
 

 



guage (e.g., C++, Java, C#) is an abstraction of a lower level 
language (assembly language). The user at the higher level 
language layer doesn’t have to worry about the low level as-
sembly language layer. Domain specific languages (DSLs) are 
also higher levels of abstraction of lower level languages that 
process them. In the field of artificial intelligence, the highest 
level of abstraction would be natural language.

2 Flexible Implementation—A direct consequence of (i) above 
is the opportunity to carve out the specific implementation 
details and appropriately deal with them in a lower layer. In 
a solution that outputs data for example, one could have an 
abstract representation of the data and deal with the details 
of the various physical output formats like, Excel, JSON, 
HTML, etc. The flexibility stems from the fact that different 
implementations can be built for the same general purpose.

Different layers of abstraction could be identified for a given con-
text/scenario. Typically, (i) would represent a higher level of ab-
straction and (ii) a lower level of abstraction. But it may be neces-
sary, to further carve out a lower level of abstraction from (ii) and 
so on. In addition, in the programming language example noted 
in (i), an assembly language is a level of abstraction above the ma-
chine language (a language whose syntax consists of 0’s and 1’s). 

In software development, one can identify three types of ab-
stractions: data abstraction, procedural abstraction and config-
uration abstraction. Data abstraction is concerned with unifying 
different input sources and coming up with a simplified and ge-
neric representation. Procedure abstraction is concerned with 
defining different types of functionality in generic ways without 
specifying the details. For example, if the actuary wants to value 
a future, swap or option, they define a common way of valuing 
a derivative. The details of valuing each individual are ignored 
at this level (of abstraction). This allows the ability to design 
functionality without getting overwhelmed in details and allows 
for easier extension to other types of derivatives in the future. 
Configuration abstraction deals with changing the behavior of 
the software without requiring more code modifications. At its 
simplest level, this minimizes or in some cases avoids completely 
the coding of any details needed for the model to run.

FIXED AND VARIABLE PARTS OF 
SOFTWARE SOLUTION
One can classify AI into the categories of classical, machine 
learning and machine intelligence. At the highest level of ab-
straction, AI is software. In that regard, let’s assume we have a 
system’s logic as SysLogic,  and the input (structure) that goes with 
the logic, SysInput2.  That will constitute a logic-input pair, i.e., 
(SysLogic,SysInput). For a given software system, Sys, we can consid-
er the input structure as a function of the logic, i.e.,  

I n the article “2036: An Actuarial Odyssey with AI” that ap-
peared in the July 2016 issue of Predictive Analytics and Fu-
turism, we explored the impact of artificial intelligence (AI) 

on actuarial work in particular and white collar work in general. 
Though there is the tendency to sensationalize the apocalyptic 
scenarios vis-à-vis, an “AI-calypse,” there is a still a possibility 
(even if small) that net outcomes could be, well, apocalyptic (e.g., 
drastic reduction in employment in traditional jobs without oth-
ers springing up, leading to social upheavals). Although the full 
implications cannot be forecast with certainty, we can say with 
certainty that the humans will increasingly continue to work 
alongside machines (artificial intellects1). Without a good frame-
work to conceptualize and implement the partnership between 
humans and machines, very suboptimal utilization of technology 
can occur. This article specifically is about how abstraction, an 
important software development concept, can help in this re-
gard. In addition, while there will be more emphasis on abstrac-
tions in the framework of software, the concept of abstraction is 
not limited to that domain.

ABSTRACTION
The concept of abstraction is ubiquitous. In everyday commu-
nication, it is summed up in the notion of communication based 
on one’s audience. Another use of this notion is captured in the 
phrase “keeping information at a high-level.” One definition of 
the word abstraction (See [3]) is: “The process of formulating 
generalized ideas or concepts by extracting common qualities 
from specific examples.”  Informally, abstraction can be said to 
be a way of specifying the “what” rather than the “how.” In soft-
ware development circles, abstractions are a means of managing 
complexity by thinking of software in terms of levels where each 
level has the right amount of information with more detailed 
information residing in the lower levels of the hierarchy. Ab-
stractions can serve two related purposes:

1 Generalization—The purpose here is to focus attention on 
relevant components in a given layer. By abstracting away the 
lower level details, one can focus on the key components in 
a given layer. As an example, a high-level programming lan-
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where τ is the function that translates the logic of system to its 
input structure.

Given two software designs A and B to solve a problem, we 
would have their mathematical representation as

and

respectively. The importance of the representation is that for a 
given system, there is a correspondence between the software 
code and the input structure. 

Conversely, observe that given an input structure, there is a logical 
model specification that works with the structure to meet system 
requirements. In other words, given an input structure SysInput, one 
can obtain the corresponding logic, via the inverse transformation 
SysLogic=τ←(SysInput). This begs the question whether there is a bet-
ter starting point viz  τ← and τ. Using a user experience (UX) par-
adigm (See [2]), the input design/structure should come first. In 
our context, it is the input structure that should be mapped first, 
i.e., τ←, should be the first focus as it maps the input to the logic. 
In addition, the exact details of how the input is structured can 
be abstracted away as well into another layer where emphasis is 
placed first on what data is required before getting to how (where) 
it is stored (e.g., txt file, xml, etc). We will consider the coded logic 
as the fixed part of the system and the input as the variable part. 
Designing a system where different behavior can be achieved via 
changes to input enhances flexibility and transparency in the use 

of the system. In model building projects for example, there is 
potential to get unnecessarily held up over choice of methodology 
but with the appropriate abstraction, the system can be designed 
to support alternative approaches via the inputs. This effectively 
defers and delegates the decision on the choice of methodology 
to the end user.

CLASSICAL AI—ABSTRACTION IN MODEL DESIGN
Designing flexible models is an imperative in the fast-paced 
world of actuaries these days. This is an area where effective ab-
stractions can be used to enhance flexibility of the system. An-
other important corollary of the pace of modeling requirements 
and ERM best practices is the uniformity of models across the 
enterprise. To achieve this, models should be designed leverag-
ing abstractions that support flexibility3 for different uses/pur-
poses. We illustrate with a relatively simple example. Consider 
a model that at any point in time evaluates a call option on an 
index.4 Mathematically, the formula for a European call on an 
underlying S with strike K in the generalized Black-Scholes5  

model is C(t,T;) given by:

 
In the formulae above, Y(t,T) is the yield from time t to T, and 
Σt,T is the “(implied) volatility” of the forward price of the index. 
The forward price of an index (underlying) S, is defined as  
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where P(t,T) is the price at time t of a zero-coupon bond paying 
a unit amount of currency at time T defined by P(t,T)=e-(T-t)Y(t,T) . 
This general model is actually more ideal for modeling purposes 
as the yield curve at any projection time step, t, 

is typically either an input or internally generated in actuarial 
models.

Under the classical Black-Scholes model, the formula for a call 
on the a stock index S is given by

Where the interest rate between t and T is assumed to be the 
constant short rate, rt, and the (implied) volatility of the stock 
index S between t and T is σt,T.

Though both models are idealizations of reality, the modeling 
needn’t be held-up over uncertainties/differences of opinion 

about what to implement. This is because one can find an ab-
straction that can handle both approaches making any debate 
essentially irrelevant to model development. To see this, it suf-
fices to note the relationship between the two approaches (or 
formulae). By inspection of the formulae in (2) and (1), the 
following relationships can be inferred:

•  Y(t,T)=rt —That is, the generalized model uses the yield be-
tween projection time step and maturity, whereas the clas-
sic model uses a constant short rate (could be proxied by the 
short end of the yield curve for example)

• Σt,T= σt,T —That is, for the generalized model, Σt,T is the “im-
plied volatility” of the forward price of the underlying index, 
(i.e., the variable   

 which incorporates the volatility in interest rates), whereas 
for the classical model, σt,T  is the “implied volatility” of the 
underlying index, S(t).

Consequently, building model components that utilize the fol-
lowing input:

• Projection time, t;

• Time of call expiry,T;

• The value of stock index at time projection time step, S(t);

• The strike price, K;

• Implied volatility parameter—this would be Σt,T for the gen-
eralized pricing formula and  σt,T for the classical pricing for-
mula; and

• Interest rate parameter—this would be Y(t,T) for the general 
case and rt for the classical case,

should be able to accommodate either approach based on the 
input structure (focus will be on the raw input structure here):

• Have a volatility surface which is a two dimensional matrix 
structure,                         the money-ness parameter and τ is 
the time to maturity; and

• At any projection time step have a parameter setting proce-
dure that determines how to source the values:

• In the case of classical Black-Scholes approach, choose the 
point on yield curve that will be used as short rate (default 
to the three-month rate, for example), otherwise, for the 
generalized case, choose the yield with tenor equal to matu-
rity. If interpolation of the yield curve is required, utilize an 
interpolation function to do so.

• For volatility, we would expect the user to enter the correct 
projected “implied volatility surface” corresponding to the 
approach desired, i.e., to use the classical paradigm, the in-
put          would be the projected surface for the stock index, 
whereas in the generalized case, it would be that of the for-
ward price of the index.

•  This structure naturally handles instances where the 
surface is flat along one or both dimensions of    (mon-
ey-ness) and τ (term structure).

From a model configuration perspective, we will expose a con-
figuration/input to the user, e.g., whether to use classical or gen-
eralized formula and in the case of the classical, which point on 
the yield curve to use as proxy for the “constant replicating short 
rate.” The above approach unifies both methodologies giving 
the user the flexibility to ultimately develop their assumptions 

In model building projects for 
example, there is potential to 
get unnecessarily held up over 
choice of methodology but with 
the appropriate abstraction, the 
system can be designed to support 
alternative approaches. ...
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and corresponding inputs (hence methodology).6 A very unpro-
ductive approach in our opinion is to create a tailored solution 
for one case only to later have to “change” it to another case. 
Consequently, by pushing the decision to the user (via inputs), 
time as well as energy is saved.

Finally, this example also illustrates how a modeling functional-
ity in particular and models in general can support sundry mod-
eling uses, e.g., pricing, valuation, risk management, etc. In par-
ticular, more sophisticated volatility assumptions may be utilized 
for pricing purposes compared to for valuation purposes and the 
abstraction handles each approach in the same generic way.

MACHINE LEARNING SYSTEMS
What is machine learning? At the highest level of abstraction, this 
is a mechanism of creating systems that performs a task through 
processing of data without being explicitly programmed. The 
concept is aptly summarized in Mitchell T (1997): “A computer 
program is said to learn from experience E with respect to some 
class of tasks T and performance measure P if its performance at 
tasks in T, as measured by P, improves with experience E.”

The experience relates to a data processing step which starts with 
a data abstraction using a generic vector x=(x1,…,xNfeat)  where 
Nfeat  represents the number of features for each data point. For 
example, to approximate the rate of inflation as a function of the 
90-day and the one-year treasury rates, we have x=(x1,x2), where 
x1,x2 represents the 90-day and one-year rates respectively.

Next, a helpful abstraction is to consider the different observa-
tions of x, with the processing of each observation constituting 
the experience E. Using subscripts to denote the observation 
number so that

��=�x��, … , x������� 
represents the kth input observation, an abstract representation 
of input data to a machine learning system is a matrix (or a table),

� � �
��⋮

�����
� � �

x�� ⋯ x������⋮ ⋱ ⋮
x����� ⋯ x����

�����
�	. 

 
In a supervised machine learning context, another input is the 
actual values corresponding to each of the input data observa-
tions. In our inflation prediction problem, these would corre-
spond to the inflation corresponding to each 90-day and one-
year treasury rate observation. We can represent the output a 
matrix, Y,  with Nobs rows, each row corresponding to a data ob-
servation, i.e., 

where Nout is the number of components of the output. In our 
inflation prediction case, Nout=1 and Y is a column vector.

Though machine learning encompasses more than artificial 
neural networks (ANNs), we will focus on ANNs as it is the 
approach to AI outside the classical methodology that is inspired 
(albeit in a very simplified way) on the working of the brain. 
In that regard, there are different artificial neural network ar-
chitectures, with a common architecture being the feed-forward 
architecture. The machine learning problem reduces to finding 
an approximating function that performs the task T.7 There are 
many libraries that provide implementations for the actual train-
ing step which is the iterative estimation of parameters (weights 
of the neurons in network) of the approximation function. In 
these settings, the user needs to specify the number of layers in 
the neural network as well as the number of neurons per layer.8 

This suggests a data structure of a vector 

�=�n�, … , n�������  n� 
where     represents the number of neurons in the k-th layer and 
Nlayer represents the number of layers in the network. With this 
abstraction we have a blueprint for engineering a neural net-
work system whose configuration is driven by inputs including  
X, Y and n. In so doing, we have abstracted away the low level 
details of the heavy lifting that would be carried out by a ma-
chine learning engine (e.g., an R package like neuralnet, Python 
package like scikit-learn, or first principle implementation) and 
all a user needs to utilize the system would be the data input data 
structure.

BIOLOGICAL NEURAL NETWORKS/
MACHINE INTELLIGENCE
One observation from the previous section is that abstractions 
play a key role in the world of traditional ANNs from the ge-
neric input structure to the generic processing of each input/
observation. In this section we point out the fact that the brain 
itself is a big abstraction leveraging mechanism.

As described in the article “2036: An Actuarial Odyssey with AI” by 
Attimu and Robidoux (Predictive Analytics and Futurism, July 2016), 
Machine Intelligence systems attempt to model how the brain 
works with the Hierarchical Temporal Memory (HTM) framework 
developed by Jeff Hawkins of numenta.org. As noted in Hawkins, 
et. al. (2016), Classic AI and ANNs are designed to solve specific 
problems, e.g., the model component and ANN structure illustrat-
ed earlier. The biology of the neocortex, which occupies about 75 
percent10 of the brain’s volume, is the basis of (HTM). Though one 
could be tempted to think that the neo cortex of the brain has very 
different algorithms for hearing, vision, touch, and other senses, 
this is not the case. The brain utilizes common algorithms for vi-
sion, hearing, touch, language and behavior.11 Within the context of 
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this article, we can infer that though the former approaches (classi-
cal AI and ANNs) do admit abstractions, these abstractions are not 
powerful enough to generalize the cognitive processes of the brain. 
In fact, the brain’s function is probably the best example of the use 
of abstraction to create a generalized computing framework.

Knowledge representation (representing facts and relationships in 
the world) is difficult using traditional computing approaches. The 
brain’s approach to knowledge representation utilizes a data struc-
ture called Sparse Distributed Representations (SDRs). The SDR 
is the perfect example of the brain using data abstraction to abstract 
different sensory inputs into a common data structure. Just like a 
computer word, an SDR is made up of 0 and 1 bits. Unlike comput-
er information, which could be represented using 8, 32, or 64 bits 
and for which semantic meaning of the information is captured in 
the bit representation as a whole, an SDR is made up of thousands 
of bits and they are sparsely activated (i.e., a small fraction of the 
bits are 1s) and each bit contributes to the semantic meaning of the 
representation. The SDR representation has some very powerful 
and useful properties including being robust to noise.

To illustrate the difference between sparse and dense representa-
tions, consider the ASCII code for the letter ‘x’ which is 01111000. 
When we flip the 4th digit, we obtain the representation 01101000 
which corresponds to the letter ‘h.’ This illustrates the fact that 
there is no semantic meaning inherent in the individual bits, but 
in the collection of all the bits. This representation is not robust to 
noise. On the other hand, consider an SDR representation scheme 
which consists of 1000 bits of which only 1 percent are 1s. The 
bits of SDRs carry semantic information. For example, the posi-
tions in the SDR could represent different characteristics of class 
of data represented. To illustrate, consider sound data where bits 
would capture pitch, amplitude, etc. Furthermore, two SDR’s that 

are semantically similar will have overlaps in their “on” (“1”) bits. 
Consider the information encapsulated by two SDRs shown below:

SDR� � ������������������������������������������������
����	����

	
SDR� � ������������������������������������������������

����	����
 

 There is an overlap in position of 80 percent of the “1” bits. Since 
the individual bits in an SDR have meaning, the x and y are closer 
semantically than x and another data point, z, for example, whose 
“1” bit positions overlap with 50 percent of those of x. In fact, SDRs 
have very important mathematical properties that traditional data 
structures lack and which make them a particularly powerful ab-
straction of information for modeling cognitive processes. One 
important property is their robustness to noise. Indeed, a subset of 
the on (“1’) bit positions can be used to identify an SDR with high 
accuracy.12 For details we refer the reader to Hawkins, et. al. (2016).

We revisit our earlier point about the cognitive (computation-
al) processes in the neocortex being homogenous. The key to 
learning via the neocortex of the brain is that every sense is 
responsible for putting its information into a sparse distribut-
ed representation (SDR). The SDR must capture the import-
ant characteristics for the task. At this point, the brain doesn’t 
have to worry about what created the data (SDR). It only has 
to concern itself with recognizing patterns. In effect, the details 
of the specific types of information input are abstracted away 
via SDRs. Consequently, a general algorithm can work on dif-
ferent types of cognitive processes e.g., smell, sight, touch, etc. 
A great example that illustrates this idea is the Brainport which 
is a sensor that sits upon the top of the tongue and allows blind 
individuals to “see” using the tongue.13 
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ENDNOTES

1 The term is borrowed from Kaplan(2015)

2 In this article, we consider configurations as inputs

3 This is related to the transformation τ← or τ discussed earlier  

4 This could be part of an Equity-Indexed Annuity projection engine

5 Unlike the classical Black-Scholes model that assumes constant (deterministic) interest 
rates, the generalized model dispenses of that restriction, being valid under stochastic 
interest rate assumption. See for example, pages 406-409 in  [5]

6 It is well known that both approaches are simplifications and may not be appropriate 
for some modeling situations

7 See Hornik et al (1989)

8 For an introduction to neural networks, see Hagan et al (2016). 

9 Other things that might be exposed to input include the performance measure P and 
other lower level implementation choices that are part of the core machine learning 
engine API employed

10 See Hawkings et al (2016)

11 This was first proposed by Vernon Mountcastle in 1979 (See [13])

12 In fact the human brain seems to identify entities with just a subset of information e.g. 
One may be able to identity another’s voice even if the voice is in a noisy background.

13 See [9]. Note that this example does not explicitly rely on the abstractions of HTM per 
say, it and is evidence of generality of cognitive algorithms utilized by the brain.
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The pattern recognition and learning is done within Hierar-
chical Temporal Memory (HTM). This is a perfect example 
of function abstraction in the brain. Each level of the hier-
archy works with the SDR data structure and performs the 
same learning algorithm. The difference is the level of the 
information. Imagine learning a language, you start by learn-
ing letters. You then learn words and then finally sentenc-
es. Each one of the learning tasks would be at each level in 
the hierarchy. Abstracting the learning in this way creates a 
generalized algorithm which reduces the training time and 
decreases the memory usage compared to using traditional 
methods of data processing.

The pattern recognition is done by first learning spatial patterns, 
which constitutes learning bits that often appear together. The 
temporal patterns learn how the spatial patterns appear through-
out time. After these patterns have been learned it can start using 
them to make inference on new data. These inferences can be used 
to predict what is likely to occur next. The nice part of this design 
is that you don’t have to separate learning from inference. They 
feed off of each other with this design. In the Numenta Platform 
for Intelligent Computing (NUPIC) library, encoders are used to 
change your data into an SDR. You feed the SDR to the Spatial 
Pooler and Temporal Pooler to start the learning process.

CONCLUSION
Abstractions are not only a means to create flexible and ro-
bust systems; they also help our understanding of concepts and 
how they relate to each other. Designing software solutions 
requires the use of appropriate abstractions to make systems 
both manageable and easy to use. From classical software to 
more modern AI oriented software, thinking in terms of ap-
propriate abstractions helps engineer more effective solutions 
to improve the human-machine collaboration we will increas-
ingly see in white-collar work in general and in actuarial work 
in particular.  n
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