days. This is an area where effective ab-
stractions can be used to enhance flexibility of the system. An-
other important corollary of the pace of modeling requirements
and ERM best practices is the uniformity of models across the
enterprise. To achieve this, models should be designed leverag-
ing abstractions that support flexibility3 for different uses/pur-
poses. We illustrate with a relatively simple example. Consider
a model that at any point in time evaluates a call option on an
index.4 Mathematically, the formula for a European call on an
underlying S with strike K in the generalized Black-Scholes5

model is C(t,T;) given by:

In the formulae above, Y(t,T) is the yield from time t to T, and
Σt,T is the “(implied) volatility” of the forward price of the index.
The forward price of an index (underlying) S, is defined as

 DECEMBER 2016 PREDICTIVE ANALYTICS AND FUTURISM | 19

��t� �� ����� �� � ��t�N�d�� � ��������������N�d��

where ��� � �������� �����������������������
����√����� � �� � �� � ����√� � t����������������������������

F��t, T� ≔ S�t�
P�t, T�

Abstractions & Working ...

where P(t,T) is the price at time t of a zero-coupon bond paying
a unit amount of currency at time T defined by P(t,T)=e-(T-t)Y(t,T) .
This general model is actually more ideal for modeling purposes
as the yield curve at any projection time step, t,

is typically either an input or internally generated in actuarial
models.

Under the classical Black-Scholes model, the formula for a call
on the a stock index S is given by

Where the interest rate between t and T is assumed to be the
constant short rate, rt, and the (implied) volatility of the stock
index S between t and T is σt,T.

Though both models are idealizations of reality, the modeling
needn’t be held-up over uncertainties/differences of opinion

about what to implement. This is because one can find an ab-
straction that can handle both approaches making any debate
essentially irrelevant to model development. To see this, it suf-
fices to note the relationship between the two approaches (or
formulae). By inspection of the formulae in (2) and (1), the
following relationships can be inferred:

• Y(t,T)=rt —That is, the generalized model uses the yield be-
tween projection time step and maturity, whereas the clas-
sic model uses a constant short rate (could be proxied by the
short end of the yield curve for example)

• Σt,T= σt,T —That is, for the generalized model, Σt,T is the “im-
plied volatility” of the forward price of the underlying index,
(i.e., the variable

 which incorporates the volatility in interest rates), whereas
for the classical model, σt,T is the “implied volatility” of the
underlying index, S(t).

Consequently, building model components that utilize the fol-
lowing input:

• Projection time, t;

• Time of call expiry,T;

• The value of stock index at time projection time step, S(t);

• The strike price, K;

• Implied volatility parameter—this would be Σt,T for the gen-
eralized pricing formula and σt,T for the classical pricing for-
mula; and

• Interest rate parameter—this would be Y(t,T) for the general
case and rt for the classical case,

should be able to accommodate either approach based on the
input structure (focus will be on the raw input structure here):

• Have a volatility surface which is a two dimensional matrix
structure, the money-ness parameter and τ is
the time to maturity; and

• At any projection time step have a parameter setting proce-
dure that determines how to source the values:

• In the case of classical Black-Scholes approach, choose the
point on yield curve that will be used as short rate (default
to the three-month rate, for example), otherwise, for the
generalized case, choose the yield with tenor equal to matu-
rity. If interpolation of the yield curve is required, utilize an
interpolation function to do so.

• For volatility, we would expect the user to enter the correct
projected “implied volatility surface” corresponding to the
approach desired, i.e., to use the classical paradigm, the in-
put would be the projected surface for the stock index,
whereas in the generalized case, it would be that of the for-
ward price of the index.

• This structure naturally handles instances where the
surface is flat along one or both dimensions of (mon-
ey-ness) and τ (term structure).

From a model configuration perspective, we will expose a con-
figuration/input to the user, e.g., whether to use classical or gen-
eralized formula and in the case of the classical, which point on
the yield curve to use as proxy for the “constant replicating short
rate.” The above approach unifies both methodologies giving
the user the flexibility to ultimately develop their assumptions

In model building projects for
example, there is potential to
get unnecessarily held up over
choice of methodology but with
the appropriate abstraction, the
system can be designed to support
alternative approaches. ...

20 | DECEMBER 2016 PREDICTIVE ANALYTICS AND FUTURISM

��t� �� ����� � ��t�N�d�� � ��������N�d���

where ��� � �������� ������������� ������
����√����� � �� � �� � ����√� � ��������������������������

Σ ��� � �� where
�
� is

Σ ��� � �� where
�
� is

Σ ��� � �� where
�
� is

and corresponding inputs (hence methodology).6 A very unpro-
ductive approach in our opinion is to create a tailored solution
for one case only to later have to “change” it to another case.
Consequently, by pushing the decision to the user (via inputs),
time as well as energy is saved.

Finally, this example also illustrates how a modeling functional-
ity in particular and models in general can support sundry mod-
eling uses, e.g., pricing, valuation, risk management, etc. In par-
ticular, more sophisticated volatility assumptions may be utilized
for pricing purposes compared to for valuation purposes and the
abstraction handles each approach in the same generic way.

MACHINE LEARNING SYSTEMS
What is machine learning? At the highest level of abstraction, this
is a mechanism of creating systems that performs a task through
processing of data without being explicitly programmed. The
concept is aptly summarized in Mitchell T (1997): “A computer
program is said to learn from experience E with respect to some
class of tasks T and performance measure P if its performance at
tasks in T, as measured by P, improves with experience E.”

The experience relates to a data processing step which starts with
a data abstraction using a generic vector x=(x1,…,xNfeat) where
Nfeat represents the number of features for each data point. For
example, to approximate the rate of inflation as a function of the
90-day and the one-year treasury rates, we have x=(x1,x2), where
x1,x2 represents the 90-day and one-year rates respectively.

Next, a helpful abstraction is to consider the different observa-
tions of x, with the processing of each observation constituting
the experience E. Using subscripts to denote the observation
number so that

��=�x��, … , x�������
represents the kth input observation, an abstract representation
of input data to a machine learning system is a matrix (or a table),

� � �
��⋮

�����
� � �

x�� ⋯ x������⋮ ⋱ ⋮
x����� ⋯ x����

�����
�	.

In a supervised machine learning context, another input is the
actual values corresponding to each of the input data observa-
tions. In our inflation prediction problem, these would corre-
spond to the inflation corresponding to each 90-day and one-
year treasury rate observation. We can represent the output a
matrix, Y, with Nobs rows, each row corresponding to a data ob-
servation, i.e.,

where Nout is the number of components of the output. In our
inflation prediction case, Nout=1 and Y is a column vector.

Though machine learning encompasses more than artificial
neural networks (ANNs), we will focus on ANNs as it is the
approach to AI outside the classical methodology that is inspired
(albeit in a very simplified way) on the working of the brain.
In that regard, there are different artificial neural network ar-
chitectures, with a common architecture being the feed-forward
architecture. The machine learning problem reduces to finding
an approximating function that performs the task T.7 There are
many libraries that provide implementations for the actual train-
ing step which is the iterative estimation of parameters (weights
of the neurons in network) of the approximation function. In
these settings, the user needs to specify the number of layers in
the neural network as well as the number of neurons per layer.8

This suggests a data structure of a vector

�=�n�, … , n������� n�
where represents the number of neurons in the k-th layer and
Nlayer represents the number of layers in the network. With this
abstraction we have a blueprint for engineering a neural net-
work system whose configuration is driven by inputs including
X, Y and n. In so doing, we have abstracted away the low level
details of the heavy lifting that would be carried out by a ma-
chine learning engine (e.g., an R package like neuralnet, Python
package like scikit-learn, or first principle implementation) and
all a user needs to utilize the system would be the data input data
structure.

BIOLOGICAL NEURAL NETWORKS/
MACHINE INTELLIGENCE
One observation from the previous section is that abstractions
play a key role in the world of traditional ANNs from the ge-
neric input structure to the generic processing of each input/
observation. In this section we point out the fact that the brain
itself is a big abstraction leveraging mechanism.

As described in the article “2036: An Actuarial Odyssey with AI” by
Attimu and Robidoux (Predictive Analytics and Futurism, July 2016),
Machine Intelligence systems attempt to model how the brain
works with the Hierarchical Temporal Memory (HTM) framework
developed by Jeff Hawkins of numenta.org. As noted in Hawkins,
et. al. (2016), Classic AI and ANNs are designed to solve specific
problems, e.g., the model component and ANN structure illustrat-
ed earlier. The biology of the neocortex, which occupies about 75
percent10 of the brain’s volume, is the basis of (HTM). Though one
could be tempted to think that the neo cortex of the brain has very
different algorithms for hearing, vision, touch, and other senses,
this is not the case. The brain utilizes common algorithms for vi-
sion, hearing, touch, language and behavior.11 Within the context of

 DECEMBER 2016 PREDICTIVE ANALYTICS AND FUTURISM | 21

� � �
��⋮

�����
� � �

y�� ⋯ y�����⋮ ⋱ ⋮
y����� ⋯ y��������

�,

�=�n�, … , n������� n�
,

this article, we can infer that though the former approaches (classi-
cal AI and ANNs) do admit abstractions, these abstractions are not
powerful enough to generalize the cognitive processes of the brain.
In fact, the brain’s function is probably the best example of the use
of abstraction to create a generalized computing framework.

Knowledge representation (representing facts and relationships in
the world) is difficult using traditional computing approaches. The
brain’s approach to knowledge representation utilizes a data struc-
ture called Sparse Distributed Representations (SDRs). The SDR
is the perfect example of the brain using data abstraction to abstract
different sensory inputs into a common data structure. Just like a
computer word, an SDR is made up of 0 and 1 bits. Unlike comput-
er information, which could be represented using 8, 32, or 64 bits
and for which semantic meaning of the information is captured in
the bit representation as a whole, an SDR is made up of thousands
of bits and they are sparsely activated (i.e., a small fraction of the
bits are 1s) and each bit contributes to the semantic meaning of the
representation. The SDR representation has some very powerful
and useful properties including being robust to noise.

To illustrate the difference between sparse and dense representa-
tions, consider the ASCII code for the letter ‘x’ which is 01111000.
When we flip the 4th digit, we obtain the representation 01101000
which corresponds to the letter ‘h.’ This illustrates the fact that
there is no semantic meaning inherent in the individual bits, but
in the collection of all the bits. This representation is not robust to
noise. On the other hand, consider an SDR representation scheme
which consists of 1000 bits of which only 1 percent are 1s. The
bits of SDRs carry semantic information. For example, the posi-
tions in the SDR could represent different characteristics of class
of data represented. To illustrate, consider sound data where bits
would capture pitch, amplitude, etc. Furthermore, two SDR’s that

are semantically similar will have overlaps in their “on” (“1”) bits.
Consider the information encapsulated by two SDRs shown below:

SDR� � ��
����	����

	
SDR� � ��

����	����

 There is an overlap in position of 80 percent of the “1” bits. Since
the individual bits in an SDR have meaning, the x and y are closer
semantically than x and another data point, z, for example, whose
“1” bit positions overlap with 50 percent of those of x. In fact, SDRs
have very important mathematical properties that traditional data
structures lack and which make them a particularly powerful ab-
straction of information for modeling cognitive processes. One
important property is their robustness to noise. Indeed, a subset of
the on (“1’) bit positions can be used to identify an SDR with high
accuracy.12 For details we refer the reader to Hawkins, et. al. (2016).

We revisit our earlier point about the cognitive (computation-
al) processes in the neocortex being homogenous. The key to
learning via the neocortex of the brain is that every sense is
responsible for putting its information into a sparse distribut-
ed representation (SDR). The SDR must capture the import-
ant characteristics for the task. At this point, the brain doesn’t
have to worry about what created the data (SDR). It only has
to concern itself with recognizing patterns. In effect, the details
of the specific types of information input are abstracted away
via SDRs. Consequently, a general algorithm can work on dif-
ferent types of cognitive processes e.g., smell, sight, touch, etc.
A great example that illustrates this idea is the Brainport which
is a sensor that sits upon the top of the tongue and allows blind
individuals to “see” using the tongue.13

22 | DECEMBER 2016 PREDICTIVE ANALYTICS AND FUTURISM

Abstractions & Working ...

Bryon Robidoux, FSA, is director and actuary,
at AIG in Chesterfield, Mo. He can be reached at
Bryon.Robidoux@aig.com.

REFERENCES

1 Kerievsky J, Refactoring to Patterns, Addison Wesley, 2005

2 Esposito D and Saltarello A, Microsoft .NET: architecting Applications for the Enterprise,
2nd Ed , Microsoft Press, 2014.

3 http://dictionary.reference.com/browse/abstraction

4 https://en.wikipedia.org/wiki/Abstraction_(computer_science)

5 Bjork T, Arbitrage Theory in Continuous Time, 3rd Ed, Oxford Finance, 2009

6 Jeff Hawkins , On Intelligence, Times Books, 2005

7 Kaplan J, 2015. Humans Need Not Apply: A Guide to Wealth and Work in the Age of
Artificial Intelligence, New Haven: Yale University Press

8 Awad M and Khana R, Eff icient Learning Machines, Apress Open, 2016

9 https://en.wikipedia.org/wiki/Brainport

10 http://numenta.com/assets/pdf/whitepapers/hierarchical-temporal-memory-corti-
cal-learning-algorithm-0.2.1-en.pdf

11 Mitchell, T. Machine Learning, McGraw Hill,1997

12 Attimu D and Robidoux B, PAF Newsletter, Issue 13, July 2016

13 Hawkins, J. et al. 2016. Biological and Machine Intelligence. Release 0.4. Accessed at
http://numenta.com/biological-and-machine-intelligence

14 K. Hornik et al, Multilayer feedforward networks are universal approximators. Neural
Networks, 2(5): 359-366, 1989.

15 Hagan T et al, Neural Network Design, 2nd Ed, 2016.

Dodzi Attimu, FSA, CERA, CFA, MAAA, Ph.D., is
director and actuary at Prudential Financial Inc. He
can be contacted at dodzi.attimu@prudential.com.

ENDNOTES

1 The term is borrowed from Kaplan(2015)

2 In this article, we consider configurations as inputs

3 This is related to the transformation τ← or τ discussed earlier

4 This could be part of an Equity-Indexed Annuity projection engine

5 Unlike the classical Black-Scholes model that assumes constant (deterministic) interest
rates, the generalized model dispenses of that restriction, being valid under stochastic
interest rate assumption. See for example, pages 406-409 in [5]

6 It is well known that both approaches are simplifications and may not be appropriate
for some modeling situations

7 See Hornik et al (1989)

8 For an introduction to neural networks, see Hagan et al (2016).

9 Other things that might be exposed to input include the performance measure P and
other lower level implementation choices that are part of the core machine learning
engine API employed

10 See Hawkings et al (2016)

11 This was first proposed by Vernon Mountcastle in 1979 (See [13])

12 In fact the human brain seems to identify entities with just a subset of information e.g.
One may be able to identity another’s voice even if the voice is in a noisy background.

13 See [9]. Note that this example does not explicitly rely on the abstractions of HTM per
say, it and is evidence of generality of cognitive algorithms utilized by the brain.

 DECEMBER 2016 PREDICTIVE ANALYTICS AND FUTURISM | 23

The pattern recognition and learning is done within Hierar-
chical Temporal Memory (HTM). This is a perfect example
of function abstraction in the brain. Each level of the hier-
archy works with the SDR data structure and performs the
same learning algorithm. The difference is the level of the
information. Imagine learning a language, you start by learn-
ing letters. You then learn words and then finally sentenc-
es. Each one of the learning tasks would be at each level in
the hierarchy. Abstracting the learning in this way creates a
generalized algorithm which reduces the training time and
decreases the memory usage compared to using traditional
methods of data processing.

The pattern recognition is done by first learning spatial patterns,
which constitutes learning bits that often appear together. The
temporal patterns learn how the spatial patterns appear through-
out time. After these patterns have been learned it can start using
them to make inference on new data. These inferences can be used
to predict what is likely to occur next. The nice part of this design
is that you don’t have to separate learning from inference. They
feed off of each other with this design. In the Numenta Platform
for Intelligent Computing (NUPIC) library, encoders are used to
change your data into an SDR. You feed the SDR to the Spatial
Pooler and Temporal Pooler to start the learning process.

CONCLUSION
Abstractions are not only a means to create flexible and ro-
bust systems; they also help our understanding of concepts and
how they relate to each other. Designing software solutions
requires the use of appropriate abstractions to make systems
both manageable and easy to use. From classical software to
more modern AI oriented software, thinking in terms of ap-
propriate abstractions helps engineer more effective solutions
to improve the human-machine collaboration we will increas-
ingly see in white-collar work in general and in actuarial work
in particular. n

	PredictiveAnalyticsand FuturismISSUE 14 • DECEMBER 2016
	From the Editor: Insightsfrom a Dead Salmon!
	Chairperson’s Corner:On Volunteering,Learning, and a Sense ofCommunity
	Looking Back and Ahead
	Making PredictiveAnalytics Our Own
	Deciding What toResearch: How to Spotand Avoid Bias
	Five Myths andFacts about ArtificialIntelligence
	Abstractions & WorkingEffectively AlongsideArtificial Intellects
	Machine Learning: AnAnalytical Invitation toActuaries
	Use Tree-basedAlgorithm for PredictiveModeling in Insurance
	Creating a Useful TrainingData Set for PredictiveModeling
	The Random GLMAlgorithm: A BetterEnsemble?
	Collaborative Filtering forMedical Conditions
	Getting Started withDeep Learning andTensorFlow
	Guide to Deep Learning
	Introduction to UsingGraphical ProcessingUnits for Variable AnnuityGuarantee Modeling

