
 

 



tific professions, but I don’t think this is true yet for the actuarial 
profession.  

As I have been approached about working on various GPU proj-
ects, the person touting the project usually describes it as fairly 
straightforward. They state that all that is required is to take 
the existing model, change a few lines of code, and abracadabra 
the new calculations will run just as fast as a compute cluster. 
This could not be further from the truth! This mentality may 
get something to work, but it will be nowhere near the speed 
advertised or possible. It may actually be slower than no GPUs 
at all! Building a variable annuity guarantee model is way differ-
ent than building a predictive model, but at the same time, you 
will potentially run into similar types of bottlenecks and issues. 
Even though 99 percent of the time you will be using a library 
such as Theano, which is a high-level python library, or Thrust, 
which is a C++ library, to do the predictive modeling on GPUs, 
understanding the finer points of GPU architecture will help 
you understand why a particular model is running slower than 
anticipated or why it may not be able to be ported to a GPU. 
The first part of this article will give a high level overview of the 
GPU architecture. The second part of the article will describe 
different aspects of modeling a variable annuity guarantee. The 
third part of the article will try to combine the constraints of 
the GPU architecture with the common features of the variable 
annuity guarantee model to create solutions to likely bottlenecks 
in the variable annuity guarantee model.

In GPU literature, the CPU is called the host, whereas the GPU 
is called the device. Other than the host calling functions to exe-
cute on the device, the host and device run separately from each 
other. The host and device have their own memory also. To use 
the device, the data must be migrated from the host memory 
into the device’s global memory. This is one of the first barriers 
to using a GPU. It can take longer to transfer data to and from 

Recently, I was asked to give a webcast on using Graphical Pro-
cessing Unit (GPU) for predictive modeling. This paper will 
be an introduction to the GPU and will be a precursor for the 
webcast. A GPU is nothing more than the graphics card in your 
computer which creates the images on your monitor. The laptop 
I am working on now has four cores in its Central Processing 
Unit (CPU) where a GPU will have thousands of cores. Each 
core allows calculations to be done in parallel. It became appar-
ent to scientists that a computer’s GPU was a cheap way to get 
massive parallelization on a desktop computer. NVIDIA, a com-
pany that manufactures GPU cards for computers, introduced 
CUDA (originally, an acronym for Compute Unified Device 
Architecture) extensions to the C programming language and 
CUDA cores to encourage scientists to use GPUs for scientific 
computing. Originally scientists had to transform their calcula-
tions to fool the GPU, but now most NVIDIA graphics cards 
are CUDA compliant. This manor of using a GPU is quickly 
going from cutting-edge to mainstream in many different scien-
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FEATURE* TESLA K80 FEATURE KEPLER GK210

GPU Chip(s) 2x Kepler GK210 Compute Capability 3.7

Peak Single Precision (base clocks) 5.60 TFLOPS (both GPUs combined) Threads per Warp 32

Peak Double Precision (base clocks) 1.87 TFLOPS (both GPUs combined) Max Warps per SM 64

Peak Single Precision (GPU Boost) 8.73 TFLOPS (both GPUs combined) Max Threads per SM 2048

Peak Double Precision (GPU Boost) 2.91 TFLOPS (both GPUs combined) Max Thread Blocks per SM 16

Onboard GDDR5 Memory1 24GB (12GB per GPU) 32-bit Registers per SM 128K

Memory Bandwidth1 480 GB/s (240 GB/s per GPU) Max Registers per Thread Block 64K

Achievable PCI-E transfer bandwidth 12 GB/s Max Registers per Thread 255

# of SMX Units 15 Max Threads per Thread Block 1024

# of CUDA Cores 2880 Shared Memory Configurations 16KB + 112KB L1 Cache

Memory Clock 3004 MHz Max Shared Memory per Thread Block 48KB

GPU Base Clock 745 MHz   

*table from https://www.microway.com/knowledge-center-articles/in-depth-comparison-of-nvidia-tesla-kepler-gpu-accelerators/
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the host and device than it does to run the actual calculation. 
In these types of situations, it is best not to use the device. The 
device contains one or more kernels. Kernels are major func-
tions used to run code on the device. It consists of many blocks 
that work independently of each other. Each block consists of a 
user defined number of threads. The threads are what actually 
execute the code.

The key to understanding the bottlenecks when developing 
for GPUs is to understand how the threads get scheduled and 
the memory resources available to the threads. There are mul-
tiple layers of schedulers. The top level is GigaThread global 
scheduler which controls the scheduling of the kernels and the 
streaming multiprocessors (SM). Within the global scheduler, 
the SMs control the scheduling of the blocks. Each SM sched-
ules its blocks independently of the other SMs. This is why if 
synchronization is required among threads, it must happen 
within the block. The SM’s basic unit of scheduling threads is 
the warp, which is a block of 32 threads. The compute capaci-
ty is defined by NVIDIA as the maximum number of resident 
threads per SM.1 The larger the compute capacity the better the 
GPU is suited for scientific calculations.

For this article I am going to use the Kepler K80 GPU for the 
example. This is worthy of doing actuarial modeling. Don’t be 

fooled into thinking that your gaming graphics card is good for 
actuarial modeling. Even though it probably contains CUDA 
cores, the compute capacity is not sufficient. It would be worthy 
for proof of concept, but not production requirements. The fol-
lowing table shows the specifications for the K80.

A GPU is a Single Instruction Multiple Data (SIMD) device. 
This means that all the threads within a warp must process the 
same instruction in order to run in parallel and only the data 
can be different. Warp divergence occurs if all the threads in the 
warp are not running the same instruction. This means that an 
“if statement” can have a huge impact on speed because this is 
a natural place for instructions to diverge. In a worst case sce-
nario, each thread within the warp will have to be run serially 
because each thread has to run a separate instruction, in the case 
of the K80, causing a potential 32X slowdown to occur.1 The 
next large hurdle is memory resources.

The following table gives the specifications on different types 
of memory within the GPU. The important information to get 
from the table is where the memory is located and its bandwidth. 
For this article, the local memory will be restricted to just L1-
Cache. (A level 1 cache (L1 cache) is a memory cache that is 
directly built into the microprocessor, which is used for storing 
the microprocessor’s recently accessed information, thus it is 
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also called the primary cache.2) The on-chip memory is inside 
the SM, whereas off-chip memory sits outside of the SM. It is 
easy to see that on-chip memory is faster than off-chip memory. 
The problem is that the faster the memory, the less of it there 
is available. 

From the K80 specification table, the global memory size is 
24GB whereas the register memory size is 128KB per SM. Reg-
ister memory is a very valuable and limited resource. The only 
memory fast enough to keep the GPU running at full capacity 
is the register memory. The global memory is nowhere near fast 
enough. For example, a very simple C++ code snippet would be 

for(i=0;i<N;++i) c[i]=a[i]+b[i]; 

where a, b and c are all in global memory and single precision 
4-byte variables. This simple little program requires two mem-

ory reads from a and b and one memory write to c. In order to 
keep the 5.6 trillion floating point operations (TFlop) busy on 
the K80, there would need to be 3 instructions * 4 bytes * 5.6 
Tflops = 67.2 Terabytes/second (TB/s) of memory bandwidth, 
but there is currently only 240 GB/s available.1 It is obvious 
that a major factor of making the device run faster is developing 
a good strategy for moving data from the global memory to the 
register memory. It is very easy to create a situation called reg-
ister spillover which occurs when a thread block requires more 
registers than are available. In early generations of the device, 
the register spillover went into global memory, but for later gen-
erations the spillover first goes to the L1-Cache and if that is 

exhausted it spills over into global memory. The L1-Cache is 
also a limited resource and needs to be managed carefully, but it 
does reduce some of the penalty of register spillover. The prob-
lem with the slow memory is that the warp will not schedule 
threads to run until all its resources are available. This means 
that very few warps can operate in parallel because the required 
data is in a traffic jam. The key strategy in GPU programming is 
to maximize data reuse, so you avoid unnecessary trips to fetch 
data from global memory. Now that we know some of the major 
constraints of the GPU it is time to move onto the modeling of 
the variable annuity.

This article will stay focused on the Guaranteed Minimum With-
drawal Benefit for Life (GMWBL) rider. The best way to ap-
proach it is to break down the rider into its fundamental modeling 
components so we can best try to map them to the GPU. From 
the top down, there is obviously the rider plan, policy, withdrawal 
cohorts for the policy, the time steps and lastly the order of trans-
actions within the time step. The withdrawal cohort is just spec-
ifying the likely time someone will exercise their benefit along 
with the probability of them doing it at that time. From all the 
models I have worked on, they follow Mary Hardy’s suggestion 
to make the time of withdrawal deterministic.3 At the very least, 
withdrawal cohorts are dimensioned by issue age, with four to 10 
per issue age, but I have also seen them dimensioned by quali-
fied and non-qualified status. Qualified status means the policy 
was purchased with proceeds from a before-tax account such as a 
401k. Qualified policies will have significantly different behavior 
from non-qualified policies. Depending on the time of withdraw-
al, the policyholder can be rewarded through a credit or penalized 
through a loss of benefit. The order of transactions is my way of 
generalizing Mary Hardy’s3 characterization of her two transac-
tion types, which were before fees and after fees. In practice, there 
are usually three or four transaction types. They are usually label 
beginning of period (BOP), middle of period (MOP), and end of 
period (EOP). BOP is when the market mechanics, such as fund 
returns, and withdrawal behavior are calculated. MOP is when 
fees are applied and any ratchets or rollups occur, if applicable. 
EOP is when the decrements are applied such as mortality and 
dynamic lapse. Now that the fundamental components of model-
ing have been established, it is time to combine the GPU and the 

MEMORY LOCATION CACHED ACCESS SCOPE BANDWIDTH GB/S* ON-CHIP/OFF-CHIP

Register On-Chip No Read/write One Thread                     10,847 45

Local On-Chip Yes Read/write One Thread                       2,169 9

Shared On-Chip N/A Read/write All threads in the block                       2,169 9

Global Off-Chip (unless cached) Yes Read/write All threads + host                           240 1

Constant Off-Chip (unless cached) Yes Read All threads + host                           240 1

* This table is from 1. It only provides the information for the Fermi C2050 on page 101. The values for shared, local and register are derived by multiplying the ratio of the memory 
bandwidth between the K80 and Fermi C2050 which is 240/177 to keep the relative speeds the same between the GPU models.

It is obvious that a major 
factor of making the device 
run faster is developing a 
good strategy for moving 
data from the global memory 
to the register memory.
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variable annuity guarantee model to see where potential calcula-
tion bottlenecks and problems can occur.

From an actuarial perspective, the most intuitive way to model 
a GMWBL rider would be to put each withdrawal cohort of a 
policy on its own thread and to sort the policy file by rider plan 
and policy number. (Modeling at any lower level doesn’t make 
sense because by definition they are serially dependent.) A few 
simple examples will show that this will easily lead to a mas-
sive register spillover and warp divergence if done haphazard-
ly. Currently, I am working on a GMWBL model that requires 
423 bytes of inputs to model a single withdrawal cohort of a 
policy. The inputs are a mixture of Booleans, single precision 
floating-point numbers, and integers. If each withdrawal cohort 
of a policy is allocated to a thread this implies 2048 threads *423 
bytes = 866KB of register memory is needed to calculate the 
block. There is only 128KB of registers available for the block 
so the capacity of the registers has been exceeded by 6X. Even 
with the ability to spill over into the L1-cache, the L1-cache is 
112KB so this is still insufficient to handle all the data. If I were 
to port my current model to a GPU, as is, there is little I could 
do to avoid register spillover and not have huge speed reduction. 
The purposed strategy will also lead to warp divergence because 
the consequences and rewards to the policyholder depend on 
the timing of withdrawal. The consequences and rewards cause 
each withdrawal cohort to have a different behavior, which leads 
each withdrawal cohort down a different logical path.  

In order to address the issues above, the minimum requirement 
is to perform some preprocessing. In order to get the data size 
requirement down, there needs to be a strategy for data reuse. 
Some of this can be accomplished by strategically sorting the 
policy file and creating a sort key by rider plan, then by issue 
age, then by assumed withdrawal time, then by qualified sta-
tus, and then by any other fields that cause material changes 
to calculation behavior. This forces the policies with the most 
homogenous information and behavior together. Within the 
code, I would force all blocks to be homogenous by requiring 
only policies with the same sort key to be in a block. Enforcing 
homogeneity through the sort order and code should help to 
reduce thread divergence. It should also reduce register spillover 
and promote data reuse because roughly a quarter to a half of 
the 423 bytes of the data for the GMWBL policy are to describe 
variations within the rider features which are not policy specific. 
The common rider features can be migrated to shared memory 
and shared among threads. The shared memory has the speed as 
L1-cache, which is much better than global memory. The idea of 
grouping homogenous policies together to speed up calculations 
should not be unfamiliar to modeling and valuation actuaries 
because this is very similar exercise to get good cell compression 
on policy files.

One last topic that should be mentioned is the creation of the 
market dynamics from the economic scenario generator (ESG). 
The gold standard of random number generators (RNG) for use 
in ESG is the Mersenne Twister, because of its enormous period-
icity. The Mersenne Twister is a serial generator because, after the 
seed is applied, each number generated depends on the previous 
number generated. It may be tempting to think that each thread 
should receive its own seed, but this would likely not preserve 
the statistical properties of the random number generator such 
as mean and standard deviation. In order to work properly, it is 
highly recommended that cuRand® be used to generate random 
numbers. The RNGs have been specifically designed, such as the 
MTGP Mersenne Twister, so that each thread can generate its 
own set of random numbers and still preserve the proper statis-
tical properties. At this point, the only issue is with testing. It is 
very likely that individual policies would be checked with Excel 
which implies the testing will use the original Mersenne Twister. 
The original Mersenne Twister and the MTGP Mersenne Twist-
er will not produce the same set of random numbers. They are 
only guaranteed to have the same statistical properties. As a part 
of testing, it will be required to isolate the random numbers from 
the device so calculations will match.

In conclusion, modeling variable annuities on GPUs can be a 
fun and challenging problem. It is not a simple migration to re-
work a model built for a compute grid to work on a GPU. This 
article by no means addresses all the issues of modeling VA rid-
ers with a GPU, but it should give you a good flavor of the types 
of issues that can occur. Even though building a variable annuity 
model on a GPU is much different than building a predictive 
model with a library such as Theano or Thrust, it should give 
you a good appreciation for some of the challenges of creating 
those libraries, demonstrate some underlying reasons on why 
the model may be calculating slower than expected, and possible 
ideas on how to speed the model up.  n

Bryon Robidoux, FSA, is director and actuary, 
at AIG in Chesterfield, Mo. He can be reached at 
Bryon.Robidoux@aig.com
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