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Executive Summary

This report documents the “China Research Topic” project commissioned by the Society

of Actuaries. The purpose of this project is to forecast China’s population structure in the

coming decades by projecting both the mortality and fertility rates of the Chinese popu-

lation. In particular, we forecast China’s future mortality rates in a multiple-population

context, by explicitly allowing its systematic mortality patterns to gradually converge to

those of a group of more developed countries with higher life expectancy levels and better

data quality. The implications of population structure to China’s social security system

will also be discussed.

The deliverables of this project include the following:

1. A discussion of important issues regarding China’s mortality and fertility data.

2. A summary of the mortality modeling methods used in this project.

3. Detailed analysis of China’s demographic projection with (a) mortality projections

under the assumption of convergence in systematic mortality pattern towards a group

of more developed countries, and (b) projections of age-specific fertility rates.

4. Assessment of the impact of population structure on China’s social security system.

The procedure of the project is summarized in Figure 1. The report is structured as

follows. Section 1 discusses the motivation for implementing the mortality rotation method

on China’s mortality patterns towards those of a group of more developed countries. Section

2 defines the group of develop countries used as the benchmark, and describes the data

sets of mortality rates of China and the developed countries, as well as the fertility rates

of China. Section 3 defines the notation and summarize the mortality models used in this

project. Section 4 implements these mortality models on historical mortality data, and

analyze the key mortality patterns of China and other countries. Section 5 introduces the

algorithm allowing for convergence of key mortality patterns of China towards those of the
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developed countries. This algorithm is referred to as“mortality rotation”in this project. We

also assess the impact of the mortality rotation algorithm on forecasts of China’s mortality.

Section 6 describes the algorithm used to forecast China’s age-specific fertility rates and

the forecasting results. Section 7 combines mortality and fertility forecasts to project

China’s population structure in different horizons. Section 8 discusses the implication of

population structure on China’s social security system. Section 9 discusses the implication

of the mortality rotation assumptions on the commercial annuity sector in China. Section

10 concludes.

2



Figure 1: Flow chart of this project.
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1 Motivations for Mortality Rotation

Life expectancy in China, along with its economic level, has grown substantially over the

past decades. According to the statistics from the World Bank, China’s life expectancy

at birth had increased by around 75%, i.e., from 43.4 to 76 years, from 1960 to 2015.1 In

particular, this increase rate has been faster than in many other developed countries such

as the US. Moreover, the increase in life expectancy in China during this period has been

largely due to mortality improvement of the working age, rather than the older ages, while

the latter ages have been documented as the major driver of mortality improvement in

more developed countries in the second half of the 20th century (Li et al., 2013).

In fact, it remains an open question as to whether the historical patterns in China’s

mortality improvement will continue in the future. First, existing studies suggest that coun-

tries with a higher life expectancy level tend to experience slower mortality improvements

than those with a middle life expectancy level (Raftery et al., 2013). Given the current

life expectancy at birth, it is likely that the increase rate of China’s life expectancy level

will slow down in the future. Moreover, mortality reductions for the Chinese working age

population were largely due to improvements of the national health care system during the

second half of the 20th century, and especially to the adoption of advanced treatments for

infectious diseases, such as malaria and tuberculosis (World Health Organization, 1999).

Today, mortality rates for the Chinese working age population are already low, and it is

questionable whether there will be other factors leading to similar degree of mortality de-

clines in the next 5 or 6 decades. Meanwhile, mortality decline for population over age 60

had been slow, but improved living and medical conditions in recent years, such as better

nutrition, healthier life-style, and advancements in treatments for critical illness (e.g., heart

attack) could potentially facilitate mortality declines for the elderly.

Therefore, when forecasting life expectancy of China’s population, it is very important

to take such potential changes in mortality patterns into account. However, as will become

1Source: https://data.worldbank.org/indicator/SP.DYN.LE00.IN?locations=CN.
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clear in Section 2, China’s mortality data is of lower quality and availability when compared

with more developed countries. In particular, data issues make it extremely difficult, if

possible at all, to infer potential changes in China’s mortality patterns in a statistically

reliable way.

This project proposes an innovative method to derive long-term forecasts of China’s

mortality in a multiple-population context. More specifically, we use historical mortality

patterns in a group of developed countries, with well established health-care systems, stable

socioeconomic conditions, and higher life expectancy levels as benchmarks to infer China’s

future mortality development. Regarding mortality projections, a popular view in the

existing literature is the coherence assumption: mortality projections of different countries

should not diverge in the long run. In other words, the key quantities, e.g., the projected

age-specific mortality levels and the life expectancies, should be similar across all countries

when long term forecasts are made.

When projecting China’s mortality improvement, we consider two major ingredients:

the period effect and the age effect. These two effects are the considered the most important

factors to summarize mortality patterns in various studies (see, for example, (Lee and

Carter, 1992; Cairns et al., 2006; Booth and Tickle, 2008) and the references therein).

Specifically, the period effect refers to the aggregate mortality trend, i.e., the systematic

mortality decline to the whole population; while age effect refers to the age-exposure to

the period effect, i.e., how sensitive each age is to the aggregate mortality trend. There

coherence modeling of both the period effect and the age effect has been discussed in the

existing literature. For example, Li and Lee (2005) and Hyndman et al. (2013) show that the

systematic mortality trend has been rather similar for a large group of developed countries

since 1950; Li and Li (2017) argue that the age-exposure to the aggregate mortality decline

in many countries had substantially shifted in the 20th century, i.e., mortality declines had

slowed down for younger ages and accelerated for older ages; Li et al. (2013) propose a

rotation mechanism to achieve coherence of the age effect.
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In this project, we use the well established mortality modeling techniques, the Lee-

Carter model (Lee and Carter, 1992) and the Li-Lee model (Li and Lee, 2005), to capture

the period and age mortality effects for China and the developed countries. Moreover, we

extend the rotation method proposed by Li et al. (2013), and combine this method with

the mortality models to achieve convergence in the period and the age effects. More details

of these modeling methods are discussed in Section 4 and Section 5.

In the empirical studies, we see that the rotation of China’s period and age effect

is likely to have two opposite impacts on China’s mortality projection. First, China’s

longterm aggregate mortality improvement will be slower than its historical level. Second,

in the long run, key drivers of mortality improvements will gradually shift from working

ages to older ages, along with the convergence of the age effect. Therefore, theoretically

speaking, the rotation could either increase or reduce the projected mortality rates or life

expectancy for China in the long run. We will be able to draw clearer conclusions after the

rotation of age effect is implemented in the next phase.
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2 The Data

This report uses the uni-sex mortality data of China and a group of 15 developed countries,

as well as the fertility data of China. In this section we introduce the datasets as well as

the associated preliminary treatments that we conducted.

2.1 China

2.1.1 Mortality data

Two datasets for Chinese mortality are used:

1. The Population Division of the United Nations (UN),2 which contains gender-specific

numbers of death and the corresponding populations for 5-year periods (1960 - 1965,

..., 2010 - 2015) and 5-age ranges (0-4, ..., 75-79,80+).

2. The World Health Organization (WHO),3 which contains gender-specific numbers

of death and the corresponding populations for 1-year periods (2000, ..., 2015) and

5-age ranges (0, 1-4, 5-9,... , 85+).

Before we can use these two datasets in the empirical analysis, we need to prepare them

in the same format. In particular, the format of these two datasets should be consistent with

the datasets for the developed countries (introduced later). In this project, the following

preparations are implemented:

1. Interpolate the UN dataset into 1-year periods;

2. Adjust and extrapolate the age groups of both datasets to 0-4, 5-9, ..., 95-99;

3. Merge the two datasets.

2Source http://www.un.org/en/development/desa/population/.
3Source: http://apps.who.int/healthinfo/statistics/mortality/whodpms/.
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In the first step, we use the moving average technique in the the Curve Fitting Tool-

box of MATLAB 4. As an illustration of the interpolation, Figure 2 shows the raw and

interpolated mortality rates for age 55. We see that the interpolated mortality is able to

accurately reflect the mortality patterns in the raw data. In the second step, we apply the

Kannisto-Thatcher(KT) method (Kannisto 1996, Thatcher et al. 2002), which is currently

used by the Office for National Statistic (ONS) in UK, to extend the oldest age group to

95-99. Details on this method can be found in the appendix. Finally, we create an inte-

grated dataset with China’s mortality experiences in 1-year and 5-age format from 1960 to

2015. The integrated dataset combines mortality experiences from both the UN dataset

(1960 to 1999) and the WHO dataset (2000 to 2015).

As an examination of the errors introduced by the data preparation , we compare the

unisex life expectancy at birth (e0) from the integrated dataset and the one generated by

the World Bank from 1960 to 2015.5 The results are gathered in Figure 3. We see that

the two sets of e0 are rather close to each other, which means that our data preparation

approach does not introduce significant biases to the data.
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Figure 2: The raw and interpolated mortality rates for age 55 in China from the UN
dataset.

4https://www.mathworks.com/products/curvefitting.html
5https://data.worldbank.org/indicator/SP.DYN.LE00.IN?locations=CN
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Figure 3: The unisex life expectancy at birth e0 for China from the integrated dataset and
the World Bank.

2.1.2 Fertility data

Chinese fertility data are collected in the China Population Statistics Yearbook (2003 to

2005) and the China Population and Employment Statistics Yearbook (2006 to 2015). In

particular, age-specific data from age 15 to 49 are included.

2.2 The Group of More Developed Countries

We use mortality data for 15 developed countries as the benchmark: Austria, Canada,

Germany, Denmark, Finland, France, Italy, The Netherlands, Norway, Spain, Switzerland,

Sweden, the U.K., the U.S., and Japan. These countries are referred to as the“low-mortality

countries” by Li and Lee (2005).

Mortality data for these countries are obtained from the Human Mortality Database,

where death rates for age 0 to 99 and year 1956 to 2011 are available.
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3 A Summary of Notation and the Mortality Methods Used

3.1 Notation

The following notation is used throughout the rest of this report:

• i represents the population index;

• x represents the age of an individual;

• t represents calendar year;

• mx,t is the crude death rate of age x and year t in the single population context;

Thus, mi,x,t is the crude death rate of population i, age x and year t in the multiple-

population context.

3.2 The Lee-Carter Method

Suppose that we observe, for a single population, the crude death rates for X different ages

and T years. Then the Lee-Carter model (Lee and Carter, 1992) assumes that:

log mx,t = ax + bxkt + εx,t, (1)

where parameter ax measures the average level of mortality at age x; kt is the period

effect, i.e., the overall level of mortality in year t; bx is the age effect, which measures the

sensitivity of log mx,t with respect to the period effect; and εx,t is the error term.

For identification purpose, Lee and Carter (1992) assume that:

• ax = 1
t1−t0+1(

∑t1
t=t0 log mx,t) for all x;

•
∑x1

x=x0 bx = 1;

•
∑t1

t=t0 = 0.
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The Lee-Carter model can be estimated by Singular Value Decomposition (SVD) (Lee

and Carter, 1992) or maximum likelihood estimation (Wilmoth, 1993). After the parame-

ters in (10) are obtained, mortality forecasts can be obtained by extrapolating the period

effect with a time-series model. A popular choice of time-series model in the literature is

the random walk with drift (also known as ARIMA(0, 1, 0)). Specifically, the dynamics of

the period effect is given by

kt = d + kt−1 + ϵt, ϵt
i.i.d.∼ N(0, σ2), (2)

where d is the drift term, which needs to be estimated. For more details regarding the

estimation and forecasting of the Lee-Carter model, we refer to Booth et al. (2002) .

3.3 The Li-Lee Method

The Li-Lee model (Li and Lee, 2005) is a popular multiple population model. Suppose

that the dataset contains I populations, each with X ages and T years, the Li-Lee model

is given by:

log mi,x,t = ai,x + BxKt + bi,xki,t + εi,x,t, (3)

where ai,x measures the average mortality level of age x in population i; Kt is the systematic

period effect, i.e., the overall mortality level in year t for all the I populations; Bx is the

systematic age effect, i.e., the aggregate sensitivity of mortality at age x to the systematic

period effect; ki,t and bi,x measure the mortality fluctuation around the systematic period

effect for population i and the corresponding age sensitivity.

Similar to the Lee-Carter model, the Li-Lee model can be estimated by Singular Value

Decomposition. After estimating the parameters in (3), mortality forecasts can be obtained

by extrapolating the systematic period effect Kt and the population-specific mortality

fluctuations ki,t. Li and Lee (2005) assume a random walk with drift for the dynamics of
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Kt, and a stationary AR(1) process for ki,t’s. Formally, the dynamics of Kt is given by

Kt = d0 + Kt−1 + ϵt, ϵt
i.i.d.∼ N(0, σ2), (4)

where d0 is a parameter to be estimated; and the dynamics of ki,t is given by

ki,t = α0,i + α1,iki,t−1 + ϵi,t, ϵi,t
i.i.d.∼ N(0, η2

i ), (5)

where α0,i, α1,i and ηi are parameters to be estimated. From (4) and (5), we see that Kt

is a non-stationary process with a persistent impact, where ki,t’s are stationary and will

converge to constants after a certain period of time. Therefore, the systematic period effect

Kt determines the longterm mortality level of all the I populations.

4 Implementing the Lee-Carter method and the Li-Lee method

to Mortality Data of China and the Benchmark Countries

4.1 The Lee-Carter Method on Chinese Mortality

The Lee-Carter model is applied on Chinese mortality data over 1950 to 2015 and ages 0

to 99. Figure 4 display the average mortality level aCN
x age effect bCN

x , and period effect

kCN
t for Chinese mortality.

We see that the average mortality level starts high for infant, decreases between infant

to age 15, and increase afterwards. The period effect is monotonically decreasing, indicating

that Chinese mortality is in general declining over the the sample period. Moreover, the

decrease of the period effect is much faster in 1950 to 1975 than in the period afterwards.

Finally, the age effect is monotonically decreasing as well, meaning that the age sensitivity

with respect to the period effect is decreasing over age.

14



0 20 40 60 80

Age

-8

-6

-4

-2

0
a

x
CN

0 20 40 60 80

Age

0

0.05

0.1
b

x
CN

1960 1980 2000

Year

-20

-10

0

10

20 k
t
CN

Figure 4: The estimated aCN
x , bCN

x , and kCN
t obtained from the Lee-Carter model for

China.

4.2 The Lee-Carter Method on Benchmark Mortalities

We now apply the Lee-Carter model separately on the 15 low mortality countries. The

average mortality levels, age effects and period effects are shown in Figure 5, 6 and 7,

respectively.
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Figure 5: The estimated ax obtained from the Lee-Carter model for 15 low mortality
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Figure 7: The estimated kt obtained from the Lee-Carter model for 15 low mortality
countries.

4.3 The Li-Lee Method on Benchmark Mortalities

Finally, we apply the Li-Lee model on the 15 low mortality countries. The average mortality

level ai,x and the systematic period and age effect (Kt and Bx) are shown in Figure 8 to

10.
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Figure 8: The estimated ai,x obtained from the Li-Lee model for 15 low mortality countries.
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Figure 10: The estimated Kt obtained from the Li-Lee model for 15 low mortality countries.

4.4 Comparison of the Period and the Age Effect

Before making mortality projections, we first look at the historical mortality patterns for

China and the 15 low mortality countries. Figure 11 to 12 display the period effect and

the age effect, respectively.

Figure 11 shows that, while the period effect for the 15 mortality countries is rather close
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to linear, the period effect for China has different patterns: it had decreased drastically

from 1950 to 1975, became more stable between 1975 and 2000, and accelerated afterwards.

Moreover, From Figure 12, we see that the age effect for China appears to be decreasing

over the whole age range. More precisely, mortality improvements in China over the past 60

years concern mostly children and teenagers (age 0 to 20) and the working ages(20 to 60). In

fact, China’s mortality improvements during this period were largely due to improvements

in the national health care system during the second half of the 20th century, and in

particular to the adoption of advanced treatments for infectious diseases, such as malaria

and tuberculosis ((World Health Organization, 1999)). On the other hand, the age effect of

the 15 mortality countries decreases between age 0 and around 20, and increases between

20 and 75. This pattern is also observed in various existing studies (Lee and Carter, 1992;

Booth et al., 2002; Li and Lee, 2005). The large age effects between age 0 and around

20 reflect the advancements of medical treatments of dreadful diseases for children and

teenager; while the second hump of age effect for the middle and old ages reflect improved

living and medical conditions in recent years, such as better nutrition, healthier life-style,

and advancements in treatments for critical illness (e.g., heart attack).

Therefore, it seems that the age effect for China is not likely to continue in the future.

First, mortality rates for the Chinese working age population are already low today, and

it is questionable whether there will be other factors leading to similar degree of mortality

declines in the next 5 or 6 decades. Moreover, mortality decline for population over age

60 had been slow over the same period. However, as Chinese elderly get access to better

medical conditions and build up healthier lifestyles, it is reasonable to expect that their

mortality experience will improve faster in the future.
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estimated Kt obtained from the Li-Lee model for 15 low mortality countries.
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5 Improving the Lee-Carter Method for China Mortality

In this section we examine the empirical results, especially the projected life expectancy at

birth for China under different assumptions of mortality rotation. In this section, Chinese
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mortality is fitted and projected by the Lee-Carter model, while mortality for the 15 low

mortality countries are is fitted and projected by the Li-Lee model.

5.1 No Rotation

As a benchmark, we project Chinese mortality without mortality rotation. Figure 13 dis-

plays the projected (systematic) period effect for China and the 15 low mortality countries

up to 2065. We see that the projected period effect for China has a steeper downward

trend than that of the 15 low mortality countries, indicating a faster aggregate mortality

decline for China.

Figure 14 displays the projected life expectancy at birth for the 15 mortality countries

and China. We see that the increase in life expectancy at birth is faster for China than for

the 15 low mortality countries, which is in line with the observation in Figure 13.
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Figure 13: The estimated and projected kCN
t obtained from the Lee-Carter model for

China and the estimated and projected Kt obtained from the Li-Lee model for the 15 low
mortality countries.
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Figure 14: The estimated and projected eCN
0 obtained from the Lee-Carter model for China

and the estimated and projected e0 obtained from the Li-Lee model for the 15 low mortality
countries.

5.2 Rotating the Period Effect

In this section, we rotate China’s mortality period effect towards the systematic period

effect estimated from a 15 low mortality countries. Under the rotation algorithm, China’s

mortality projection will depend on (a) its own historical mortality trend; and (b) the
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systematic mortality trend of the 15 low mortality countries. In particular, China’s mor-

tality projection will be dominated by its own historical trend in the short run. However,

when the forecast horizon increases, the systematic mortality trend of the 15 low mortal-

ity countries will have a larger impact on China’s mortality projection. In the long run,

China’s mortality will be projected to follow closely the benchmark trend instead of its

own historical trend.

To implement the rotation algorithm, we first extend the Lee-Carter model by allowing

the drift term of the period effect to change over time. Specifically, we have (for Chinese

mortality):

kCN
t = dCN

t + kCN
t−1 + ϵCN

t , ϵCN
t

i.i.d.∼ N(0, σ2
CN ) (6)

The idea of the rotation algorithm is to let dCN
t gradually rotate towards d0, i.e., the drift

term of Kt (see (4)). The algorithm is given as follows. Denote the projected Chinese

period life expectancy at birth at time t by eCN
0 (t), which is obtained by extrapolating

kCN
t with conditional drift term dCN

t in Equation (6). We assume that the rotation starts

in year 2016, i.e., the first year after the projection begins. Further, we denote by eu
0 the

threshold of period life expectancy at birth where the rotation of dCN
t is completed, i.e.,

when dCN
t equals to d0. In this way, the rotation algorithm is given below. For t ≥ 2016,

we have

dCN
t =

 (1 − wt)dCN
o + wtd0, if eCN

0 (t) < eu
0 ,

d0, if eCN
0 (t) ≥ eu

0 .
(7)

In Equation (7), dCN
o is the starting value of dCN

t , which is estimated using Chinese his-

torical mortality data, and captures the historical mortality trend in China. When the

projection begins, dCN
t starts to rotate towards the benchmark drift term, with a speed of

rotation controlled by the time-varying weighting parameter wt. Finally, dCN
t becomes the

same as the benchmark drift term when eCN
0 (t) attains the threshold, eu

0 . In this report,

we let eu
0 = 80.99, which is the average life expectancy at birth for the 15 low mortality
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countries in 2011, i.e., the end of the sample to which the Li-Lee model is estimated.

In order to complete the rotation, the weighting parameter, wt, needs to be specified.

In this report, we follow the choice by Li et al. (2013). In particular, for each t ≥ 2016, we

let

w0(t) = eCN
0 (t) − 75.9
eu

0 − 75.9
, (8)

w(t) = {0.5[1 + sin[π
2

(2w0(t) − 1)]]}. (9)

The shape of the weighting parameter is given in Figure 15. We see that dCN
t will converge

to d0 in 2048.

2020 2030 2040 2050

Year

0

0.2

0.4

0.6

0.8

1

w
t

Figure 15: The rotating w(t) for the drift term of period effect for China

Figure 16 shows the projected kCN
t with and without rotation and the projected Kt for

the 15 low mortality countries. Figure 17 shows the analogous plots of the life expectancy

at birth. We see that rotating the period effect reduces both the mortality improvement

trend and the speed of increase in life expectancy at birth for China.
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Figure 16: The estimated and projected (with/without rotation) kCN
t obtained from the

Lee-Carter model for China and the estimated and projected Kt obtained from the Li-Lee
model for 15 low mortality countries. Two dash lines indicate the rotation points of the
period effect of China
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Figure 17: The estimated and projected (with/without rotation) eCN
0 obtained from the

Lee-Carter model for China and the estimated and projected e0 obtained from the Li-Lee
model for 15 low mortality countries

5.3 Rotating the Age Effect

The rotation of the age effect follows directly from Li et al. (2013), and is similar to the

rotation of the period effect. Again, to implement the rotation algorithm, we extend the
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Lee-Carter model (for Chinese mortality) by allowing the age effect to vary with time:

log mCN
x,t = aCN

x + bCN
x,t kCN

t + εCN
x,t . (10)

The idea of rotating the age effect is to let bCN
x,t gradually rotate towards Bx, i.e., the

systematic age effect of the 15 low mortality countries. Similar to the period effect, we let

the rotation begin in year 2016, and let bCN
x,t reach Bx when eCN

0 (t) hits the threshold eu
0 .

Formally, for each t ≥ 2016, bCN
x,t is given by

bCN
x,t =

 (1 − wt)bCN
x,0 + wtBx, if eCN

0 (t) < eu
0 ,

Bx, if eCN
0 (t) ≥ eu

0 ,
(11)

with w(t) given in (9).

In this section, we focus exclusively on rotating the age effect, and keep the drift term

of kCN
t constant at dCN

o . The weighting function has the same form given in Equation (8)

- (9). First, we show the shapes of the weighting parameter in the Figure 18. The red line

stands for the scenario where only the age effect rotates, while the blue line stand for the

scenario where rotation occurs only for the period effect (which is the same line as in Figure

15). The red line indicates that bCN
x,t reaches Bx in 2029, which is faster than the case of

the pure period effect rotation, which is not completed until around 2050. The speed of

rotation depends on how fast eCN
0 (t) increases towards the threshold eu

0 (see Equation 9).

The faster age effect rotation is due to two reasons. First, the period effect decreases

faster in the absence of rotation (due to the the larger absolute value of dCN
o ). Second,

the rotation will lead to higher age effects, and thus faster mortality improvements, for

infants and children below 6 and elderly above 60, and lower age effects for teenagers and

the working age population. Since the elderly have currently much higher mortality levels

than the working age population, the rotation will lead to faster increase in projected life

expectancy at birth. The faster increase in projected life expectancy at birth in turn leads
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to faster increase of the rotation weight w(t), as can be seen in Equation (8) - (9).

Figure 19 displays the path of rotation for the age effect. We see that the rotation is

completed in 2029, which is indeed earlier than 2048, the year of rotation completion when

only the period effect is taken into account. The impact of the age effect rotation on the

life expectancy at birth is shown in the Figure 20.
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Figure 18: The comparison of the rotating w(t) between (1) rotating the period effect (2)
rotating the age effect.
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Figure 19: The original age effect of China in 2015, the rotating age effects of China
between 2015 and 2029, and the ultimate age effect of benchmark mortalities.
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Figure 20: The estimated and projected (with/without age effect rotation) eCN
0 obtained

from the Lee-Carter model for China and the estimated and projected e0 obtained from
the Li-Lee model for 15 low mortality countries.

5.4 Joint Rotation of Both Effects

In this section, we implement rotations on both the age effect the period effect. The shape

of the weighting parameter, in comparison with the case of only age effect rotation and

the case of only period effect rotation, is plotted in the Figure 21. Figure (22) displays

the path of age effect rotation when only the age effect rotates (red dotted line) and when
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both the age and the period effect rotate (the green dotted) line.

The projected age-specific log mortality rates under different rotation algorithms are

shown in Figure 24. We see that the Lee-Carter model without rotation leads to more

substantial aggregate mortality decline, and more importantly, rather imbalanced mortality

improvements across ages. In particular, while the mortality declines are huge at younger

ages, they are projected to be very limited among the elders. In contrast, the projected

log mx,2100’s using the Li-Lee model and the rotation algorithm are very similar, and are

much more balanced across ages. Finally, the projected period life expectancy at birth

under different rotation algorithms are shown in Figure 25.
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Figure 21: The comparison of the rotating w(t) among (1) rotating the period effect, (2)
rotating the age effect, and (3) rotating the period effect and the age effect.
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Figure 22: The original age effect of China in 2015, the rotating age effects(only age effect),
the rotating age effects of China(both age effect and period), and the ultimate age effect
of benchmark mortalities.
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Figure 23: The estimated and projected (without rotation, with period effect rotation, and
with age and period effect rotation) kCN

t obtained from the Lee-Carter model for China
and the estimated and projected Kt obtained from the Li-Lee model for 15 low mortality
countries. Red dash line gives the first shared rotation point, green dash line shows the
second rotation point for the rotation of both age and period effect, and the pink line takes
us to the second rotation point for the rotation of only period effect.
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Figure 25: The estimated and projected (without rotation, with age effect rotation, with
period effect rotation, and with age and period effect rotation) eCN

0 obtained from the
Lee-Carter model for China and the estimated and projected e0 obtained from the Li-Lee
model for 15 low mortality countries.
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6 Forecasting Fertility Rates in China

In this section, we show a natural follow-up to forecast fertility rates in China. Among

the many existing methods, the Lee-Carter model (Lee and Tuljapurkar 1994) in fertility

modeling is widely used by both practitioners and researchers. For example, Statistics

Canada (Bohnert et al. 2015) applies the Lee-Carter model in projecting age-specific fertil-

ity rates in Canada; Myrskylä et al. (2013) extend the Lee-Carter model with ”freeze-rate”

extrapolation to project cohort fertility rate for various developed countries. In this study,

we apply the Lee-Carter model for fertility rate projection.

Following Lee and Tuljapurkar 1994, we apply the Lee-Carter model with long-run

mean constraint to project the age-specific fertility rates of China. In particular, The long-

run mean of the period effect is selected as the long-run equilibrium level of total fertility

rate, i.e., 2.1 births per woman. The choice of this ultimate mean of total fertility rate for

China is supported by Alkema et al. (2011). The Lee-Carter model representation with

long run mean constraint for age-specific fertility rates is given by:

Fx,t = ax + bxft, (12)

where Fx,t is the observed age-specific fertility rate for age x and year t; ax is the baseline

fertility level for age x, which is the average of Fx,t over time; bx characterizes the age

pattern of fertility changes. In Equation (12), only ft is assumed to evolve randomly over

time. In other words, the uncertainty of age-specific fertility rate only manifest in its

period effect of ft. Equation (12) is estimated by the Single Value Decomposition (SVD)

method. In particular, similar to the original Lee-Carter model, the following constraints

are imposed: ∑
x

bx = 1,
∑

t

ft = 0. (13)
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A representation of total fertility rate is then given by:

TFt =
∑

x

Fx,t =
∑

x

ax + ft (14)

The long-run mean constraint on total fertility rate is imposed by specifying a mean-

reverting process with a designated mean for the period effect ft. Following Lee and Tul-

japurkar (1994), we use the mean-constrained autoregressive (AR) process to characterize

the dynamics of ftLee and Tuljapurkar (1994) 6:

ft+1 = µ + ρft−1 + ut, (15)

where µ carries the mean constraint for ft, i.e., µ = (1 − ρ)(TFult −
∑

x ax), where TFult is

set to 2.1 in our case.

Figure 26 shows the estimated ax and bx from China’s fertility data. The baseline

fertility rate ax shows a hump-shaped fertility pattern, i.e., the golden ages of having a

child lie between 20 and 30. Meanwhile, bx’s are the highest around age 25, meaning that

the change of fertility pattern is the most profound for women around 25.

6Lee and Tuljapurkar (1994) use Autoregressive moving average process (ARMA) in their application.
In this this study, we do not consider the moving average parts of their model because we primarily focus
on the best estimates of the fertility rate.
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Figure 26: The estimated ax and bx obtained from the Lee-Carter model for the age-specific
fertility rate of China.

Future age-specific fertility rates are then projected using Equation (15). The estima-

tion and projections of ft are presented in Figure 27. We see that the current value of ft is

lower than the pre-specified long-run mean, so the projected values of ft will be increasing

and converge to the long-run level over time.
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Figure 27: The estimated and projected ft obtained from the Lee-Carter model for the
age-specific fertility rate of China.
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Figure 28: The estimated and projected TFt obtained from the Lee-Carter model for the
age-specific fertility rate of China.

Turning ft into total fertility rate TFt via Equation (14), we obtain the projections of

the latter, which is shown in Figure 28. In this figure, we see that the total fertility rate

will reach the long-run mean 2.1 at around 2060. With the recent abolish of the one-child

policy, persistent decrease of total fertility rates, as observed in the past decade, is less

likely to occur in the future.

7 Forecasting Population Structure in China

Now we proceed to the projection of population structure in China. In particular, we

proceed with the following assumptions:

• We do not consider the impact of the ratio of males over females in the populations on

the fertility pattern, i.e., the population structure is modeled as a one-sex birth-death

process (Arnold et al., 2015).

• We focus on the deterministic population model.
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• We assume the individual will decease at the age 100.

• We apply the unisex mortality to both genders.

Formally, the population structure could be summarized as the following McKendrick

- Von Forester equations (see M’Kendrick (1925) and Foerster (1959)). Denote by gv
x,t, v ∈

{Female, Male} as the quantity of individuals with gender v and age x at time t, the

mortality dynamics of the population structure is given by:

(∂x + ∂t)

gm
x,t

gf
x,t

 = −

µm
x,t 0

0 µf
x,t


gm

x,t

gf
x,t

 , (16)

i.e., the number of individuals decreases as the individuals age. We summarize the quan-

tities for the two genders as gx,t =

gm
x,t

gf
x,t

. The fertility dynamics, on the other hand, is

constructed by:

g0,t =
( Fagemax∫

Fagemin

gf
x,tfx,tdx

)  p

1 − p

 . (17)

In particular, g0,t =

gm
0,t

gf
0,t

 represents the number of male and female newborns at the time

t, respectively. In our study, we set Fagemin = 18 and Fagemax = 49 as boundary conditions

for the fertility dynamics. The choices of the boundary conditions for the fertility are

discussed in Lee and Tuljapurkar (1994) and Myrskylä et al. (2013). p is the probability

of being a male for a newly-born baby7. Obviously, given a starting point as gx,0, the

population structure evolves automatically with the combination of the mortality dynamics

and fertility dynamics following Equation (16) - (17). We choose the starting point gx,0 to

be the China’s male and female population in 2015 for each x.

A useful index that could be derived from the population structure is the old-age de-

7We set p = 0.5353, following the sex ratio at birth in 2016 from World Bank https://data.worldbank.

org/indicator/SP.POP.BRTH.MF?locations=CN.
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pendency ratio. The dependency ratio essentially characterizes the pressure of retirees on

the working population. A lower dependency ratio indicates milder financial stress on the

working population to sustain the retiring population, while a higher ratio indicates heavier

financial stress. This ratio normally serves as an indicator for the government to monitor

the sustainability of the social security system. In our setting, the dependency ratio is

defined as the following8:

rt =
∑99

x=65(gm
x,t + gf

x,t)∑65
x=15(gm

x,t + gf
x,t)

, (18)

where the retirement age is set to be 65. Figure 29 plots the dependency ratio of China over

different projection horizons under all mortality rotation assumptions. More specifically,

the red solid line stands for the benchmark case without any mortality rotation. The results

from the benchmark case are comparable to the ones generated by the United Nations. The

latter is represented by the solid line with circle markers. Moreover, the red dashed-dotted

line, representing the case of period effect rotation, indicates that the dependency ratio

will increase at the slowest rate and reaches 51%, which will be approximately 5% lower

than the benchmark case. Meanwhile, the blue dashed line, i.e., projection under age effect

rotation, predicts the fastest increase in the dependency ratio, which reaches 71 %, about

15 % higher than the benchmark case. Finally, the predicted dependency ratio under joint

rotation reaches 62% in 2065, i.e., 12% higher than the benchmark. This joint rotation

case is visualized by the blue dotted line.

In summary, the financial pressure of the old-age population is projected to be much

more substantial under the assumptions that the mortality patterns of China would grad-

ually rotate to the ones of the more developed countries. Moreover, existing mortality

models, which potentially neglect the faster mortality improvements for the old-age popu-

lation, are likely to underestimate the old-age dependence ratio of China.

8With focus of the population structure’s impact on social security system, the dependency ratio in our
setting only cover the population aged over 65. Some other authorities, e.g., World Bank, would also include
the population age below 15 in the numerator of the dependency ratio
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Another interesting indicator of population structure is the population pyramid. The

population pyramid graphically portrays the distribution of age groups of a population.

First, we generate the initial population pyramid based on the 2015 population structure

of China in Figure 309, where the left panel represents the male population and the right

panel represents the female population. Figure 30 shows that larger proportions of both

male and female population fall between age 27 and 52. Correspondingly, the period when

these population were born is 1963 to 1988. This period followed the Great Chinese Famine

10 and was ended by the tightening of the one-child policy.

The population pyramids of China under different mortality rotation assumptions in

2065 are plotted in the Figure 31. For ages between 0 and 50, the population is almost

equally distributed. There is a huge downward jump at the age 50 because we model the

fertility dynamics of China as a mean-reverting process that would return to its long-run

mean from the historical low level in the early 21st century. Moreover, different mortality

rotation assumptions have much more noticeable impacts on the population structure above

75 than the younger population. In particular, rotating only the age effect (blue dashed

line) inflates the population over 75 the most. The rank for these scenarios follows the same

order as the old-age dependency ratio as shown in Figure 29. In this sense, the population

pyramids yield consistent implications as the old-age dependency ratio.

9We use the population data from World Population Prospects: The 2017 Revision
10This famine could be visualized as a big sag between the age 50 and age 60

43



2020 2025 2030 2035 2040 2045 2050 2055 2060 2065

Year

10

20

30

40

50

60

70

80

R
a

ti
o

 (
%

)

No rotation

Period effect rotation

Age effect rotation

Period and Age effect rotation

UN medium variant

Figure 29: Dependency ratios under 4 scenarios: no rotation, period effect rotation, age
effect rotation, and the joint rotation.
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Figure 30: 2015 Population structure of China.
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Figure 31: 2065 Population structure of China.
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8 Implications on Social Security System

Now we study the implications of the mortality rotation assumptions on China’s social

security. The implications are illustrated with a simple and deterministic model of contri-

butions and benefits. The details of this simplified social security system are gathered in

Appendix B.

For a future year T + µ, the contribution side of the social security system is given by:

RT +µ = r2016 ∗
( 60∑

x=15
gx,T +µ

)
∗ cr2016 ∗ 12, (19)

where r2016 is the contribution per month per capita in year 2016, gx,T +µ is the expected

number of population in year T + µ, and cr2016 is the implied coverage ratio of social

security system in 2016. Moreover, the benefit side of the social security system is:

BT +µ = b2016 ∗
( xmax∑

x=61
gx,T +µ

)
∗ cr2016 ∗ 12, (20)

where xmax is set to be 99, and b2016 is the benefit per month per capita in year 2016. The

gap of social security system in year T + µ is thus defined as:

GT +µ = RT +µ − BT +µ. (21)

A negative gap means deficit in the social security system.

Based on China’s population structure in 2016, we have r2016 = 499.3, cr2016 = 0.771,

and b2016 = 1116.8. For derivations of these numbers we refer to Appendix B. Figure 32

shows the dynamics of social security gap under different rotation assumptions for China.

Specifically, if we rotate the age effect and the period effect of China, the expected gap in

the social security system will be negative 35 billion in 2065, i.e., 10 billion more deficit

than the benchmark case.
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Figure 32: The gap in the social security system under 4 assumptions: no rotation, period
effect rotation, age effect rotation, and age period effect rotation

9 Implications on Commercial Annuity Market

We see from the discussions above that the benchmark retirement income (111.68 CNY

per month) cannot be met starting from 2030, solely based on social security contributions

from the working population. Therefore, supplementary retirement products are in strong

need to maintain a reasonable retirement income level for China’s retirees in the following

decades.

In this section, we illustrate the potential role that commercial annuity market could

play in China’s retirement benefit system under the following framework.

1. The target monthly retirement income is supposed to be 2373 yuan, which is the
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monthly retirement income of the enterprise retirees of China in 201611.

2. Commercial annuity is the only source of retirement income besides the social security

described in Section 8.

Let e2016 = 2373 be the targeted monthly retirement income for a retiree. ca2016 as the

desirable amount of benefits received from the commercial annuity.

Given the second point of the setup for the commercial annuity market, we have ca2016+

b2016 = e2016 = 2373, where b2016 = 1116.8 and subsequently ca2016 = 1256.2 yuan.

Following the above setting, the need for commercial annuity of each retiree, CT +1, is

given by:

CT +1 = ca2016 ∗
( xmax∑

x=61
gx,T +1

)
∗ cacr2016 ∗ 12, (22)

where xmax is set to be 99 in our study, cacr2016 is the implied coverage ratio of commercial

annuity in 2016, ca2016 is the desirable amount fo benefits received from the commercial

annuity in the year 2016.

Figure 33 displays the projected required amount of commercial annuity income to

reach the targeted retirement income under the 4 mortality rotation assumptions. We see

that the projected required amount of commercial annuity income will be increasing over

the next 4 decades, and will reached the peak in around 2055. Moreover, if both the age

effect and the period effect rotate, the required amount will be around 98 billion in 2065,

which is approximately 8 billion higher than the benchmark projection (without rotation).

10 Conclusion

This report proposes a mortality rotation algorithm to project China’s population struc-

ture. Implications of the mortality projection on China’s social security system and the

11Annual report on China’s social security development. Source: http://www.mohrss.gov.cn/

SYrlzyhshbzb/dongtaixinwen/buneiyaowen/201711/t20171124_282237.html
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Figure 33: The total required amount of commercial annuity benefits under 4 mortality
rotation assumptions: no rotation, period effect rotation, age effect rotation, and age period
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commercial annuity sector are also discussed. While Chinese historical mortality patterns

are generically different from the more developed countries, such discrepancies are likely

to diminish along with future socioeconomic developments. Our approach incorporates

the future changes of Chinese mortality patterns in the projection using a rotation algo-

rithm. In particular, we allow the projected mortality patterns of China’s population to

be weighted averages of its own historical patterns and the benchmark patterns derived

from a set of more developed countries. The weights of the benchmark values start from

0, and gradually increase to 1 as the projected life expectancy of China increases. Finally,

coherence is achieved when the projected life expectancy reaches a threshold.

Moreover, China’s age-specific fertility rates are projected, assuming that the total

fertility rate would converge to the equilibrium level, 2.1, in the long-run. Based on the

projected mortality and fertility rates, we find that a substantial proportion of China’s

population will lie between age 70 and 80 in 2065. Further, the social security system will

be in deficit starting from 2030, with the deficit being the largest around 2055. In this case,

substantial amounts of retirement benefit incomes from the commercial annuity sector are

required to maintain a reasonable level of retirement income for the retirees.
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Appendix

Kannisto-Thatcher Method for High Age Mortality

Kannisto-Thatcher (KT) method has been widely used to closing the mortality tables at

high ages by many statistics authorities, e.g., Office for National Statistic (ONS) in UK and

research institutes, e.g., the Max Planck Institute for Demographic Research, see Andreev

et al. (2003). Under the assumption that the force of mortality mx is a logistic function of

the age x, KT method employs the logistic model to extend mx to mxmax for the highest

attained age xmax that is outside of the observed mortality table.

In our setting, we have the UN-WHO integrated mortality dataset of China for 5-age

ranges (0-4, 5-9, ..., 75-79, 80+) and 1 year periods (1960, 1961, ..., 2015). We have a open

age group 80+ in our data. We apply the KT method to generate mxmax that closes the

open age group. We aim at matching our mortality dataset of China with the one of the

group of more developed countries, especially for their 5-age ranges (0-4, 5-9, ..., 90-94,

95-99). Therefore, we select the age xmax to be 99.

Formally, the KT method to close the mortality table of our dataset at the age of 99 is

as follows:

log( mx,t

1 − mx,t
) = β0,t + β1,t(x − x0) + ex,t, (23)

where x0 = x∗ − 20. x∗ is the lower bound of the open age group and equals to 80 in

our case. x0 turns to be 60. 20 is a typical choice in the KT method, see Wilmoth et al.

(2007). Equation 23 is estimated over the age range that start from x0 up to x∗ for each

year t. More specifically, 1-year age range (60, 62, ...,78, 79) is preferred for the estimation.

However, our dataset features for 5-age range (60-64, 65-69, ..., 70-74, 75-79). In that

sense, we leverage the Gompertz law of mortality, which is also broadly consider by many

literatures e.g., Bongaarts (2005), to interpolate 5-age ranges into 1-age ranges (60, 61, ...,
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78, 79) for each year t. Detailed derivations and discussions are referred to Olshansky and

Carnes (1997) and Bongaarts (2005).

The estimation of Equation 23 gives β̂0,t, β̂1,t for each year t, with which we can extend

the mortality table from up to 99, i.e., m̂80,t, m̂81,t, ..., m̂98,t, m̂99,t are at hand. The hat of

the central mortality rate represents the predicted values given by the KT method, which

can be formulated as follows:

log( m̂x̃,t

1 − m̂x̃,t
) = β̂0,t + β̂1,t(x̃ − x0). (24)

Where x̃ ∈ {80, 81, ..., 98, 99} and x0 = 60.

Last but not least, we tune these extended mortality rates for 1-age range (80, 81, ...,

98, 99) to the ones for 5-age range (80-84, 85-89, 90-94, 95-99), which is in line with the

observed ones for 5-age range (0-4, 5-9, ..., 70-74, 75-79). It is conducted in the following

way :

• We transform the central mortality rate m̂80,t
12 to the death probability q̂80,t by

q̂80,t = 1−exp(−m̂80,t) and we repeat this procedure for other ages, see Pitacco et al.

(2009)

• q̂80−84,t is obtain via 1 −
(
1 − q̂80−84,t

)5 = 1 −
( ∏4

s=0(1 − q̂80+s,t)
)
under the uniform

assumption of the force of mortality during the 5-age interval ((Wilmoth et al., 2007)).

• m̂80−84,t is given by exp(−5 ∗ m̂80−84,t) = (1 − q̂80−84,t)5, following the same intuition

of the first bullet point. Similarly, we get m̂85−89,t, m̂90−94,t, m̂95−99,t.

In total, we have m0−4,t, m5−9,t,..., m75−79,t, m̂80−84,t, m̂85−89,t, m̂90−94,t, m̂95−99,t, for

t ∈ {1960, 1961, ..., 2014, 2015}.
12To simply the notation, we use mortality rates (m̂80,t,m̂81,t, ...,m̂84,t) as an example.
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The Social Security System Specification

First, we derive the key components of the social security system from the official report

given by the Ministry of Human Resources and Social Security13. First we define the

variables used in the equations. Let np
t represent total number of individuals participate

in the social system, including the contributors and beneficiaries. From the report, we

known np
2016 = 887.77 million. Let Nx,t be the number of population at the age x in the

year t. From the growth rate obtained from the world bank and the 2015 number from

UN, we know N15+,2016 = 1151.20 million, where 15+ represent the individuals age over

15 year old with assumption that the individual start to participate social security system

at the minimum age of 1514. The implied coverage ratio of social security system would

be crt = np
t

N15+,t
. In our case, we fix the coverage ratio at the year 2016 in the projections

of our social security system, i.e., cr2016 = np
2016

N15+,2016
= 887.77

1151.20 = 0.771.

For the benefit side of the social security system, let nb
t represent the numbers of

beneficiaries and nb
2016 = 253.73 in 2016. Besides, Bt is total benefit paid by the social

security system at year t and B2016 = 3400400 million. bt is the benefit per month per

capita in year t, which in 2016 is calculated as b2016 = B2016
12∗nb

2016
= 3400400

12∗253.73 = 1116.8 yuan.

Naturally, for the contribution side the number of contributor comes as nc
t = np

t − nb
t .

Then, in 2016, nc
2016 = np

2016 − nb
2016 = 887.77 − 253.73 = 634.04 million. In addition,

Rt is total benefit paid by the social security system at year t and R2016 = 3799100

million. rt is the benefit per month per capita in year t, which in 2016 is calculated as

r2016 = r2016
12∗nc

2016
= 3799100

12∗634.04 = 499.3 yuan.

Details of the social security system used in this report is presented below.

• What is the proportion of the total number of individuals aged between 15 and 60 that

contributes to the social security system? On one hand, from the report, we know the

13http://cj.sina.com.cn/article/detail/6018289492/264033
14Actually, it should be 18. We make a compromise here because we observe the population data in a 5

year range, i.e., we only have the data on 15-19 age group.
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number of the individuals that contribute to the social security is 887.77million −

253.73million = 634.04million, in 2016. On the other hand, we update the number

of individuals aged between 15 and 60 from United Nations in 2015, i.e., 935.2681

million, to the one year 2016 by assuming the same growth rate for 15-60 as the

total population, i.e., 935.2681 ∗ (1 + 0.58%) = 940.7255 million15 . We could not use

our data from the statistics yearbooks because it is only 1% survey sample. From

the number above, we know the cover rate of social security in age range 15 - 60 of

total population, i.e., 634.04
940.7255 = 67.4%. We keep this cover rate fixed in the future

projection of population structure.

• What is the proportion of the total number of individual aged above 60 that receive

benefits from social security system ? From the report, we know that there are 253.73

million individuals who receive benefits from the social security system. Follow the

similar logic in the first bullet point, we obtain the total number of individuals that

age over 60 in the whole population from the UN unisex population structure withe

growth rate obtained from the World Bank, i.e., 214.739 ∗ (1 + 0.58%) = 215.992

million. It follows naturally the interested ratio. We can’t calculate, simply because

we have more individuals who take the benefits than total number.

• Although we can not calculate the contribute ratio and the benefit ratio separately,

we can use a uniform coverage ratio, 88777/115120.9 = 0.771, where the denominator

is the population of China at 2016 over 15 years old, using the growth rate above.

• In addition, we also need to calculate the contribution and benefit that each partic-

ipants would need to pay and receive. We begin with calculating contribution, i.e.,

37991∗100
(887.77−253.73)∗12 = 499.32 yuan. As we know the total expenditure of social security

system is 34004*100 million yuan. The benefit is set to be 34004∗100
253.73∗12 = 1168.8 yuan.

15The growth rate is obtained by from the World Bank, as 1.0058 = 1.379
1.371 , seehttps://data.worldbank.

org/indicator/SP.POP.TOTL?locations=CN
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• In that sense, the dynamic of this social security system goes as follows. For the

year t, social security system receives its income from the contribution side, i.e.,

+N15−60,t ∗ 77.1% ∗ 499.32 ∗ 12, and makes its payment to the benefit side, −N60+,t ∗

77.1% ∗ 1168.8 ∗ 12, where Nx,t represent the number of individuals at the age x and

year t.

• The gap in the social system is then

N15−60,t ∗ 77.1% ∗ 499.32 ∗ 12 − N60+,t ∗ 77.1% ∗ 1168.8 ∗ 12.
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