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INTRODUCTION 

wRY actuarial student is familiar with Makeham's famous First 
Law of Mortality under which the force of mortality at any age 
is given by the following equation: 

~.= A q-Ba* (1) 

Several mortality tables which have been or are presently in use are 
Makehamized. For such tables the labor involved in calculating joint life 
values is reduced because it is possible to use equivalent equal ages to 
the ages of the lives under consideration. 

Apart from the application to joint life problems the fact that Make- 
ham's Law holds is taken into account only in the original construction 
of the mortality table. Once the table is constructed commutation func- 
tions and other values are obtained in the same manner as for mortality 
tables in general. 

The mortality table and commutation functions are tools which the 
actuary employs in calculating annuity, insurance and other life con- 
tingency functions. However, where the governing law of mortality is 
represented by a mathematical equation it should be possible to express 
life contingency functions in terms of the parameters of the mortality law 
directly without developing the standard mortality table and commuta- 
tion function tools. 

Whether it is worth while to obtain expressions for life contingency 
functions directly from the governing law of mortality itself will depend 
on a number of factors. An important consideration will be the ease in 
practice of using the formula developed for determining the value of a 
particular function. A second consideration would be the number of cal- 
culations to be made. If only a few calculations are to be made it might 
be worth while to avoid constructing the mortality table and commuta- 
tion functions. A third consideration is the calculating equipment 
available. 

In this paper there is developed a formula for the continuous annuity 
a,:~ in terms of the Makeham parameters A, B, and c, and the force of 
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interest. As many life contingency functions can be expressed in terms of 
a~:~, these functions also will benefit from a useful formula for a~:~. 

At this point it should be recognized that Mr. Emory McClintock, in 
a paper presented to the Institute of Actuaries in July 1874 entitled "On 
Computation of Annuities on Mr. Makeham's Hypothesis," developed a 
formula for the continuous annuity d~ in terms of the three Makeham con- 
stants and the force of interest. As Mr. McClintock's paper came to my 

attention only after this paper had been drafted and as the methods al- 
though similar are not identical, I have found it more convenient to 
proceed along the lines originally planned and then to compare the final 
results with Mr. McClintock's. Because of the passage of time since Mr. 
McClintock's paper was published, it is likely that it is not now well 
known and I therefore consider it worth while to have it re-examined in 
the light of present-day actuarial thinking. 

T I ~  CONTINUOUS ANNUITY ax:n--] 

Consider the continuous annuity a.:.-- 1. I t  can be represented in integral 
form as follows: 

fo"  " a:-q = v*. tp ,  dt .  (2 )  

Expressed as a function of the forces of interest and mortality, 

• e-f°"x+hahdt. ( 3 )  = f . e _ ~ t  t 
ax:n-l .'o 

For a Makeham Table the expression for a~:~, after substitution for the 
force of mortality, becomes: 

in a : - q =  e-(a+~)t, e-(B:+tA~' c). e(B:A n c)dt. (4 )  

This complicated expression for a.:.--] can be simplified by making the 
following substitutions: 

Bc x K , -  (5) 
lnc 

H - A + ~  (6 )  
In c 

Bcx+' 
- K ~ ' c ' .  (7) 

Y-- l nc  

t In is used to denote the natural  logarithm or logarithm to base e. 
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It follows that 

and 

t - In(y/K~) (8) 
In c 

d t -  dy (9)  
yln c" 

i,, K x t  n d,v 

-- eK* fK~x+" ( ~ - ~ ) - g l n  c " - -  e-UdY y 

( l o )  

Defining 

and 

it follows that 

and 

8 K x  H f K x q ' n  e--u 

= In c" K .  JK. f + z  dy. (11) 

e--Y 
/ ( y )  - ( 1 2 )  y~+H 

F( K.) = £ ? f  ( y) dy, (13) 

F(K,) --F(K~+.) 
(14)  

a : ~ =  K , . f ( K . ) . l n c  

F(K.)  
a~=K. . f (K~)  . lnc" (15)  

Defining 

F(K.) ~ ( K . )  (16)  f ( K , )  by ~ ( K . ) ,  it follows that ~ - K, ' ln~"  

THE NATURE Or THE rlYNCTIONS F(K), f(K), ¢(K) 
It is not possible to evaluate exactly the definite integral represented 

by F(K). Methods for approximating F(K) are therefore required. The 
optimum method is the one which produces values of F(K) to a desired 
degree of accuracy with the minimum amount of calculation. A satisfac- 
tory method is one which produces sufficiently accurate values with a 
tolerable amount of calculation; 

Graphically F(K) can be represented by the shaded area (in Fig. 1) 
subtended by the curve f(y) to the right of the ordinate K. If the dotted 
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curve represents the graph for e- ' /A u+H, the area to the right of K under 
the dotted curve is given by 

fK  ~ ' e--v e--K KI+H d y =  Kl+H = I ( K ) .  

The ratio of the smaller area F(K) to the larger area f (K) is ~(K). 
As K increases, both f (K)  and F(K) become very small and ~(K) ap- 

proaches unity. 

~'IRST METHOD FOR APPROXTMATING F(K) 
Using the Euler-MacLaurin formula the value of a definite integral can 

be approximated from the sum of evenly spaced ordinates throughout the 
area and values of the derivatives at the limits of integration. Because 

l~Gum~ 1 

the f-curves and all their derivatives become zero at infinity, only the 
values of the derivatives at the lower boundary affect F(K). Accordingly 

F ( K )  = L " f ( y ) d y  

(17)  
-- ~ . ~ f ( K  q- t )  - - ½ f ( K )  + ~ - ~ I ' ( K )  -- ~z-6! ~ ¢"'¢ , K )  

$=0 
and 

(._L_K '÷" 
\ K +  12 t-o ( 1 8 )  

( K ~  I+R ] + g--2 
\'U-+-~ ] + " " "J " 

= f ( K ) [ 1  ' 1 + / / 1  f ' ( K )  - - t - - - K -  j . ( 1 9 )  

f ' " (  K )  = -- f ( K )  [1--b 
1 +__1t 

3 
K 

(20)  
+3 (I+H)(2+H)K 2 4 (I+H)(2+//)(3+//)]K 8 . . 
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Collecting terms, we have: 

1 + .-, \ K + I ]  

( K I + H .  +e-~k-g-~] + . . . ]  - - . 0 8 1 9 - -  .0792 - - - - g - - - t . . .  ( 2 1 )  

+ .0042 (1 -4- H)K s(2 + H)  + . 0014  (1 + H)  (2 +K sH) (3 + H)  t " 

TABLE l - -F (10 )  

Ratios tof(10) of 
d(10) . . . . . . . . . .  
3"(11) . . . . . . . . . .  i i i i i i ~ i i i i i i i i i i i i i  
](12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
]'(13) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
/ ( 1 4 )  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
/(15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
f(16) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
/(17) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
f(18) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

~ / (104-0  +½f(10) . . . . . . . . . . . . . . . . .  
t = l  

-.0819/(10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
- . 0 7 9 2 / ( 1 0 )  (1 +H)/lO . . . . . . . . . . . . . . . . . . .  
--F .0042f(I0) (1+//)(2+//)/100 . . . . . . . . . . . .  
+.0014]'(10) (1 +1/) (2 +H) (3 +H)/1000 . . . . .  

~(i0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
~(10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
q,(lO)/lO=a In c . . . . . . . . . . . . . . . . . . . . . . . . . . .  
10eF(10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

H=O 

1(I0) =.0000045 

.5000 

.3344 

.1128 

.0383 

.0131 

.0045 

.0015 

.0005 

.0002 

1.0053 

- -  .0819 
- -  .0079 
+ .0001 
+ . 0 0 0 0  

.9156 

.0000041 

.09156 

.000004 

1t=1 

f(10) =.00000045 

.5000 

.3040 

.09~ 

.0295 

.0093 

.0030 

.0010 

.0003 

.0001 

. 9 4 1 2  

--.0819 
--.0158 
+.0002 
+.0000 

.8437 

.00000038 

.08437 

.000004 

I t  is evident tha t  the above formula suffers from two serious disadvan- 

tages. A great  deal of calculation is involved and the formula can be used 

only if the values of higher derivatives not tabulated can be ignored. I t  

is only for very  large K tha t  the above formula is practical, so tha t  it is 

probably  limited to obtaining the value of g ,  for centenarians and older. 

As it will be useful for formulas to be developed later, we shall use for- 

mula  21 to calculate in Table 1 F(10) and 4(10) for H = 0 and H = 1, 
two extreme values of lit. 
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SECOND METHOD OF APPROXIMATING F(K)  

As 

F ( K )  = f Z f ( y ) d y ,  

its derivative is given by 
g--K 

F ' ( K )  = - - J ( K )  - KI+H 

K S K" 
- 

= _ K - I - U + K - H - - - -  K1-H 

Kn-l-tt 
- F . . . - F ( - 1 )  " + 1 -  F 

Integrating, we have 
K - U  KI-H 

F( K ) + Constant of Integration = ---if- n t- 1 --------H 

o r  

K2-1t Kn-tl 
(2 H)I2  F . . . + ( - - 1 )  " + 1 -  - _ ( n - B ) l  n_ 

]-.  . .  , 0 < H < I  

(22)  

(23 )  

(24 )  

g 2 
= - - ln  K+.K-- -~-_+  . . .  

. . . .  ( 25 )  

-I--(--- i )  '~+i g " + .  H = O. 

Defining the series on the right-hand side of the equation as G(K), we 
have 

F(K) "1- Constantof Integration = G(K) 
(26) 

F( ~" ) + Constant of Integration = G(oo ) .  

But F(~o) = 0 .  .'. Constant of Integration = G(oo). (27) 

.'. F(K)  -- G ( K ) - .  G(oo).  (28)  

EVALUATION OF THE CONTINUOUS ANNUITY 

USING SECOND APPROXIMATION 

Using the second approximation above, we obtain by substitution fro m 
(14) that 
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G( K,) --G( K,+,) (29)  
a=:"-]= K . ' f ( K = ) ' l n c  

and 
G( K=) --G( ¢o ) (30)  

a*=K, .  / (  ~-~,):~ c 

To evaluate d, for some given age x requires the following steps: 

Step 1. Determine K= from equation 5. 
Step 2. Determine/ / f rom equation 6. 

• K 2 K *  
Step 3. Determine the successive terms, 1, K, /2 ' [3 ' etc., until an in- 

significant term is reached taking into account the number of deci- 
mal places selected, and list results. 

Step 4. Divide successive terms by - H ,  1 - H, 2 -- H, etc., and list 
results. 

Step 5. Alternately subtract and add the series of terms determined 
in step 4. 

Step 6. Determine K 8 using logarithm tables. 
Step 7. Divide the result of step 5 by the result of step 6 to obtain 

a(g).  
Step 8. Determine e -K by alternately adding and subtracting terms of 

step 3, and check result, if possible, from a set of mathematical tables. 
Step 9. Compute the denominator for the annuity value K=.f(K,). 

In c = (e-K/K~) .In c, using steps 6 and 8. 
Step 10. Obtain G(~)  - 1/tt  by interpolation in the second column 

of Table 4, and hence G(~).  An alternate meihod would be to use 
equation 35 and published tables of the Gamma Function. 

Step 11. Determine the numerator for the annuity value by subtract- 
ing the result of step 10 from the result of step 7. 

Step 12. Determine the value of the annuity, by division of the result 
of step 11 by the result of step 9. 

I t  will be apparent that steps 2 and 10 need be performed only once 
for any mortality table and interest rate. Apart from steps 3 to 5 the 
amount of calculation for each step will be apparent. The labor involved 
in steps 3 to 5 clearly depends on the magnitude of K= itself. Consider 
Table 2 which shows the number of terms which must be taken in step 
3 to obtain a value correct to five decimals. For the values of K= appear- 
ing in the table the applicable age on the a-1949 Female Table is shown 
also. " 

The quantity G(~) appearing in the numerator for d= is the limit to 
which G(K) approaches as K be'comes infinite. As Table 2 suggests, the 
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labor involved in computing G(K) using step 3 becomes too great for 
larger values of K. However, for large values of K, F(K) can be readily 
determined using the first method of approximation of this paper. Since 
G(o~) = G(K) -- F(K), it can be determined best by selecting a value of 
K where both F(K) and G(K) can be practically and independently de- 
termined. Taking K = 10 as a satisfactory value, we have 

G( co ) = G ( I O )  - F ( I O )  

1 
- 1 0  ~ [ 1 0 ~ ' G ( 1 0 )  - 1 0 H ' F ( 1 0 ) |  ( 3 1 )  

! 
- 10 B[10  ~ . G ( 1 0 )  - - .0000041  

T A B L E  2 

NUMBER OF TERMS TO BE CAL- 
CULATED UNDER STEP 3 

[see Table 1]. 

.01 . . . . . . . . . . . . . .  

.02 . . . . . . . . . . . . .  

.0S . . . . . . . . . . . . . .  

. 1  . . . . . . . . . . . . . . .  

, 2  . . . . . . . . . . . . . . .  

. 5  . . . . . . . . . . . . . . .  

1 . . . . . . . . . . . . . . . . .  

2 . . . . . . . . . . . . . . . . .  

5 . . . . . . . . . . . . . . . . .  

Age 

45 
51 
59 
65 
71 
79 
86 
92 

100 

Number of 
Terms 

2 
2 
3 
3 
4 
6 
9 

12 
21 

From Table 1 it is apparent the value of 10R.F(10) remains relatively 
small and constant for all H. Therefore G(m) can be determined follow- 
ing the same procedure as described above for G(K) with K = 10, and 
with the deduction of .000004 in step 3. In  Table 4 are tabulated values 
of G(o~) for a wide range of values of H. Also tabulated are values of 
G(~ ) -- 1/H, which appears to be better suited for interpolation than is 
G(o~) itself. Table 4 or the Gamma Function referred to in equation 35 
can therefore be conveniently used for obtaining the required value of 
C(~). 

a'ESrtNG ru~ m~raoD ON 1-u~ a-1949 rE~E 
r ~ i ~  wira 2½% n c m ~ s r  

To illustrate the second method in practice, the calculations in Table 3 
were done for the a-1949 Female Table and 2½% interest, for which the 
Makeham constants are given on page 385 of TSA I. 
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Detailed Calculation for Age 65 

T h e  c a l c u l a t i o n s  fo r  t h e  a n n u i t y  a t  65 will n o w  be  d e v e l o p e d  in  de ta i l .  

S t e p  1 

logto c = . 0 4 9  ( b v  d e f i n i t i o n )  

log10 c 65=  6 5  X . 0 4 9  = 3 .1  8 5  

• c 6 5 = 1 5 3 1 . 1  

In c = . 0 4 9  X 2 . 3 0 2 5 8 5 1  

= • 1 1 2 8 2 6 6 7  ( c o n v e r t i n g  to  n a t u r a l  l o g a r i t h m s )  

TABLE 3 

a-1949 FEMALE TABLE AND 2½% INTEREST 

ffi .0246926 H--- . 22772 
A ffi .001 G(~)  -- 5.25592 
Bffi .0000070848535* In c=~ . 11282667 
c=  1.1194379 

A g e  

50 . . . .  281.84 
55 . . . .  495.45 
60 . . . .  870.96 
65 . . . .  1,531•1 
70 . . . .  2,691.5 
75 . . . .  4,731.6 
80 . . . .  8,317.6 
85 . . . .  14,622 
90 . . . .  25,704 
95 . . . .  45,186 

100 . . . .  79,433 

• 0030 
• 0045 
.0072 
.0118 
.0201 
.0345 
• 0599 
.1046 
• 1831 
.3211 
• 5638 

K~ 

.017698 

.031111 

.054691 

.096144 

.16901 

.29712 
•52230 
•91818 

1•6141 
2.8374 
4.9879 

F(K) 

5. 80554 
4.51040 
3.39110 
2. 43729 
1.64344 
1.00964 

• 53946 
.23185 
•07031 
.01199 
• 00079 

20.900 
18.712 
16.379 
13.952 
II.506 
9.136 
6.952 
5.048 
3.491 
2.300 
1.480 

Estimated 
affit 

20.402 
18.214 
15.882 
13.455 
11.010 
8.641 
6.459 
4.559 
3.008 
1.829 
1.029 

Published 
az 

20.404 
18. 215 
15. 882 
13.455 
11.010 
8.642 
6.459 
4.560 
3.012 
1.838 
1 •012 

A = . 0 0 1  , 

I t  follows that tJz = A + B ' c  =,  w h e r e  

* In defining the constants for the a-1949 Tables the authors used 

CO1Ogo p. = A "l-Be ~, w h e r e  

B = .  0 0 0 0 0 7 5  , 

B , _ B  ln c 
c - - l "  

t az obtained from approximate relationship 

- I 1 

log~o c --- . 0 4 9  . 
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B -  . 0 0 0 0 0 7 0 8 4 8 5 3 5  

B ¢65 
K 6 5 - - -  - . 0 9 6 1 4 4  

,In c 

( by ddinit ion) 

Step 2 

A = .001 ( by definition) 

= . 0 2 4 6 9 2 6  ( i =  .025)  

H -  A + ~ _ . 2 2 7 7 2  
In c 

S tep3  S t e p 4  

T1 = 1 = 1 . 0 0 0 0 0 0  T-2= 4 . 3 9 1 3 5 8  
H 

T 2 = K = . 0 9 6 1 4 4  T2 - . 1 2 4 4 9 4  
1 -- H 

g 2 " T$ 
Ta = - ~ -  . 0 0 4 6 2 2  2 --------H-"002608 

K a T4 
T 4 -  ~ - - -  . 0 0 0 1 4 8  3 - - / / - -  . 00053  

K 4 T5 
T5 - - . 0 0 0 0 0 4  - - -  . 000001  

[4 4 - - H  

g 5 T6 
T e = - ~ - =  . 0 0 0 0 0 0  5 - -  H . 0 0 0 0 0 0  

Step 5 

K g . G ( K )  = 4 . 5 1 3 2 9 6  

Step 6 

log K = 5 . 9 8 2 9 2  = -- 1 . 0 1 7 0 8  

log K H = .22772  X ( --  1 . 0 1 7 0 8 )  = - . 23161  = ] - .76839  

K H = . 58666  

Step 7 

G ( K )  - 
4 . 5 1 3 2 9 6  

- 7 .69321  
. 5 8 6 6 6  
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Step 8 

e - g  = .908334 

Step 9 

K s  .In c = 
. 9 0 8 3 4 4 X . 1 1 2 8 2 6 6 7  

.58666 
= . 1 7 4 6 9 1  

Step 10 
1 a ( ~ )  - - ~  

.22 . . . . . . . . .  85214 

.23 . . . . . . . . .  86823 

.22772 . . . . .  86456 
1 

- - =  4 .39136 
H 

G( ~ ) = 5 .25592 

Step 11 

G ( K )  - - G (  a, ) = 7.69321 -- 5 .25592 

= 2 .43729  

Step 12 

2 .43729  
a 6 5 -  .174691 13.952 

PROGRAM FOR CALCULATING ~z In c 

A program was coded for the calculation of ~, In c by an electronic com- 
puter, using the formula 

~x ln c = eK. K s [ G ( K )  - - G ( ~ ) ] .  ( 32 )  

A range of values of K from .001 to 10, and for H from 0 to .64 was selected. 
The program used formula 31 to compute G ( ~ )  for each H. The series of 
terms making up KH.G(K) was calculated by first computing the series 

K ~ K 8 K n 
K, -~,  - ~ , . . . ,  - - ~ , . . .  land then successively dividing each term by the 

value (n - fir), before alternately adding and subtracting terms. The value 

of e ~r was obtained by adding the same series before dividing each term by 

(n - fir). From an approximatevalue of K "°1 a value to nine decimals was 

computed using Newton's method of successive approximations. By re- 
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p e a t e d  m u l t i p l i c a t i o n  all t h e  r e q u i r e d  v a l u e s  of  K H were  d e t e r m i n e d .  

In K w a s  c o m p u t e d  f r o m  t h e  ser ies  

f X 2 X~ Xn '~ 
In K = 1 0 0  ~ , x - - - ~ - + - ~ - - -  . . .  -a t- ( - -  1 ) n - - +  . . .  

n J t 

w h e r e  x = K ' ° l  _ 1 • 

I n  T a b l e s  4 to  7 a re  p r e s e n t e d  e x t r a c t s  f r o m  t h e  p r o g r a m  resu l t s .  I a m  

TABLE 4 

VALUES OF G(~)  

lit G(oo) G(w) - 1/// H G(co) G(oo) - 1//7 
(H~0) (H~0) 

D . . . .  

,01. 
,02. 
. 0 3 .  
, 0 4 .  

.05. 

.06. 

.07. 

.08. 

. 0 9 .  

• I 0 . .  
.11. .  
.12. .  
.13. .  
.14. .  

.15. .  

.16. .  

.17 . .  

.18 . .  

.19 . .  

.20. 

.21. 

.22. 

.23. 

.24. 

.25 . . . . . .  

.26 . . . . . .  

.27 . . . . . .  

.28 . . . . . .  

.29 . . . . . .  

.57722 
100.58720 
50.59737 
33.94107 
25.61830 

20.62907 
17.30672 
14.93697 
13.16270 
11.78548 

10.68629 
9.78937 
9.04423 
8.41592 
7.87946 

7.41656 
7.01348 
6.65975 
6•34719 
6.06937 

5.82115 
5.59836 
5.39760 
5.21606 
5.05140 

4.90167 
4.76521 
4.64062 " 
4.52669 
4.42240 

.57722 

.58720 

.59737 

.60774 

.61830 

.62907 

.64005 

.65126 

.66270 

.67437 

• 68629 
.69846 
• 71090 
.72361 

.30 . . .  

. 31 . . .  

. 32 . . .  
• 33 . . .  
. 34 . . .  

. 35 . . .  

.36• . .  

. 37 . . .  

. 38 . . .  

. 39 . . .  

. 4 0 . . .  

. 41 . . .  

. 42 . . .  

4.32685 
4.23928 
4.15901 
4.08547 
4.01813 

3.95656 
3.90036 
3.84918 
3.80273 
3.76074 

3.72298 
3.68925 
3.65936 

.43 . . . . . .  3.63317 

.99352 
1.01347 
1.03401 
1.05517 
1.07695 

1.09942 
1.12258 
1.14648 
1.17115 
1.19664 

1.22298 
1.25023 
1.27841 
1.30759 

.73660 

.74989 

.76348 

.77740 

.79163 

.80621 

. 8 2 1 1 5  
.83646 
.85214 
.86823 
.88473 

.90167 

.91906 

.93692 

.95526 

.97412 

. 4 4  . . . . . .  

.45 . . . . . .  

.46 . . . . . .  

.47 . . . . . .  

.48 . . . . . .  

. 4 9  . . . . . .  

.50.- . . . . .  

.51 . . . . . .  

.52 . . . . . .  

.53 . . . . . . .  

. 5 4  . . . . . .  

• 55. .  . . . .  
.56 . . . . . .  
.57 . . . . . .  
.58 . . . . . .  
.59 . . . . . .  

. 6 0  . . . . . .  

.61 . . . . . .  

.62 . . . . . .  

. 6 3  . . . . . .  

. 6 4  . . . . . .  

3.61055 

3.59139 
3.57569 
3.56310 
3.55384 
3.54779 

3.54491 
3.54520 
3.54867 
3.55533 
3.56523 

3.57843 
3.59499 
3.61500 
3.63857 
3.66583 

1.33782 

1.36917 
1.40168 
1.43544 
1.47051 
1.50697 

1. 54491 
1. 58442 
1. 62559 
1. 66854 
1. 71338 

1. 76025 
1. 80928 
1. 86061 
1.91443 
1.97091 

3.69693 2.03026 
3.73205 2.09271 
3.77138 2.15848 
3.81516 2.22786 
3.86365 2.30115 



TABLE 5 

V ~ u E s  oF G(K) 

K : H=O H = . 2  [1=.4 I H = . 6  

. O01 . . . . .  

.002 . . . . .  

.004 . . . . .  

.008 . . . . .  

. 0 1 . . .  

.02 . 

. 0 4 . . .  

. 0 8 . . .  

. 1 . .  

. 2 . .  

. 4 . .  

. 8 . .  

L .  
L .  

6.90876 
6.21661 
5.52546 
4.83629 

4.61514 
3.93192 
3.25848 
2.60416 

2.40014 
1.79987 
1.27960 

.88781 

.79660 

.62611 

.58099 

.57726 

.57722 

19.91033 
17.33728 
15.10051 
13.15886 

12.59076 
10.98805 
9.61261 
8.44896 

8.11827 
7.22888 
6.55706 
6.11565 

6.02230 
5.86135 
5.82391 
5.82117 

5.82115 

39.64876 
30.06814 
22.81768 
17.33847 

15.87890 
12.11320 

9.29954 
7.22679 

6.69067 
5.37083 
4.50193 
4.00383 

3.90829 
3.75611 
3.72501 
3.72300 

3.72298 co . . . . . . . .  

TABLE 6 

VALUES OF F(K) 

I H =.2 H •.4 H = . 6  

105.31749 
69.58748 
46.04782 
30.56112 

26.81056 
17.94865 
12.18370 

8.48572 

7.61644 
5.65470 
4.52913 
3.96620 

3.86838 
3.72429 
3.69842 
3.69694 

3.69693 

K H = O  
.i 

.001 . . . . .  i 6.33154 
• 002 . . . . .  5.63939 
• 004 . . . . .  4.94825 
• 008 . . . . .  4.25908 

.01 . . . . . .  4.03793 

.02 . . . . . .  3.35471 

.04 . . . . . .  2.68126 
• 08 . . . . . .  2.02694 

.1 . . . . . . .  1.82293 

.2 . . . . . . .  1.22265 
• 4 . . . . . . . .  70238 
. 8 . . . . . . . .  31059 

I . . . . . . . . . .  21938 
2 . . . . . . . . . .  04889 

. . . . . . . . .  i .00378  :iiiiiiii o .0o004 

14.08918 
11.51613 
9.27936 
7.33771 

6.76961 
5.16690 
3.79146 
2.62781 

2.29712 
1.40774 

.73591 

.29450 

.20116 

.04020 

.00277 

.00002 

35.92578 
26.34516 
19.09470 
13.61549 

12.15592 
8.39022 
5.57656 
3.50380 

2.96769 
1.64785 

.77895 
• 28085 

• 18531 
.03313 
.00203 
.00002 

101.62055 
65.89055 
42.35089 
26.86419 

23.11363 
14.25172 
8.48676 
4.78879 

3.91951 
1.95776 

.83220 

.26926 

.17145 
•02736 
.00148 
.00001 
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TABLE 7 

VALUES OF a. In c 

K, I Hffi0 Hffi.2 H= .4  Hffi.6 

.001. 

.002. 

.004. 

.008. 

.Ol . . . . . . . . .  ! 

.02 . . . . . . . . .  

.04 . . . . . . . . .  

.08 . . . . . . . . .  

.1. 

.2 .  

.4 .  

. 8 .  

I . . .  
2 . . .  
4 . . .  
8 . . .  

6.3379 
5.6507 
4.9681 
4.2933 

4.0785 
3.4225 
2.7907 
2.1958 

2.0146 
1.4934 

1.0478 
.6912 

.5963 

.3613 

.2062 

. l l  

3.5426 
3.3295 
3.0879 
2.8161 

2.7221 
2.4106 
2.0730 
1.7177 

1.6018 
1.2462 

.9140 

.6268 

.5468 

.3412 

.1992 

.10 

2.2690 
2.1978 
2.1061 
1.9895 

1.9459 
1.7901 
1.6016 
1.3820 

1.3057 
1.0573 

.8055 

.5717 

.5037 

.3230 

.1925 

.10 

1.6122 
1.5860 
1.5482 
1.4945 

1.4730 
1.3905 
1.2804 
1.1398 

1.0881 
.9104 
.7164 
.5242 

.4660 

.3064 

.1861 

.10 

indebted to Mr. Ronald Ryan (A.S.A.) of my company for the develop- 
ment of t he  c o m p u t e r  p r o g r a m .  

JOINT ANNUITIES 

The method which has been described for evaluating single life annui- 
ties can  also be  app l i ed  to v a l u e  j o i n t  annu i t i e s .  Cons ide r  t he  genera l  case  

w i t h  l ives of ages  x~, x ~ , . . . ,  x , .  

f° g*l . . . . .  ~ =  v t" t p . , ~ , . . . . f i t  

= . e - - f , ( ~ . , + h + . . , + h  + "  "'+"..+h)dhdt f ~  e--St | 
JO 

= fo  ~ e -St • e-- f~C~A+B,h)c,x '+,x '+. . .  +c~')ahdt 

= f o o  e _ ( n A + g ) t  e _ ( B c l / l  n c)(cXl+cX~ + . . , .[.ex,,) 

Jo  • 

L e t  
K=K.I-q-Kx, q-...-I-gz: 

n A  -t- ~ 
l ~ n  - -  - -  

In c 

y =  KC* 

• e ( B / I n  e ) ( ~ t + c x 2 +  ' " " + ~ ' )  d l  . 



ANNUITY VALUES DIRECTLY FROM MAKEItAM CONSTANTS 

fK c:° • ~ x l z ,  • • . z  n ~ e - - H n l n  ( y / K )  e_• /*  e K .  

- -  e K  co - - H n ' ~  dy 
Vn-c y 

e K" KU, , f '~  e-" 
- -lnc JK  -y-i-+T,, dy 

283  

dy 
y-ln c 

~b(K) 
K l n c "  

In conclusion, to evaluate a joint life annuity we evaluate a single life 
annuity at an age where the K-value is the sum of the K-values for the 
individual ages concerned and 

n A + ~  
In c 

COMPARISON WITH THE MCCLINTOCK METHOD 

Under the second method presented in this paper 

a ~ l n  c = e x . K  R [ G ( K )  - - G (  o o ) ]  ( 3 2 )  

- e K . K H . G ( ~ ) + ( I + K + . . . - K ~ + . . . )  

K" 
X ( I + I _ _ - ~ K H + . . . + ( - - 1 ) n +  t ( n _  H) ln  ~- . . . ) .  

Multiplying the two series and collecting terms, it can be shown that 

a * l n c = - e K ' K S ' G ( ° ° ) - [ -  -~ H ( 1 - H )  

(33)  
K" 

+ . . . - I  H ( 1 - - H ) . . . ( n - - H )  ~- . . . .  

The method used by Mr. McClintock differs from the second method 
of this paper because of the fact that he integrated the integral expression 
for the annuity (formula 11) by parts twice and obtained 

1 f K  e X . K X  ~ ~ 
a*lnC=-H -~ H(  H)  H(1 = H )  e - " Y l - U d Y "  

Working with the integral . , 

f ~ e-~. y t -Hdy  
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instead of 

K ~ e - ~ .  y - t - H d y  

and using the same approach as in the second method, Mr. McClintock 
obtained a constant of integration which he identified as 1"(2 -- 1t), for 
which the numerical value can be obtained from a published tabulation 
of the Gamma Function. 

His final result presented in the notation of this paper is 

eK'K" F(2--H)+I I K ~=ln c - -  
H ( 1 - - H )  + H ( - - H )  

(34 )  
K -  

+ . . . q  b . . . .  ~ / ( 1 - ~ / ) . . . ( n -  H) 

Comparing (34) and (33), we see that 

a ( o o ) - r ( 2 - H )  H # 0  (35) 
H ( 1  --H) 

For H = 0 it appears from Table 4 that 

G( co ) I"=°=u~0Ltim[a( ~ ) - ~  • 

If so, 

G( co )[H=o= lira 
H~0 

r ( 2 - H )  - l + H  
//(i-H) 

=l i r a  - - 1 " ( 2 - - H ) + 1  
H~0 1 - -  2 H 

=I -r'(2). 

But since 

r ( n + l )  = n r ( n )  

r ' ( n +  1) = nr' (n)  + r ( n ) .  

• For n =  1, 

(L'Hospital 's  Rule) 

r'(2) = 

--- 1 -- ~, (where 7 is the Euler Constant) .  

• G( ~o ) [ H = 0 = 7 = . 5 7 7 2 1 5  . . . .  ( 3 6 )  

This result agrees with the calculations. 
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POSSIBLE APPLICATION OF MAKEHAM TABLES 
TO PROJECTED MORTALITY 

It  seems surprising that Mr. McClintock's paper should apparently 
have remained dormant over the years. Using his approach, there would 
seem to be even more value in having a table Makehamized than for the 
advantages arising in the evaluation of joint life annuities. Even with 
single life functions the approach makes it possible to study the effects of 
interest and mortality changes without producing a complete new mor- 
tality table. 

I t  is possible that Makeham tables may be used even where a progres- 
sive improvement in mortality is assumed. I t  is common under such cir- 
cumstances to have a different mortality table applicable to each calendar 
year of birth. In order that each such generation table follow Makeham's 
Law it is necessary that the anticipated improvement in mortality be 
reflected in the change in the Makeham parameters from one generation 
table to the next. 

The anticipated yearly improvement in mortality as indicated by pro- 
jection scales which have been published in the Transactions is a constant 
percentage of the mortality for the previous year, with the percentage 
decreasing by age so that no improvement is expected at advanced ages. 

A method of reflecting the anticipated pattern of improvement in the 
Makeham constants is to assume no change in the constant A, together 
with a percentage increase in the constant c and a percentage decrease in 
the constant B such that no improvement results at some advanced age, 
say 100, and so that the percentage improvement at some age, say 50, is 
in accordance with a selected projection scale. 

To illustrate, let the force of mortality applicable for the year of birth 
y and attained age x be given by 

where 

- -  ~ Cy--1 

~ x ,  v - 1  - -  A 1 - -  1 + = 1 - -  10---0'  

where r~ is the percentage annual improvement in /~  -- A. 
If noo = 0 and rso = 1.25% (Projection Scale B), we can, by solving 

equations, determine that b = 2.55 and s = .025. r~ is then determined 
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for each age. Table 8 compares r,  with the percentage improvement given 
by Jenkins and Lew in Projection Scale B. 

The assumptions made in the above analysis are firstly that improve- 
ments in the rate and in the force of mortality would be of the same mag- 
nitude, secondly that the assumption of no improvement in the constant 
A is not significant, and thirdly that proiection scales can by nature be 
freely adjusted to fit the method of application as long as the over-all 
pattern of expected improvement is not changed. I t  will be noticed that 
the projection scale developed for r: is virtually linear. 

TABLE 8 

COMPARISON OF rz W I T H  PROJECTION SCALE B 

Percentage Im-  
provement  in q:  

Age rz under Projection 
Scale B 

5 0  . . . . . . . . . . .  
6 0  . . . . . . . . . . .  
6 5  . . . . . . . . . .  

70 . . . . . . . . . .  
75 . . . . . . . . . .  
80. .  . . . . . . . .  
85 . . . . . . . . . .  
90 . . . . . . . . . .  

100 . . . . . . . . . .  

1.2s% 
1.00 

.87 

.75 

.63 

.50 

.37 

.25 
0 

1.25% 
1.20 
1.10 

.95 

.75 

.50 

.25 
0 
0 

In conclusion, the formula for evaluating annuities on a Makeham table 
as developed in this paper should be satisfactorY for making calculations 
recognizing calendar year of birth as a factor, provided the improvement 
in mortality is anticipated in such a manner that the generation mortality 
table for each year of birth follows Makeham's Law. I t  is hoped that 
some practical application might be made when some experimentation 
with a table is desirable, before proceeding with the voluminous calcula- 
tions necessary to produce a complete set of tables. 

REFERENCES 
"On the Computation of Annuities," Emory McClintock, J I A  XVIII, 242-247. 
"A New Mortality Basis for Annuities," Jenkins & Lew, TSA I, 385. 



DISCUSSION OF PRECEDING PAPER 

A. M. NIESSEN: 

I was greatly intrigued by Mr. Mereu's paper because it is one of the 
rare excursions into the application of calculus to certain practical actu- 
arial problems. I must confess, however, that I was somewhat disap- 
pointed in the practical results which the paper offers. If I understand 
Mr. Mereu's procedure correctly, the task of calculating a single annuity 
value by his method is very formidable and may, in fact, consume as much 
time as the preparatiorl of a complete mortality table by the use of modem 
office methods. It is enough to take a look at the calculations shown in 
the paper for ~5 to see that my contention is not without validity. 

The premise of Mr. Mereu's paper is that isolated annuity values based 
on certain parameters in a Makeham formula will be relied upon even 
though the mortality table associated with these values has never been 
seen. I certainly would not want to rely on such annuity values in any 
way and I doubt whether any other actuary, including the author of the 
paper himself, would be willing to do so. This observation does not neces- 
sarily detract from the significance of Mr. Mereu's contribution; what I 
am saying is merely that the attempt to justify the paper on practical 
grounds seems to be rather farfetched. Perhaps the lack of practical 
significance is the reason why Mr. McClintock's paper on the same subject 
has remained dormant for some 90 years, a fact that seems to be surprising 
to Mr. Mereu. 

While on the subject of aesthetic versus practical values in certain 
phases of actuarial work, I would like to make a few comments on the 
so-called laws of mortality in general, and on Makeham's law in particu- 
lar. I t  is my belief that these laws are a relic of 19th century thinking 
when it was felt that all phenomena are subject to neat and definite 
mathematical formulations. Makeham's law has never been a great scien- 
tific success and today it no longer enjoys the esteem in which it was held 
in years past. As for the practical advantages of easy calculation of joint 
life functions, this also is no longer a great asset because lengthy calcula- 
tions present no problem to modem equipment. I t  is, therefore, my 
opinion that the Makeham law and other so-called laws of mortality 
should no longer be used in the construction of mortality tables. The 
same goes also for fancy graduation procedures such as the Henderson A 

287 
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and B formulas. It is more important to concentrate on fit than on 

smoothness. At least, this is the approach which we have been following 
at the Railroad Retirement Board whenever we had occasion to construct 
a new mortality table. 

MOIlAMED ~'. AMER: 

Mr. Mereu mentioned that  his method would have practical value if 
only few calculations are to be made. The purpose of this discussion is 
to present two alternative approaches that may be used to reduce the size 
of calculations needed. The proofs of all the formulas are given in the 
Appendix. As far as possible, the same notation used by Mr. Mereu is 
used here. 

Considerable part  of the calculation in Mr. Mereu's paper was to deter- 
mine 

fK ~ e-vy-~-R dy 
X 

denoted by F(Kx). However, this F(K,) can be expressed in ~erms of the 
incomplete gamma function for which tabulated values are available. 

1 1 F ( K , ) = - ~  U ( K x ) - - ~ [ 1 - - I ( K , , - - H ) I I ' ( 1 - - H ) ?  (1 )  

where 
e--Kx fo Kx e-~y-HdY U(K. )  = K . f ( K . )  = ~ a n d  I ( K . , -  H) = 

I ' ( 1 - - H )  " 

Karl Pearson's Table I I I  ~ gives log I '  (u, p), where 

I'(u, p) =I(u, p) 
~ + 1  

and the argument used is not K ,  but u -- K,/n/p + 1. The reason for 
using log I'(u, p) is that interpolation in the I(u, p) table would be un- 
satisfactory, for more terms would be necessary to get satisfactory values. 

Glover's Tables s give log P(n) for n = 1.5 to n = 1.999, but the values 
needed are for n from .5 to .999. So the relationship 

r ( 2  - H )  
r ( 1  - H )  = 

1 - H  

can be used to get the required values. 

1 See the Appendix for proof. 

* Tables of the Incomplete Gamma Function, Cambridge University Press (1922). 

3 Tables of Applied Mathematics... etc., edited by J. W. Glover. 
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Method A 
In the Appendix the following formulas are proved: 

D , = k U ( K , )  (2)  

k is an arbitrary constant 

~q~= (k+lnc)F(K=) (3)  

M== X[ U ! K = ) - - i - ~  F ( K = ) ] .  (4)  

S= and ~.~ are inconvenient to obtain directly as they involve the evalua- 
tion of the integral 

fK = e-v In ydy 
x yl+H 

So all that is needed would be U(K=) and F(K=) for any particular age x. 
The former can be evaluated by using tables of logarithms, the latter can 
be evaluated using equation (1). 

For any specific value of log I'(u, p), a bi-variate interpolation formula 
such as the following can be used: 

Z (U0q-~, P0"t-~) = Z(U0, P0)"-~-½ ~ [ g (~b/'l, P0) - - g  (U--l, P0)] 

"Jl-~ [ Z (UO, Pl) - -Z  (~/~0, P--l)] "Jl-~ ~'r] [ g (Ul, Pl) (5 )  

- -  Z ( U - l ,  Pl )  - -  Z (Ul ,  P - l )  "-}- Z ( U - l ,  P - l )  1. 

As a check of the applicability and accuracy of this method, calculation 
of a, for ages 65 and 75 are given below using the a-1949 female table. For 
all ages above 50, p and n are constants, 

p =  - - H =  - . 2 2 7 7 2 ,  ~ / ~ - - ] - =  .878795,  n = .2772,  

r ( p + t )  r ( 2  - . 2 2 7 7 2 )  .924318 
= 1 - . 2 2 7 7 2  = . 7 7 2 2 ~ = 1 " 1 9 6 8 6 9 "  

The rate of interest is 2½c7o. 

Age 65 
K65=.096143 

K85 .096143 
u = v ~ p + l  .878795 .109403 

= .09403  
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log I '  = 1 .974996 + .047015 (1".958189 - 1 .992107 ) 

+ . 2 7 7 2  (1 .973829--1" .976054)  

+ .0130326(1- .958142 + 1 . 9 9 4 2 9 0 - - 1 . 9 8 9 8 0 3  

--1".958138) = 1-.972843 

( p +  l)log u = .77228(1 .0390292)  =1 .257862  

log I =log I ' +  ( p +  1)logu = 1 . 2 3 0 7 0 4  

I = .17010 

e--K,~ 
U(Kes) = - - =  1.548301 K~ ~772 

F(K65) = [ 1 . 5 4 8 3 0 1 - - ( 1 - - . 1 7 0 1 0 ) ( 1 . 1 9 6 8 6 9 ) ] + . 2 2 7 7 2  

- -2 .43729 

d65 = F (  K e s ) +  [ U (K65) In c ] 

2.43729 
1.548301 X.11282667 

This agrees with Mr. Mereu's value for aes. 

Ag8 75 
"K7 5 ~- 

log I '  = 

= 13.952. 

.297111 

.338088 

.38088 

1.941685 + . 1 9 0 4 4 ( 1 . 9 2 5 4 8 2 - 1 . 9 5 8 1 8 9 )  

+ . 2 7 7 2  (1.942 742 - 1 . 9 4 0 5 4 1 )  

+ .05279 (1 .927624 + 1 . 9 5 8 1 3 8  - -1 .958142 

- -1 .923261)  =1 .936297  

( p +  1)log u = .77228(1 .5290207)  =1 .636272  

log I =log I ' +  ( p +  1)log u =1 .572569  

I = .37374 .,/ 

e--K75 
U (K76) . . . .  .979472 K~: 2772 
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F(K76) = [ . 9 7 9 4 2 - - ( 1 - - . 3 7 3 7 4 ) 1 . 1 9 6 8 6 9 ]  + . 2 2 7 7  

= 1 .00967 
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F( K75) 1.00967 
= 9 .136 .  

a~5= U(KTs)lnc . 9 7 9 4 7 2 X . 1 1 2 8 2 6 6 7  

Of course, values of commutation functions can be obtained if other 
than a~ is needed using equations (2), (3), and (4). 

The method can still be applied for ages under 50 if appropriate values 
of p are used. 

Method B 
Because of the time element, I did not investigate this method thor- 

oughly but it seems to be even faster than method A for any calculation 
related to any Makehamized mortality table. 

If tables of U(Kx) and F(K~) are calculated for values of u and p that 
might be needed, then in the future for any Makehamized table all that 
will be needed is to determine 

B c  • 
K X  ~ - -  

In c 

for only the required values of x, together with 

A - F d  
In c 

Then by interpolation in each of the two tables, the required values of 
U(K~) and .F(K~) can be found and formulas (2), (3), and (4) can then be 
used to evaluate the actuarial functions. 

If tables for the incomplete F-function tabulated for the argument K~ 
instead of u can be found, it will be more convenient. 

This method, however, has to be tested to see if it will give sufficiently 
accurate results. 

Some recent tables were not Makehamized. Whether this was because 
of unsatisfactory fitting of Makeham formula or as a result of the exten- 
sive use of electronic computers, it remains to be seen if Mr. Mereu's 
method or any of the methods presented in its discussion will renew the 
interest in Makeham formula. 

APPENDIX 

FORMULAS AND PROOFS 

1. F ( p + I )  = e-uyndy ( 6 )  
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f o  r "Fu (p d- 1 ) = e-*ypdy ( 7 ) 

r~(p+ 1) = i (y ,  p). (8) 
r ( p + l )  

Pearson's tables use u = y/x/p d- 1 as argument for reasons that do not 
exist for our purpose. I(u, p) is the same as I(K,, p) except that the argu- 
ment used for tabulation is u = KJx,/p -]- 1 and thus these two functions 
are here used interchangeably. Normally 

- . 7  < p = - H  < 0 

0 < K ~ < 8 .  

2. Proof of formula (1) 

fK~ e -~' 1 e-r~ 1 L ~  e-~dy 
F( Kx) = y~-gg dy - H K R H yH 

z x 

l - - I ( y , p ) = [ f o ~ e - ~ y ' d y - - f o ~ e - ~ f ' d y ]  

+ fo ~e-~f ,  dy -- 

I K  a e - y  -yh - dy=  r ( 1 -  H I [ 1 - I  ( K~ , -  HI ] 

= r ( 1 - H ) [ 1 - I ( u , - H ) ]  
1 1 

F(K. )  =-~ U ( K . ) - ~ r ( 1 - H ) [ 1 - / ( u , -  H ) ] .  

f ~e-~ypdy (9 )  

r ( p + l )  

(10 )  

(ii) 

3. Proof of formulas (2), (3), and (4) 

i) D,-function: From Mr. Mereu's equations (14) and (15) 

N~ N~+,, F(K~) --F(K.+,,) 
D. D~ U(Kx) lnc  

N~ F(K, )  
D~ U(Kx)lnc 

and 

Thus 

or  

Nx+~ F ( K.+.  ) 
° 

D,+,, U ( K,-~ ) ln c 

D . + ~ / D .  = U(K~+n)/U(K.)  

Dx¢= U(Kx) 

(12) 

(13) 

(14 )  
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(1 5 )  

( 1 6 )  

D . = k U ( K z )  

go = XU(Ko)  

k = lo/ U ( Ko) 
ii) N.-function 

N~ = Dz~= k U(K~). F(K~)  k U ( K ~ ) l n c = l n c .  F(K~)  (17 )  

iii) M~-function 

[ , ] 1 ~ - -  D , - -  6Nz = X U ( K ~ ) - - ~ - - ~ . F ( K , )  (18 )  

iv) S~, R~ are inconvenient to evaluate directly in terms of the Make- 
ham constants for they involve 

f K °~ e-v In y y1+n dy 

as another function to be evaluated. 

4. Interpolation 
Although it is neither necessary nor desirable to use many terms for the 

interpolation, formula (5) is extended to 4th differences in page xii of 
Pearson's tables of the incomplete F-function along with two other for- 
mulas for other situations. The fact that, along with the values of log 
I'(u, p), the table has 62 and 64 of this function makes Everett 's formula 
the one to be used. 

For more details, see On the Construction of Table.s and Interpolation, 
Part II, by Pearson. Tracts for Computers, No. III. Cambridge Univer- 
sity Press. 

DONALD B.  M_~IER AND FRANK A. WECK: 

Mr. Mereu's interesting paper gives a completely developed method 
of obtaining exact annuity values for a Makehamized table given only 
the Makeham constants, where one does not wish .to go to the trouble 
of calculating commutation functions. 

Where only approximate annuity values are desired and tables of an- 
nuity values are available on another table which follows Makeham's 
law, an alternative approach which may be used is as follows. 

To approximate annuity values on a table where the force of interest 
and force of mortality are, respectively, 

Force ofinterest = 6' 

Force of mortality = u'. =" A'  "4- B'(d) ~, 
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and assuming that we have available annuity values on a mortality table, 
referred to herein as the "reference table," where the force of mortality is 

t~, = A + Be*, 

_!  
then a desired annuity value a.:~-~ may be obtained by evaluating the right- 
hand side of the following equation: 

a '  1 
.:.7 = -~" ¢I.:~, ( 1 ) 

where the annuity on the right-hand side of the equation is based on the 
mortality of the reference table and a force of interest equal to 7 and where 

k = log c' 
log c 

~ = - ~ ( ~ ' + A ' )  - A  

+[ "'] z = k x  + log ~ • 

Should the Makeham constants be expressed in the colog form so that 

B ( c - - 1 )  
colog, p . - - A + f l c  *, where/~= log. c ' 

then z becomes 

z = k x +  t o g \ 8  c ' - -  ' 

while the expressions for k and ~, are unchanged from those shown above. 
These relationships follow from the fact that where the force of mor- 

tality follows Makeham's law, a change in the value of A is equivalent 
to a change in interest rate, a change in B is equivalent to a change in 
age, and a change in the constant c results in a stretching or condensing 
of the effect of age and must be compensated for by changes in the interest 
rate and rate of payment. 

Derivation of Equation (1) 

The desired annuity may be expressed in terms of the Makeham con- 
stants and the force of interest as follows: 

~' - f%-f/tS'+a'+B'(¢J~+nlah dr. ( 2 ) 
z : n T ~  J O  ~ ,o . . , ". . .  
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(c')~+h = ckC~+n). 

B'  = Bc ~° 

6 ' +  A' = k ( 7 + A ) ,  

where k, 0 and 7 are constants defined by the foregoing relationships. 
We can then write 

g~ = f".--rtlk~V+A~+M'O÷k(*+h)l~h a, 
":~ Jo . . . . . .  (3 )  

If we now substitute the variable m for kh. so 'that dh = 1/k .dm,  the 
limits of integration in the exponent become 0 to kt and we have 

a~:~-' = /"e-foktt~+A+~l/~)e~( ~+°)+me~ dr. (4 )  

Now if we let c" = (1/k)c~(~+°) and replace t by I / k . r ,  so that dt = 
1/k.dr,  and change the limits of integration accordingly, we obtain 

r. kn ~ ' f l "  
1 ] e-Jo [v+A+n~ '* '~dr  (5 )  

1 
= ~  a~,:k.--i, (6 )  

where 7 is the force of interest and the mortality table is the reference 
table. 

Application to Curtate Annuities 

Using the approximate relationship 

and the fact that 

and 

' D" D . ~  = ~+___~ _ ~,. .  ~p ,  ( 8 ) 
D '  D~ 

6'+ u'+= k(~+ ~',+k.), (9) 

the following expressions may be derived for use in cases involving curtate 
annuities: 

11 a~ - -  k - 1 k s - 1 
a ' . : ~ = ~  .:k.l 2 (1--~k"'k"P*)-~ 12 

. ( t o )  

X [(~,+ m) - ~k"'~,P,C'r+U,+~ ).1 t, 
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_ 

a :k~-- 1 -- ½( 1 -- ~'k". k,~p ,) + 1--2 ( 1 1 ) 

X [ (~ '+  m) - gk,,.~p,(~ + ~,+~) 1. 

Equation (10) would be used where curtate annuity values are available 
on the reference table and equation (11) where annuity values on the 
reference table are continuous. For most purposes the third term of the 
right-hand member in equations (10) and (11) could be ignored. 

Examples of the Method 

Example 1: Approximation of a~s on the a-1949 Female Table with 2~% 
interest using the 1941 CSO as the reference table. 

The necessary values of the Makeham constants in the formulas for 
colog,pz for the a-1949 and 1941 CSO Table (which is a Makeham table 
above age 15) are: 

a-1949 1941 CSO 
A ' = . O 0 1  A = . 0 0 1 6 0 4 9 6 6  

f l ' = . 0 0 0 0 0 7 5  /~ = . 0 0 0 1 5 1 0 2 2 4  

c ' =  1.1194379 c = 1.08913170 

loglo c ' =  .049 loglo c = .0370804 

6 ' =  .0246926 

k logto c' .049 . . . .  1.321453 
log~o c .0370804 

"y = - ~ ( ~ ' + A ' )  - -A 

1 
1.321453 ( ' 0 2 4 6 9 2 6 q - ' 0 0 1 )  - - .001604966  

= .0178377 

k x +  l_._L_ , r t ~ ' ( c - l )  
z = L°gl°[N-c - r=  1 ) 

1 { r.ooooo7_55 x .08913171 t  
= 1 . 3 2 1 4 5 3 ( 6 5 ) - {  .0370804 logtoL.OOO15102X.1194379 

= 85 .8944- -  38.5941 

= 4 7 . 3 0 0 .  
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The effective annual interest rate corresponding to the force of interest 
= .0178377 is 1.800%. g'C/ 
Lever's method (JIA, Vol. ~ 1920, p. 171) is one of many which 

may be used to evaluate ~LS% ~4~.8 on the 1941 CSO Table. Following this 
method we might proceed as follows: 

a2% = 1 7.49 0 4 (straight line interpolation between 47.3 

tabulated values at 2%)  
2% ~1-]--- 17.0112 

a~z-%-] = 17.6580 

a ~% 17.4904(st ra ight  line interpolation) ~ ~ - - -  

a 0 %  = 22.92 (straight line interpolation) 47.3 e47.8  ~--" 

o% a~.--¢-~ = 22.92 

.2  
a--~,where m = 2 1 . 7 4 0 9 - { - ~ - ( 2 2 . 9 2 - - 2 1 . 7 4 0 9 ) = 2 1 . 8 5 8 8 .  

47.3 m J 

Evaluating by logarithms 

1 ( 1 yi.85.8 
1.80"/0 - -  ~ k ~ /  

a ~ =  .018 = 17.9399 

, l r  1so, k - - l ]  

1 [ 1 7 . 9 3 9 9  . 321453]  
= ' 1 . 3 2 1 4 5 3  - 

= 1 3 . 4 5 4 .  

A more accurate value of h in a~--~1 , where h is between 0 and 1, may be obtained 
if desired by using the following: 

h -  g - -2  K ( 1 - g ) ,  
where 

a+---~- a~ 
K - -  

a~+---i- l -  a~" 
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Recourse to logarithms could, of course, be avoided by using Lever's 
method to obtain ~a.8"LT6% and then interpolating between a~'77.~%and "~%~47.3 to 
obtain a~S~ as follows: 

z .75% a t .7,5% 
a47.3 = ~-3 , where m = 2 1 . 7 4 0 9 + I ( 2 2 . 9 2 - - 2 1 . 7 4 0 9  ) 

i.75% 
= a ~ l  

z.75% a ~ l  = 1 8.0 5 40 (straight line interpolation) 2 

1.8 % 0,2°7o . 20  1.76% 62% 
a47.~ = , 7 . ~ + . - ~ ( % . 3  - , 7 . 3 .  

.20 
= 1 7 .4904 + .-~-~(.5636) 

= 17.9413 

, 11- 1.8% k - - l ]  
J 

_ 14___~[17.9413 .321453]  
1.321 2 J 

= 13.455 . 

The published value is 13.455. 
Where published values on the reference table are available at several 

rates of interest, perhaps the simplest method of evaluating the annuity 
at the interest rate required is to interpolate directly from the published 
values. Such procedure is illustrated in the following example. 

Example 2: Approximation of ~5 on the 1937 Standard Annuity Table 
with 2~°fo interest using the 1941 CSO Table as the reference 
table. 

For ages 33 and over the 1937 Standard Annuity Table follows the 
Gompertz law of mortality, except for minor variations at ages 97 and 
over. The formula for c olog10 p, is as follows: 

cologl0 p, = ~"(c')* for ages 33 to 96, 

where if '  = .000090732, c' = 1.078947 and log10 c' = .033. 

This value could more accurately be determined from the relationship 

a+-~ = a--- 1 + K ( a,+---i- I -- a,-- l), where K - h + 2" h ( 1 - h ). 
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Changing to colog (base e) form we have 48' = 2.3025851 (.000090732) 
= .000208918. 

The constants for the 1941 CSO Table for colog, pz are given in Ex- 
ample 1. From these constants we get 

k = lo__gl0 c '  = .033 = . 8 8 9 9 5 8  
logl0 c . 0 3 7 0 8 0 4  

1 3' 1 _ . 0 2 4 6 9 2 6 )  . 0 0 1 6 0 4 9 6 6  
- - A  = . 8 8 9 9 5 8  ( 

,.,/=..~ • 

= . 0 2 6 1 4 0 8  

z = k x +  l___~_ ~, r# ' (c -  1))] 
toglo c ~loglo[#( c' 1 t 

1 [ . 0 0 0 2 0 8 9 1 8  X . 0 8 9 1 3 1  7] 
= . 8 8 9 9 5 8 ( 6 5  ) + . 0 3 7 0 8 0 4  t l°g'° L.-6-6-6 i 5i 0---~ 4 × .0 7 ~ 7 ~  t 

= 5 7 . 8 4 7 3  + 5 . 2 2 1 9  

= 6 3 . 0 6 9 .  

The next step is to calculate a,a.060 at 2.6485% (the annual effective 
interest rate corresponding to the force of interest 3' = .0261408) on the 
1941 CSO Table. Using Newton's advancing difference formula, 

n ( n -  1) 
u~ = Uo + nAUo-+ A~Uo , 

2 

we would proceed as follows: 

Interest Rate ~ 1  ~ 4  ~8 .oe ;  A ~ Z . ~ 9  ~Za.,c~o 

3 %. 9.5145 9.1424 9.4888 .3726 
2½% .. . .  9.8889 9.4903 9.8614 .3974 .0248 
2 %.. 10.2883 9.8608 10.2588 

a2.~85%_ 9 . 4 8 8 8 +  ( . 7 0 3 ) ( . 3 7 2 6 )  + ½ ( . 7 0 3 ) ( - - . 2 9 7 ) ( . 0 2 4 8 )  
6 8 . 0 6 9  - -  

= 9 . 4 8 8 8  + , 2 6 1 9  - - ,0026  

= 9 .7481  
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k 1] , 1 f ~ ~s5% 2 
a65 = - ~ L a ~ . o o ~  - - -  

_ 1 [9.7481 q .110042]  
.889958L 2 J 

= 1 1 . 0 1 5  . 

The published value is 11.01345. 

Application to Projected Mortality 
If mortality improvement is reflected by changing the Makeham con- 

stants according to the formula given by Mr. Mereu, namely that the 
force of mortality for the year of birth y + t and attained age x is given by 

Z #~, ~+t = A + B u + t  cv+t  , 
where 

c.+t = (1 + 1--~0) t c~ 

and where Bu and cu are the Makeham constants for the year of birth 
y, then an annuity value for attained age x and year of birth y + t may 
be approximated by the following formula: 

1 

where ~, is the force of interest and mortality is that for year of birth y 
and where 

tw , I - lO0+ s-I 
] kt = 1 -t log c~' tog[ i-6-6 

i t - "~=kt ~-t-A(kt  1)1 

z =  k tX+L i o g ~  ' 

T. N. E. GREVILLE: 

I t  is certainly worth pointing out that life contingency functions based 
on a Makehamized mortality table can be computed directly from the 
Makeham constants, without resorting to commutation columns. If only 
a few calculations are to be made, this may well be worth while. 
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I t  is the purpose of this discussion to describe a method of calculation 
based on published tables of the incomplete gamma function, which may 
be simpler than those suggested by Mr. Mereu and Mr. McClintock. At 
least it has the advantage of not requiring the summation of a series. 

Equation (15) of the paper can be written in the form 

~ H  Kz f c o  _ H _ l e _ ~ d  , 
axln c=_~x e JK~ y Y (1 )  

where 
K = B c ~ _ ~ , - - A  H=A+_____~ 

In c In c ' In c 

The incomplete gamma function is defined as 

£ r , ( p +  1) = e- ' t~dt .  (2 )  

Thus r~(/ ,  + 1) -- r (p  + 1) is the (complete) g~mma function. I t  would 
appear that the integral contained in equation (1) of this discussion could 
therefore be expressed as r ( - . N )  -- I'K~(-:H). However, this does not 
work, because the integral in (2) does not converge for negative values 
of the argument p + 1. 

To get around this difficulty, we integrate by parts in (1) and obtain, 
after some simplification (dropping the subscript of K), 

a,(A + 6) = 1 -- KHeK[I'(1 -- H) -- I'x(1 -- H)] .  (3) 

As it appears that the value of H will always fall between 0 and 1, so 
that 1 - H will always be a positive quantity, we now have a satisfactory 
expression. 

Tables of the Incomplete r-Function t does not give the values of the 
incomplete gamma function directly (because of the extremely wide range 
of values assumed by that function) but of other related functions from 
which the incomplete gamma function can readily be computed. The table 
that gives the most accurate results for the present purpose is Table III,  
which gives values of the logarithms of a function I'(u, p) defined by 

r , (p  + 1) = u~+,r(p + 1)I'(u, p ) ,  

where u = x/~/p + 1. Substitution of this expression in (3) gives, after 
some algebraic manipulation, 

a,(a + ~) = 1 - ear(1 - H ) [ K  n -- K(1 --H)~-H)/2I'(u,--H)]. 

t Edited by Karl Pearson and published in 1922 by the Cambridge University Press. 
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The corresponding expression for a=:h-i is complicated, and it is preferable 
to work with whole-life annuity values, using 

a=:,---i = a = -  E=a=+, 

and 
DE= = e "-n(A+$)+Kz-Kz+n . "" 

Taking as an illustration the one worked out in detail in the paper, 
namely, a65 for the a-1949 female table with 2~°~o interest, we have 

A + 6  = .0256926 

K =  .096144 

H =  .22772 

K n = .58666 

e ~ = 1.10092 

F ( 1 - - H )  = 1.19688 

u =  K / v ' I - - t l =  .109405 

(1 --tt)-~l-m/2I'(u,--tt) = 1.03791. 

The first five values above are taken from the paper, the value of F(1 -- 
H) was obtained from Biornetrika Tables for Statisticians, volume I, 2 and 
the last value listed was computed with the help of tables of logarithms 
after obtaining log It(u,--.H) by straight-line interpolation from Tables 
of the Incomplete P-Function. The result obtained for ~5 is 13.952, the 
same as in the paper. 

DONALD A. JONES AND CECIL J. NESBITT: 

Almost fifty years after Mr. McClintock used tabled values of the 
gamma furiction in his calculations of a=, Karl Pearson in 1922 tabulated 
values of the incomplete gamma function. It occurred to us to explore 
the possibility of using Pearson's tables for the purpose of Mr. Mereu's 
paper. The incomplete gamma function is 

fo x F = ( l + p )  = yPe-vdy, p > - - l ,  x>_0 ;  

F=(1 + p) is the well-known gamma function and for this case the sub- 
script will be omitted. Pearson, as a tabulating convenience, gave values of 

r.  , ~ ( l + p )  
I ( u , p ) =  r ( l + p )  

in the main part of his tables. 
In order to express a= in terms of tabled values, we integrated once 

by parts in the right member of 

K z ~ H  f o o  --Y - - I - -H .  
(lnc)a== e 6 ,  j lq  e y ay,  

2 Edited by E. S. Pearson and H. O. Hartley and published in 1956 by the Cam- 
bridge University Press. 
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with 0 < H < 1 to avoid special cases. (It is worth noting that McClin- 
tock remarked that his power series may be developed by repeated in- 
tegration by parts.) This process, followed by splitting of the range of 
integration and use of the indicated notations, yields 

1 e ~ x v ( 1 - - H ) [ l _ i  H 
(ln c ) ~x = H H 

While this formula puts a~ in terms of tabled functions, the interpola- 
tion necessary to obtain the desired degree of accuracy in 

K~ H )  
I ( 7 1  - - H '  

required no less computation than the series used by Mr. Mereu. In fact, 
for .75 < H < 1 and K < 1.5v/1 -- H, Pearson suggests the integration 
of the power series for e ~ y  -H to obtain adequate accuracy. The examples 
we have studied would tend to confirm a power series approach such as 
utilized by Mr. Mereu, except at extreme high ages where the Pearson 
tables are generally efficient. 

There is the obvious observation that if a mortality table with a Make- 
ham graduation is to be used extensively for a variety of annuity calcula- 
tions, commutation columns would be a practical necessity. Such columns 
are readily obtained by electronic computers and provide a very flexible 
calculation tool. Thus, for instance, the calculation of a discrete varying 
annuity would seem to be more feasible by means of commutation func- 
tions than by direct computation from the Makeham constants. Also, 
the parameter A of the Makeham law is often replaced by a polynomial 
at the less advanced ages, and this creates another difficulty for direct 
calculation of annuity values. 

Despite these practical limitations, the author's methods are of interest 
in showing how analysis may obviate the arithmetic required for comput- 
ing annuity values by the usual commutation process. Where only isolated 
values are required for experimental purposes, his methods may prove 
their worth. 

E. WARD EMERY: 

Mr. Mereu starts with a function of age, viz., the Makeham formula 
for the force of mortality, and sets out to integrate it to obtain values 
of g~:~. Although he might have improved understanding by identifying 
his integral to known mathematical functions, he would still have lacked 
an adequate set of tables. Unless his Table 7 is materially expanded one 
would turn rather quickly to electronic computers to evaluate his func- 
tions. If then such computers are to be used, how can they best be used? 
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The conclusion I reached is tha t  the way to make the integration of the 
Makeham formula most meaningful is to construct regular commutation 
functions in the memory of the computer and then write as much or as 
little as may  be desired. 

In  order to examine the computer difficulties I wrote and applied such 
a program for a punched card computer in our office. An information card 
supplies A,  B,  c, i, y and table identification. The computer punches q~, 
~y and l~ on this information card. The relationship colog,px = A + Bcx 

is assumed to apply for ages y and over. 1000B and each of the other con- 
stants is taken to eight decimal places, with only c allowed to be as large 
as unity. Alternatively c may  be replaced with logl0c and a code to so 
indicate. 

The program is described below in a series of steps. I t  is to be under- 
stood that  the program starts at  step 1 and proceeds in sequence to the 
next higher step unless there is a specific statement to the contrary. 

1. Read information card. 
2. Convert logl0c to c if that  is necessary. This conversion requires com- 

puting u = logic = log,10.1og~0c and expanding the exponential se- 
ries e ~. 

3. Set the age x to zero and set B ~  and v ~ to the known values for x = 0. 
4. Test  whether x = ¢0 according to a test discussed below. If  x = ~0 

then proceed to step 6; otherwise proceed to step 5. 
5. Advance the age one year and determine new Bc ~ and v* by multiply- 

ing by c and dividing by (1 + i) respectively and return to step 4. 
6. Set l~ = 1, p~ = 0, and N , , , + I  = 0. 
7. Compute q,, D,,  N ,  and a,  by  the familiar rules, that  is, q, = 1 - px, 

D,  = v~l,, N ,  = N,+~ + D,,  ~/, = N J D ~ .  Of course, x = w the first 
time through this step. 

8. Test  whether x = y. If  x = y then terminate the computation and 
punch q,, d~, and l~ on the information card and go to step 1 for the 
next card; otherwise proceed to step 9. 

9. Decrease the age one year and determine new v* and Bc* by multiply- 
ing by  (1 + i) and dividing by c respectively. 

10. Compute cologep, = A + Bc ~. 

11. Compute p ,  by  expanding the exponential series e ~, where u = 
-7 colog,p,. 

12. Compute l, by  dividing l,+~ by p, and return to step 7. 

The quantities A + Bc • are summed from x = 0 to x = o~ --. 1, and 
w is recognized as the age at  which this sum exceeds 16. Since l~ = 1 and 
e ~6 is approximately ten million, it follows that  if the Makeham formula 
held throughout life then l0 would be approximately ten million. At  step 
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3 a test amount is set equal to zero. At step 4 if the test amount does 
not exceed 16 then x # ¢0 and A + B~  is added to the test amount. 

The expansion of the exponential series 

required a certain amount of special attention• Each term in this series 
is computed from the previous one by multiplying by u and dividing by 
n, with the expansion terminating when a zero term to the number of 
decimal places used is reached. In  the usual case u = --colog,p~ and is 
negative. However, it is also necessary to be al~le to handle the case where 
u = log,c and is positive. I t  was decided that it would be useful from a 
computer standpoint if every term un/n! were to be determined to eight 
decimals, with u so limited that the absolute value of every term would 
be less than 10. This size requirement alone limited the absolute value 
of u to be less than the cube root of 60 or slightly less than 4. However, 
it is also desirable to keep the possible effects of dropped decimals small, 
which is somewhat more restrictive. The method of determining the ter- 
minal age should keep the absolute value of u not much larger than 2 and 
keep the accumulative effect of dropped decimals small. 

The values of v ~ and eolog,p~ are determined to fourteen decimal places. 
However, when used to determine D,  and p, they are first rounded to 
eight decimal places. This has been found to be a practical way of always 
using the same values of v • as those found in published tables. Parallel 
treatment of ~ and B ~  proved a computing convenience and certainly 
did not decrease the accuracy of the determination of Bc ~. However, it 
should be understood that  c was limited to eight decimal places and hence 
exact duplication of logarithm calculations would not be attained at high 
ages. 

Although this computer would be classified as small to intermediate, 
the time required to compute 065 for 15 tables was about six minutes, or 
24 seconds per table. 

A slight variation of the program permits the information card to be 
treated as a master card which supplies information but is not further 
punched. Blank cards which follow it are punched each time the test as 
to whether x = y is made. Table identification, age, qx, gx, l~, D,, and 
N~ are punched on these cards from age ~0 down through age y. When x 
becomes less than y the basic computation ceases and the balance of the 
blank cards are passed without punching. The time required to feed cards 
approximately triples the computing time for a table. 

The program has been applied to reproduce a number of familiar tables. 



306 ANNUITY VALUES DIRECTLY FROM MAKEHA~ CONSTANTS 

The reproduction is very good except near the terminal age where the 
l~ functions are quite small. For example, the equivalent of the a-1949 
female table for ages 50 through 108 agreed with the published mortality 
rates except for a difference of one in the last place at ages 57, 96, 103 
and 105; the values of ax at 2 ~ o  interest agreed up through age 101. 
Also some tables of ax, were checked quite satisfactorily by determining 
a~ using 2A and 2B in place of A and B. 

The Ga-1951 table and the 1958 CSO table are two important recent 
tables which are not Makeham graduated because no satisfactory fit could 
be made. These same computers which make possible the program de- 
scribed here also make possible the direct computation of multiple life 
functions and hence have contributed to a trend away from Makeham 
graduated tables. 

WILLIAM H. BUI~LING: 

For many actuarial problems we really would like to review the an- 
swers produced by combining the results from a wide variety of mortality, 
tax and "withdrawal" assumptions with different sets of possible proba- 
bilities. The resultant array of "expectations" would be immeasurably 
superior for practical decision-making than is the one "expectation" that 
has generally been possible with the relatively primitive computation meth- 
ods of the past. I t  was a pleasure to see an exploratory paper of this 
nature and I think we should show the author enough appreciation so 
that more young people will be encouraged to search for the sophisticated 
mathematics and machines we need. 

Incidentally, when my actuarial studies reached life contingencies, I 
ran into troubles with the old George King textbook and I went back to 
my former high school teacher for help. He took one look at the commu- 
tation tables at the back of the book and said, "You will probably forget 
how to use these columns, but you will always remember which comes after 
which--they are D(amn) N(on) S(ense)." 

(AUTHOR'S REVIEW OF DISCUSSION) 

JOHN A. MZEREU: 

I am grateful for the variety of interesting discussions that were 
prompted by the paper. 

In the introduction to my paper, I did state that whether it is worth 
while to obtain expressions for life contingency functions directly from the 
governing law of mortality will depend on a number of factors, of which 
I listed three. Both Mr. N'iessen and Mr. Emery observe that modern 
computing equipment makes it possible to produce a complete mortality 
table in a few minutes, and Mr. Emery has described a program success- 
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fully used for the purpose. While their observations are accurate in this 
respect, there is a large cost factor involved which might make it prudent 
to carry out a few desk calculations before committing to experimental 
calculations the computer resources. 

Mr. Niessen finds my method for computing a single annuity formi- 
dable. This is a natural observation and a simpler method would certainly 
be appreciated. Possibly the method described by Mr. Weck and Mr. 
Maier is the answer. However, the standard method of producing a table 
of mortality and commutation functions is a formidable one too and could 
not in a few minutes produce the handful of annuity values which might 
be sufficient for the use to be made of them. Under the method of the 
paper, a few values can be produced for a completely new table in a 
reasonable period of time and without committing expensive computing 
machinery prematurely. 

Mr. Niessen does not see how one could rely on annuity values com- 
puted from a table which has never been seen. The same observation can 
be made about a table which has been seen. I do not see that it matters 
whether a table has been seen or not seen in the usual sense, as long as the 
table or values computed from the table satisfy the tests of reproducing 
expected values which the actuary wants to impose. 

In his closing remarks, Mr. Niessen appears to question certain princi- 
ples of graduation and states that it is more important to concentrate on 
fit than on smoothness. The monogram on graduation prepared by Mr. 
Morton D. Miller explains how graduation is characterized by the two 
essential qualities---smoothness and fit. "The  graduated series should be 
smooth as compared with the ungraduated series, but it should be con- 
sistent with the indication of the ungraduated series." " In  the application 
of a method to a specific problem, the circumstances of that problem 
dictate the nature and extent of the compromise to be effected between 
fit and smoothness." There is just as much need to graduate observed 
results as there ever was and achieve a proper balance between smooth- 
ness and fit. Makehamization happens to be one of the methods available. 
I t  is not necessary that one believe in Makeham's Law as a law of mor- 
tality before utilizing it as a practical graduation tool. 

Mr. Emery suggests the possibility of materially expanding Table 7, 
In c, as a labor-saving device for calculating annuities. Such an expansion 

could be very useful provided that the arguments of the function could be 
spaced sufficiently close together so that  linear interpolation in the table 
would be accurate, and provided further that the resulting table was not 
too voluminous. Instead of tabulating the results at equispaced intervals 
of K, equispaced intervals of some function of K might be more suitable. 
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Dr. Nesbitt and Dr. Jones, Dr. Greville, and Mr. Amer all show how 
the integral for the continuous annuity can be evaluated using published 
values of the incomplete gamma function. However, for the range of K 
values likely to be required Dr. Nesbitt and Dr. Jones do not recommend 
use of these tables because of the labor involved in interpolation. 

Mr. Maier and Mr. Weck have used a completely new approach to the 
problem and derive a formula relating the annuity on the new table to 
an annuity on a reference table. In effect, they give us a useful passport 
from one Makeham table to another. Their application to projected mor- 
tality provides adjustments that may be made to a base table to provide 
for mortality improvement. 

I am thankful to Mr. Burling for his words of encouragement. 


