

Article from
Predictive Analytics & Futurism
December 2018
Issue 19

16 | DECEMBER 2018 PREDICTIVE ANALYTICS AND FUTURISM

Extracting Medical Data
From Wikipedia
By Alexandru L. Andrei

Information that includes financial, medical, demographic
data, as well as facts about natural disasters is of great inter-
est to the insurance industry. As a result, major companies,

including IBM, have trained their natural language processing
models using Wikipedia’s dataset, one of the most comprehen-
sive sources of information on the Internet. Any specific piece of
information can be extracted from such a massive database, but
the main challenge lies in processing such an enormous dataset.

Wikipedia’s data is written in an XML (Extensible Markup
Language) format and is presented in a manner that is both
human and machine readable. However, using Wikipedia API to
extract useful information is impractical due to time and traffic
constraints. The file used in this article enwiki-latest-pages-ar-
ticles.xml 1 is approximately 12.8 GB when compressed and 68
GB when decompressed, thus the majority of text editors are not
able to open it. This paper describes techniques that can be used
to access any specific piece of information in Wikipedia, in partic-
ular medical information, by using Wikipedia’s most up-to-date
dump file.

EXPLORING WIKIPEDIA DATA
The Wikipedia file is coded in the following format:

<mediawiki xmlns=”http://www.mediawiki.org/xml/
export-0.10/” xmlns:xsi=”http://www.w3.org/2001/
XMLSchema-instance” xsi:schemaLocation=”http://www.
mediawiki.org/xml/export-0.10/ http://www.mrt-0.10.
xsd” version=”0.10” xml:lang=”en”>
<siteinfo>
<sitename>Wikipedia</sitename>
<dbname>enwiki</dbname>
<base>https://en.wikipedia.org/wiki/Main_Page</

 base>
<generator>MediaWiki 1.32.0-wmf.14</generator>
<case>first-letter</case>
<namespaces>
<namespace key=”-2” case=”first-letter”>Media</
namespace>
...
<namespace key=”2303” case=”case-sensitive”>
Gadget definition talk</namespace>

</namespaces>
</siteinfo>

. . .
<page>

<page>
<title>Anarchism</title>
<ns>0</ns>
<id>12</id>
<revision>
<id>851684166</id>
<parentid>851684072</parentid>
<timestamp>2018-07-23T22:38:25Z</timestamp>
<contributor>
<username>Tajotep</username>
<id>29695403</id>

</contributor>
<comment>/* Individualist anarchism */</

 comment>
<model>wikitext</model>
<format>text/x-wiki</format>
<text xml:space=”preserve”>{{Use dmy dates|

 date=July 2018}}
{{redirect2|Anarchist|Anarchists|the fictional
character|Anarchist (comics)|other uses|Anarchists
(disambiguation)}}
{{pp-move-indef}}
{{use British English|date=January 2014}}
{{Anarchism sidebar
}}
{{Basic forms of government}}
. . .
. . .

<sha1>9o00w06nsedf733vnmy7al780ia633d</sha1>
</revision>

</page>

 DECEMBER 2018 PREDICTIVE ANALYTICS AND FUTURISM | 17

Each page within the format of the XML dump file has the fol-
lowing tags:

Title: contains the title of the article,
Id: the internal id of the article,
Redirect: what the page redirects to,
Namespace: helps identify the kind of page it is, and
Text: contains the information of the article itself.

HANDLING LARGE FILES
Handling overly large files has been a major challenge of this
project. Regular Python parsing, which would require at least
70GB of available memory to load the XML file, is not feasible.
Using the ElementTree package will allow us to load the XML
file piece-by-piece without running into any memory issues.
Being able to clear an element that was just processed frees mem-
ory space, allowing the next element to be loaded for processing.

import xml.etree.ElementTree as etree
[..]
for event, elem in etree.iterparse(pathWikiXML,
events=(‘start’, ‘end’)):
 tname = strip_tag_name(elem.tag)
 ...

 elem.clear()

WIKIPEDIA TEMPLATES
Wikipedia uses Wiki Markup language to create all of its articles.
The focus of each search is based on a specific medical condition.
The following is a template that can be used to extract specific
pieces of information including a condition’s commonly pre-
scribed medications, prognosis and mortality statistics:

{{Infobox medical condition (new)
| name = <!--{{PAGENAME}} by default-->
 . . .
| medication =
| prognosis =
| frequency =
| deaths =

}}

Furthermore, the following template can explore a specific drug
in relation to its brand and genericname as well as to its chemical
properties:

{{Infobox drug
| drug_name =
| INN =
| type =<!-- empty -->
| IUPAC_name =
| image =
| alt =
| caption =
<!-- Clinical data -->
| pronounce =
. . .
| legal_status = <!-- Free text -->
<!-- Pharmacokinetic data -->
| bioavailability =
| protein_bound =
. . .
| excretion =
<!-- Identifiers -->
| CAS_number =
. . .
| PubChem =
| UNII =
| DrugBank =
<!-- Chemical and physical data -->
| chemical_formula =
| molecular_weight =
}}

MINING DRUG INFORMATION
The following template format enables the user to parse drug
information data in a systematic way. Using string manipulation,
for example, any page that contains the Drugbox template can be
detected:

def get_drugbox(s):
 beg = (s.rfind(‘{{Drugbox’))
 end =(s.rfind(‘\n}}’))
 if(end == -1):
 end = end =(s.rfind(‘}}\n’))
 if(end == -1):
 end = end =(s.rfind(‘}}\n<!--’))
 if(end == -1):
 end = end =(s.rfind(‘}}\n==’))
 if(end == -1):
 end = end =(s.rfind(‘}}\n\d’))
 s = s[beg: end+2]

Handling overly large files has
been a major challenge of this
project.

Extracting Medical Data From Wikipedia

18 | DECEMBER 2018 PREDICTIVE ANALYTICS AND FUTURISM

After retrieving the Drugbox information, all of the data can be
successfully mined. A range of codes can then be extracted from
drug profiles such as CAS number, ATC and unique ingredient
identifier (UNII) in addition to its chemical composition, most of
which are unique to each English-speaking country.

For this project, the UNII code is of particular interest. The
UNII is a unique, non-proprietary, free, unambiguous, non-se-
mantic, alphanumeric identifier linked to a substance’s molecular
structure or descriptive information by the Substance Registra-
tion System (SRS) of the Food and Drug Administration (FDA)
and the United States Pharmacopeia (USP). Below is the code
required to extract the UNII code from the Drugbox template:

def find_unii(s):
 s = re.findall(r’UNII\s*?=\s?.*’,s)
 if(len(s)>0):
 s = s[0]
 equal = s.rfind(‘=’)
 #if there is a space after the equal
 remove it
 if(s[equal+1]==’ ‘):
 s = s[equal+2:]
 else:
 s = s[equal+1:]
 else:
 s = ‘’

 return s

MINING SPECIFIC INFORMATION FOR EACH DISEASE
Due to the fact that the data in Wikipedia is typed manually by
millions of individuals, various spacing and formats must be iden-
tified. By using the “InfoBox medical condition template” below,
information about each disease can be extracted:

def get_med_cond(s):
 beg = (s.rfind(‘{{Infobox medical
 condition’))
 end =(s.rfind(‘\n}}’))
 if(end == -1):
 end = end =(s.rfind(‘}}\n’))
 if(end == -1):
 end = end =(s.rfind(‘}}\n<!--’))
 if(end == -1):
 end = end =(s.rfind(‘}}\n==’))
 if(end == -1):
 end = end =(s.rfind(‘}}\n\d’))
 s = s[beg: end+2]

 return s

Specific information, such as symptoms, duration, causes, risks,
medications and mortality, can be extracted from this template.
Using the following code, the medications that are typically pre-
scribed for a certain disease are able to be extracted:

def find_medication(s):
 s = re.findall(r’medication\s*?=.*<’,s)
 if(len(s)== 0):
 s = []
 else:
 s = s[0]
 s = s[:-1]
 s = s[s.find(‘=’)+2:]
 s = s.replace(‘[[‘,’’)
 s = s.replace(‘]]’,’’)
 s = s.split(‘,’)
 s

 return s

The World Health Organization (WHO) provides the medical clas-
sification codes through the International Statistical Classification of
Diseases and Related Health Problems (ICD). Specifically, ICD9 and
ICD10 codes can be extracted from the drug information present
on Wikipedia. The following code shows how to obtain the medical
codes for diseases, signs and symptoms, abnormal findings, com-
plaints, social circumstances, and external causes of injury or diseases.

def find_icd10(s):
 s = s.replace(‘|’,’’)
 s = s.replace(‘{{ICD10’,””)
 icd10 = re.findall(‘\w{1}\d{2,6}’,s)

 return icd10

CONCLUSION
After all of this data has been extracted it needs a place to be
stored. Using a Coma Separated Values (CSV) file is a clean and
easy way to store our data. Table 1 is an example on how the
UNNI codes can be stored.

Table 1
Stored UNNI Codes

id name unii

1912 Ampicillin 7C782967RD

6346 Chloramphenicol 66974FR9Q1

10024 MDMA KE1SEN21RM

11725 Flunitrazepam 620X0222FQ

14413 Hydrocodone 6YKS4Y3WQ7

 DECEMBER 2018 PREDICTIVE ANALYTICS AND FUTURISM | 19

Furthermore, we can store the diseases with its codes and med-
ications using arrays such that it is easier to then access the data
when stored as a CSV file (See Table2).

Extrapolating data from Wikipedia can be challenging due to the
amount of data it possesses and its inconsistencies. Nonetheless,
Wikipedia provides diverse amounts of data that can be used by
insurance companies to extract knowledge that otherwise would
not be possible. The code provided in the article can be found in
a Jupyter Notebook format on GitHub.2 ■

id name icd9 icd10 medications
4531 Bipolar disorder ['324.0'] ['Q273,' 'q20,'

'Q280,' 'q20,' 'Q282,'
'q20']

['Lithium (medication)|Lithium,' '
antipsychotics', ' anticonvulsants']

4581 Bacterial vaginosis ['616.1'] ['N76'] ['Clindamycin or metronidazole']

4746 Plague (disease) ['020'] ['A20'] ['Gentamicin and a fluoroquinolone']

5876 Coronary artery disease ['780.0'] ['R402,' 'r40'] ['Aspirin,' ' beta blockers,' ' Medical
use of nitroglycerin|nitroglycerin,'
'statins']

Alexandru Loan Andrei is a So¢ ware Engineer
at Reinsurance Group of America (RGA) in
Chesterfield, Mo. He can be reached at Alexandru.
Andrei@rgare.com

ENDNOTES

1 https://dumps.wikimedia.org/enwiki/latest/

2 https://github.com/AlexAndrei98/

Table 2
Stored Diseases, Codes and Meds

