
 

 



defined as TensorFlow compute graphs that define the order that 
calculations must occur in order to calculate a model. For exam-
ple, a GLM would be defined as dot products feeding into a link 
function. The graph ensures that the link function is not calculated 
until the precursor dot products have been calculated. Similarly, 
neural networks are layers of dot product calculations and activa-
tion functions. The graph defines the exact order of these calcula-
tions. Python code is used to define this compute graph. However, 
Python would be too slow to calculate and fit these models in any 
acceptable timeframe. Rather, TensorFlow transforms these com-
pute graphs into highly efficient C++ and Graphical Processing 
Unit (GPU) code. Deep learning is very well adapted to GPUs, 
and TensorFlow contains extensive support for GPUs.

INSTALLING TENSORFLOW
Because performance is paramount in deep learning, every rea-
sonable optimization has been employed in its design. Many of 
these optimizations are platform specific. Currently, TensorFlow 
officially supports the Macintosh OSX and Linux operating sys-
tems. Windows is not currently supported. Google suggests 
using a virtual machine or Docker (a software containerization 
platform) if you must make use of the Windows operating sys-
tem. At some point, TensorFlow might support windows na-
tively. However, that time has not yet arrived. Google provides 
installation instructions for TensorFlow for Mac, Linux, and 
Windows (using an emulator).5 

It is also possible to use TensorFlow entirely from the cloud in a 
web browser. This frees you from the complexities of installing 
binary Python packages. Jupyter notebooks provide a convenient 
web-hosted environment to program Python. IBM provides a 
free Jupyter notebook that can be used directly from the web. The 
Data Scientist Workbench6 is a free and open Jupyter notebook 
that can be used to run the examples provided in this article.

USING TENSORFLOW
To make use of TensorFlow you must import it into Python. The 
following two lines of code import TensorFlow and report what 
version of it you are using.

import tensorflow as tf

print(“Tensor Flow Version: {}”.
format(tf.__version__))

The above code should report that you are using TensorFlow 
0.8 or higher. The examples provided with this article were all 
created with 0.8 of TensorFlow. These examples are stored at 
GitHub and will likely be updated for future versions of Ten-
sorFlow.7 The reference link refers to a deep learning class at 
Washington University in St. Louis that is taught by the author 
of this article.

Deep learning is a rapidly evolving machine learning tech-
nology. The world’s largest technology companies are 
investing heavily in deep learning. They are sharing this 

investment with the world by open sourcing their deep learning 
technologies. Currently the tech titans of the world have open-
sourced the following deep learning frameworks:

•	 Amazon – Deep Scalable Sparse Tensor Network Engine 
(DSSTNE)1  

•	 Baidu – PArallel Distributed Deep Learning (PADDLE)2 
•	 Google – TensorFlow3 

•	 Microsoft – Computational Network Toolkit (CNTK)4 

All of these frameworks have their complete source code avail-
able on GitHub, which is a web platform that allows everyone 
from individual programmers to Fortune 500 companies to 
share source code and collaborate. As of the late 2016 writing 
of this article, DSSTNE and PADDLE both only work with the 
Linux operating system. TensorFlow works both with Macin-
tosh and Linux. Not too surprisingly, Microsoft’s CNTK is the 
only one of the four to support Microsoft Windows. The plat-
forms supported by these frameworks will increase in the future. 
Work is already underway for Windows support in TensorFlow.

GOOGLE’S TENSORFLOW
Since its recent introduction in 2015, TensorFlow has taken 
the world of deep learning by storm. Though typically associ-
ated with deep learning, TensorFlow is actually a mathemat-
ics package specifically designed to leverage machine learning 
across CPU, GPU, and grid computing. Many machine learning 
models can be adapted to TensorFlow. It works best with neu-
ral network-like models, such as deep belief neural networks, 
generalized linear regression (GLM), support vector machines 
(SVM), and Long Short Term Memory (LSTM). While it might 
be possible to adapt TensorFlow to tree-based models, such as 
Random Forests or Gradient Boosting Machines (GBMs), these 
are not a focus for current versions of TensorFlow.

Python is the most widely supported language for TensorFlow. 
TensorFlow itself is implemented in C++, so it is also possible to 
directly access TensorFlow from a less widely known C++ based 
application programming interface (API). Typically, models are 
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ENCODING CATEGORICAL DATA FOR 
A DEEP NEURAL NETWORK
Neural networks function similarly to traditional classification 
and regression models. An input vector (x) of predictors is pro-
vided to the neural network and a result (y) is returned from the 
network. The data provided to the neural network’s input vector 
must be encoded to numeric form. If a categorical value is a pre-
dictor, meaning it is part of the information given to the neural 
network to make a prediction, then it should be encoded into 
dummy variables. The following Python function can be used to 
encode a dummy variable:

def encode_text_dummy(df,name):
    dummies = pd.get_dummies(df[name])
    for x in dummies.columns:
        dummy_name = “{}-{}”.format(name,x)
        df[dummy_name] = dummies[x]
    df.drop(name, axis=1, inplace=True)

For example, to encode a dummy variable named “state,” in the 
dataframe “df,” use the following call:

encode_text_dummy( df, “state”)

This will remove the column “state” from your dataframe and 
replace it with 50 dummy variables that represent each of the 
50 U.S. states (assuming all 50 were present in your dataset). 
Dummy variables replace a categorical variable with a number 
of 1/0 (true/false) columns that represent the categorical value. 

For each row, there would be 50 such fields, all of which would 
be zero, except for the state that the row corresponds to.

If we were predicting the state, and it were on the y side of the 
model, then we must encode this categorical value to an index. 
The following code accomplishes this:

def encode_text_index(df,name): 
    le = preprocessing.LabelEncoder()
    df[name] = le.fit_transform(df[name])
    return le.classes_

The following code would encode the state to an index:

encode_text_index(df, “state”)

Encoding to an index removes textual state abbreviations and 
assigns an index to each. Rather than getting 50 dummy vari-
ables, you have a single column variable. It is important that you 
not encode predictors as indexes. This will introduce bias. For 
example, two states might have indexes that are very close to 
each other. The distance between state indexes would convey 
undesired bias information to the network. This limitation does 
not exist for the output (y) values as TensorFlow simply treats 
each output as a separate independent category.

ENCODING CONTINUOUS DATA FOR 
A DEEP NEURAL NETWORK
Neural networks prefer their input columns to be centered near 
zero. They do not need to be normally distributed, but the zero 
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centering has been shown to help with neural network accuracy. 
Statistical z-scores are a great way to accomplish this. The fol-
lowing function will normalize a column to z-scores:

def encode_numeric_
zscore(df,name,mean=None,sd=None):
    if mean is None:
        mean = df[name].mean()      

    if sd is None:
        sd = df[name].std()   

    df[name] = (df[name]-mean)/sd

This function allows the mean and standard deviation to either 
be passed in or calculated. If you are training the initial data-
set you should not provide mean and standard deviation, as you 
have enough data to calculate them. However, later you might 
have only a few values to generate predictions on, so it is helpful 
to provide the mean and standard deviations from the original 
training set. To convert the column “income” to z-scores use the 
following call:

encode_numeric_zscore(df,”income”)

Later, if you wanted to normalize just a few rows, and you al-
ready knew the mean and standard deviation were 50,000 and 
15,000, you would call:

encode_numeric_zscore(df,”income”, 50000, 
15000)

Once all of the input columns have been normalized correctly, 
you are ready to train a neural network.

TRAINING A DEEP NEURAL NETWORK
A TensorFlow network is trained using two sets of data named 
x and y. The dataframe (df) must be separated into these predic-
tors (x) and the expected output (y). The following function can 
be used to do this:

def to_xy(df,target):
    result = []
    for x in df.columns:
        if x != target:
            result.append(x)
    return df.as_matrix(result),df[target]

If you wanted to predict (y) the income column for the data-
frame (df) you would use the following call to separate into x 
and y:

x, y = to_xy(df,”income”)

Now that the dataframe is separated, the neural network can be 
created and then trained.
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To create and train a neural network for classification, use the 
following code:

classifier = skflow.TensorFlowDNNClassifier(
    hidden_units=[30, 20, 10], 
    n_classes=3,steps=200)
classifier.fit(x, y)

The above neural network would have hidden layers with 30, 20 
and 10 hidden neurons. The number of hidden neurons can affect 
the accuracy of the neural network. Usually you will start with 
a larger number of hidden neurons (30) and add layers working 
down to a smaller number (10). This network would be able to 
classify three classes, and 200 steps would be used to train it.

To create and train a neural network for regression, use the fol-
lowing code:

regressor = skflow.TensorFlowDNNRegressor(
    hidden_units=[10, 20, 10], 
    steps=200)
regressor.fit(x, y)

Fitting the neural network may take a while, depending on how 
many steps you have specified. The more steps, the more accu-
rate the neural network will become.

EVALUATING A DEEP NEURAL NETWORK
There are a variety of ways to evaluate a neural network. Two of 
the most simple are root mean square error (RMSE) for regres-
sion and accuracy for classification. The following calculates the 
RMSE score:

score = \
  np.sqrt(metrics.mean_squared_
error(regressor.predict(x),y))
print(“Final score (RMSE): {}”.
format(score))

The RMSE error simply measures the magnitude of the average 
difference between the expected outcome and the actual out-
come. Lower RMSE scores are better.

Accuracy is measured similarly:

score = metrics.accuracy_score(y, 
classifier.predict(x))
print(“Final score: {}”.format(score))

Accuracy is simply the percent of data items that were classified 
correctly. Higher accuracy scores are better.

OTHER APPLICATIONS OF DEEP LEARNING
Deep neural networks can accomplish the same type of classifi-
cation and regression tasks that other models like support vector 
machines, GLMs and decision trees are used for. While deep neu-
ral networks might sometimes provide better results than other 
model types, there are two important areas where deep neural 
networks really shine: computer vision and time series prediction.

Computer vision might seem like a technology more suited to 
a Google self-driving car than an insurance company. However, 
there are cases where computer vision can be very useful to an 
insurance company. Two recent Kaggle competitions highlight-
ed these areas. The first was the Kaggle Diabetic Retinopathy 
Detection.8 This challenge used predictive models to look at 
retinopathy images and predict if an individual had diabetes. 
Additionally, State Farm ran a Kaggle competition to analyze 
images and detect distracted drivers.9 Both of these computer 
vision applications could help insurers to determine risk.

Time series is another area where neural networks are partic-
ularly adept. This is because neural networks can be recurrent. 
By allowing connections backwards through the neural network 
they are able to learn to predict patterns in a series of inputs, 
not just patterns within individual input. A neural network could 
have two inputs to read the systolic and diastolic blood pressures. 
However, a traditional model would always output the same for 
a given reading. A recurrent neural network could detect a pat-
tern in a series of readings. Two of the most current types of re-
current neural networks are the LSTMand gated recurrent unit 
(GRU) networks. Time series and neural networks will be the 
topic of a future article for this newsletter.  n

Jeff  Heaton is a lead data scientist at RGA 
Reinsurance Company in Chesterfield, Mo. He can 
be reached at jheaton@rgare.com

ENDNOTES

1   https://github.com/amznlabs/amazon-dsstne

2   https://github.com/baidu/Paddle

3  https://github.com/tensorflow/tensorflow

4 https://github.com/Microsoft /CNTK

5   https://www.tensorflow.org/versions/r0.10/get_started/os_setup.html

6  https://datascientistworkbench.com/

7  https://github.com/jeff heaton/t81_558_deep_learning/blob/master/t81_558_class2_
tensor_flow.ipynb

8 https://www.kaggle.com/c/diabetic-retinopathy-detection

9 https://www.kaggle.com/c/state-farm-distracted-driver-detection
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