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INTRODUCTION 

T H E  use of mathematical models in research is a technique familiar 
asset are l to every actuary. The model office and the share just 

a few examples of models commonly used by actuaries. However, 
actuaries have really only scratched the surface of the large volume of 
available techniques involving mathematical models. The realization of 
means for high speed computation and the concurrent development of 
so-called "operations research" methods have opened new doors to every- 
one engaged in the business of substituting "facts for appearances and 
demonstrations for impressions." The practical development of techniques 
such as linear programming, dynamic programming, Monte Carlo ex- 
periments, and many others would have been impossible without the 
advent of the high-speed computer. The actuarial profession needs to 
keep pace with these developments and give consideration to how these 
techniques might enable the actuary to better fulfill his calling. The field 
of potential application is broad, including the provision of better infor- 
mation to assist management in making decisions, cost control, actuarial 
analysis of such things as mortality experience, retention limits, contin- 
gency reserves, etc., to mention only a few. 

Mr. Boermeester (TSA, VIII, 1) has illustrated the use of the Monte 
Carlo method in making mortality studies for a closed group of lives. 
Basically, the technique consists of simulating the mortality experience 
of the group by the construction and solution of a model which has the 
same probabilistic properties. The exposure of a given life to the risk of 
death, an event with probability qx, is simulated by the "exposure" of a 
random number, selected from the unit interval on the real line, to the 
"risk" of being less than or equal to q,, an event with the same probability 
q,. Solution of the model results in a frequency distribution of claim costs 
for the group being studied. The only assumption inherent in the method 
is that the appropriate q. is the actual probability of death for each life. 

The purpose of this paper is to describe the application of the Monte 
Carlo technique to a practical situation in my Company, and to discuss 
some of the problems encountered and the solution of these problems. 
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366 APPLICATION OF THE MONTE CARLO TECHNIQUE 

TJi~ PROBLE]~ 

The specific problem was one of rate-making. A very real problem in 
the field of group term insurance is the transfer of coverage from one 
carrier to another by a policyholder who finds himself in a large deficit 
position with the original carrier. This situation can be avoided if the 
policyholder is willing to pay an additional charge for a guarantee of an 
upper limit on the amount of deficit carried forward from one year to 
the following years. In order to determine such a charge, it is necessary 
to know the probability of, the expected value of, and the variation of 
claims in excess of a given amount. 

The basic problem to be solved, of course, is that of determining the 
frequency distribution of the annual claim cost of a given group of lives 
for a given year. I t  was desired that the following properties of the group 
be allowed to vary over rather wide ranges: (1) the size of the group, 
(2) the age distribution of the group, (3) the sex distribution of the group, 
(4) the total amount of insurance, and (5) the distribution of the insur- 
ance on individual lives. 

The analytical solution of this problem would be extremely complex, 
and indeed any such solution which would be practical from a cost stand- 
point would necessitate making simplifying assumptions which would 
raise considerable doubts as to the validity of the conclusions. 

Therefore, it was decided to use the Monte Carlo technique, which is 
admirably suited to a problem of this nature. 

TJ~; MONTE CARLO TECHNIQUE 

The Datatron 205 was programmed to conduct the Monte Carlo ex- 
periment. The basic procedure was very similar to that described by Mr. 
Boermeester, the core of the program consisting of the comparison of a 
random number with the probability of death. The comparison routine 
was repeated for the entire group many times, simulating several trials 
of the mortality experience for the year. 

Input to the program consisted of a deck of cards, one card for each 
life in the group being tested. Each card contained the age, the sex, and 
the amount of insurance in force for that life. 

Output was in printed form, showing the amount of claims for each 
trial, the average claims for all trials, and a frequency distribution of 
claims. 

Example 
One group which we studied consisted of 306 lives, all male, with ages 

varying from 23 to 75 and amounts of insurance on individual lives 
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varying from $2,000 to $I0,000. Expected claims for the group, based on 
the 1950-1954 intercompany group mortality experience, were $17,200 
for the year studied. One hundred trials were made. The average amount 
of claims per trial was $17,625, which was very close to the expected 
claims. The frequency distribution of claims is given below: 

Number of 
Amount of Claims Trials 

.0o525,000 . . . . . . . . .  82 
$25,000-$27,000 . . . . . . . . .  0 
$27,0000530,000 . . . . . . . . .  9 
$30,000-$35,000 . . . . . . . . .  5 
$35,000--$50,000 . . . . . . . . .  4 
Greater than $50,000 . . . . .  0 

Total . . . . . . . . . . . . . . . . .  100 

Thus, on the basis of this sample distribution, there is an 18°/o chance 
that claims for the year will exceed $25,000, a 9% chance that they will 
exceed $30,000, a 4~o chance that they will exceed $35,000, and a very 
small chance that they will exceed $50,000. A further breakdown of claims 
in the 0--$25,000 range is not readily available because of the nature of 
the problem being studied. 

As the number of trials increases, of course, one would expect the 
sample distribution to more closely approximate that which would be 
obtained by classical analytic methods. 

RANDOM NUMBER SUPPLY 

The primary problem to be solved in any application of the Monte 
Carlo technique is that of obtaining a random number supply. The results 
will not be valid unless the numbers used are (for all practical purposes) 
uniformly distributed over the unit interval. 

There are available published tables of random numbers which have 
been extensively tested for randomness and found to satisfy these tests. 
Experiments such as those which I have described, however, require 
rapid access to thousands of numbers and limitations on the memory 
capacity of the electronic computer precludes the use of these tables as 
a practical matter. 

Another approach which has been widely used is that of generating 
each random number as it is needed. Examples of such methods are the 
so-called "mid-square" method and the method employed by Mr. Boer- 
meester. These methods are subject to degeneration and the period of the 
sequences generated may be too short. 

The method which we used was actually a combination of the table 
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look-up and number generation methods. A standard table of 1,000 ten- 
digit random numbers is stored in the memorY of the computer 'and used 
as a starting point. When these 1,000 numbers have been exhausted during 
an experiment, a new set of 1,000 numbers is generated from the old as 
follows: 

1. A number is selected from the old table which I shall designate N~. 
2. The first number of the new table, NL is obtained by adding the first 

number of the old table, N~, to N} and retaining only the ten least 
significant digits of the sum. 

3. The second number of the new table, N~, is obtained by adding the 
second number of the old table, N, ~, to N~ obtained in step 2, again 
retaining only the ten least significant digits of the sum. 

4. In general, the kth number of the new table, NL is obtained by adding 
the kth number of the old table, NL to the (k - 1)th number of the 
new table, N~-I, retaining only the ten least significant digits of the 
sum. 

When any table is exhausted, it is used to construct another table in 
exactly the same way. 

This routine is considerably faster than the more commonly encoun- 
tered ones entailing multiplication, and the time factor is verY important 
to us since our computer is primarily designed for data processing and 
does not operate at the high speeds of the larger computers designed for 
scientific applications. 

TESTS OF THE RANDOM NUMBER SUPPLY 

AS mentioned, the validity of the results of a Monte Carlo experiment 
rests on the randomness of the number supply. The statistical properties 
desired for the numbers are exactly those which would result if the num- 
bers were obtained by an idealized chance device which selected numbers 
from the unit interval independently and with all numbers equally likely. 
The numbers produced by a computer subroutine are not random in this 
sense, of course, and therefore such numbers should be tested, both the- 
oretically and empirically, for various specific properties of uniformly dis- 
tributed variables. 

We are indebted to Mr. Gordon D. Shellard for a proof of the theorem 
that the decimal part of the sum of n uniformly distributed variables on 
the unit interval is itself uniformly distributed on the unit interval. This 
theorem provides a theoretical basis for our method of generating random 
numbers. With his kind permission, his proof is exhibited in the Appendix. 

I have made several x = tests of the distribution and independence of 
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the set of the first 26,000 random numbers generated as I have described, 
and of various subsets of that set: 

1. Test of goodness of fit to the uniform distribution. The unit interval 
was divided into ten subintervals and the frequency of numbers falling 
into each subinterval was observed for the entire set of 26,000 numbers 
and for each table of 1,000 numbers. Also, applications to groups of 
k lives will likely assign every kth random number to the kth life. 
Therefore, this test was also applied to these subsets for k = 20 and 
k = 50. 

2. Independence test. Again, the unit interval was divided into ten sub- 
intervals and a 10 X 10 matrix was constructed as follows: tally 1 in 
row i, column j when a number in the ith subinterval is followed by a 
number in the j th  subinterval. The expected result is equal numbers 
in all positions of the matrix. Matrices were constructed for the entire 
set of 26,000 numbers and for each subset of 2,000 consecutive num- 
bers. 

3. A study of runs up and down. This test was made for the entire set 
of 26,000 numbers, and describes the oscillatory nature of the numbers. 
The number of continuously increasing or decreasing subsequences of 
length l(1 < l < 26,000) was counted and compared with the theoreti- 
cal distribution of such runs if the numbers are truly random. 

4. A study of runs above and below the mean. This is another test which 
describes the oscillatory nature of the numbers, and the entire set of 
26,000 numbers as well as each table of 1,000 numbers was so tested. 
The number of subsequences of length l of numbers all greater or less 
than ½ was counted and compared with the theoretical number of such 
runs if the numbers are truly random. 

5. The number of even and odd numbers in the entire set of 26,000 num- 
bers and in each table of 1,000 numbers was counted and compared 
with the theoretical distribution if the numbers are truly random. 

For the most part, these tests gave no significant evidence that the 
numbers do not have the properties of uniformly distributed variables. 
Some indication that certain subsets of the 26,000 numbers tested do not 
have these properties was evident, however. In test 1, three of the fifty 
subsets of every 50th number fell in the 98°~ "tail" and four in the 5% 
"tail" of the theoretical X~-distribution. In test 2, two of the thirteen 
subsets of 2,000 consecutive numbers fell in the 1% tail of the theoretical 
x~-distribution. 

All such tests, of course, have a subjective element and no test or 
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series of tests can establish a sequence of numbers as being random. Also, 
to sound a philosophical note, if numbers were generated by a truly ran- 
dom process any test which rejected such a sequence would be faulty. 

I t  should be mentioned that any sequence of numbers generated by 
a computer subroutine with finite input will eventually repeat or "loop." 
Although our subroutine fits this description, we have not attempted to 
calculate the period of the sequence generated by this subroutine, since 
it is most probably so long as to be of no practical significance to our 
applications. 

Since the subroutine is not susceptible to degeneration, no test for this 
was made. 

We feel quite comfortable in using the numbers generated as I have 
described in this paper. 

CONCLUSION 

As evidenced by the amount of time and effort which we have devoted 
to this subject, we feel that the Monte Carlo technique has many potential 
applications in the fields of actuarial endeavor. Indeed, many mathemati- 
cal models, although they may be built of very simple variables, may 
themselves become very complex, particularly if probability concepts are 
involved. Very often, such situations lend themselves very handily to the 
Monte Carlo technique. Of course, the practicality of using this technique 
will depend to a great extent on the speed of the electronic equipment 
available. 

I t  is my hope that this paper may be of some value to those actuaries 
who are interested in the application of these newer operations research 
techniques made possible by high-speed computation to many of the 
problems with which they are faced. I wish to express my indebtedness 
and appreciation to Mr. J. S. Hill who provided very helpful guidance 
and conceived the random number generation process described in this 
paper, and to Mr. Dale Kain who provided much valuable technical 
assistance in making the random number tests. 

APPENDIX 

Theorem The decimal part of the sum of n variables uniformly distributed 
on the unit interval is itself uniformly distributed on the unit 
interval. 

Proof (Due to Mr. Gordon D. Shellard) 

An expression for the distribution of the sum, y, of n uniformly distributed 
variables, which may be verified by induction, is 



1 f*(Y)-(,;--1)! 

yn--1 

y~-l--(1)(y--1) ~-I 

r~ ~-C) , r -~-~+(7) , r -~- .  

l f O < y < l  

if 1 <y<2 

i f 2 < y < 3  

y ~ _ l _ ~ l ) ( y _ l ) n _ l q _ . . . q _ ( _ l ) ~ _ l  ( I; ) t ; - -1  (y - -n-}-1)  n-1 i f n - - l ( y < n  

lf x is the decimal part of y, then it follows that the distribution of x on the unit interval is given by 
xn--1 

+ ( I + x )  n-1 -- ( ~ )  xn--1, 

1 £ ( x )  - 
( n - - l ) !  
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The summation in brackets is most easily performed by summing each 
column separately. The sum of the first column is given by 

S l = x " - X +  ( l + x ) " - l +  ( 2 + x ) " - 1 + . . . +  ( n -  l + x )  "-1 

E " - - I  
= ( I + E W E ~ + . . .  + E " - l ) x " - X - - -  x--l.  

E - - 1  

In general, the sum of the kth column (1 < k < n) is given by 

Sk= ( - -  1)k-1 ( k n 1/'~E"-'+l -- 1 x n - " ] E  -~-----1 

Therefore, the sum of all the terms in brackets is 

S =  £ S k  
k=l  

{ [~-(?)~-,+L")E--~+... +~-i >- ('Ql l 
1 xn_l 

= - -  \ 1 /  \ L /  \ n / J  

E - - I  _ [1 _ ( I ) _ [ _ ( 2 ) + . . .  _{_ ( _ 1) .  (nn)] j 

A" 
- -  ~ [ ( E  - -  1 ) " - -  ( 1 - -  1 )"1  x " -1  = ~ -  x " - l  = A " - l x  " - I  

1 

E - - 1  

= ( n - l ) !  

Therefore 

1 
f , , ( x ) -  ( n - - I ) ! = 1 .  

(n - -  1)l 



DISCUSSION OF PRECEDING PAPER 

DONALD A. JONES: 

At the Chicago meeting of the Society in June an informal discussion 
was held to discuss what the Society should do about the study of risk 
theory. One question raised was "How can the Society aid its members in 
their study of the theory?" Today two papers are being presented, Mr. 
Collins' and Dr. Kahn's, which can aid us in our study. The purpose of 
this discussion is twofold: (1) place Mr. Collins' "basic problem" in risk- 
theoretic language and (2) give an elementary proof of the theorem given 
in the Appendix. 

First let us contemplate whether Mr. Collins' "basic problem" is better 
fitted by the collective model of risk theory or by the individual model. 
In the collective model the claim amounts, given the number of claims, 
are independently distributed._Moreover, to follow the development in 
Dr. Kahn's paper they must also be identically distributed. For a relative- 
ly small closed group with widely varying ages and amounts, as considered 
by Mr. Collins, this postulate is not realistic. In the individual model it 
is convenient to have a closed group of lives for which we know the indi- 
vidual amounts of insurance and probabilities of death. In addition, it is 
usual to assume independent lives. Our problem sounds like an example 
of the individual model. 

To consider the individual model of risk theory, we need some notations 
for each of the m lives in the group, assumed to be numbered from 1 to m. 
For the ith life let Ai be the amount of insurance, qdsic) the probability 
of death within the year, and Z~ an "indicator" random variable, i.e., 
Z = 1 if the ith life dies; Z = 0 if the ith life survives. Thus, Pr{Z~ = 1 } = 
q~, Pr{Z~ = O} = 1 -- qi, and the total claims for the year, 

C =  ~ A ",Zi. 
i ~ l  

I t  is in this individual model that Mr. Collins has east C. 
Since C is defined as the sum of a fixed number of independent random 

variable.s, users of the individual model have approximated its distribu- 
t ion by a normal distribution with mean 

~ A iq~ 
i = l  

and variance 
m 

 A q,(x - q,).  
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Both of the authors today, warn that this asymptotic normal distribu- 

tion may be approached slowly. As an alternative to this approximation 

Mr. Collins has suggested that we observe the experience of a large number 

of identical groups by simulation on the computer and thus obtain the 

distribution of C by statistical inference. 
This discussant found it enlightening to look at approximate confidence 

intervals for the three parameters, Pr { C > 25,000}, Pr { C > 30,000 }, and 
Pr{C > 35,000} which were constructed as follows. If we let p = 
Pr{C > 25,000}, then the number of times the claims of the 100 Monte 
Carlo trials exceed 25,000 is a random variable with a binomial distribu- 
tion (with parameters 100 and p). The approximate confidence intervals 
were then obtained by use of the normal approximation to this binomial 
distribution. These intervals were then compared to some of the approxi- 
'mate solutions obtained by analytical methods following simplifying 
assumptions. All these solutions fell within the approximate 95% confi- 
dence intervals. 

I t  may be worthwhile to remember that Monte Carlo is statistical es- 
timation and thus warrants some statement of the statistical accuracy. 
Along this line of thought, Mr. Collins' example raises another question. 
If  the mean (or some other characteristic) of the empirical distribution 
differs from the theoretical mean (known, of course), should we adjust 
our result? 

The theorem in Mr.  Collins' paper is the assertion of a proposition for 
every positive integer, so it is natural to prove it directly by induction. 
We restate the theorem to include the needed independence of the vari- 
ables. 

Theorem: Let xl, x~, . . . ,  be a sequence of independent random vari- 
ables, each uniformly distributed on the unit interval. Let 

N 

S.= ~x~. 
i = l  

Then for every positive integer, n, S~ -- [S,] is uniformly distributed on 
the unit interval ([u] denotes the greatest integer in u). 

Proof: I t  is obvious for n = 1. We will need the assertion at  n = 2 to 
prove the inductive step, hence we must do it directly. For every t, 

O < t < l ,  P r { S 2 - [ S 2 l _ < t } = P r { x ~ + x ~ < _ t }  

+Pr{1 <,~+x,< l+t} =~+ ~- 
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To prove the inductive step, we assume S~-1 -- [S.-1] is uniformly dis- 
tributed over the unit interval. 

= { s . _ ~  - I S . _ , ]  + x . }  - { I s . _ 1  + ~.1 - [ s . _ ~ ] }  

= { s . _ ~  - [ S . _ l ] }  + ~ .  - [ s . _ l  - [ s . _ l ]  + x . ] .  

The last equality follows from [u] - Iv] = [u - [v]] for all real numbers 
u and v. Now applying the theorem for n = 2 to the two variables 
S,-1 -- [S,-1] and x, establishes the theorem. 

I thank Mr. Collins for his paper, which I found stimulating. 

ROBERT C. TOO•EY. 

We are indeed indebted to Mr. Collins for his fine paper which so vivid- 
ly illustrates how electronic data-processing equipment ushered in a 
completely new era. The electron, smallest unit of matter, traveling with 
a speed of light, has become the scientist's willing and valuable slave. The 
significance of all this defies description. The newest model electronic 
machines in particular provide the actuary with his most valuable tool. 
He can now simulate the experience to obtain the data necessary for his 
computations. Perhaps the greatest application of these simulated expe- 
riences will be in collective risk problems which are so complex that any 
analytical approach would prove to be extremely cumbersome and 
costly. 

In  addition to the calculation of the "extra risk" or "pooling" charge 
in group life insurance, as the author demonstrates, the Monte Carlo 
technique has application in determination of nonproportional reinsur- 
ance rates. Our operations research affiliate, Peat, Marwick, Caywood, 
Schiller & Co., using an IBM 1620, computed the claims distribution of 
a small (around sixty million in force) life insurance company by simu- 
lating the experience of 1960 one thousand times. Two distributions were 
obtained, one assuming a retention limit of $25,000 on any one life, and 
the other assuming this limit to be $100,000. The average policy size was 
about ~,000, and, as Table 1 demonstrates, a $25,000 retention limit 
produced a distribution of claims well defined by the normal curve. On 
the other hand, with a retention limit of $100,000, we end up with a dis- 
tribution of unusually marked skewness--an unmanageable-skewness as 
far as classical frequency distributions are concerned. Had our client based 
his computations on the normal distribution, he would have ended up 
with nonproportional reinsurance premiums that were at least 50% on 
the low side. 
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The Datatron used by the author is a fine machine, just as the Model 
T Ford was a fine car in its day. However, the capacity of the IBM 1620 
as well as other modern machines has paved the way for a far broader 
extension of Monte Carlo techniques than hitherto thought economically 
feasible. Claims experience in almost any life insurance company can be 
simulated in a nominal amount of machine time, the cost of which would 
fall well within the loading of nonproportional premiums. Pseudo-random 
numbers can be generated as needed and in quantities of 50 million or 
more using techniques that will now be discussed. 

As the author pointed out, tables of random numbers have limited per- 
formance in high-speed computing machines because they require exten- 

TABLE 1 

TOTAl. CLAIMS IN 
CALENDAR YEAR 

Less than $100,000 . . . . . . .  
$100,O00to 150,000 . . . . .  
$150,000 to 200,000. 
$200,000to 252,000 . . . . .  
$252,000 to 300,000 . . . . .  
8300,000to 350,000 . . . . .  
$350,000to 400,000 . . . . .  
$400,000to 450,000 . . . . .  
Over$450,O00 . . . . . . . . . . . .  

NUMBER OF TRIALS 

Retention Limit $25,000 $100,000 

Expected Claims 252,000 264,000 

0 
5 

97 
437 
340 
108 
12 

1 
0 

1,000 

0 
5 

89 
445* 
237t 
154 
49 
15 
6 

1,000 

* The bracket was  $200,000-$262,000 to break at the mean. 
t The bracket was  $262,000-$300,000 to break at the mean. 

sive storage. For this reason, the standard procedure has been to generate 
numbers in the machine at  the time they are needed. 

These mathematical procedures produce sequences of pseudo-random 
numbers, that  is, completely determined sequences of numbers having 
some of the more easily tested properties of the sequences of similarly 
distributed truly random numbers. The very determinability of the se- 
quences produced by these procedures provides definite advantages over 
the physical methods which produce sequences of truly random numbers. 
A sequence of pseudo-random numbers which satisfactorily passes random 
number tests can be repeatedly used. On the other hand, if a different 
sequence is used each time a problem is solved by the Monte Carlo 
method, the possibility of an unexpected answer's being due to numbers 
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used could be checked simply by reproducing the sequence used and mak- 
ing statistical tests upon it. Departures from mean behavior are bound 
to occur in the long run in truly random sequences, whereas in mathe- 
matical procedures these departures can be eliminated. 

As pointed out by the author, the middle of the square method used 
by Mr. Boermeester (TSA, VIII) had its limitations because on the aver- 
age, after several tens of thousands of numbers, it can be expected that 
the sequences will degenerate to a sequence of zeros or to cycles of short 
period. To prevent this from happening, it was necessary to examine and 
test the number produced and if necessary start all over again with a new 
random number. For truly large tests, simple methods producing a 
greater abundance of pseudo-random numbers are needed. 

The object is to produce the digits of one pseudo-random number from 
its predecessor by reducing the product of the predecessor and a well- 
chosen constant to its least positive residue with respect to a modulus 
particularly chosen for the machine. The procedure produces sequences of 
numbers closely approximating the sequence of uniformly distributed 
random numbers. In the case of the IBM 1620, the number [1 q- 10 
(4r -[- 1)] k may be used as the multiplier providing it is less than 10 TM but 
is as close thereto as possible, r must be an integer and k must be an 
integer prime to 10, and 4r q- 1 must not be divisible by 5. The length 
of the period of the sequence of numbers produced by this random gen- 
eration process is 5.10 ~-~. Using 10 digit multipliers, (fl = 10) the "loop- 
ing" period is 5.10 s. We let r = 53 and k = 3, producing our fixed multi- 
plier, the number--9,677,214,091--and then we squared it. From this 
result, we removed the 10 right-hand digits to obtain the variable multi- 
plier to apply to the original fixed multiplier. From each product so ob- 
tained, we removed the middle 12 digits to use as our random sequences. 
Three sequences of four digits enabled us to make three trials for each 
random number generated since we carried the qx's out only four decimal 
places. Application of the usual statistical tests on the number sequences 
did not reveal any significant departures from mean behavior. 

Using a little number theory, we can demonstrate that the generation 
process described has a period of 5.10 s, that is, that the variable multi- 
plier does not repeat before 500,000,000 multiplications. 

Let x be the "fixed multiplier" and y be any particular variable "mul- 
tiplier." Then we show that if y(x) ~1 has the same last 10 digits as y(x) ~, 
a2 ~ al, then a2 - al ~ 5.10 s. In number theory terminology, this rela- 
tionship is written: 

- ( 1 ) :  yx ~1 ----- yx ~ (mod 101°) 
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(meaning y(x) "1 minus y(x) a~ is divisible by 101°)--and since (y, 10 l°) = 1 
(meaning y is prime to 101°), this is equivalent to (2): ~1 _-- ~2 (rood 101°) 
or (3): # --- 1 (rood 10 l°) where b = a~ -- al. 

Juncosa proved that if x = [! + 10 (4r + 1)] ~ where 4r + 1 is not 
divisible by 5 and (k, 10) = l, then ~.1o' -- 1 mod (10 ~°) and # # 1 rood 
(10 l°) if b < 5-108. 

The proof, which is somewhat too lengthy to be included here, falls in 
three parts: 

(a) any fixed multiplier has a period which is a divisor of 5.108; 
(b) there exists a fixed multiplier with the full period (a "primitive root"); 
(c) any multiplier with the form [1 + 10 (4r + 1)] ~, where 4r + 1 is not 

divisible by 5 and wher'~ k is prime to 10 is a primitive root. 

Thus, a number fitting the foregoing form can be used in 500 million 
multiplications, producing, incidentally, 6 billion random digits before 
looping. 

We are just witnessing the very beginning of the application of power- 
ful machine techniques that will simulate the experience, in just a few 
hours of operation, that would normally transpire in thousands of years. 
While these techniques will be very useful to the actuary, they will also 
make great demands on his time and ingenuity. However, the actuary can 
take some comfort in the knowledge that he can never be completely re- 
placed by an electronic brain because the designers have not been able to 
come out with a machine that can be taught how to worry. 

NATHAN F. JONES: 

So far as I know, specific presentation in'actuarial journals of Monte 
Carlo technique has been limited to Mr. Boermeester's paper, to which 
Mr. Collins refers. The Society is indebted to Mr. Collins for its first 
presentation of an actuarial problem which could hardly be handled other 
than by "Monte Carlo" means. 

Mr. Collins' problem is, essentially, the problem of rating "aggregate 
excess of loss," or "stop-loss," insurance or reinsurance. Mr. J. S. Hill 
mentions the applicability of Monte Carlo methods to this problem in his 
discussion (TSA,  XII,  54) of Mr. Feay's paper on nonproportional rein- 
surance. Actually, were it not for other underwriting and marketing 
problems of "stop-loss," Monte Carlo methods would probably be better 
known to the American actuary in all fields of insurance. 

Mr. Collins, like Mr. Boermeester, emphasizes the problem of random 
number generation. I am sure Mr. Collins would not wish readers of his 
paper to reach the false conclusion that this is the principal problem for 
the actuary who needs to use Monte Carlo methods in the solution of real 
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actuarial problems. Sufficient randomness of the pseudo-random numbers 
employed is very important. However, simple and elaborate tables of 
pseudo-random numbers are available, in "hard copy," punched card, 
and, I am sure, tape form. Even specialized tables are available--e.g., of 
random normal deviates (abhorred by one author, who says he cannot 
consider deviates normal). 

There is also a voluminous literature on the mechanical generation of 
pseudo-random numbers; a recent article in S I A M  Review has a 148-item 
bibliography. The digital computer manufacturers have standard routines 
--"software"--for this purpose. 

Much more important than random number generation in practice are 
the estimation of accuracy and the devising of methods--algorithms--for 
obtaining satisfactory accuracy at reasonable cost in time, both human 
and machine. Mr. J. E. Walsh, an Associate of this Society, the author of 
two of the above 148 items on random number generafiou, has written 
also on estimation of accuracy in the proceedings, published by Wiley, 
of a 1954 Symposium on Monte Carlo Methods; his second paper in that 
volume is entitled "A Monte Carlo Technique for Obtaining Tests and 
Confidence Intervals for Insurance Mortality Rates." 

Mr. Hill, in the discussion referred to above, emphasizes these problems 
indirectly when he says, " In  such situations, Monte Carlo techniques can 
be of assistance, but they tend to use large amounts of computer time 
when relied on solely." Mr. Collins employed 100 trials to obtain his re- 
suits. But if anyone attempted to employ Mr. Boermeester's IBM 650 
method to obtain 100 trials of Mr. Collins' type of problem, he would 
rapidly learn the truth of Mr. Hill's statement. I know, because we once 
tried. 

Even then, how do we (or Mr. Collins) know 100 trials is enough? Re- 
production of the mean of the entire claim distribution is not always a 
sufficient criterion for the uses we may wish to make of the distribution. 

Of course, Monte Carlo methods are much more easily applied on a 
larger scale scientific computer, if one is available. But, even then, the 
ingenuity in devising "algorithms" on which the actuarial profession tra- 
ditionally (and rightly) prides itself has a fascinating and very worthwhile 
opportunity. This is particularly true of sequential or "series" problems. 

I suggest, as an appropriate challenge in the pension field, a measure of 
the probability that costs for a sizable pension fund, ten years hence, will 
be more than x per cent greater by the unit purchase method than by the 
entry-age normal (or level-premium) methods. Certainly, for this prob- 
lem, Mr. Collins' method would rapidly wear out his Datatron 205 (al- 
though the method is easy and adequate for his present problem). 
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There is a substantial literature in this aspect of the field also. See, for 
example, International Abstracts in Operations Research. To those who, 
like me, tend to find their mathematics inadequate for properly scholarly 
presentations, we should be glad to make available (i) a presentation of a 
simplified claim distribution problem, which considers estimation of accu- 
racy and "variance-reduction" in an elementary way; and (ii) a compari- 
son of three manual Monte Carlo methods (and their combination) with 
approximate integration and other conventional methods for evaluating 
a moderately complex actuarial function--provided you consider letting 
me (and Mr. Collins) know of your own conclusions and recommendations. 

PATRICK C. I~ISCttER: 

The method of obtaining pseudo-random numbers used by Mr. Collins 
is quite interesting and appears to be most useful in computer programs 
where speed of computation is important and storage is plentiful. How- 
ever, I wish to point out that alternative methods for generating pseudo- 
random numbers are neither as few in number nor as uniformly subject to 
degeneration as one might infer from this article. In particular, there are 
methods for which the period of the generated numbers has been proved 
to be adequately long (on the order of 10s). 

Some of these alternative methods are much more economical of 
machine storage. The time taken to produce each pseudo-random number 
may be longer, but one should observe that doubling the length of time 
necessary to execute a random-number-generating subroutine of a pro- 
gram may increase the total computation time of the program by only 
a very small fraction. 

Two good papers on the generation of pseudo-random numbers are: 

(1) Eve Bofinger and V. J. Bofinger, "On a Periodic Property of Pseudo- 
Random Sequences," Journal o/the Association for Computing Ma- 
chinery, V (July, 1958), 261. 

42) J. Certaine, "On Sequences of Pseudo-Random Numbers of Maximal 
Length," Journal of the Association for Computing Machinery, V (Octo- 
ber, 1958), 353. 

JAMES C. IiXCKMAN: 

I am delighted to see a paper in our Transactions reporting results ob- 
tained by the Monte Carlo approach to solving the ditficult problem of 
finding the distribution of total losses caused by deaths among insured 
lives. Mr. Collins' point that modern electronic computing equipment 
now makes this approach feasible is well illustrated by his example. 

The Appendix containing the theorem upon which Mr. Collins' random- 
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number generator is based is of great interest. The statement that the 
probability density function (pdf) of the random variable Y may be found 
by induction is certainly correct. However, I think it is instructive to 
point out the long and interesting history of the problem. I t  was initially 
solved by Laplace [4]; other solutions by Rietz [5], Hall [1], and Irwin [3] 
appeared about a century later. Uspensky's well-known probability text- 
book [6] contains a solution using characteristic functions and the inverse 
Fourier transform. The fact that the pdf of the sum of n statistically inde- 
pendent and uniformly distributed random variables is made up of arcs 
of po.lynomials of degree n - 1 and that this pdf appears to become in- 
creasingly bell-shaped as n increases, suggests a limiting distribution theo- 
rem and adds to the interest in the result. 

In finding the pdf of random variable Y~, the sum of n independent 
random variables each distributed uniformly over the unit interval, by 
induction Mr. Collins may have in mind the use of the convolution 
formula 

f n ( y n )  = A--I (Y~--  z ) J l ( z ) d z ,  

where fn(yn) is the pdf associated with Y~. Note that Y, = Y~_~ -t- Z 
where Z is the nth random variable in the sum. Students of statistics will 
recognize this as an example of the change of variable method for finding 
the pdf of a function of continuous random variables. This method is de- 
scribed within the current actuarial syllabus by Itoel [2]. 

Employing this method, we can easily show that 

f~(Y2)  = foU'dz  = Y2. 

f .  1 = dz  = 1 -- Y2, Y~ 

O < y ~ < l ,  

1 < y 2 < _ 2 ,  

fo lA = - ~ ( y . -  z ) d z ,  

fpn = A-,(y.-z)dz, 
---n+ 1 

o < y . < l ,  

O < y ~ < n - - 1 ,  

n - - l < y n < n .  

a triangular distribution. 
If for the purposes of an induction proof we assume the pdf displayed 

in the paper true for a sum with n - 1 terms, we have for the pdf of 
Y~= Y , , - I+  Z 

fn (yn)  = - l ( y n - - z ) d z ,  
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Substituting for f,,-l(y,, - z) from the inductive hypothesis, we have 

f . (Y*) = f v . ( y .  _ z).-~ -'o i n _  2 dz,  0 < y ~ < l ,  

r - - ,  , [ ( ) =.-,o In - -2  ( Y"-- z )"-2 -- n - -1  . 1 ( y . - - 1 - - z  . . .  

+ ( - - 1 ) ' ( n - - 1  --k)"-2] dz-I- -k in  2 • k ( y . - - z  

X[(y,_z),,_,_(n; 1 ) ( y , -  1 _ z),,_2..t_... 

+ ( - l)k-1(nk~ l l ) (y , , -z -  k.-t-1)"-S]dz , 
k < y ~ < k + l ,  

k = l , 2 , . . . , n - - 2 ,  

fy~ -- z - - n +  1)*-~ 
= [ (Eu,,- 1 ) " -~+  ( - 1)'q (y" i n _ 2  dz, 

- - n + l  

n - - l < y ~ < _ n .  

Note the equivalent but shorter expression for fn-l(y, ,-  z) when 
n -- 1 < yn <_ n. We now evaluate the integrals. 

n--1 

= yn 0 < y n < _ l  
f*(Y*) i n _  1, - , 

- ' [  ( )  , I n - 1  ( - 1 ) ( Y - z ) " - ' l ' o +  n l l  ( Y , , - 1 - z ) " - ' I o  

- ( n 2 1 ) ( y , , - 1 - z ) t ' o + . . .  

- - [ - ( -  1 )k (n  k l ) (y , , -z-k)"- ' [ lo ]  

- 1 [ ~ - , _ ( n - 1 ) ( y , _ l ) , , - x . . i . _  
I n  1 1 " ' "  

+ ( _  l ) , ( n - -  l )  ] k < y , , < _ k + l  
k (Y"-- k)"-I  

' k = l , 2 , . . . , n - 2 ,  

= ( - - 1 )  ~+1 ( Y . - - n )  *-1  
• I n - - 1  ' n - - l < y ~ < _ n .  
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Rewriting the last line of the conjectured result as 

[ (E~ - 1 ) - + ( - 1 )-+~ l ( y" - n )"-~ = [ 4" + ( - 1 )"+~ l 
I n - - 1  
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(y.--n).-1 
I n - - 1  

= ( -- 1 ) . + I ( Y - -  n)"-I  
[ n - - 1  

and comparing our result with the conjecture completes the induction 
proof. 

If we now let Y. = [Y.] + X where [Y.] is the greatest integer in Y. 
then 

n - - |  

g(x) = ~ k(iy~l)h(x)[y~]) 
[un] = o  

where g(x) and k([y,]) are the pdfs of the indicated variables and 
k(x[ [y,]) is the conditional pdf of X given [Y,]. Noting that 

h(xl  [y , ]  ) =f~(  [y~] + x )  
k ( [ y , ] )  

we have Mr. Collins' form of the pdf of X which he now proceeds very 
ingeniously to show equal to 1. 

A direct method of achieving this result is to consider the two possible 
cases when Y~-t is known, and we seek to make a probability statement 
about X. 

Prob[x<_aly , - t=b]  = f"--¢b--tbDdz+ f Z  d z = a ,  
Jo J1--(b--[b}) 

if b -- [ b] < a ,  and fl--Cb--tbl)+adz = a,  
Jl--(b--[b]) 

if a < b - [ b ] ,  0 ~ b _ < n - - 1 ,  0 < a < _ l  . 

We see that in both possible situations the distribution of X is independ- 
ent of b and equal to a. Thus X has a uniform distribution over the unit 
interval. 
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(AUTHOR'S REVIEW OF DISCUSSION) 

RUSSELL M. COLLINS, JR. : 

I wish to express my gratitude for both the quantity and the quality of 
the discussion which has added so much to the value of the paper. I t  is 
clear from these discussions that there is a genuine and spreading interest 
in the application of modern operations research methods to actuarial 
problems. 

I t  was certainly not my intention to imply that there is a dearth of 
satisfactory methods for generating random numbers for Monte Carlo 
experiments. As Dr. Fischer and Messrs. Tookey and Nathan Jones have 
all made quite clear, this problem has been extensively dealt with, and 
there are many methods available. However, each user must find a method 
which is best suited to his particular situation. The choice of methods will 
depend on many things, among them the type of equipment and amount 
of machine time available, the particular problem to be solved, etc. The 
method described in the paper, which as far as we know is original, ap- 
peared to be admirably suited to our situation. This does not mean, of 
course, that it will be the best method for everyone. In any event, the 
actuary should be sure that the method used has been adequately tested. 
The paper describes some common tests which may be used if further 
testing is necessary. 

Dr. Donald Jones makes note of the fact that Monte Carlo experiments 
are essentially statistical estimation and, as such, that statements as to 
statistical accuracy may be attached to them. Mr. Jones also raises the 
question of how many trials are needed to provide an adequate sample, 
which is again a question of statistical accuracy. Dr. Jones points out that 
the number of times claims will exceed any fixed amount is a random vari- 
able with a binomial distribution and, therefore, approximate confidence 
intervals can be obtained for the probability of this event. The reader may 
be interested in the range of these confidence intervals. Referring to the 
example in the paper, we estimated that there is an 18 per cent chance 
that claims for one year will exceed $25,000. Using the method described 
by Dr. Jones, we can state with 95 per cent confidence that this probabili- 
ty lies somewhere between 10~ and 25½ per cent. 

In the particular problem considered, however, we were attempting to 
determine a pooling charge. Determination of a stop-loss premium or non- 
proportional reinsurance charge considered by Mr. Tookey is basically the 
same problem. In any of these cases, we are concerned not only with the 
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probability that claims exceed a certain amount but also with the expect- 
ed value and variation of the claims in this "tail" of the distribution. I 
expect that it is considerably more difficult to obtain a good confidence 
interval for the net premium for any of these benefits. This problem would 
appear to me to involve so-called "distribution-free methods," of which 
I am quick to admit I have little knowledge. 

Dr. Jones also raises another interesting question. Should we adjust our 
results to reflect the difference between the theoretical mean and the 
sample mean? Again I find myself, together with Mr. Jones, amoug those 
who sometimes must recognize the inadequacy of their mathematics. 
However, it does seem likely that, in view of our primary interest in the 
behavior in the "tail" of the distribution, a discrepancy of the order of 
2{ per cent between the two means, such as occurred in my experiment, 
would not have a significant enough effect on the net premium as to make 
it a practical matter to consider such an adjustment. 

We are indebted to Dr. Hickman for his very interesting treatment of 
the history of the solutions to the problem of determining the probability 
distribution function of the sum of uniformly distributed random vari- 
ables. His presentation of an induction proof for this probability distribu- 
tion function, which was stated without proof in the Appendix, as well as 
both his and Dr. Jones's proofs of the theorem stated therein are valuable 
additions to the material contained in the paper. 

Both Mr. Jones and Mr. Tookey suggest further uses and refinements 
of applications of the Monte Carlo technique to actuarial problems. Cer- 
tainly, the experiment which I have described is an elementary, albeit use- 
ful, application of this technique. I would certainly agree with both that 
we have not even begun to explore the possibilities of this method. How- 
ever, as Mr. Tookey points out, these modern operations research tech- 
niques, while powerful and useful, will make great demands on the actu- 
ary's time and abilities. In presenting this paper, I expressed the hope 
that discussion would suggest other fruitful paths of inquiry, and that 
hope has been realized. Once again, I wish to thank all those who dis- 
cussed the paper for their invaluable contributions to its interest. 


