

tific professions, but I don’t think this is true yet for the actuarial
profession.

As I have been approached about working on various GPU proj-
ects, the person touting the project usually describes it as fairly
straightforward. They state that all that is required is to take
the existing model, change a few lines of code, and abracadabra
the new calculations will run just as fast as a compute cluster.
This could not be further from the truth! This mentality may
get something to work, but it will be nowhere near the speed
advertised or possible. It may actually be slower than no GPUs
at all! Building a variable annuity guarantee model is way differ-
ent than building a predictive model, but at the same time, you
will potentially run into similar types of bottlenecks and issues.
Even though 99 percent of the time you will be using a library
such as Theano, which is a high-level python library, or Thrust,
which is a C++ library, to do the predictive modeling on GPUs,
understanding the finer points of GPU architecture will help
you understand why a particular model is running slower than
anticipated or why it may not be able to be ported to a GPU.
The first part of this article will give a high level overview of the
GPU architecture. The second part of the article will describe
different aspects of modeling a variable annuity guarantee. The
third part of the article will try to combine the constraints of
the GPU architecture with the common features of the variable
annuity guarantee model to create solutions to likely bottlenecks
in the variable annuity guarantee model.

In GPU literature, the CPU is called the host, whereas the GPU
is called the device. Other than the host calling functions to exe-
cute on the device, the host and device run separately from each
other. The host and device have their own memory also. To use
the device, the data must be migrated from the host memory
into the device’s global memory. This is one of the first barriers
to using a GPU. It can take longer to transfer data to and from

Recently, I was asked to give a webcast on using Graphical Pro-
cessing Unit (GPU) for predictive modeling. This paper will
be an introduction to the GPU and will be a precursor for the
webcast. A GPU is nothing more than the graphics card in your
computer which creates the images on your monitor. The laptop
I am working on now has four cores in its Central Processing
Unit (CPU) where a GPU will have thousands of cores. Each
core allows calculations to be done in parallel. It became appar-
ent to scientists that a computer’s GPU was a cheap way to get
massive parallelization on a desktop computer. NVIDIA, a com-
pany that manufactures GPU cards for computers, introduced
CUDA (originally, an acronym for Compute Unified Device
Architecture) extensions to the C programming language and
CUDA cores to encourage scientists to use GPUs for scientific
computing. Originally scientists had to transform their calcula-
tions to fool the GPU, but now most NVIDIA graphics cards
are CUDA compliant. This manor of using a GPU is quickly
going from cutting-edge to mainstream in many different scien-

Introduction to Using
Graphical Processing
Units for Variable Annuity
Guarantee Modeling
By Bryon Robidoux

FEATURE* TESLA K80 FEATURE KEPLER GK210

GPU Chip(s) 2x Kepler GK210 Compute Capability 3.7

Peak Single Precision (base clocks) 5.60 TFLOPS (both GPUs combined) Threads per Warp 32

Peak Double Precision (base clocks) 1.87 TFLOPS (both GPUs combined) Max Warps per SM 64

Peak Single Precision (GPU Boost) 8.73 TFLOPS (both GPUs combined) Max Threads per SM 2048

Peak Double Precision (GPU Boost) 2.91 TFLOPS (both GPUs combined) Max Thread Blocks per SM 16

Onboard GDDR5 Memory1 24GB (12GB per GPU) 32-bit Registers per SM 128K

Memory Bandwidth1 480 GB/s (240 GB/s per GPU) Max Registers per Thread Block 64K

Achievable PCI-E transfer bandwidth 12 GB/s Max Registers per Thread 255

of SMX Units 15 Max Threads per Thread Block 1024

of CUDA Cores 2880 Shared Memory Configurations 16KB + 112KB L1 Cache

Memory Clock 3004 MHz Max Shared Memory per Thread Block 48KB

GPU Base Clock 745 MHz

*table from https://www.microway.com/knowledge-center-articles/in-depth-comparison-of-nvidia-tesla-kepler-gpu-accelerators/

48 | DECEMBER 2016 PREDICTIVE ANALYTICS AND FUTURISM

the host and device than it does to run the actual calculation.
In these types of situations, it is best not to use the device. The
device contains one or more kernels. Kernels are major func-
tions used to run code on the device. It consists of many blocks
that work independently of each other. Each block consists of a
user defined number of threads. The threads are what actually
execute the code.

The key to understanding the bottlenecks when developing
for GPUs is to understand how the threads get scheduled and
the memory resources available to the threads. There are mul-
tiple layers of schedulers. The top level is GigaThread global
scheduler which controls the scheduling of the kernels and the
streaming multiprocessors (SM). Within the global scheduler,
the SMs control the scheduling of the blocks. Each SM sched-
ules its blocks independently of the other SMs. This is why if
synchronization is required among threads, it must happen
within the block. The SM’s basic unit of scheduling threads is
the warp, which is a block of 32 threads. The compute capaci-
ty is defined by NVIDIA as the maximum number of resident
threads per SM.1 The larger the compute capacity the better the
GPU is suited for scientific calculations.

For this article I am going to use the Kepler K80 GPU for the
example. This is worthy of doing actuarial modeling. Don’t be

fooled into thinking that your gaming graphics card is good for
actuarial modeling. Even though it probably contains CUDA
cores, the compute capacity is not sufficient. It would be worthy
for proof of concept, but not production requirements. The fol-
lowing table shows the specifications for the K80.

A GPU is a Single Instruction Multiple Data (SIMD) device.
This means that all the threads within a warp must process the
same instruction in order to run in parallel and only the data
can be different. Warp divergence occurs if all the threads in the
warp are not running the same instruction. This means that an
“if statement” can have a huge impact on speed because this is
a natural place for instructions to diverge. In a worst case sce-
nario, each thread within the warp will have to be run serially
because each thread has to run a separate instruction, in the case
of the K80, causing a potential 32X slowdown to occur.1 The
next large hurdle is memory resources.

The following table gives the specifications on different types
of memory within the GPU. The important information to get
from the table is where the memory is located and its bandwidth.
For this article, the local memory will be restricted to just L1-
Cache. (A level 1 cache (L1 cache) is a memory cache that is
directly built into the microprocessor, which is used for storing
the microprocessor’s recently accessed information, thus it is

 DECEMBER 2016 PREDICTIVE ANALYTICS AND FUTURISM | 49

also called the primary cache.2) The on-chip memory is inside
the SM, whereas off-chip memory sits outside of the SM. It is
easy to see that on-chip memory is faster than off-chip memory.
The problem is that the faster the memory, the less of it there
is available.

From the K80 specification table, the global memory size is
24GB whereas the register memory size is 128KB per SM. Reg-
ister memory is a very valuable and limited resource. The only
memory fast enough to keep the GPU running at full capacity
is the register memory. The global memory is nowhere near fast
enough. For example, a very simple C++ code snippet would be

for(i=0;i<N;++i) c[i]=a[i]+b[i];

where a, b and c are all in global memory and single precision
4-byte variables. This simple little program requires two mem-

ory reads from a and b and one memory write to c. In order to
keep the 5.6 trillion floating point operations (TFlop) busy on
the K80, there would need to be 3 instructions * 4 bytes * 5.6
Tflops = 67.2 Terabytes/second (TB/s) of memory bandwidth,
but there is currently only 240 GB/s available.1 It is obvious
that a major factor of making the device run faster is developing
a good strategy for moving data from the global memory to the
register memory. It is very easy to create a situation called reg-
ister spillover which occurs when a thread block requires more
registers than are available. In early generations of the device,
the register spillover went into global memory, but for later gen-
erations the spillover first goes to the L1-Cache and if that is

exhausted it spills over into global memory. The L1-Cache is
also a limited resource and needs to be managed carefully, but it
does reduce some of the penalty of register spillover. The prob-
lem with the slow memory is that the warp will not schedule
threads to run until all its resources are available. This means
that very few warps can operate in parallel because the required
data is in a traffic jam. The key strategy in GPU programming is
to maximize data reuse, so you avoid unnecessary trips to fetch
data from global memory. Now that we know some of the major
constraints of the GPU it is time to move onto the modeling of
the variable annuity.

This article will stay focused on the Guaranteed Minimum With-
drawal Benefit for Life (GMWBL) rider. The best way to ap-
proach it is to break down the rider into its fundamental modeling
components so we can best try to map them to the GPU. From
the top down, there is obviously the rider plan, policy, withdrawal
cohorts for the policy, the time steps and lastly the order of trans-
actions within the time step. The withdrawal cohort is just spec-
ifying the likely time someone will exercise their benefit along
with the probability of them doing it at that time. From all the
models I have worked on, they follow Mary Hardy’s suggestion
to make the time of withdrawal deterministic.3 At the very least,
withdrawal cohorts are dimensioned by issue age, with four to 10
per issue age, but I have also seen them dimensioned by quali-
fied and non-qualified status. Qualified status means the policy
was purchased with proceeds from a before-tax account such as a
401k. Qualified policies will have significantly different behavior
from non-qualified policies. Depending on the time of withdraw-
al, the policyholder can be rewarded through a credit or penalized
through a loss of benefit. The order of transactions is my way of
generalizing Mary Hardy’s3 characterization of her two transac-
tion types, which were before fees and after fees. In practice, there
are usually three or four transaction types. They are usually label
beginning of period (BOP), middle of period (MOP), and end of
period (EOP). BOP is when the market mechanics, such as fund
returns, and withdrawal behavior are calculated. MOP is when
fees are applied and any ratchets or rollups occur, if applicable.
EOP is when the decrements are applied such as mortality and
dynamic lapse. Now that the fundamental components of model-
ing have been established, it is time to combine the GPU and the

MEMORY LOCATION CACHED ACCESS SCOPE BANDWIDTH GB/S* ON-CHIP/OFF-CHIP

Register On-Chip No Read/write One Thread 10,847 45

Local On-Chip Yes Read/write One Thread 2,169 9

Shared On-Chip N/A Read/write All threads in the block 2,169 9

Global Off-Chip (unless cached) Yes Read/write All threads + host 240 1

Constant Off-Chip (unless cached) Yes Read All threads + host 240 1

* This table is from 1. It only provides the information for the Fermi C2050 on page 101. The values for shared, local and register are derived by multiplying the ratio of the memory
bandwidth between the K80 and Fermi C2050 which is 240/177 to keep the relative speeds the same between the GPU models.

It is obvious that a major
factor of making the device
run faster is developing a
good strategy for moving
data from the global memory
to the register memory.

50 | DECEMBER 2016 PREDICTIVE ANALYTICS AND FUTURISM

Introduction to Using Graphical Processing ...

variable annuity guarantee model to see where potential calcula-
tion bottlenecks and problems can occur.

From an actuarial perspective, the most intuitive way to model
a GMWBL rider would be to put each withdrawal cohort of a
policy on its own thread and to sort the policy file by rider plan
and policy number. (Modeling at any lower level doesn’t make
sense because by definition they are serially dependent.) A few
simple examples will show that this will easily lead to a mas-
sive register spillover and warp divergence if done haphazard-
ly. Currently, I am working on a GMWBL model that requires
423 bytes of inputs to model a single withdrawal cohort of a
policy. The inputs are a mixture of Booleans, single precision
floating-point numbers, and integers. If each withdrawal cohort
of a policy is allocated to a thread this implies 2048 threads *423
bytes = 866KB of register memory is needed to calculate the
block. There is only 128KB of registers available for the block
so the capacity of the registers has been exceeded by 6X. Even
with the ability to spill over into the L1-cache, the L1-cache is
112KB so this is still insufficient to handle all the data. If I were
to port my current model to a GPU, as is, there is little I could
do to avoid register spillover and not have huge speed reduction.
The purposed strategy will also lead to warp divergence because
the consequences and rewards to the policyholder depend on
the timing of withdrawal. The consequences and rewards cause
each withdrawal cohort to have a different behavior, which leads
each withdrawal cohort down a different logical path.

In order to address the issues above, the minimum requirement
is to perform some preprocessing. In order to get the data size
requirement down, there needs to be a strategy for data reuse.
Some of this can be accomplished by strategically sorting the
policy file and creating a sort key by rider plan, then by issue
age, then by assumed withdrawal time, then by qualified sta-
tus, and then by any other fields that cause material changes
to calculation behavior. This forces the policies with the most
homogenous information and behavior together. Within the
code, I would force all blocks to be homogenous by requiring
only policies with the same sort key to be in a block. Enforcing
homogeneity through the sort order and code should help to
reduce thread divergence. It should also reduce register spillover
and promote data reuse because roughly a quarter to a half of
the 423 bytes of the data for the GMWBL policy are to describe
variations within the rider features which are not policy specific.
The common rider features can be migrated to shared memory
and shared among threads. The shared memory has the speed as
L1-cache, which is much better than global memory. The idea of
grouping homogenous policies together to speed up calculations
should not be unfamiliar to modeling and valuation actuaries
because this is very similar exercise to get good cell compression
on policy files.

One last topic that should be mentioned is the creation of the
market dynamics from the economic scenario generator (ESG).
The gold standard of random number generators (RNG) for use
in ESG is the Mersenne Twister, because of its enormous period-
icity. The Mersenne Twister is a serial generator because, after the
seed is applied, each number generated depends on the previous
number generated. It may be tempting to think that each thread
should receive its own seed, but this would likely not preserve
the statistical properties of the random number generator such
as mean and standard deviation. In order to work properly, it is
highly recommended that cuRand® be used to generate random
numbers. The RNGs have been specifically designed, such as the
MTGP Mersenne Twister, so that each thread can generate its
own set of random numbers and still preserve the proper statis-
tical properties. At this point, the only issue is with testing. It is
very likely that individual policies would be checked with Excel
which implies the testing will use the original Mersenne Twister.
The original Mersenne Twister and the MTGP Mersenne Twist-
er will not produce the same set of random numbers. They are
only guaranteed to have the same statistical properties. As a part
of testing, it will be required to isolate the random numbers from
the device so calculations will match.

In conclusion, modeling variable annuities on GPUs can be a
fun and challenging problem. It is not a simple migration to re-
work a model built for a compute grid to work on a GPU. This
article by no means addresses all the issues of modeling VA rid-
ers with a GPU, but it should give you a good flavor of the types
of issues that can occur. Even though building a variable annuity
model on a GPU is much different than building a predictive
model with a library such as Theano or Thrust, it should give
you a good appreciation for some of the challenges of creating
those libraries, demonstrate some underlying reasons on why
the model may be calculating slower than expected, and possible
ideas on how to speed the model up. n

Bryon Robidoux, FSA, is director and actuary,
at AIG in Chesterfield, Mo. He can be reached at
Bryon.Robidoux@aig.com

ENDNOTES

1 Rob Farber, CUDA Application Design and Development, Morgan Kauff man 2011

2 https://www.techopedia.com/definition/8048/level-1-cache-l1-cache

3 Mary Hardy, Investment Guarantees: Modeling and Risk Management for Equi-
ty-Linked Life Insurance.

4 https://www.microway.com/knowledge-center-articles/in-depth-comparison-of-nvid-
ia-tesla-kepler-gpu-accelerators/

 DECEMBER 2016 PREDICTIVE ANALYTICS AND FUTURISM | 51

	PredictiveAnalyticsand FuturismISSUE 14 • DECEMBER 2016
	From the Editor: Insightsfrom a Dead Salmon!
	Chairperson’s Corner:On Volunteering,Learning, and a Sense ofCommunity
	Looking Back and Ahead
	Making PredictiveAnalytics Our Own
	Deciding What toResearch: How to Spotand Avoid Bias
	Five Myths andFacts about ArtificialIntelligence
	Abstractions & WorkingEffectively AlongsideArtificial Intellects
	Machine Learning: AnAnalytical Invitation toActuaries
	Use Tree-basedAlgorithm for PredictiveModeling in Insurance
	Creating a Useful TrainingData Set for PredictiveModeling
	The Random GLMAlgorithm: A BetterEnsemble?
	Collaborative Filtering forMedical Conditions
	Getting Started withDeep Learning andTensorFlow
	Guide to Deep Learning
	Introduction to UsingGraphical ProcessingUnits for Variable AnnuityGuarantee Modeling

