

defined as TensorFlow compute graphs that define the order that
calculations must occur in order to calculate a model. For exam-
ple, a GLM would be defined as dot products feeding into a link
function. The graph ensures that the link function is not calculated
until the precursor dot products have been calculated. Similarly,
neural networks are layers of dot product calculations and activa-
tion functions. The graph defines the exact order of these calcula-
tions. Python code is used to define this compute graph. However,
Python would be too slow to calculate and fit these models in any
acceptable timeframe. Rather, TensorFlow transforms these com-
pute graphs into highly efficient C++ and Graphical Processing
Unit (GPU) code. Deep learning is very well adapted to GPUs,
and TensorFlow contains extensive support for GPUs.

INSTALLING TENSORFLOW
Because performance is paramount in deep learning, every rea-
sonable optimization has been employed in its design. Many of
these optimizations are platform specific. Currently, TensorFlow
officially supports the Macintosh OSX and Linux operating sys-
tems. Windows is not currently supported. Google suggests
using a virtual machine or Docker (a software containerization
platform) if you must make use of the Windows operating sys-
tem. At some point, TensorFlow might support windows na-
tively. However, that time has not yet arrived. Google provides
installation instructions for TensorFlow for Mac, Linux, and
Windows (using an emulator).5

It is also possible to use TensorFlow entirely from the cloud in a
web browser. This frees you from the complexities of installing
binary Python packages. Jupyter notebooks provide a convenient
web-hosted environment to program Python. IBM provides a
free Jupyter notebook that can be used directly from the web. The
Data Scientist Workbench6 is a free and open Jupyter notebook
that can be used to run the examples provided in this article.

USING TENSORFLOW
To make use of TensorFlow you must import it into Python. The
following two lines of code import TensorFlow and report what
version of it you are using.

import tensorflow as tf

print(“Tensor Flow Version: {}”.
format(tf.__version__))

The above code should report that you are using TensorFlow
0.8 or higher. The examples provided with this article were all
created with 0.8 of TensorFlow. These examples are stored at
GitHub and will likely be updated for future versions of Ten-
sorFlow.7 The reference link refers to a deep learning class at
Washington University in St. Louis that is taught by the author
of this article.

Deep learning is a rapidly evolving machine learning tech-
nology. The world’s largest technology companies are
investing heavily in deep learning. They are sharing this

investment with the world by open sourcing their deep learning
technologies. Currently the tech titans of the world have open-
sourced the following deep learning frameworks:

•	 Amazon – Deep Scalable Sparse Tensor Network Engine
(DSSTNE)1

•	 Baidu – PArallel Distributed Deep Learning (PADDLE)2
•	 Google – TensorFlow3

•	 Microsoft – Computational Network Toolkit (CNTK)4

All of these frameworks have their complete source code avail-
able on GitHub, which is a web platform that allows everyone
from individual programmers to Fortune 500 companies to
share source code and collaborate. As of the late 2016 writing
of this article, DSSTNE and PADDLE both only work with the
Linux operating system. TensorFlow works both with Macin-
tosh and Linux. Not too surprisingly, Microsoft’s CNTK is the
only one of the four to support Microsoft Windows. The plat-
forms supported by these frameworks will increase in the future.
Work is already underway for Windows support in TensorFlow.

GOOGLE’S TENSORFLOW
Since its recent introduction in 2015, TensorFlow has taken
the world of deep learning by storm. Though typically associ-
ated with deep learning, TensorFlow is actually a mathemat-
ics package specifically designed to leverage machine learning
across CPU, GPU, and grid computing. Many machine learning
models can be adapted to TensorFlow. It works best with neu-
ral network-like models, such as deep belief neural networks,
generalized linear regression (GLM), support vector machines
(SVM), and Long Short Term Memory (LSTM). While it might
be possible to adapt TensorFlow to tree-based models, such as
Random Forests or Gradient Boosting Machines (GBMs), these
are not a focus for current versions of TensorFlow.

Python is the most widely supported language for TensorFlow.
TensorFlow itself is implemented in C++, so it is also possible to
directly access TensorFlow from a less widely known C++ based
application programming interface (API). Typically, models are

Getting Started with
Deep Learning and
TensorFlow
By Jeff Heaton

42 | DECEMBER 2016 PREDICTIVE ANALYTICS AND FUTURISM

ENCODING CATEGORICAL DATA FOR
A DEEP NEURAL NETWORK
Neural networks function similarly to traditional classification
and regression models. An input vector (x) of predictors is pro-
vided to the neural network and a result (y) is returned from the
network. The data provided to the neural network’s input vector
must be encoded to numeric form. If a categorical value is a pre-
dictor, meaning it is part of the information given to the neural
network to make a prediction, then it should be encoded into
dummy variables. The following Python function can be used to
encode a dummy variable:

def encode_text_dummy(df,name):
 dummies = pd.get_dummies(df[name])
 for x in dummies.columns:
 dummy_name = “{}-{}”.format(name,x)
 df[dummy_name] = dummies[x]
 df.drop(name, axis=1, inplace=True)

For example, to encode a dummy variable named “state,” in the
dataframe “df,” use the following call:

encode_text_dummy(df, “state”)

This will remove the column “state” from your dataframe and
replace it with 50 dummy variables that represent each of the
50 U.S. states (assuming all 50 were present in your dataset).
Dummy variables replace a categorical variable with a number
of 1/0 (true/false) columns that represent the categorical value.

For each row, there would be 50 such fields, all of which would
be zero, except for the state that the row corresponds to.

If we were predicting the state, and it were on the y side of the
model, then we must encode this categorical value to an index.
The following code accomplishes this:

def encode_text_index(df,name):
 le = preprocessing.LabelEncoder()
 df[name] = le.fit_transform(df[name])
 return le.classes_

The following code would encode the state to an index:

encode_text_index(df, “state”)

Encoding to an index removes textual state abbreviations and
assigns an index to each. Rather than getting 50 dummy vari-
ables, you have a single column variable. It is important that you
not encode predictors as indexes. This will introduce bias. For
example, two states might have indexes that are very close to
each other. The distance between state indexes would convey
undesired bias information to the network. This limitation does
not exist for the output (y) values as TensorFlow simply treats
each output as a separate independent category.

ENCODING CONTINUOUS DATA FOR
A DEEP NEURAL NETWORK
Neural networks prefer their input columns to be centered near
zero. They do not need to be normally distributed, but the zero

 DECEMBER 2016 PREDICTIVE ANALYTICS AND FUTURISM | 43

centering has been shown to help with neural network accuracy.
Statistical z-scores are a great way to accomplish this. The fol-
lowing function will normalize a column to z-scores:

def encode_numeric_
zscore(df,name,mean=None,sd=None):
 if mean is None:
 mean = df[name].mean()

 if sd is None:
 sd = df[name].std()

 df[name] = (df[name]-mean)/sd

This function allows the mean and standard deviation to either
be passed in or calculated. If you are training the initial data-
set you should not provide mean and standard deviation, as you
have enough data to calculate them. However, later you might
have only a few values to generate predictions on, so it is helpful
to provide the mean and standard deviations from the original
training set. To convert the column “income” to z-scores use the
following call:

encode_numeric_zscore(df,”income”)

Later, if you wanted to normalize just a few rows, and you al-
ready knew the mean and standard deviation were 50,000 and
15,000, you would call:

encode_numeric_zscore(df,”income”, 50000,
15000)

Once all of the input columns have been normalized correctly,
you are ready to train a neural network.

TRAINING A DEEP NEURAL NETWORK
A TensorFlow network is trained using two sets of data named
x and y. The dataframe (df) must be separated into these predic-
tors (x) and the expected output (y). The following function can
be used to do this:

def to_xy(df,target):
 result = []
 for x in df.columns:
 if x != target:
 result.append(x)
 return df.as_matrix(result),df[target]

If you wanted to predict (y) the income column for the data-
frame (df) you would use the following call to separate into x
and y:

x, y = to_xy(df,”income”)

Now that the dataframe is separated, the neural network can be
created and then trained.

Getting Started with Deep Learning ...

44 | DECEMBER 2016 PREDICTIVE ANALYTICS AND FUTURISM

To create and train a neural network for classification, use the
following code:

classifier = skflow.TensorFlowDNNClassifier(
 hidden_units=[30, 20, 10],
 n_classes=3,steps=200)
classifier.fit(x, y)

The above neural network would have hidden layers with 30, 20
and 10 hidden neurons. The number of hidden neurons can affect
the accuracy of the neural network. Usually you will start with
a larger number of hidden neurons (30) and add layers working
down to a smaller number (10). This network would be able to
classify three classes, and 200 steps would be used to train it.

To create and train a neural network for regression, use the fol-
lowing code:

regressor = skflow.TensorFlowDNNRegressor(
 hidden_units=[10, 20, 10],
 steps=200)
regressor.fit(x, y)

Fitting the neural network may take a while, depending on how
many steps you have specified. The more steps, the more accu-
rate the neural network will become.

EVALUATING A DEEP NEURAL NETWORK
There are a variety of ways to evaluate a neural network. Two of
the most simple are root mean square error (RMSE) for regres-
sion and accuracy for classification. The following calculates the
RMSE score:

score = \
 np.sqrt(metrics.mean_squared_
error(regressor.predict(x),y))
print(“Final score (RMSE): {}”.
format(score))

The RMSE error simply measures the magnitude of the average
difference between the expected outcome and the actual out-
come. Lower RMSE scores are better.

Accuracy is measured similarly:

score = metrics.accuracy_score(y,
classifier.predict(x))
print(“Final score: {}”.format(score))

Accuracy is simply the percent of data items that were classified
correctly. Higher accuracy scores are better.

OTHER APPLICATIONS OF DEEP LEARNING
Deep neural networks can accomplish the same type of classifi-
cation and regression tasks that other models like support vector
machines, GLMs and decision trees are used for. While deep neu-
ral networks might sometimes provide better results than other
model types, there are two important areas where deep neural
networks really shine: computer vision and time series prediction.

Computer vision might seem like a technology more suited to
a Google self-driving car than an insurance company. However,
there are cases where computer vision can be very useful to an
insurance company. Two recent Kaggle competitions highlight-
ed these areas. The first was the Kaggle Diabetic Retinopathy
Detection.8 This challenge used predictive models to look at
retinopathy images and predict if an individual had diabetes.
Additionally, State Farm ran a Kaggle competition to analyze
images and detect distracted drivers.9 Both of these computer
vision applications could help insurers to determine risk.

Time series is another area where neural networks are partic-
ularly adept. This is because neural networks can be recurrent.
By allowing connections backwards through the neural network
they are able to learn to predict patterns in a series of inputs,
not just patterns within individual input. A neural network could
have two inputs to read the systolic and diastolic blood pressures.
However, a traditional model would always output the same for
a given reading. A recurrent neural network could detect a pat-
tern in a series of readings. Two of the most current types of re-
current neural networks are the LSTMand gated recurrent unit
(GRU) networks. Time series and neural networks will be the
topic of a future article for this newsletter. n

Jeff Heaton is a lead data scientist at RGA
Reinsurance Company in Chesterfield, Mo. He can
be reached at jheaton@rgare.com

ENDNOTES

1 https://github.com/amznlabs/amazon-dsstne

2 https://github.com/baidu/Paddle

3 https://github.com/tensorflow/tensorflow

4 https://github.com/Microsoft /CNTK

5 https://www.tensorflow.org/versions/r0.10/get_started/os_setup.html

6 https://datascientistworkbench.com/

7 https://github.com/jeff heaton/t81_558_deep_learning/blob/master/t81_558_class2_
tensor_flow.ipynb

8 https://www.kaggle.com/c/diabetic-retinopathy-detection

9 https://www.kaggle.com/c/state-farm-distracted-driver-detection

 DECEMBER 2016 PREDICTIVE ANALYTICS AND FUTURISM | 45

	PredictiveAnalyticsand FuturismISSUE 14 • DECEMBER 2016
	From the Editor: Insightsfrom a Dead Salmon!
	Chairperson’s Corner:On Volunteering,Learning, and a Sense ofCommunity
	Looking Back and Ahead
	Making PredictiveAnalytics Our Own
	Deciding What toResearch: How to Spotand Avoid Bias
	Five Myths andFacts about ArtificialIntelligence
	Abstractions & WorkingEffectively AlongsideArtificial Intellects
	Machine Learning: AnAnalytical Invitation toActuaries
	Use Tree-basedAlgorithm for PredictiveModeling in Insurance
	Creating a Useful TrainingData Set for PredictiveModeling
	The Random GLMAlgorithm: A BetterEnsemble?
	Collaborative Filtering forMedical Conditions
	Getting Started withDeep Learning andTensorFlow
	Guide to Deep Learning
	Introduction to UsingGraphical ProcessingUnits for Variable AnnuityGuarantee Modeling

