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A Math Test for Models
By Je� Heaton

In my opinion, feature engineering is one of the most critical 
components of any predictive analytics project. Feature engi-
neering is a preprocessing step where additional features, or 

input columns, are calculated to augment or replace the orig-
inal features. This technique is closely related to the similar 
strategies of interaction terms and column transformations. 

Feature engineering is often cited as one of the most important 
components in many winning Kaggle competition entries. There 
have been many attempts to automate feature engineering.  Tech-
niques such as auto encoders, deep feature synthesis and various 
dimensionality reduction algorithms can provide new features 
that provide additional lift to models. However, feature engineer-
ing remains one of the key areas where a human data scientist 
excels over their mechanical automated machine learning coun-
terparts. I suspect that when this tide shifts, we will see Kaggle 
leaderboards dominated by automatic machine learning entries. 

MY STRATEGIES FOR FEATURE ENGINEERING
At the highest level, there are two types of features that can be 
engineered. The first type are simple transformations and interac-
tions between the existing features. For this type, you might take 
the log of one of the features or divide one feature by another. All 
of the information needed to create these features is contained 
entirely within the data set itself. The second type of engineered 
feature is an augmentation. For this feature you tap external data 
sources to bring more meaning to features you already have. 
Consider a column that contains applicant’s zip codes. Alone, a 
zip code is difficult to use in a model. However, you might use a 
table that contains the coordinates of the center of these zip codes 
to calculate distance to a major metropolitan area. 

The first type of engineered feature is the focus of this article. 
We will examine what types of transformations and interactions 
will be the most effective for a variety of models. Some model 
types have the ability to automatically incorporate interactions. 
Neural networks and tree-based models in particular have this 
capability. I published a paper with the IEEE that explored the 
effectiveness of various models at self-engineering certain types 
of features on their own. For example, if a given model is often 
effective at engineering a particular form of feature, you will 
probably not increase the lift of that model by adding that feature 

type. By feature types I mean ratios, power transformations, log 
transformations and others. 

To explore the automatic feature engineering capabilities of these 
model types, I created a “math test for models.” I selected four 
model types and 10 different equation formats. For each of these 
equation types, I generated training data where the outcome was 
the result of the given equation. No noise was used. I was interested 
only in how well the given model could approximate the selected 
equation type. The results showed two interesting results. The 
first is that some models were more effective at certain equation 
types than others. The second is that certain equations are indeed 
much more difficult for these models to approximate. This can 
serve as a guide to the structure of engineered features to consider 
for a particular model type. The models examined in this research 
were: neural networks, support vector machines, random forests 
and gradient boosting machines (GBM). The generalized linear 
model (GLM) family was not considered due to their inability to 
automatically express interactions and transformations.

DESIGNING A MATH TEST FOR MODELS
To evaluate the automatic feature engineering effectiveness of the 
four model types a total of 10 different equation forms were used. 
The models were tested on their ability to approximate these 10 
functions. If the model can easily approximate a function then 
it can probably automatically engineer a similar feature. The 10 
different equation types are provided in Table 1.

Table 1 
Ten Different Equation Types
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Simple transformations, such as log, contain only one value for 
x, whereas expressions like difference and polynomial contain 
two. The most complex equation, the ratio difference, contains 
four x values.

RESULTS OF THE TEST
The first step is to generate the training data. This is done by 
uniformly generating 10,000 random inputs for all of the x values 
of each equation. The y values are the result of each equation. 
There is no noise generated. 

The math test was conducted by running each of the 10 equations 
against each of the four model types a total of five cycles. This 
results in 200 total runs. This entire process takes approximately 
30 minutes to complete. The complete source code for this exper-
iment can be found at the author’s GitHub repository.1  The five 
cycles are due to the fact that some of these models make use of 
random numbers in their training. The best (lowest) root mean 
square error (RMSE) score of all five cycles for each model and 
equation type are given by Table 2. 

Table 2 
Best RMSE Scores

SVM RF GBM Neural

Di 0.03 0.00 0.01 0.00

Log 0.09 0.00 0.00 0.01

Poly 0.06 0.00 0.00 0.01

Poly2 0.05 0.02 0.02 0.01

Power 0.07 0.01 0.01 0.07

Ratio 0.66 0.14 0.21 0.15

R.Di 28.57 100.20 204.40 28.27

R.Poly 0.03 0.00 0.00 0.00

R.Poly2 0.06 0.00 0.00 0.00

Sqrt 0.10 0.00 0.00 0.01

All errors are measured in RMSE. I did consider normalizing 
the output of these equations.  While the domain of each equa-
tion is intentionally set to between -10 and +10, the range varies 
depending on the equation. Some of the equations have much 
larger ranges than others. A common normalization in this case 
is to divide the RMSE by either the mean or difference of the 
maximum and minimum y values. Because RMSE is in the same 
units as the y-value, a function with a large range will likely always 
have a larger RMSE than one with a small range. 

I decided not to normalize because I care how closely the model 
approximates the function. The actual range of the function does 
not matter. I simply care how close the approximation is. If the 
approximation is perfect then the RMSE should approach zero, 
regardless of how large the range is.

This is shown graphically by Figures 1, 2, 3 and 4. The taller bars 
in each graph indicate a particular equation type that is more 
difficult for a given model to approximate. As can be seen from 
the figures, all of the models had difficulty with the ratio of differ-
ences (equation 7). The ratio (equation 6) was impossible for the 
support vector machine (SVM), but only somewhat more difficult 
for the other three model types. All other equation types were 
trivial for the various models to approximate. 

Figure  1 
Neural Network Results
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Figure 2
Gradient Boosting Machine (GBM) Results

Figure 4
Support Vector Machine (SVM) Results

Figure 3
Random Forest Results
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 CONCLUSIONS
The ratio of differences was found to be a difficult feature for all 
models. When I am engineering my own features I frequently use 
ratios or a ratio of differences. The ratio by itself is a normalizer. 
Adding the difference causes it to be a normalizer with thresh-
olds. For example, an engineered feature that I recently created 
is as follows:

(Home price – mean home price) / (age – mean age)

This is the ratio of two differences, so it has the potential to help 
any of the four model types. This essentially looks at how much 
above or below an individual’s house is from the mean. However, 
this is then normalized by how old the individual is relative to 
their zip code. This reflects the fact that older individuals typically 
have more expensive houses than younger. Adding this calculated 
feature provided lift to my model.

As I continue this line of research I will introduce additional equa-
tion types to see which ones prove the most challenging for each 
model. I will also look at how the models might be augmented 
to perhaps have a chance of engineering a feature of this form. ■

Je�  Heaton, Ph.D. is VP, Data Science, RGA 
Reinsurance Company, in Chesterfield, Mo. He can 
be reached at jheaton@rgare.com.

ENDNOTE

1 https://github.com/je
 heaton/present/tree/master/SOA/paf-mathtest
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