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1. INTRODUCTION 

T 
im business of insurance is subject to two essentially different 
types of risk, commercial risks and insurance risks. Common to 
most business enterprises, commercial risks include such risks as 

those attendant upon general economic fluctuations and poor investments, 
but insurance risks are sui generis and are related to risk fluctuations as 
measured by the difference between claim amounts and expected claim 
amounts. Professor Cram~r [9]t has classified these insurance risks into 
two kinds, external risks such as heavy excess mortality resulting from 
wars and epidemics, and the risk of random fluctuations not attributable 
to any definite cause and resulting from a large number of claims or from 
particularly high claim amounts or both. To analyze the random fluctua- 
tions and to investigate the related mathematical risk, European actuaries 
have developed a considerable body of mathematics known as the theory 
of risk, which ultimately seeks to prescribe how an insurance business 
may be protected from the unfavorable effects of these fluctuations. 

There are two points of view from which risk theory may be considered, 
the collective and the individual or classical. To investigate the gain or 
loss on a whole portfolio, individual risk theory proceeds first by consider- 
ing the gain or loss on each individual policy; then by summing these 
individual gains or losses it furnishes information about the total gain or 
loss on all the policies in the portfolio. Individual risk theory has been 
discussed by Cram~r [9], Lukacs [21], and Dubourdieu [12]; the works of 
both Menge [23] and Piper [26] in the United States are related to this 
approach. 

In collective risk theory, on the other hand, one seeks to investigate 

* This paper is based on Chapters 1 and 2 of bibliography item 17, a dissertation 
submitted in partial fulfillment of the requirements for the degree of Doctor of Philoso- 
phy in the University of Michigan, 1961, and prepared under the supervision of Pro- 
fessor Cecil J. Nesbitt, to whom the author expresses his particular gratitude for his 
generous assistance and unfailing encouragement. This dissertation was written while 
the author was a National Science Foundation Cooperative Fellow and an Actuarial 
Science Fellow at the University of Michigan. 

t Numbers in brackets refer to the bibliography at the end of this paper. 
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directly the risk enterprise as a whole. Primary interest is focused not 
upon the gains, losses, or claims from individual policies but upon the 
amount of total claims or the total gain arising from all the policies in the 
portfolio considered. 

Collective risk theory was first discussed by the Swedish actuary, Filip 
Lundberg, and was further developed by Cram~r, Arfwedson, Segerdahl, 
Sax6n, Esscher, Ammeter, O. Lundberg, de Finetti, Th~paut, Wyss, and 
Pentik~inen. Cram~r, in particular, has shown that it is properly' a branch 
of the modem theory of random, or stochastic, processes. 

Collective risk theory considers two principal problems: finding the 
distribution functions of the total gain or the total amount of claims in 
a portfolio or risk enterprise, and finding the probability that the risk 
reserve of a risk enterprise will become exhausted, the rain problem. 
Cram~r [9], [i|], Dubourdieu [12], Schmetterer [28], and Segerdahl [29] 
have written summaries of risk theory, but their work remains very little 
known on this side of the Atlantic. 

It is proposed here to sketch in some detail the distribution branch of 
collective risk theory, to apply it to the calculation of stop-loss reinsurance 
premiums, and to summarize briefly the ruin theory branch. Stop-loss re- 
insurance presents a natural application for collective risk theory, for such 
a reinsurance treaty covers the total claims, or a percentage thereof, above 
a certain fixed amount arising on a portfolio. I t  is immaterial whether the 
retention limit is exceeded because of a few very large claims or by a very 
large number of small claims. Given the distribution function of total 
claims derived by collective risk-theoretic methods, one can calculate the 
net premium for such a treaty. Both Ammeter [5], [6] and the author [17] 
have discussed the applications of this concept to group experience rating. 
O. Lundberg [22] has considered risk theory applications to accident and 
sickness insurance. 

2. DISTRIBUTION THEORY 

In considering problems regarding groups of policies or risks, the na- 
tural function to investigate is the distribution function of the total 
claims or, equivalently, the total gain on all these policies or risks. By 
the distribution function of total claims is meant a function, F(x), equal 
to the probability that the total amount of claims does not exceed x; this 
function is also known as the cumulative distribution function. By inves- 
tigating this distribution, some insight into the nature of the risk may 
be obtained. 

To investigate the distribution of the amount of total claims occurring 
in a fixed time interval, it is convenient to perform a change of time scale. 
Instead of natural or calendar time, we shall, without loss of generality, 
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consider an operational time scale; this new operational time scale meas- 
ures time by the number of expected claims. If, for example, in a particular 
risk situation, 250 claims are expected in a year, then 250 operational 
time units are equivalent to a natural time interval of one year. As a 
consequence of this change of scale, the expected number of claims in a 
period is equal to the length of that period measured in operational time 
units. 

The fundamental assumption of the collective risk-theoretic model 
may be expressed in terms of operational time t: 
a) The probability that exactly one claim occurs in a very small opera- 

tional time interval running from time t to time t + At is approximate- 
ly equal to At; 

b) The probability that more than one claim occurs in this same interval 
is approximately zero. 

From this assumption and the assumption of independence of claims, 
it follows that the number of claims occurring in a period of operational 
time length t has the Poisson distribution, with parameter t which is equal 
to the expected number of claims. I t  must be stressed that it is the number 
of claims in this period that has the Poisson distribution, not the amount 
of these claims. The details of the change of time scale and the derivation 
of the Poisson distribution may be found in the Mathematical Appendix, 
§7. 

Having considered the occurrence of claims, we proceed now to consider 
the size of these claims. Let z represent the amount of a claim on an indi- 
vidual policy in the portfolio, and let P(z) represent its distribution func- 
tion--i.e., P(z) is the probability that, if a claim occurs, it will be less 
than z. I t  may be useful to regard P(z) as the conditional distribution of 
z, given that one claim occurs. We shall assume that P(z) is known and 
that it is independent of time. That  this last requirement is not necessary 
may be seen from Ammeter's work [1], [4]. We shall denote by /~*(x)  the 
distribution function of the total amount x of n claims, x = zl + z~ + . . .  
+ z,; P"*(x) is known as the n-fold convolution of P(z) and is discussed 
in the Mathematical Appendix, § 8. Let X(t) denote the total amount of 
claims arising in a given portfolio during an operational time period of 
length t, and let F(x, t) be its distribution function. The function F(x, t) 
is equal to the distribution function P"*(x) of n claims, given that n claims 
occur, times the probability that n claims do occur, summed over all n. 
Recalling that the number of claims has the Poisson distribution, we have 
that 

e _ t t  n 
F(x,  t) = ---gTT .P'~* ( x ) .  (2 .1 )  

n~O n .  
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Let pa denote the mean of z, and p2 the second moment; it may then be 
shown that the mean and variance of X(t)  are pat and p~t, respectively. 
Since, if interest is ignored, the net premium equals the expected value 
of the claims, we have that the net premium received by the insurer is 
pat in a period of operational time length t. If Y(t) represents the total gain 
(or loss, if negative) on the portfoho in this period, then Y(t) is the differ- 
ence between the net premiums and the total claims; i.e., 

Y(t) = pat -- X ( t ) .  (2.2) 

The distribution G(y, t) of Y(t) is then easily found: 

G ( y ,  t) = P r o b  { Y ( t )  <_ y} 

= 1 - - P r o b  { X ( t )  < p a t - -  y} 

= 1 - - F ( p a t - - y ,  t) (2 .3 )  

-- 1 -  - - . P " *  .-o n! ( p a t - y ) .  

I t  is convenient to perform a trivial change of scale upon z, the individu- 
al claim amount, by dividing each value of z by its mean, so that pl = 1. 
Hence 

Y(t) = t -- X ( t ) .  (2.4) 

No generality is lost by expressing each claim in mean claim units, and 
this scale change serves to simplify some of our discussion. 

We have the result that, given only the expected number of claims t 
and the distribution of individual claim amounts P(z), the distributions 
of total claims F(x, t) and the gain G(y, t) are completely determined. In 
general, however, one cannot easily calculate the distribution functions 
P"*(x) exactly; a very satisfactory method of approximating these func- 
tions has been developed by Esscher and is described below. In certain 
cases, nevertheless, the exact values of F(x, t) and G(y, t) may be obtained. 
For example, let the amount in each policy in a portfolio be a constant 
which, without loss of generality, we shall assume to be 1; this case may 
represent a group policy under which all members of the group are insured 
for equal amounts. Let us assume also that in the period to be considered, 
one year say, ten claims are expected. For our models these two assump- 
tions are sufficient to determine F(x, t) and G(y, t) completely, and the 
values of G(y, t) are shown in Table 1 by way of example. The details 
are left to the Mathematical Appendix, § 9, where a simple method for 
calculating G(y, t) is discussed by means of a useful device for summing 
the discrete values of a Poisson distribution. In the Mathematical Appen- 
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dix, another example is also discussed in which P(z) is assumed to have 
the exponential distribution. 

3. THE ESSCttER APPROXIMATION 

In  order to evaluate the distribution functions F(x  , t) and G(y, t), we 
present a useful method of approximation devised by Esscher and based 
upon some earlier work of F. Lundberg--see Cram6r [9] and Ammeter 
[1], [4]. Cram6r [11] gives another method of approximation based upon 
the normal distribution function and its derivatives, but  this method gen- 
erally produces a larger error than the Esscher method. In  discussing this 
approach, we shall concern ourselves exclusively with functions F(kt, t) 

TABLE 1 

THE DISTRIBUTION OF TOTAL GAIN G (y, 10) 
(See Mathematical Appendix, § 9) 

y G(y, 10) y G(y, 10) 

- - 1 5 . .  
- - 14 . .  
--13.. 
--12.. 
- - 11 . .  
--10.  
- -  9 . .  

- 8 . .  

- 7 . .  

- 6 . .  

- 5 . .  

- 4 . .  

- 3 . .  

0.0000 
.0000 
.0001 
.0003 
.0007 
.0016 

.0035 
.0072 
.0143 
.0270 
.0487 
.0835 
.1356 

- - 2  
- - 1  

0 
1 
2 
3 
4 .  

5. 
6. 
7. 
8. 
9. 

10. 

.2083 

.3033 

.4169 

.5420 

.6672 

.7799 

.8699 

.9329 

.9707 

.9897 

.9972 

.9995 
1.0000 

and 1 -- F(kt, t) depending upon whether k is less than or greater than 
1, i.e., with values at  either the lower or upper tails of the distribution, 
where the Esscher method is particularly useful. The behavior of these 
functions at  either extremity is generally of great interest, particularly 
in the application to stop-loss reinsurance where we are concerned with 
large values of X(t) .  

As an approximation to these functions, F(kt, t) and 1 - F ( k t ,  t), 
Lundberg suggested a function of the form 

cl e-C'*__ ( 3.1 ) 

where c~ and c, are functions of k. Some discussion of the basis for this 
suggestion may be found in Cram~r [9], [11]. I t  will be shown in the 
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Appendix that Esscher's method produces an approximating function of 
this form. 

Let p(z) be the density function of P(z), the distribution of individual 
claim amounts; i.e., 

d P ( z )  
dz  - p ( z ) .  (3 .2 )  

The Esscher method makes essential use of a transformed distribution 
P(z) defined by 

fo *eh~p(v) dv  dP(  ) =  eh'p(.______~) (3 .3 )  

[~( z) - Po ;i.e, [~( z) - dz Po ' 
with go 

~b.= z"eh"p( z ) d z  

and h a real number which will later be assigned a convenient value. The 
nth moments of P(z) may be seen to be P./P0. Let 

t = ti00. ( 3 . 4 )  

We recall that F(x, t), the distribution function of the amount of total 
claims X(t), depends only upon t and P(z); to remind ourselves of this 
dependence, let us denote X(t) and F(x, t) by X(t, P(z)) and F(x, t, P(z)) 
respectively. In like manner, t and_P(z) completely determine the distribu- 
tion function F(x, t, P(z)). We note that F(x, t, P(z)) has the same form 
as F(x, t, P(z)) (see 2.1) with t for t and/5(z) for P(z). The density func- 
tions of F(x, t, P(z)) and F(x, t, P(z)) will be denoted byf(x ,  t, P(z)) and 
f(x,  t, P(z)) respectively. If we let 

C(x) = e-h'-'c~-~*) , (3.5) 

then the relation betweenJ(x, t, P(z)) andf(x, t, P(z)) may be expressed as 

f(x, t, P(z)) = C(x) f(x, l, P(z)) , (3.6) 

see Mathematical Appendix (11.4). 
We shall find approximate values for F(kt, t) if k < 1; for 1 - F(kt, t) 

if k >_ 1. The value of h is chosen so that the mean of X(t, P(z)) is 
equal to kt; this choice of h serves to shift the mean of X(t, P(z)), not 
the mean of X(t, P(z)), so that greater weight is assigned to that tail of 
the distribution which we wish to study, the lower tail for k < 1 and the 
upper tail for k _> 1. 

Let ~ be a random variable with the standard normal density function 
~o(~) (zero mean, unit variance); let ~oc-)(~) be the nth derivative of ~o(~). 
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l We denote the variance of X(t ,  P(z)) by #3, and we define B as 

B -  Pa 

I t  may be shown that (see Mathematical Appendix § 11) for k < 1 

o h - -  B ~o(3) ~ ) ]d~  (3.8a) F(kt, t) =C(ktlf_ e- ( 

and for k >_ 1 

"~ B (3.8b) 1 - - F ( k t ,  t) = C ( k t ) f 0  e-h'/~'~[ ~(  ~ ) - ~ !  ~° ' (  ~ ) ] d ~ "  

To facilitate the calculation of these expressions, Esscher introduced 
functions A(')(w) ,  where 

f° A (') (w) = e-'°~r~(O (~) d~.  (3 .9)  

Tables of these functions are available; see, for example, Esscher [13], 
Lef~vre [20], and Ammeter [2], [4]. A discussion of these functions may 
be found in the Appendix. 

Let us set 

w =  I hV'~-~[ ; (3 .10)  

we prove in the Appendix that for k < 1, 

B go (w)]  (3.1 l a )  F(  kt, t) = C ( k t )  _ [A (o°)(w) + 3 !  A 

and f o r k >  1, 

1 - F ( k t ,  t) = C ( k 0  .41°~(w) -N. .  A~3)(w) . (3.11b1 

By the use of these formulas, the values of the distribution function 
of the total amount of claims at the upper and lower tails may be found 
easily with a table of Esscher functions or with one of the alternative 
methods discussed in the Appendix. If we use only the first terms of these 
formulas, we have an expression of the type suggested by F. Lundberg 
described above, as may be seen in the Appendix. In the development of 
these formulas, we have chosen to follow Ammeter [1], [2], [41 rather than 
Cram6r, for it is Ammeter's application to stop-loss reinsurance we wish 
to discuss; in either case, a certain amount of exegesis is necessary. 

4. ~aU'I.ICATION TO S~OP-LOSS m ~ m S ~ C V .  
Mr. Herbert Feay in a recent paper [15] has opened the discussion of 

stop-loss reinsurance, that form of reinsurance in which, as he says, "the 
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original insurer pays the total amount of all claims in a specified period 
(such as one calendar year) up to a total limit determined in advance for 
the period and the reinsurer pays the total amount in excess of the limit 
for the period" [15; p. 22]. The essential element in such a reinsurance 
scheme is its collective nature evidenced by considering the total amount 
of all claims on a collection of insurance risks. 

It is not proposed here to discuss the concept of nonproportional rein- 
surance in detail or to debate its utility, for Mr. Feay has already quite 
ably done so. As an approximation to the distribution F(x, t) of the amount 
of total claims, Mr. Feay used the normal distribution. In our discussion 
of his paper we furnished a quotation from Ammeter [2] and some exam- 
ples to show that this approximation is not always satisfactory. We wish 
here to provide an alternative method for approximating F(x, t) and for 
calculating stop-loss premiums and to compare his methods with those 
produced by collective risk theory, particularly by Esscher's method. In 
point of fact, a most important stimulus to the development of the dis- 
tribution branch of collective risk theory was dissatisfaction with the use 
of the normal distribution as an approximation to F(x, t). 

We have derived F(x, t) for the Poisson model, and found that F(x, t) 
is obtained by combining the distribution functions P"*(x) with the Pois- 
son distribution of the number of claims; this Poisson model does not 
imply that F(x, t) is the Poisson distribution. Mr. Ammeter [1], [2], [4] 
generalized this concept to a compound Poisson model by considering an 
additional parameter to account for fluctuations in claim occurrence over 
time, of. [22]. For life insurance applications, however, the Poisson model 
appears to be sufficient, particularly if the period of investigation is com- 
paratively short---/.e., at most a few years [2; p. 83]--and we restrict our 
investigation to the simpler case. 

In developing the stop-loss reinsurance premiums we retain our as- 
sumption that the amounts of individual claims are measured in mean 
claim units--i.e., pl = 1--and hence, if we ignore interest, the net risk 
premium plt becomes t. We also continue to assume that the portfolio 
in question has only positive risk sums--/.e., P(0) = 0. We have shown 
above that F(x, t) depends only upon t and P(z); neither the number of 
policies in the portfolio nor any other property connected with the indi- 
vidual policies affects F(x, t) directly, although these factors may influence 
P(z) and t. For the purposes of collective risk theory two insurance port- 
folios may be considered identical provided only that the total net risk 
premium t and the distribution P(z) of individual claim amounts are 
identical. 

We consider now a stop-loss reinsurance treaty which covers the total 
amount to be paid out for claims during one year, as far as this total 
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exceeds a certain well-defined limit which will be expressed as a percentage 
u of the total net risk premium t for the period in question--~ year, say. 
Throughout, claim amounts and net premiums are measured in mean 
claim units. (This situation corresponds to Mr. Feay's case if his R is 
taken to be 100%; his H to be infinite; his M, our t; his l, our u; and 
therefore his L, our ut.) If the total amount of claims x exceeds the reten- 
tion limit ut, then the reinsurer pays the cedent the excess, x -- ut; if x 
does not exceed ut, then the reinsurer makes no payment to the ceding 
insurer which itself pays the full amount x of the claims. Let ~r(ut) denote 
the net premium, ignoring interest, for such a stop-loss reinsurance treaty 
with retention limit ut. By the equivalence principle, we then have 

f..° 7r(ut)  = ( x - u t ) / ( x ,  O d x ,  (4 :1)  
u t  

for we shall assume that the densityj'(x) exists. This expression is equation 
(1) of [15], modified according to the above remarks on notation. The 
variance of the excess claims x - ut for x - ut positive is then 

V ( x - - u t )  = ( x - - u t ) ~ f ( x ,  t) d x - -  [ l r (u t ) ]  ~. (4 .2 )  

I t  is diCficult in general to calculate ~r(ut) using the exact expression 
for F(x, t), and therefore one seeks an approximate formula. The normal 
distribution, as used by Mr. Feay, suggests itself because of its simplicity. 
For large retention limits especially, however, the normal is often unsatis- 
factory (see, for example, [2; p. 91]); we shall illustrate this condition in 
an example. 

The Esscher method, it will he recalled, demanded a choice for the 
parameter h in (3.3); in accordance with the remarks above concerning 
the choice of h, we choose h so that the mean of X(i,  ['(z)) is ut; i.e., 

f° u = ~ l =  z e h , p ( z ) d ~ . ,  (4 .3)  

and we note that 
as ,,<>1. (4.4) 

If we now standardize x by the following transformation of x into ~ 
with zero mean and unit variance 

x = u t +  (4.5) 

we then have that (see Mathematical Appendix for details): 

B A~3) (w) ] ' (4 .6 )  zr(ut )  = C ( u t )  x/~-~[Ai°)(w) 
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where again w = ]h~v/~[, and C ( u t ) ,  B and the Esscher functions are 
defined as before. We have also that the variance of excess claims x - ut ,  

for x - uf  positive, becomes 

[ B A~8)(w)] - [,rCut) l~. (4.7)  V ( x - -  u t )  - - C  ( u t )  ~7~I.A ~°)(w) 

We have then a convenient approximation to ~r(ut) in terms of the 
Esscher functions, values of which may be found either from tables [2], 
[13] or directly. This approximation will be applied in the example. 

After having computed ~r(ut), one still must calculate a suitable security 
loading for this type of reinsurance. Ammeter [2] suggests that a per- 
centage of the standard deviation of the excess claims [V(x  - -  ut)] ' a  may 
well be adequate from the point of view of the reinsurer's security. He 
remarks that this function may be considered fair also to the cedent, for 
the standard deviation [ V ( x  - ut)] 11. measures his interest in the treaty 
and a loading not in excess of a fixed percentage of this function leads 
to a reasonable gross premium. 

5. NITM~RICAL EXAMPLE 

We proceed now to describe in detail a numerical example I which will 
furnish some information as to the difference in stop-loss reinsurance 
premiums calculated by different methods. The example is based upon 
Mr. Feay's Table 4 in which he gives the stop-loss reinsurance premiums, 
expressed as a percentage of the one year net premiums (true term costs), 
for various portfolios furnished by an example due to Mr. Irving Rosen- 
thal [27]. We shall find that the values produced by collective risk- 
theoretic methods are greater than those produced by Mr. Feay's normal 
approximation and that this difference may be significant, particularly 
for large retention limits. 

We shall consider here two portfolios with their distribution into policy 
size and the frequency of claim occurrence for each policy size z, p(z), as 
given by Mr. Rosenthal [27]. In one portfolio the maximum insurance on 
one life is $25,000; in the other, $100,000. In the $25,000 example the 
policies are distributed by size into five classes, and in the $100,000 case 
into twelve classes; the value of all policies in each class is taken as the 
mean value of policies within that class. The $100,000 case is probably 
as complicated as most portfolios to be found in practice, particularly if 
we are considering stop-loss reinsurance for group policies. We give these 
distributions in Tables 2 and 3. In Table 2, for example, "p(zl) = .655" 

1 This example was first presented in the author's discussion of Mr. Feay's paper. 
I t  is treated again in order to illustrate in detail the method discussed in the preceding 
section. 
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means that ,  if a claim occurs, i t  is in Group l with probabi l i ty  .655; this 
does not  necessarily imply,  however, tha t  65.5~Vo of these policies bear  an 
amount  in Group I. 

We  assume three cases of both  of these distr ibutions graded by  the 
number  of lives covered: case A with 10,000 lives, case B with 50,000 lives 
and case C with 100,000 lives, and  for each of these cases we assume three 
retent ion limits u, 100°fo, 120°-/o, and 135~o. Our problem is then to com- 
pute  the net  stop-loss reinsurance premium for each dis tr ibut ion and for 
each retention limit.  The  net  risk premium t (since Pt = 1), which equals 
the  expected number  of claims, is taken as qN, where q is the over-all  
mor ta l i ty  rate,  here taken to be 0.0075, and N is the number  of lives cov- 
e red -10 ,000 ,  50,000, or 100,000. 

Table  5 contains values of Ir(ut)/t, the net  reinsurance premiums as a 

TABLE 2 

DISTRIBUTION OF CLAIMS BY POLICY SIZE WITH MAXIMUM 
INSURANCE OF $25,000 (MEAN CLAIM -~ $4,382) 

Number 
• of 

Group 

1 . . . . . .  
2 . . . . . .  
3 . . . . . .  
4 . . . . . .  
5 . . . . . .  

~ e u n  

Amount 
Group 

$ 1,500 
4,500 
8,500 

16,000 
24,000 

A m o n n t  a s  

Multiple of 
Mean Claim; 

0.3423 
1.0269 
1.9398 
3.6513 
5.4770 

0.655 
.152 
'.103 
.040 
.050 

TABLE 3 

DISTRIBUTION OF CLAIMS BY POLICY SIZE WITH MAXIMUM 
INSURANCE OF $100,000 (MEAN CLAIM = =  $5,468) 

Number i 
of 

Group 

1 . . . . . .  

2 . . . . . .  

3 . . . . . .  

4 . . . . . .  

5 . . . . . .  

6 . . . . . .  

7 . . . . . .  

8 . . . . . .  

9 . . . . . .  

[0 . . . . . .  
l l  . . . . . .  
12 . . . . . .  

Mean 
Amount 
in Group 

$ 1,500 
4,500 
8,500 

16,000 
25,000 
35,000 
45,000 
55,000 
65,000 
75,000 
85,000 
99,000 

Amount a s  

Multiple of 
Mean Claim; z/ 

0.2743 
0.8230 
1.5545 
2.9261 
4.5721 
6.4009 
8.2297 

10.0585 
11.8873 
13.7162 
15.5450 
18.1053 

p(,i) 

0.655 
.152 
.103 
.040 
.019 
.006 
.010 
.003 
.003 
.003 
.002 
.004 
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percentage of net risk premiums, from Mr. Feay's Table 4 and those 
calculated by the Esscher method; it is the same as Table 4' of [15; p. 
51], but it is reprinted here for the reader's convenience. 

For each case considered here we must determine the parameter h so 
that, by equation (4.3), 

U =  pl  = ~ ziehZip( Zi) " ( 5 . 1 )  
i 

For the retention limit u = 100%--i.e., 100% of net risk premium t - -  

~ zlehqp( zl) = 1 
i 

T A B L E  4 

VALUES OF ARBITRARY CONSTANT h 

MAXIMUM 
R.ETENTXO~ 

LIMIT 

100% . . . . .  
120 . . . . . . .  
135 . . . . . . .  

MAXX~3M I~SURA~CZ ON ~ Lxmz 

$25,000 $100,000 

0. 0. 
0.065316 0.032321 

.104471 .049976 

T AB L E  5 

NET REINSURANCE PREMIUMS AS A PERCENTAGE OF NET 
RISK PREMIUM BY FEAY'S AND BY ESSCHER~S METHODS 

MAXl~eZa INSURANCE oN ONE Ltt, x 

I~D~.n~uM 
I~TENTION $25,000 $100,000 

LmxT 

Feay Esscher Feay Esscher 

A. 10,000 Lives 
xoo% . . . . . . .  
120 . . . . . . . . .  
135 . . . . . . . . . .  

B. 50,000Lives 
1oo% . . . . . . .  
120 . . . . . . . . .  
135 . . . . . . . . .  

C. i00,000 Lives 
1oo% . . . . . . .  
120 . . . . . . . . .  
135 . . . . . . . . .  

7 .4818% 
1.3747 
0.2261 

3 .3459% 
0.0237 

2 .3659% 
0.0005 

7 .5099% 
1.6024 
0.3564 

3 .3585% 
0.0359 

.000! 

2 .3748% 
0.0011 

10.4148% 
3.3297 
1.0897 

4.6575% 
0.2068 

.0044 

3 .2934% 
0.0209 

10.4529% 
3.8435 
1.6118 

4 .6747% 
O. 2878 

.0144 

3 .3055% 
0.0358 

.0002 

* This value is less than 0.00005. 
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is solved by h = 0, since 

. P l =  ~ ] z ~ p ( z ~ )  = 1 
i 

by assumption. The four other cases we consider are those of $25,000 and 
$100,000 maximum on one life, each of the two for u = 120% and 135%; 
the corresponding values of h are given in Table 4, for which they are calcu- 
lated by Newton's method of successive approximation, in which one first 
assumes a trial value h0 and then proceeds by use of 

~.~ z, eh"*~p( z,) - - u  

i 

(5 .2)  

Since t = t(N) = .0075N, we have that 

t 0 0 , 0 0 0 )  = 75 

t(50,000) = 375 
and 

tOoo,ooo) = 7 s 0 .  

If our period of consideration is one year, then, for the case of 10,000 
lives, the expected number of claims is 75, and hence 75 operational time 
units correspond to one calendar year. 

At the 100% level, Mr. Feay's method seems acceptable, and in fact 
the Esscher approximation to F(x, t) reduces to a normal distribution 
method in this case. Unfortunately this level is of little practical interest, 
and at the higher levels his methods tend to understate the stop-loss 
premiums. While the normal approximation is certainly useful to illus- 
trate certain aspects of the theory, our discussion indicates that it may 
fail to provide adequate net reinsurance premiums. 

6. RUIN THEORY 

The branch of collective risk theory known as ruin theory is concerned 
with determining the probability ~ that a risk reserve will be exhausted. 
If we consider that, in operational time t, the insurer receives, in addition 
to the net premium pit, the security loading kt, and that it has available 
at time 0 a certain risk reserve of size u, then at time t the risk reserve 
U(O is given by 

u( t )  = u + (p, + x)t - x ( 0  = r ( t )  + u + x t ,  ( 6 . 1 )  

where, as before, Y(t) represents the total gain and X(t) the total amount 



COLLECTIVE RISK THEORY AND ITS APPLICATION 413 

of claims on the portfolio in question. If U(t )  assumes a negative value 
at time t, we say that the risk business is ruined at that time, i .e.,  when 

V ( t )  = Y ( t )  q5 u -b ),t < 0 (6.2) 
o r  

r( t)  < - u  - xt .  

The ruin problem then is to calculate the probability that ruin will take 
place for some t = h, 2h, . . . , n h  ( T  - -  h < nh  < T ) ,  supposing one or 
more of the following conditions: 

a) different values of the parameter u, 
b) the security loading X constant or variable with time t or with U(t ) ,  

the reserve, 
c) T finite or tending to infinity---/.e., in a finite or infinite time interval, 
d) h finite or tending to zero---/.e., at scattered points in time, for example, 

at the end of fiscal periods. 

Let  ~b(u) be the probability that, with initial reserve u, the risk reserve 
U(t )  will be ruined at some future time t > 0. Let ~b(u, T) be the proba- 
bility that this ruin occurs before time T----i.e., U( t )  < 0 for some time 
t such that 0 < t < T. Let ~bn(u) be the probability that this ruin relation 
will be satisfied at certain points in time, t = nh,  n --- 1, 2, . . . .  F. Lund- 
berg derived the following fundamental results: 

0 < ~,(u) < ~(u) < e -B~ (6.3) 

~b(u) , ~  Ce  --R" (6.4) 
and 

~h(u) "~ C,e -R~ , (6.S) 

where R and C are positive constants depending only upon ), and P(z), 
CA depends also on h, and the symbol "~-~" means asymptotically equal-- 
i .e. ,  "a(u)~-~ b ( u ) "  means that the ratio of a to b approaches 1 in the 
limit as u becomes arbitrarily large. 

Cramgr, Segerdahl, T~ckllnd, SaxOn, and Arfwedson have considerably 
developed the theory by considering more realistic models--e.g., ones in 
which the risk reserve, in the absence of claims, does not grow without 
bound, or in which interest on the reserve is not ignored, or in which 
~b(u, T) is considered in detail. Segerdahl's excellent summary [29] con- 
tains a fairly exhaustive list of the results in the field of collective risk 
theory for both the distribution and the ruin branches. Although several 
applications of ruin theory to reinsurance problems have been made [7], 
[19], [25], it is not treated in detail here, for it is beyond the scope of this 
paper. 
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MATHEMATICAL APPENDIX 

7. O P E R A T I O N A L  T I M E  AND TI tE  POISSON MODEL 

If r represents calendar or natural time and a r  represents a small incre- 
ment in r, then our basic assumption may be expressed as 

Prob [exactly one claim in the natural time interval 
(7.1a) 

(r, r + At)} = X~Ar + o(AO 

Prob {more than one claim in the natural time interval 
(7.1b) 

(r, r + ar)}  = o ( a r ) ,  

where )~, is a bounded, nonnegative function of r and where o(Ar) repre- 
sents a quantity which becomes small in comparison with Ar as Ar ~ 0; 
more precisely, 

lim o(Ar____)_) O. (7 .2)  
ar---~0 A r 

We then introduce operational time t by transforming the natural time 
scale, the r-scale, by the function t(r): 

f, t = t ( r )  = k ,  d u .  (7 .3)  

Therefore, 
At -- ),,At (7.4) 

and the r-scale interval (% r -t- At) is transformed into the t-scale inter- 
val (t, t + At), for 

p r +  a~ g ,  r p r +  Ar 

t(r+ar)=J0 X.e,=3o X.e,+J. be- (7.S) 
-- t q - k , a , - -  t q - a t  . 

Our assumptions then become: 

Prob {exactly one claim in (t, t + At)} = at  + o(at)  
(7.6) 

Prob {more than one claim in (t, t q- At)} = o(at) ,  

where o(at) is such that 

lim o ( A t )  _ 0 .  ( 7 .7  ) 

We see then that the probability that exactly one claim occurs in a 
small operational time interval is approximately equal to the length of 
that interval. Feller [16; p. 366] shows that if a,( t )  denotes the probability 
that n claims occur in an operational time interval of length t, then 

e-tin 
~ . ( t ) =  n! ' (7 .8 )  
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and hence the number of claims in an operational t ime interval has the 
Poisson distribution. 

The result can be shown by  considering two intervals (0, t) and 
(t, t + At) and the event that  n claims occur in (0, t + At) which can happen 
in one of three ways: 

(1) no claims in (t, t + At) and n claims in (0, t) 
(2) one claim in (t, t + At) and n --  1 claims in (0, t) 
(3) x(>__2) claims in (t, t + At) and n - x claims in (0, t). We find that ,  

for n >_ 1, 

,~.(t + At) = , , .(t)[1 - At - o(at)]  + ,, . ._l(t)[at + o(at) l  + o(~t). ( 7 . 9 )  

I f  we divide by  At and let At approach zero, we have 

da,(t) 
d ~  - a,~(t) + an-1 ( t ) ,  ( 7 . 1 0 )  

a recursive relation for a,(t).  
For n = 0, we have clearly tha t  

~0(t + At) = a0(t)[1 - At - o ( A t ) ] ,  ( 7 . 1 1 )  

and, in like manner,  this reduces to 

dao(t) 
d ~  -- a o ( t ) .  ( 7 . 1 2 )  

This differential equation with the initial condition 

a0(0) = 1 ( 7 . 1 3 )  
can be solved for a0(t): 

ao(t) = e - ' ,  (7 .14)  

and then a,(t) can be found from (7.10) for n >_ 1. 

8. CONVOLUTIONS 

Recall that z represents the amount of an individual claim with distri- 

bution P(z). If only one claim occurs in the period under observation, then 

the total claim amount  x = z will have distribution P(x). Let  us assume, 
however, tha t  two claims, zl and z,, occur and let their sum x -- z~ + z2 
have distribution P2*(x). If  the last claim takes the value v, the first claim 
must  have had value x - ~,. similarly if we require the probabil i ty tha t  
the sum of two claims be less than x and ff the last claim has value v, 
then we require the probabil i ty tha t  the first claim has value less than 
x - v. Integrat ing over all v, we find that,  if P(z) has density function p(z), 

p,* (~) = f ~ ( ~ -  ~)p( ~ ) ~ .  ( 8 . t )  
d . - - ¢ o  
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I f  n claims occur, we may  consider the sum of these claims as the sum 
of the first n -- 1 claims and the last claim so that,  by  induction, 

oo 
P - * ( x )  =  )do (8 .2)  

9. THE DERIVATION OF G(y, t) IN TABLE 1 

The values of G(y, t) shown in Table 1 were obtained by means of 
tables of the incomplete gamma function, a useful device for summing 
Poisson probabilities. 

Since the amount  of any claim is one, 

P(z) = O f o r z <  1 
(9 .1)  

P(z) = 1 for z >  1, 

it follows that,  for n = 0, 1, 2 , . . .  

P"*(x) = 0 for x < n 
(9 .2)  

P~*(x) = 1 for x > n. 

Le t  k = It --  y] indicate the greatest  integer less than or equal to t - y. 
Hence 

k e _ t t  n 

G(y, t) = 1 - -  ~ n! 
n=O 

( 9 . 3 )  

k+t  n[  ' 

since 
e _ t t  n 

. = o  n !  - -  1 • 

By integration by  parts  it is easily seen tha t  

f 0  t e - T ~  G(y, t) = ~ dr,  ( 9 . 4 )  

the incomplete gamma  function. Pearson's Tables [24] give values of this 
function in the form 

f w/p+l e- -rTP 
1(~ '  P) = ~0 --~.q- d r ,  

where, in our notation, 
g 

p = k  and v =  x / 1 - - - ~ "  

Using these tables; the values in Table 1 were found. 

( 9 . 5 )  

( 9 . 6 )  
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10. THE EXPONENTIAL DISTRIBUTION 

In  this example we take P(z) to be the exponential distribution; i.e., 

P(z) = 0  forz<__O 
(10.1) 

P(z) = 1 - - e - * f o r z > O .  

We have that  if p~ is the nth moment  of this distribution 

p,, = n t ,  

and in particular 

In  calculating 

pl ~ 1* 

t ' z  
m* (x) = j o P ( X -  v) p(v) d,,  

for example, we note that  

P(x  -- v) = O f o r x - - v < O , i . e . x < v  

P(x  -- v) = 1 -- e-~ ~--~) for x -- v > O, i.e. x > v.  

Hence 

fo 
x 

P2*(x) = [1 -- e-(~-~)] e - " d v  

1 Z ~_zX n 
= 1 -  - ~ .  

fo z £--nV 
= --iV d ~ .  

By induction, one may show similarly that 

f o  z e - v  ~ ' 1  
P " * ( x )  = ( n - -  I ) !  

Hence, 

m d v .  

G ( y , t )  = 1 - -  ~ .  Jo  ( n - - l ) !  - - d r  

since 

n=O 

_ -  ' - "  ] 
n=o nI L ( n - -  1)~.. d v  , 

nl - 1 .  

(lO.2) 

(lo.3) 

(10 .4)  

(10.5) 

(10.6) 

(10.7) 
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Therefore 

2 e -q"(~_ ,  e-(t-~)(t--y) k) G( y, t) = ~ -~, . 
n~O k ~ 0  

~.~ "-~ e-tt" r(t-u) ( t -  y)~ 
= ~ . 

n=o ,~=o n! kl 

(10.8) 

I I .  T H E  ESSCIIER APPROXIMATION 

To simpfify the development of the Esscher approxhnafion, we shall 
assume that P(z), the distribution of individual claim amounts, satisfies 
the following conditions: 

(1) P(z) has a density function p(z); 
(2) the first three moments pl, b ,  P* of P(z) are finite; 
(3) z is measured in mean claim units, i.e., Pl = 1; 
(4) there are only positive sums at risk, i.e., 

P(0) = o 

(negative sums arise, for example, in the consideration of annuities where 
the death of the annuffant may result in the passing of the reserve to 
the company); 

(5) if 

fo ° q( s) = e*"p(z)dz 

for s a complex number, then q(s) is absolutely convergent if the real 
part of s lies between --A and B for A and B two positive constants. 

The last condition is a technical one which permits us certain liberties 
in manipulating P(z). Essen [14] and Affwedson [8] have shown that the 
Esscher formulas are valid in certain eases for which the first assumption 
fails, in particular for P(z) a pure step function, the situation usually 
met with in life insurance applications. 

In §3 we introduced the transformed distribution P(z) with density 
~(z) and moments p,/p0. By (8.1) we can see that 

~2*(x) = f [ ~ ( x - v ) D ( v ) d v  

= f_~ e^(x-~'p(x - v) ehop( v) 
- -  po " [~o d v  (11.1) 

_ e ~ p  2 .  ( x )  

t~0) ~ 
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By induction it can be easily shown that, for arbitrary integral n, 
e~p ~* (x) 

~bn* (x)  - (Po)" (11 .2 )  

and 

~1--- f*e~*p"* ( v)av.  (11.3) P"* (x) = (~o)"-,o 

This relation (11.2) allows us to express the density of X(t, P(z)) in 
terms of that of X(t, P(z)): 

~.~ e-qr p~, 
f ( x , t , P ( z ) )  = 7 .  (x) 

e _ t ~  r 

• =o ~ (P°)re-~P'*(x) 

(11.4) c o  

e - , - h , + , ~ , ~  e-t'*(t~o)" ~'*(x) 
~=o  r[ 

= e -hx-*~l-~*) ~ e-~t'. ~'* (x) 

= C ( x ) l ( x ,  i , P ( z ) ) ,  

where f(x, t,/5(z)) has the same form as f(x, t, P(z)) with t replaced by 
t and P(z) by P(x). 

We now choose a value for the arbitrary parameter h which will prove 
convenient for applications; we determine h so that, if k is any real num- 
ber, kt is the mean, gl, of X(t, P(z)); i.e., 

f° kt= x f ( x , t , P ( z ) ) d x .  (11 .5 )  

By analogy with the mean of X(t, P(z)) from § 2 and by noting that 
the mean of P(z) is Pa/p0, we have that 

(11 .6 )  

f° i.e., kt=~lt or k = ~ l =  zeh, dP(z) .  

This equation describes k as a function k(h) of h. Noting that k (0) = 
pl = 1 by assumption and that 

d k _  z2eh*p(z)dz > 0  unless p ( o )  = 1 (11 .7 )  
dh ' 
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we have that 
h~o as k ~ l .  (11.8) 

I t  may be shown [11; p. 21] that the moment generating function of 
x(t, P(z)) is 

rex(t, e(,))(v) = e tt~(~)-~ . ( 1 1 . 9 )  

By analogy, we have for mx(~, ~(,)) (v), the moment generating function 
of X(t, P(z)), that  

mxo ' ~(,)) (v )  = e~l~(') -~1 • ( 1 1.10) 

From this it is easily seen that, ff /~ is the ith central moment of 
F(x, t, P(z)), 

! 

g2 = ~ 2 / ~ o ) t  = ~2t ( 1 1 . 1 1 )  
and 

~'a = ( p n / ~ o ) t  = ~3 t  . (1 1.12) 

If  x has the distribution function F(x, t, D(z)), let us set 

x--  kt 
~= v ' ~ '  (11.13) 

and let us denote the distribution function of ~ by f(~, t,/5(z)). Cram~r 
[10; p. 229] has shown that under quite general conditions the distribution 
function of a standardized random variable may be approximated asymp- 
totically by an Edgeworth series, a series composed of the standard normal 
distribution and its derivatives: 

P ( ~ , i , P ( z ) ) = ~ ( ~ ) - ~ - ~ . 8 ~ ( ' ) ( ~ ) + O ( t - ~ ) ,  ( 11 . 14 )  
OJ, O" 

where t~3 is the third central moment and a the standard derivation of 
F(x, t, P(z)). We note that a s and/~3 are/7' 3 and ~'a respectively in our nota- 
tion, so that #a/a s becomes 

(11 .15 )  
(~2)3/2 ( P 2 t ) 8 / 2 -  (k2)~/2tv2' 

which we shall denote by B, and hence 

P ( ~ , i , P ( z ) l = ~ ( ~ ) - B e o ) ( ~ ) + O ( t - ~ ) .  ( 11 . 16 )  
3! 

By 0(t -l) we mean a bounded function of t -'a such that the ratio 0(t-~)/ 
t -1 remains bounded as t becomes infinite. 
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Recalling that x = kt q- ~ / ~ ,  we find for k < 1, 

ff' F(kt, t ,P ( z ) )=  o. f ( x , t , P ( z ) ) d z  

= f~C(x) f (x , t ,P(z )  )dx 

= Lk~e-n*-t(1--~)dF( x, t, P (  z ) ) ( 1 1.1 7a) 

= f o  e_hikt+,/~l_t{l_~,)dp ( ~, l, P ( z ) ) 
¢ o  

B (" ) (~) ]d~ ,  

and for k >_ 1, 

i l l ( x ,  1--F(kt, t, P ( z ) ) =  t, P ( z )  ) dx 

/7 = C ( x ) f ( x , i , P ( z ) ) d x  

=/t~e-h~-tfi-~°)dF(x, i ,P(z )  ) ( 1 1.1 7b) 

= / ¢ "  e -^[~+'/~,~j-'°-~°)dp ( ~, i, P ( z ) ) 

co a B ~p(3) ( - C ( k t ) /  e- VT'~.~[~o( l~)--~. ~ ) ] d ~ .  

The Esscher functions A ~(")(w) were defined by (3.9). Let w = [hv'~-~-[2. 
If k <  1, t h e n h < 0 a n d w = - - h x / ~ ; i f k > _  1, t h e n h > _ 0 a n d w =  
h v ' ~ .  Making use of these relations, setting q = --$, and noting that 
~o(--~) = ~(~) and ~o(s)(--~) = _¢(8)(~), we have for k < 1, 

o B ~(")(~)]d~ F( kt, t) -C( kO f ~  ~'~[¢ (~) -~., 

B = C ( k t ) /  e-~[g,( , )  +-~! ~o(s)(,)]d , ( l l . 1 8 a )  

B A(,") (w) ] ,  = C ( k t )  [A~ o) (w) -b~! 
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and fork>_ 1, 

B A (o 3) (w) ] = C ( k t )  [A(o °) (w) - -~ .  

( l l . 1 8 b )  

12. THE ESSCHER FUNCTIONS 

We have already defined A (') (w) by 

fo ° A~' ) (w)  = e - ' ~ ' ~ , ( ' ) ( ~ ) d ~ .  (12.1)  

In particular 

f0  ¢~ 1 - -~(w)  A(oO)(w ) = e - ~ (  ~ ) d ~ -  ~v /~-~(w)  . (12.2)  

Kendall [18; pp. 129-130] gives two approximations to this function, 
one an infinite series and the other a continued fraction due to Laplace: 

1 [ l _ _ l q  3 15 ] 
A(oO)(w) - ~v/~-~ ~ w 5 w T ~-0(w -9) , (12.3)  

A(O °) (w) - 1 ( 12.4) 
1 

wq 2 
w4  3 

w-t 
W-I- . . . .  

Tables of the Esscher functions have been published [2], [20]. In order 
to calculate values of these functions either which are lacking in the 
published tables or for which sufficient accuracy is not available, Ammeter 
[2; pp. 103-4] suggests the following formulas: 
Let 

A (w) = 1--,I,(w) . (12.5)  
~ ( w )  ' 

then 
1 

A(°)(w) = - ~  A (w) (12.6)  

d 
A~' ) (w)  - dw A(')_,(w) (12.7)  

1 
A(O3) (w) - ~v/~-~ [ A ( w ) w S - w 2 +  1] (12.8)  

A~°)(w) = ~ [ 1 - - w A  (w) ] (12.9)  

A~3)(w) ~/21r - - A ( w ) w 2 ( w 2 - - k w 3 ) + w ( w 2 + 2 ) ] .  (12 .10)  
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Ammeter [4] and Sheppard [30] give extensive tables of either A (w) or 
A~ °) (w). Using the relation 

1 
A (o °) (w) -~--~,  

we have that, since w = I h v ' ~ l  and ~7~ = tlb2, 

1 
A~°)(w) = Ihl w/2~rlb2 t '  ( 12 .11)  

Using one term of the Esscher formula, we have that 

for k < 1, F( kt, t) ) 
"=.C (kt) A <o°) (w) 

for k>_l ,  1 - F ( k t ,  t) 

e-[h,~+ (1-~a)l t 

( I h I ~/2 ~r~,) t~/2' 

a formula of the type suggested by F. Lundberg. 

(12 .12)  

13. THE DERIVATION O1 ~ "/t(Ut) 

The mathematical development of the stop-loss reinsurance premium 
7r(ut) is presented here as an application of the formulas discussed in § 11. 

L o ~ ( u t )  = ( z - u t ) f ( x ,  t )dx  
(13.1) Lo 

= ( x - - u t ) C ( x ) f ( x , t ) d x .  

Mter the change of variable 

x = u t +  v ' - ~ ,  (13 .2)  

o ~  h ":*- - 

7r(ut)=C(ut)~/-~2 fo ~e- , /~,~f(~, i)  d~, (13 .3)  

wheref(~, t) is the density function of X(i, P(z)) after this normalization. 
Approximafingf(~, t) by two terms of the Edgeworth series (§ 11) we have 

B (~)  ( ~r(ut) =C(ut)  x / ~  f o ~ e - h ' ~ , ~ [ ~ ( ~ ) - - ~ .  ~ ) ] d ~ ,  (13 .4)  

which is immediately reducible to equation (4.6) in terms of the Esscher 
functions A[°)(w) and A[3)(w). 
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DISCUSSION OF P R E C E D I N G  PAPER 

R O B E R T  C. T O O K E Y :  

Dr. Kahn has presented the paper that the Society has long awaited, 
a sequel to Mr. Feay's paper on nonproportional reinsurance, and we 
should be most grateful to him for this scintillating work. I shall take 
advantage of this opportunity to incorporate some material I had been 
compiling for a possible paper on this subject into the discussion of Dr. 
Kahn's  article. 

We have been studying the rate-making problem in nonproportional 

TABLE 1 

TOTAL CLAIMS IN 
CALENDAR YEAR 

Less than $100,000 . . . . . .  
$100,000-$150,000 . . . . . .  
$150,000-$200,000 . . . . . .  
$200,000-$252,000 . . . . . .  
$252,000-$300,000 . . . . . .  
$300,000-$350,000 . . . . . .  
$350,000-$400,000 . . . . . .  
$400,000-$430,000 . . . . . .  
Over $450,000 . . . . . . . . . .  

NU~ER O1' TRIALS 

Single life retention l i m i t . . .  
Expected claims . . . . . . . . . . .  

$ 25,000 
252,000 

0 
5 

97 
437 
340 
108 
12 

1 
0 

1,000 

$I00,000 
264,000 

0 
5 

89 
445* 
237t 
154 
49 
15 
6 

1,000 

* This bracket was $200,000-$262,000 to break at the mean. 
t This bracket was $262,000-$300,000 to break at the mean. 

reinsurance for some time and have computed stop-loss premiums for a 
company with about 15,000 policies of an average size of about $4,000 
with various assumed single-life retention limits. Using the distribution in 
the simulated experience shown in Table 1, we obtained net premiums to 
compare with calculations incorporating Esscher functions described by 
the author. 

Stop-loss premiums computed for total claim retention limits of 100 
per cent, 120 per cent, and 135 per cent of expected claims are shown in 
Table 2. 

From the foregoing, it would appear that use of Esscher functions pro- 
vides a substantially greater degree of accuracy than the assumption of 
a normal distribution of claim amounts. Although this improved method 
by no means produces exact results, with the electronic equipment avail- 
able for Monte Carlo experiments, a company is in an excellent position 

426 
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to verify the fit of any mathematical formula to its claims distribution. 
With this technique available, the actuary has two tools, and it is not 
necessary to be just "half-safe" and work with a claims distribution 
formula obtained by analytic means that might change with a shift in the 
distribution of business. 

Dr. Kahn stated Ammeter's method for adding a "security" loading 
of one-half of the standard deviation of the excess claims to the stop-loss 
net premiums. Such a loading will sometimes triple or even quadruple the 
net premium when the "retention limit" is high--say, to the order of 
135 per cent. However, in the case of nonproportional reinsurance, when 
the risk is high and the premium low, the "security" should protect the 

TABLE 2 

REI'ENI'ION 
Ln~IT 

100% . . . . . . . .  
120% . . . . . . . .  
135% . . . . . . . .  

SI~¢,I~ Lix's P~rSNTION LI~txr $100,000 

Normal Dis- 
tribution 

7.96% 
1.47 
0.43 

Esscher 

8.03% 
2.23 
0.75 

Monte 
Carlo 

8.57% 
2.16 
0.80 

reinsurer not only against the statistical fluctuations but also against the 
risk of an incorrect calculation of the mean or expected claims for the 
ceding company. The expected claims of a company will be affected by its 
underwriting philosophy as well as the characteristics of the market it is 
concentrating its selling efforts in. Consider, for example: 

1. Semigroup insurance (individual policies written with group under- 
writing such as guaranteed issue).--An average mortality of approxi- 
mately 120 per cent of standard is not unusual. 

2. Nonmedical underwriting limits.--The more liberal the company's 
nonmedical underwriting practice, the higher the mortality. 

3. Borderline risks.--Certainly, the more "competitive" underwriting 
a company indulges in, the higher the mortality. 

4. Brokerage business.--Such cases are shopped a good deal, and a 
higher-than-average mortality might be expected. 

5. Social dass.--Ordinary policies written on industrial risks or semi- 
industrial risks will exhibit higher-than-"ordinary" mortality. 

6. Race.--While many companies take non-Caucasians at standard 
rates, on the average, a higher than Caucasian mortality can be antici- 
pated. 



428 COLLECTIVE RISK THEORY AND ITS APPLICATION 

M a n y  other  factors, too numerous to ment ion here, enter into a 
company ' s  mor ta l i ty  experience. The underwri t ing philosophy may  va ry  
from quite conservative to extremely liberal, which can easily cause a 25 
per  cent spread in expected claims between the two extremes. 

For  these  reasons, 90 per cent  of X-18 might  be a good table for the 
expected claims of one company,  bu t  another  company might  expect as 
high as 120 per cent of X-18. The  figures in Table  3 were taken off a curve 
in which stop-loss premium was p lo t ted  against  the claims retent ion 
limit.  This  table est imates the corrected stop-loss premiums tha t  would 
be required as a result  of an underes t imate  of expected claims by  2{ 
per  cent, 5 per  cent, 10 per  cent, and 20 per  cent. 

Because of the d i ~ c u l t y  of arr iving at  the "universe"  to which a com- 
pany  exposure belongs, loadings must  be quite substant ia l  to allow for 
possible unders ta tement  of expected claims in the computat ion of gross 
stop-loss premium rates. Table  4 is taken from Hans  Ammeter ' s  art icle 
on "Calcula t ion  of Premium Rates  for Excess of Loss and Stop Loss Re- 

TABLE 3 

APPROXIMATE NET STOP-LOss PREMIUMS 

UNDER- 

ESTIMATE IN 

EXPECTED 

CrAms (%) 

0 ......... 

2½ ........ 
5 ......... 

10 . . . . . . . . .  
20 . . . . . . . . .  

RETENTION Lrmz ~ STA~OAmD DEVIATION FRoM MEAN 

825,000 Insurance Limit 

1~ 2~'s 

1.4% 0.2% 
1.9 0.3 
2.4 0.4 
3.9 0.7 
7.2 2.0 

$100,000 Insurance Limi t  

|~  2o'S 

2.2% 0.5% 
2.5 0.6 
3.0 0.8 
4.1 1.1 
7.2 2.1 

TABLE 4 

Retention Limit 
N e t  Standard Gross 

as Per Cent of Ex- Premium Deviation Premium pected Claims P 
(P = 100 Units) (1) (2) (1) +~1 (2) 

100 . . . . . . . . . . . . . .  6.9 10.9 12.4 
110 . . . . . . . . . . . . . .  3.2 7.6 7.0 
120 . . . . . . . . . . . . . .  1.3 4.8 3.7 
130 . . . . . . . . . . . . . .  0.5 2.8 1.9 
14o . . . . . . . . . . . . .  . o.1 1.5 0.9 
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insurance Treaties." The single-life retention limit is 50 "units." Gross 
premiums are determined by adding one-half the standard deviation of 
excess losses to the net premium. 

In most cases, the gross premium varies from two to four times the net, 
this factor varying directly with the retention limit. To allow for a 7½-10 
per cent error in the calculation of expected claims, the net itself might be 
doubled, producing a total gross stop-loss reinsurance premium equal to 
three to five times the original net. I t  probably would be desirable to have 
a minimum dollar amount of premium of, say, $5,000 plus 1½ per cent of 
expected claims. 

There appears to be a definite market for stop-loss reinsurance as a 
supplement to the regular YRT and coinsurance plans in wide use at the 
present time. The stop-loss reinsurance costs can easily be offset with a 
reduction in regular reinsurance premiums, made possible through a 
nominal increase in retention schedule. Stop-loss reinsurance does have 
definite advantages. I t  provides reinsurance for the company's retained 
business, a coverage not heretofore available; it facilitates ease of ad- 
ministration and reduces unit handling costs; with proper modification in 
a company's reinsurance program, it can be added thereto at no increase 
in total reinsurance costs. These advantages could make the plan attrac- 
tive as a supplement to the regular reinsurance plans that most companies 
now use. Stop-loss reinsurance could be written by either a life company 
or a casualty company. The casualty company could offer it as a liability 
contract that would pay off if total claims for a year exceeded a specified 
limit. Both life and casualty contracts would probably exclude war deaths 
and deaths from nuclear explosion. 

Before making any radical departures from its regular reinsurance pat- 
tern, a company contemplating a stop-loss plan should not overlook the im- 
portance of adherence to sound underwriting practices to insure its fair 
share of mortality profits. Any system of reinsurance that permits a ma- 
terial deterioration of underwriting standards will act far more to the 
detriment of the ceding company than the reinsurer, which presumably 
will reserve the right to raise stop-loss reinsurance rates to a level com- 
mensurate with the risk. For this reason, it is difficult to see how stop-loss 
reinsurance would ever become a substitute for the regular plans of rein- 
surance in this country today. Substandard cases, large cases, and border- 
line cases should still receive the same attention from the reinsurer's un- 
derwriting department as they do now. The close working relationship 
between the underwriting departments of the reinsurer and ceding com- 
pany provides a psychological stimulus to the latter that tends to main- 
tain high underwriting standards and assure a good mortality experience. 
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ERNEST A. ARVANITIS: 

Papers on mathematical statistics have very often proved very difficult 
for me to follow. Basic assumptions can often only be vaguely inferred, 
and an aura of generality is attributed to conclusions which are in fact 
very limited in application. Dr. Kahn is to be congratulated for a very 
orderly and explicit presentation of his subject matter. We are made well 
aware that there are certain limitations which attach to his conclusions, 
and an appreciation of these limitations enables one to place the conclu- 
sions in their proper perspective and thus enhance the utility of the paper. 

Dr. Kahn makes two assumptions early in his paper. First, only ran- 
dom fluctuations are considered, and heavy excess mortality resulting 
from external causes such as wars and epidemics is ignored. Second, the 
probability that more than one claim occurs in a very small time interval 
is approximately zero. Both of these assumptions are quite reasonable, 
particularly when one is concerned with very broad results. However, 
when one is concerned with the exceptional situation, such as the prob- 
ability qf a high loss ratio in a group, these conditions assume increasingly 
greater importance. One cannot ignore these assumptions in much the 
same way that one cannot apply the normal approximation when only 
the tails of a distribution function are considered. For example, in a highly 
concentrated group, the relative importance of a disaster becomes increas- 
ingly greater as the stop-loss level is pushed out further. Keeping such 
factors in mind, the actuary can make appropriate modifications in the 
final answers, depending upon his appraisal of the effect of these factors. 

The distribution function that the author is after is the loss ratio of a 
group. That  is, he is interested in knowing the probability that a given 
loss ratio will occur. But this probability is a variable, depending upon 
many factors, and an exact expression would require the recognition of 
all factors. In the case of group life, he expresses this probability as the 
product of two probabilities; namely, the probability that n claims will 
occur and the probability that the amount paid on n claims results in a 
given loss ratio, with the product summed over all possible values of n. 
The probability that n claims will occur is assumed to follow the Poisson 
distribution. The probability that the amount paid on n claims results in 
a given loss ratio is derived as the n-fold convolution of the distribution 
function of the amount paid on one claim. The amount paid on one claim 
has a distribution function which is easily derived if one has the in-force 
by age and amount, together with appropriate mortality functions. 

The distribution function of the loss ratio of group life insurance de- 
rived in this manner is invalid to the extent that other factors involved in 
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the expression of the desired probability cannot be ignored. Examples of 
such factors are fluctuations in the mortality and disability rates, changes 
in the size or composition of the group, changes in the plan or level of 
benefits, etc. All factors considered, however, it would appear that the 
effect of these extraneous factors is probably of small import. In the case 
of group health insurance, on the other hand, the effect of these other fac- 
tors could produce significant variations in the short run as well as the 
long run as a result of local as well as general social or economic factors. 
An increase in unemployment may result in an increase in weekly in- 
demnity claims. An increase in the availability of hospital beds may result 
in an increase in hospitalization. The continuous inflation in medical care 
costs is another factor clouding the picture. This leads me to suspect very 
strongly that the distribution function (which is the end result of the ef- 
fect of many factors) cannot be reduced to any of the classical distribu- 
tion functions, just as we know that the mortality curve (which also is the 
end result of many factors) is not represented by any simple mathe- 
matical curve. 

The thought then occurs that empirical experience on the distribution 
of loss ratios taken throughout the full range of values (and not just at the 
tails) might prove useful in conjunction with theoretical values developed 
along the lines of this paper. The degree of variation between observed 
and theoretical values throughout the bulk of the range of values should 
furnish a clue as to the amount of modification the actuary should make 
at the tails. In other words, one can accumulate experience on the dis- 
tribution of the loss ratios actually being experienced in addition to build- 
ing up a theoretical distribution. 

Dr. Kahn then proceeds to the heart of the problem he has posed for 
himself, namely, the derivation of an approximation to the distribution 
function at the tails which is closer than the usual normal approximation. 
The Central Limit Theorem tells us that the distribution function of the 
sum of random variables approaches asymptotically the normal distribu- 
tion. Stated in other words, the distribution function is equal to the 
normal distribution plus a remainder term. In general, the existence of the 
remainder term is ignored for large values of n. However, as the author 
points out, the remainder term cannot be ignored, even for large values of 
n, when dealing only with the tails of the distribution function where the 
greatest divergence from the normal distribution can be expected to 
occur. Quite obviously, any method which does not ignore higher-order 
differences must be expected to produce a more accurate answer than one 
which is based on the normal approximation alone. 
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HERBERT L. :FEAY: 

In his discussion of this paper, Robert Tookey has indicated the need 
to double the calculated net premium in order to have a sufficient safety 
margin. If the basic information is that unreliable, I question the need for 
great refinement in the theoretical mathematical formulas used to calcu- 
late the original net premiums. 

Dr. Kahn's paper has made readily available in the Transactions of this 
Society some of the mathematical formulas and some of the thinking of 
European actuaries on the mathematical theory of risk. As B. T. Holmes 
indicated in his report on the XVI International Congress of Actuaries, 
European actuaries, when they lack relevant statistics, seem to place 
greater reliance on complicated mathematical curves than do the actuaries 
of Canada and the United States. Much of what is included in Dr. Kahn's 
paper is also covered by the paper on "The Calculation of Premium 
Rates" written by Hans Ammeter and included in the book on Non- 
proportional Reinsurance, edited by S. Vajda (reference No. 2 of Dr. 
Kahn's Bibliography). 

Dr. Kahn places great confidence in the mathematical development 
known as the Esscher approximation and uses the results to criticize the 
use of the normal distribution. He indicates that the Poisson distribution 
is the exact and correct distribution for the number of death claims among 
a specified group of persons in a specified period of time. He places con- 
siderable stress on a differentiation for individual and collective risk 
theory. 

Dr. Kahn made these same observations in an abbreviated form in his 
discussion of my paper on nonproportional reinsurance. I included com- 
ments on them in my written reply. 

The problem that we are trying to solve is the distribution of the total 
claim payments for a specified exposure of risks. Dr. Kahn's formula (2.1) 
is an expression in symbols of this value. The right-hand side of this 
formula represents the product of two distributions, one for the total 
number of claims and a second for the amounts of an individual claim. 

Distribution of Total Number of Claims 
Dr. Kahn uses the Poisson distribution for the total number of claims. 

The Poisson distribution is not exactly and uniquely correct for this pur- 
pose, as he seems to assume. The Poisson distribution is produced by his 
assumptions, but those assumptions do not hold in actual experience. The 
number of the claims and the number of the exposures do not remain 
constant with time. 

The average or expected number of deaths among 1,000 persons, age 0¢, 
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in one year is 1,000q~. The proper distribution for the number of deaths 
is the binomial distribution of (q~ + p~)l.000 and not the Poisson distribu- 
tion. If  q~ is very small, the Poisson distribution is approximately, but 
not exactly, equivalent to the binomial distribution. 

Instead of using q~, the probability of death in one year among a group 
of persons, we can use g~, the force of mortality. My explanation of ~ 
is that it has a relationship to q~ similar to that of the effective rate of dis- 
count to the nominal rate of discount when the discount rate is com- 
pounded continuously. The force of mortality at  each moment of time 
when applied to the exposure at  that moment of time will give a distribu- 
tion of claims that has a Poisson distribution. I t  must be remembered 
that neither the force of mortality nor the exposure remains constant over 
the period of time for which the summation is made. 

The exact determination of values of #~+, and l~+, (the death rate and 
the exposure) at each moment of time for n is difficult. The sum of the 
force of mortality from age x to x -{- I is usually assumed to be equivalent 
to the central death rate m~. This central death rate is usually approxi- 
mated on the assumption that deaths are evenly distributed over the year 
from x to x + 1. 

One advantage of the Poisson distribution over the binomial distribu- 
tion is that the Poisson distribution is easier to solve. The reason for this 
is that  both the mean and the variance of the Poisson distribution are 
equal, and the formula for this distribution is determined by the number 
of claims. This is not true for the binomial distribution, and the formula 
for this distribution must include the exposure which is a much larger 
number than the number of claims. 

Collective Risk Theory 

Dr. Kahn states that, given only the expected number of claims and the 
distribution of individual claim amounts, the total claim payments are 
completely determined. He indicates that  the number of policies and the 
amounts of insurance for the exposure are not used. Dr. Kahn has not 
"completely determined" the value of his (2.1) formula. He has only writ- 
ten a mathematical formula in symbols representing this value. His formu- 
la includes the Poisson distribution, and it is only because of this formula 
that the number of policies or the amounts of insurance for the exposure 
are not used directly in the formula. The Poisson distribution gives the 
same distribution for the number of claims when the average number of 
10 claims is expected regardless of whether 10 equals 10,000 times 0.0001 
or 100 times 0.1. Assuming the Poisson distribution to be correct, Dr. 
Kahn has not completely determined the total claim amounts until he has 
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established the distribution of amounts of one claim and has solved his 
equation. Solving the equation is no easy task, as the balance of his paper 
demonstrates. In  fact, Dr. Kahn does not solve this formula (2.1). As 
indicated later, he substitutes one general distribution for the two dis- 
tributions of this formula. 

Dr. Kahn classifies the formulas involving the Poisson distribution as 
collective and formulas involving the binomial distribution as individual. 
His basis for this is that the Poisson distribution does not involve the 
number of policies or other representative total for the exposure. This is a 
peculiarity of the Poisson distribution and not a fundamental result of 
collective risk theory as Dr. Kahn has indicated. 

The number of claims is obviously dependent on the exposure as repre- 
sented by the number of policies. In  order to secure correct parameters for 
any distribution, including the Poisson distribution, information as to the 
number of policies and as to the claim rate must be used. Assuming a 
constant claim rate, the number of expected claims used in the formulas 
of Dr. Kahn and Mr. Ammeter is directly proportional to the number of 
policies in the exposure. 

Mr. Ammeter uses the Poisson distribution but points out its limita- 
tions. He states that, for life insurance, it is a useful and sufficient ap- 
proximation to the real distribution for the number of claims but that in 
other branches it is necessary to introduce a factor (which he designates 
by the use of the symbol h) to allow for fluctuations in the basic probabili- 
ties with passage of time. The distribution developed is referred to in 
both Mr. Ammeter 's and Dr. Kahn's  paper as a compound Poisson model. 
The distribution of this compound Poisson model and the distributions of 
the negative binomial and Lexis model are all equivalent. 

The h factor of Mr. Ammeter's compound Poisson model should not be 
confused with the h factor in Dr. Kahn's  formula (3.3). Dr. Kahn's  h fac- 
tor serves the same purpose as Mr. Ammeter's k factor in his formula (19). 
I did not know of this change in symbols when I prepared my reply to Dr. 
Kahn's discussion, as Dr. Kahn did not include his formula in his discus- 
sion of my paper. 

Distribution of the Amount of One Claim 
Dr. Kahn uses the symbol _P(z) to represent the distribution of the 

amount of one claim and P"*(x) to represent the distribution of the total 
amount of n claims. For the figures included in his Table 1, Dr. Kahn 
assumes that each policy and each claim is for one unit of insurance. He 
therefore limits his formula (2.1) to the Poisson distribution. This is the 
only calculation that  he includes for this formula. 
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Dr. Kahn includes some mathematical development on the basis of 
representing the distribution of claim amounts by use of an exponential 
distribution but makes no application of the results. I agree with Dr. 
Kahn that the exponential distribution is not satisfactory for representing 
a distribution of life insurance claims by amounts. The complications 
with the mathematics of the resulting formula is one reason. A much 
more important reason is that few, if any, distributions of amounts of life 
insurance, either for life insurance companies or for group insurance cases, 
can be correctly represented by such a function. 

The Esscher Approximation 
Dr. Kahn does not proceed with any calculations using his formula 

(2.1) beyond assuming that each claim is for one unit of insurance. His 
second demonstration is with the Esscher approximation. This approxi- 
mation substitutes one general distribution for the two distributions in 
Dr. Kahn's formula (2.1). Dr. Kahn's explanation of this approximation 
is similar to that of Mr. Ammeter on pages 92-96 of the book referred to 
previously (reference 2 of Dr. Kahn's Bibliography). In comparing the 
developments, it must be remembered that Dr. Kahn uses the letter h as 
his symbol for an arbitrary factor and that Mr. Ammeter uses the letter 
k for this purpose. Dr. Kahn uses the Esscher approximation for Mr. 
Rosenthal's company, but he did not apply it to calculate stop-loss rein- 
surance premiums for the collection of risks used for his Table 1. 

The Esscher approximation involves the use of a distribution directly 
representing the total claim payments for all claims. This distribution is 
approximated by using the first two terms of a Gram-Charlier Type A 
Series. The Type A Series is based on the normal distribution and its 
derivatives. Dr. Kahn refers to this series as the Edgeworth Series, but  
the terms involved are the same. 

The Type A Series to two terms tends to overstate the right tail and to 
understate the left tail of a distribution. In fact, this series has produced 
negative values for the left tail, with these negative values offset by 
excesses in the values for the right tail. I t  is the right tail that Dr. Kahn 
uses for his calculations. The Type A Series to two terms also does not 
provide a satisfactory fit for a skewed distribution. Authorities for sup- 
port of these statements are (1) M. G. Kendall in The Advanced Theory oJ 
Statistics, (2) Dr. Henry L. Rietz in Mathematical Statistics, (3) L. R. 
Salvosa in Generalizations of the Normal Curve of Error, (4) W. Palin 
Elderton in Frequency Curves and Correlation, and (5) M. S. Roff in "The 
Point Binomial" (Journal of American Statistical Association, Vol. LI). 

An overstatement in the right tail produces an overstatement in  the 
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nonproportional reinsurance premiums. The effect of this overstatement 
decreases as the number of claims increases. The A Series approaches the 
normal distribution as a limit when the number of claims increases. 

Apparently this overstatement of Dr. Kahn's calculations for Mr. 
Rosenthal's company would not be serious, but a further distortion of the 
premiums is introduced by the use of an arbitrary factor--the h symbol of 
Dr. Kahn's  formula and the k symbol of Mr. Ammeter's formula. This 
factor increases the upper tail of the distribution. The larger the h factor, 
the more the distribution is changed by increases in the upper tail for 
total claim payments. This should be obvious from Dr. Kahn's Tables 
4 and 5. 

The net reinsurance premiums of his Table 5 are determined by the 
sum of the terms after the retention limit. Dr. Kahn makes the h factor 
a function of the maximum retention limit. The larger the retention limit, 
the more is the inflation of the right tail of the distribution. Dr. Kahn 
indicates that this inflation occurs in his comment that the choice of h 
shifts the mean and assigns a greater weight to the tail of the distribution. 

By increasing h as the retention limit increases, Dr. Kahn produces a 
larger and larger excess over my proposed premiums as the maximum 
retention limit is increased. He could also have produced a larger and 
larger excess over my premiums if he had kept the retention limit con- 
stant and then increased the h factor for that one retention limit. 

Neither Dr. Kahn nor Mr. Ammeter provides any proof that the arbi- 
trary factor gives a better fit for the assumed distribution to the actual 
distribution. The fact that by manipulation of this h factor higher 
premiums can be secured does not prove that the higher premiums are 
correct. 

The distribution of claim payments for Mr. Rosenthal's company is 
established by the amounts of insurance and the claim rates. I t  seems 
obviously incorrect to assume that  the probability distribution for total 
claim payments will change if the retention limit for a stop-loss reinsur- 
ance treaty is increased from, say, 120 per cent to 135 per cent, as indi- 
cated by Dr. Kahn's  Table 5. 

Dr. Kahn uses averages for Mr. Rosenthal's company to determine an 
average for claim payments for use in the Esscher approximation. This 
does not constitute proof that the Esscher approximation, with or without 
an h factor, conforms to the distribution of total claim payments for Mr. 
Rosenthal's company or for any other collection of insurance risks. 

Mr. Esscher and Mr. Ammeter were primarily interested in securing 
conservative premiums for insurance, subject to unknown factors, and 
they introduced margins for safety in their mathematical formulas rather 
than in their loading. The fact that they found this necessary for certain 
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types of property insurance does not make their formulas the gospel 
truth for life insurance. 

I have considerable doubt whether the distribution of the total claim 
payments for a collection of risks insured for different amounts can be 
properly represented by a solvable mathematical equation. 

As demonstrated in my paper, it is not necessary to have such a 
mathematical expression for the total claim payments. The total exposure 
and the corresponding total claims can be broken down to class units. The 
finite method for the number of claims can be used with the subdivision 
by classes of the amounts of claims. A commutation column procedure 
can be established. I t  seems to me that it is rio more necessary to establish 
a generalized solvable mathematical formula for the distribution of 
possible total claim amounts than it is necessary to have such a formula 
for every mortality table. 

The Normal Distribution 

Dr. Kahn states that I used the normal distribution as an approxima- 
tion of the distribution of total claim payments. This statement is an 
oversimplification of what I assumed. 

I made no direct determination of total claim payments. Instead, I 
used classes by amount as included in Mr. Rosenthal's paper. Each such 
class is comparable to the group of risks that  Dr. Kahn used for his Table 
1. I then used the binomial distribution for the distribution of the number 
of claims for each class because the number of claims for each grouping 
was determined by applying qx to the initial exposure in each group. If  
I had used the Poisson distribution for this purpose, I could have secured 
approximately the same distribution for the total claims by converting 
q, to m, and using the mean average exposure for the year. 

I t  is true that each claim for a grouping for Mr. Rosenthal's company 
will not be for the same exact amount as assumed by Dr. Kahn for his 
Table 1 but can vary within the class limits. When the class Limits are 
reasonable, the effect of this is to change the distribution for the total 
claim payments for the class from a discrete distribution to a continuous 
distribution. The binomial function becomes a Pearson Type I I I  func- 
tion. I again give as a reference on this point the discussion in chapter iv 
of Sampling Statistics and Applications by J. G. Smith and A. J. Duncan, 
of Princeton University. 

The distribution that I have assumed for the total claim payments for 
each grouping is a Pearson Type I I I  distribution, with parameters equal 
to the parameters of the corresponding binomial distribution for the 
number of claims for the grouping. 

M y  next step was to combine the distributions as secured for each class 
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grouping. An explanation of the addition of variables is given on pages 
82-113 of The Elements of Probability Theory by Harold Cram~r. 

If the distribution of total claim payments for each class is a Pearson 
Type I I I  distribution, the combined distribution is also a Pearson Type 
I I I  distribution, but with considerably less skewness. Under these condi- 
tions the combined Type I I I  distribution approaches the normal distribu- 
tion as a limit. 

The position in my paper was that, if the mean number of deaths is 
sufficiently large, this Type I I I  distribution can be approximated by use 
of the normal distribution. This assumption is not original with me. I t  has 
always been used in statistics, not only for the Type I I I  distribution, but 
for many other distributions. 

The question of the conditions under which the normal distribution is a 
satisfactory approximation for a Type I I I  distribution, a Poisson distribu- 
tion, a Type A Series distribution, or any other distribution is entirely 
one of the accuracy of fit that is desired and of the reliability of the basic 
crude data. Consideration need be given to moments beyond the mean 
and the variance if proper fit for skewness and kurtosis is to be assured. 

Dr. Kahn mentions skewness as the reason for his use of the Esscher 
approximation, but he has no measure or test of skewness. He has no 
proof that  the assumed distribution of the Esscher approximation meets 
the required conditions as to skewness and kurtosis for the distribution 
of total claim payments. I suggest the use of the fl functions of Karl Pear- 
son or of the k and g functions of R. A. Fisher for this purpose. 

Causes of Fluctuation 
In my paper, I stated that I used the normal curve on the assumption 

that the expected number of deaths was sufficiently large and that all 
measurable causes of variation among different groups or collections of 
risks have been eliminated so that  variations in total actual claim pay- 
ments are due to a large number of small causes. This statement is based 
on a division of the causes into one group that  had been measured and 
into another group that had not been measured. I assumed that  the first 
class included the causes of large variation and that the second class in- 
cluded only causes of small variations. 

In his introduction Dr. Kahn classifies the causes of variation into two 
general types--commercial risks and insurance risks. He further divides 
the insurance risks into two broad classes--external risks (each producing 
a large variation) and random fluctuations (each causing a small varia- 
tion). 

I question if the causes of variation in claim payments or in claim pay- 
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ment rates are subject to such absolute division into broad groups. All 
identifiable causes of variation are mixtures and are variables. They are 
not subject to classification into two groups at the extremes of a distribu- 
tion. I suggest that their distribution is bell-shaped and not O-shaped. 
This applies to the ability to measure causes of variation as well as to 
aspects of causes used by Dr. Kahn for his divisions. 

Mortality has improved significantly since 1930. Disability claim rates 
increased g r~ f ly  in 1931 and 1932. Mortality and morbidity rates of the 
lower-income groups in England improved during the war. I see no way 
to separate the causes into two broad types for commercial risks and 
insurance risks. 

The issue of whether a variation is large or small depends on the size 
of the exposure and the period of exposure. If only two risks are in the 
group, any cause of claim is a large one. The Texas City disaster was a 
catastrophe mountain for the particular group insurance case involved. I t  
was probably a fairly good hill for the insurance company. For the group 
insurance of the United States as a whole it was just a rolling change in 
the landscape. 

The size of the universe (of the exposure) determines whether a cause 
of variation is large or small. An all-out atomic war on earth would be a 
catastrophe for the earth. Astronomers tell us that there are probably at  
least 100,000 planets similar to the earth in this galaxy and that the 
conditions of our galaxy are substantially duplicated millions of times in 
other galaxies. 

With such a large universe, the entire death of the earth would be a 
smaller cause of variability than is the death of one person on the earth. 

We believe that  the laws of the universe are such that  life must go 
onward and upward, but with freedom of choice there is no absolute 
certainty that any individual, any nation, or any planet will not make the 
wrong choice that can lead to,death and destruction. 

P A ~  5. JACKSON: 

Dr. Kahn has performed yeoman service for the actuarial profession 
in collecting and summarizing the up-to-date mathematical developments 
on collective risk theory and presenting them in a well-written, clear-cut 
form. Dr. Kahn's paper is particularly welcome, since so much of the 
current literature appears in French, German, Danish, etc., and the 
material is complicated and slow-going even in English. 

The press releases (e.g., Eastern Underwriter, October 6, 1962) state 
that  the paper is "an actuarial analysis of many factors necessary to ade- 
quately reinsure stop-loss group insurance." This paper, and the paper 
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Mr. Feay submitted last year, actually analyzes only two of the many 
factors involved, namely, the effect of chance fluctuations and the ap- 
propriate adjustments to correct for variation in claim amount. Dr. 
Kahn points out that the collective-rlsk theory does not attempt to cover 
external risks such as war and pestilence. There are many other examples 
of external risks not covered by the theory which are of far greater prac- 
tical importance if the theory were to be applied to compute stop-loss 
premiums for group insurance. The effect of ignoring these other factors 
becomes more and more important as the stop-loss level increases. In any 
case the practicing actuary cannot determine a stop-loss premium for 
group insurance simply by pulling out the table of values of Esscher func- 
tions described in Dr. Kahn's paper or of the normal curve as suggested 
by Mr. Feay, and I am certain that Dr. Kahn would agree that his paper 
was not intended with that purpose in mind. 

Where insurance amounts vary from individual to individual, and 
where the mathematical calculations are based on amounts of insurance, 
it is clear that a very special type of dependence exists among many of the 
random variables. Each unit of $I,000 would be represented by an inde- 
pendent random variable, but, in the case where a number of units all 
cover the same life insured, the random variables for those units are I00 
per cent dependent in the sense that at all times they take on identical 
values. Special adjustments are necessary to correct for this special type 
of dependence. Mr. Feay approaches the problem by stratifying the 
group into various amount brackets, and within each such bracket the 
assumption that amounts are uniform is not unreasonable. His calcula- 
tion then proceeds by adding up the means and variances for each of the 
strata involved to obtain a suitable normal curve as the frequency dis- 
tribution of claim amount for the over-all case. The collective-risk ap- 
proach, as described by Dr. Kahn, starts from the distribution function 
for the amount of an individual claim, and, where more than one clahn 
would be involved, "an N-fold convolution" is performed which results 
in the distribution function for the total claim amount where N claims 
are involved. If the same assumptions were made as to claim amounts, and 
if no additional adjustments are made, these two methods ought to pro- 
duce the same distribution function of claim amount for the large case. 
The stop-loss premiums that are produced differ between the two ap- 
proaches because of an additional adjustment used by some of the Euro- 
pean mathematicians who have developed the theory. They suggest, as 
an appropriate adjustment, multiplying the distribution function for the 
amount of an individual claim by a factor of c~ ~, where the constant ad- 
justs the new function back to a relative frequency distribution and where 
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h increases with increase in stop-loss level. This same type of adjustment 
could be made to the final frequency distribution arrived at by the 
classical or individual risk approach; but, where the normal curve is used, 
the multiplying factor merely serves to translate the normal curve h units 
to the right, leaving the standard deviation unchanged. 

Let us consider the collective-risk theoretic approach so far as it might 
apply to stop-loss premiums for group insurance. There are at least three 
specific areas for which further adjustments to the risk theoretic premium 
would be necessary in order to determine an appropriate stop-loss 
premium. 

1. External risks usually thought of as heavy excess mortality resulting 
from wars and major epidemics are excluded from the risk models and 
thus from the resulting premiums. This implies that, in addition to the 
stop-loss premium determined by the mathematical model, a small addi- 
tional charge must be made to cover the catastrophe hazard. There are 
very few statistics available that have direct application in this area, 
and in any case the actual charge should be chosen by the luckiest actuary 
in the particular company. To go one step further, however, it is common 
knowledge that, when a particular group case develops an unusually high 
loss ratio, the most striking single feature of the actual experience is the 
decreasing relative importance of chance fluctuations and the increasing 
importance of external factors that are not normally considered to be 
catastrophes, at least in the same sense as war and pestilence. Group life 
insurance claim experience can go sour because of the elimination of pre- 
employment physical examinations or because of unusual anti-selection. 
Weekly indemnity experience goes sour during a prolonged strike. Group 
medical expense loss ratios have been seriously affected by inflation in 
the cost of medical services, and at the local level an individual doctor 
may be sending all his patients to the hospital, regardless of need, either 
because there are plenty of beds available or because the patient makes 
out better financially due to a quirk in his insurance coverage. The higher 
the group loss ratio, the more likely it is that improper plan design, claim 
abuse, or a change in the factors bearing on the risk are largely responsible 
for the end result. I t  certainly does not make much sense to throw al 
these factors in with wars and epidemics when other practical approaches 
are possible which would take their average effect into account. 

2. The mathematical risk model assumes that the true expected claim 
rate is known in advance of the experience period. When we write a brand- 
new group case, we are forced to assume that the true expected claim 
rate is the same as the average loss ratio for the particular class of busi- 
ness. We simply have no data on which to make a more accurate esti- 
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mate. Over a period of years, better and better estimates of the true loss 
ratios would emerge under the approach described by Ralph Keffer in his 
paper on experience rating. In the first year, however, a large part of the 
variation in loss ratios from the expected loss ratio for the over-all class 
will be due to the dispersion of the true loss ratios case by case about the 
mean expected loss ratio for the class as a whole. So far as I know, there 
is no practical method of separating the effect of such dispersion from the 
effect of chance fluctuation. No matter how long a case remains on the 
books, our estimate of the probable loss ratio still cannot produce the 
true expected loss ratio for the case, so that the effect of this factor, while 
diminishing over the years, continues to have some influence over the 
dispersion of loss ratios about the expected. The effect of this dispersion 
of true loss ratios about the class mean is to flatten out the frequency 
function and increase its standard deviation. If a stop-loss premium is cal- 
culated from a mathematical model which assumes that the true case 
loss ratio is known, it can therefore seriously understate the true stop- 
loss premium. 

3. The occurrence of claims in the mathematical model is assumed to 
be independent. The exclusion of the effect of war and pestilence, of 
course, eliminates the most obvious areas of dependence of claim. The 
adjustment for variation in claim amounts eliminates a second important 
area. The mathematical model assumes that the remaining claims are 
independent. This assumption works well in individual insurance applica- 
tions, but it is only approximately true, whatever that means, in group 
insurance applications; and the approximation gets worse and worse as 
the stop-loss level increases. For example, the insured employees work at 
common locations, travel in common conveyances, eat the same food in 
the company cafeteria, live in the same geographical area, etc. They are 
thus subject to many common hazards, and multiple claims can and do 
occur more frequently than almost never. The second assumption in the 
collective risk theoretic model as stated by Dr. Kahn is that "the prob- 
ability that more than one claim occurs in the operational time interval 
is approximately zero." A single accident can occur at a single moment 
of time and result in multiple losses. The fact that such multiple losses are 
unlikely does not invalidate the contention that the assumption of com- 
plete independence of claims obviously makes no provision for this type 
of occurrence. Further, the higher the loss ratio for a given case, the more 
likely that multiple losses could be the cause of the high loss ratio. A 
stop-loss premium based on a model which makes no provision for 
multiple losses must therefore be adjusted upward to take such losses 
into account. 
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It  is interesting tonote  that all the above adjustments are in the same 
direction. The adjustment for multiple amounts serves to increase the 
standard deviation for claims, increase the skewness of the frequency 
curve, and increase the stop-loss premium. The adjustment for typical 
external factors, for dispersion of case-by-case loss ratios, and for a 
modest element of dependence in group claims serves to increase the 
standard deviation of claim frequency still further and increase the re- 
sulting stop-loss premium. The adjustment for these factors is likely to be 
small for a stop-loss level near the mean. The adjustment can be relative- 
ly enormous, however, when the stop-loss premium is calculated for a 
very high claim level. 

In studying the practical problems involved in group insurance appli- 
cations some years ago, I concluded that an approach based on the actual 
distribution of group loss ratios was a more satisfactory approach to the 
collective risk problem than the approach through individual risk theory. 
Actual loss ratios over many experience years for a large number of small 
group cases were written down without regard to the probable loss ratio 
of the individual case. The stop-loss formulas were then expressed in 
terms of the distribution function which can be integrated by approxi- 
mate methods. The statistics thus assembled on actual group cases do 
take into account the typical amount of dependence in the random vari- 
ables, the influence of any commonly experienced external factors, the 
average effect of the underwriting rules in use when the business was 
written, and any variation in the true loss ratios for individual cases 
from the mean loss ratio for the business as a whole. The risk models de- 
scribed by Mr. Feay and the Monte Carlo approach do not reflect their 
effect without further adjustment. Dr. Kahn's model does contain an 
adjustment c~ ", perhaps with these factors in mind, but the choice of h 
so that X[t, /~(z)] has mean ut is certainly an arbitrary one. Whether this 
adjustment is sufficient or not is purely a matter of opinion. I still believe 
that my approach of returning to the actual data is necessary. At the very 
least it serves as a check on whatever theoretical approaches may be 
available. 

When our statistical work is concentrated on values near the mean, we 
can fit frequency functions to the actual data and deal with them with 
some confidence. Stop-loss premiums, on the other hand, are determined 
by integrating the function (x - Of(x) from t on and on and on and on, al- 
though there may be some reason to stop the integration process when the 
loss would bankrupt the company. This theoretical approach leaves one 
with a very uncomfortable feeling when one is playing for the big marbles 
- - a  feeling somewhat similar to playing Russian roulette. The extreme 
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tail of the frequency curve depends as much on the particular type of fre- 
quency curve which has been chosen to fit the data as it does on the basic 
data itself. One may use certain plausible assumptions to arrive at Pois- 
son, Normal, Pearson III,  Esseher function, or one of the many other 
families of curves. For stop-loss work, it would appear possible as an 
alternative to consider the set of all commonly used frequency functions 
and the subset of those frequency functions which fit the actual data 
within certain acceptable limits. For any value t of loss level one could 
then choose the particular frequency function in this subset which maxi- 
mizes the stop-loss premium. Mter all, if Mr. Esscher has a frequency 
function of a type which produces three times Mr. Feay's normal curve 
stop-loss premium at the 135 per cent level, someone else a year from now 
might develop a different frequency function producing three times Mr. 
Esscher's stop-loss premium. This process must obviously terminate 
somewhere. Since the acceptability of a particular frequency function is 
not determined primarily by the characteristics at the tail but rather 
from the characteristics near the mean, where the actual data are concen- 
t.rated, surely any of the functions which fit the actual data within ac- 
ceptable limits could be used for calculating stop-loss premiums at  the 
higher loss levels. This implies that the choice of h in the Esscher approxi- 
mation should be the greatest value of h for which the frequency function 
still fits the data, since this value will maximize the stop-loss premium. 

The final problem I would like to discuss in the group insurance area 
is the application of stop-loss insurance or complete nonproportional rein- 
surance. Mr. Feay mentioned that the stop-loss premiums calculated by 
collective risk methods seem to be unduly large in relation to group insur- 
ance retentions. Group insurance retentions, on the other hand, do not 
normally contemplate the waiving of all deficits beyond a low claim level. 
In fact, a surprising amount of the total deficit is recovered in the actual 
operation of group insurance plans because of the relative infrequency of 
the transfer of business. From a practical standpoint therefore group re- 
tentions need only include a stop-loss premium for a loss level so high that 
the policyholder is likely to transfer his plan to another carrier. Putting 
true stop-loss insurance into this type of group operation is likely to in- 
volve a premium that seems high to the policyholder in relation to the 
level beyond which deficits will be waived. The stop-loss agreement must 
state that deficits beyond a certain amount will not be carried forward in 
experience rating, and yet how can a continuing policyholder be certain 
that a deficit incurred in one year and waived through the stop-loss ap- 
proach does not in fact affect the future results under his policy? Where 
the stop-loss level is set near the mean expected claim level, the stop-loss 
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premium will be large enough that it, too, could be a proper subject for ex- 
perience rating over a period of years, and this implies that any actual defi- 
cits waived will be carried forward and compared against the accumulated 
stop-loss premium in determining the appropriate stop-loss premium for 
subsequent years. In this case the deficit waived does have an effect on fu- 
ture costs. In practice, therefore, we find ourselves in a serious dilemma. The 
stop-loss level must be high enough to produce premiums that are small 
in order that policyholders, brokers, and competitors will not force the 
experience rating of the stop-loss premium. On the other hand, the stop- 
loss level must be low enough to permit us to use the mathematical tools 
we have without fear of criticism or outright unemployment. 

Much of my discussion has been centered on problems outside the scope 
of Dr. Kahn's paper, which described the mathematical theory behind 
the collective risk theoretic model. I t  is apparent that no solution to these 
problems could have been found until the classical approaches using pure 
mathematical assumptions and theoretic collective risk models have been 
developed to the fullest extent. Perhaps this would be a good time to 
start. I t  seems clear that the developments thus far do not contain adjust- 
ment for enough of the factors involved in group insurance operations to 
enable us to use the results produced, even with a substantial loading, as a 
fair stop-loss premium. Current developments in group insurance would 
seem to incre~.se the importance of collective risk theory, and all of us can 
be grateful to Dr. Kahn for his very fine paper. 

RUSSELL ~I. COLLINS, JR.: 

We are indebted to Dr. Kahn for his very fine contribution to our 
literature on this subject. Prior to the publication of his and Mr. Feay's 
papers, it was necessary to go to European publications for information on 
this timely topic. 

One ditficulty that many North American actuaries may experience in 
making effective use of these tools will stem from the difference in mathe- 
matical training between the typical European and North American 
actuary. Another ditficulty will stem from the shortage of actuaries in 
North America, which has the effect of limiting considerably the amount 
of time that actuaries can spend in areas of basic research. I am hopeful 
that these problems can be overcome, since I believe that methods such 
as the application of collective risk theory described by Dr. Kahn can be 
applied to the solution of difficult and important actuarial problems. I 
am also hopeful that further papers will be forthcoming from those 
actuaries who are doing work in these fields. 
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(AUTHOR'S REVIEW OF DISCUSSION) 

PAUL M. KAHN: 

The author is most grateful to the discussants for the interest they 
exhibit in his paper. He is particularly grateful to Mr. Collins, the author 
of another paper in this volume, for his kind words; to make modern 
mathematical techniques available to American actuaries represents a 
most serious challenge. The Monte Carlo technique, long applied outside 
the insurance industry, may well have significant contributions to actu- 
arial practice, and Mr. Collins' very lucid paper will do much to stimulate 
interest in this topic. 

Several of the discussants point out a number of practical problems 
which must influence the setting of stop-loss premiums. Mr. Arvanitis 
suggests that the consideration of empirical experience would undoubted- 
ly be useful in an appraisal of these extraordinary factors. Both Mr. Jack- 
son and Mr. Tookey enumerate many of these extraordinary factors, and 
their considerations of the practical problems which beset one in setting 
stop-loss premium rates add greatly to the worth of the paper. Although 
a consideration of these problems is, as they point out, outside the scope 
of the paper, I venture to suggest different means which may prove useful 
in appraising what may be called commercial and external risks--risks 
other than those caused by random fluctuations. 

1. The use of past data in investigating the distribution of loss-ratios 
directly, rather than the use of a model based entirely upon the expected 
number of claims and the distribution of these claims, would be essential 
in a consideration of the stop-loss premium level. Both Mr. Jackson and 
Mr. Arvanitis make this point, and I most assuredly concur. 

2. The parameters t, the expected number of claims, and P(z), the 
distribution of individual claim amounts, may be investigated empirically 
as Ammeter contemplated [2, pp. 87-88]. 

3. More complicated models than the simple Poisson model considered 
here may prove useful in meeting some of the objections to the simple 
model. Both O. Lundberg and Ammeter consider a model in which the 
number of claims t has a distribution which varies with time. I-I. Cram~r 
considers briefly a model in which the distribution P(z) varies with time. 

P. Thyrion recently described a model in which the claims are assumed 
not to be independent but to occur in bunches. I t  may be hoped that 
American actuaries will be stimulated to consider some of these general- 
ized models and to investigate whether they are applicable to insurance 
problems on this side of the Atlantic. 

4. The ruin-theory branch of collective-risk theory is only briefly men- 
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tioned in the paper. I t  covers a wide variety of models and investigations, 
the principal purpose of which is to reduce the effects of inconvenient 
chance fluctuations to an insurance enterprise. Both Ammeter and H. 
Lambert have recently discussed possible applications of ruin-theory 
ideas to practical problems. The setting of retention limits, the determi- 
nation of the size of stability reserves, and the calculation of loading fac- 
tors have all been considered in the literature in ruin theory. The paper 
was restricted to distribution theory almost entirely because it seems to 
have more immediate application and because it is essentially simpler 
than ruin theory. 

5. The difficulty in appraising the effect of these extraneous risks leads 
one to inquire whether a more general approach is available than the one 
based on the classical actuarial assumption of the equivalence principle. 
Dr. Botch discusses an entirely different approach which has found favor 
with economists and management in many other industries. He applies 
the concepts of game theory and utility theory to the reinsurance market. 
If a reinsurer assumes the risk of a very large claim, although the prob- 
ability of such a claim is very small, he may well feel uneasy in accepting 
a premium based upon the expected value of the excess claims and will 
look for another method to determine a premium. 

Another application of the distribution branch of collective-risk theory 
is to group insurance--in particular, to experience rating. A development 
of this approach along the lines of Jackson's paper on experience rating 
was treated in [17]. 

Mr. Feay discusses the paper at some length under the headings of (1) 
"Distribution of Total Number of Claims," (2) "Collective Risk Theory," 
(3) "Distribution of the Amount of One Claim," (4) "The Esscher Ap- 
proximation," (5) "The Normal Approximation," and (6) "Causes of 
Fluctuation." Each is here treated in turn. 

1. Under the assumption of independence and the assumption as to 
the occurrence of claims, the Poisson distribution as the distribution of 
the number of claims follows mathematically and cannot be denied. The 
basic assumptions, of course, may be questioned; but they seem quite 
applicable to open, mature groups and are not out of the question for 
closed groups. In the computation of the expected number of claims, one 
may use approaches other than the one given here, such as one based on 
m~ instead of q~, as Feay suggests. 

2. The formula (2.1) gives an exact expression for F(x, t) in terms of t 
and the convolution functions of P(z). This may be difficult to compute 
numerically, as is often the case, but the problem may be resolved with 
various methods of approximations and the use of high-speed computers. 
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The expected number of claims t and the distribution of individual claim 
amounts P(z) completely determine F(x, t), since the equation (2.1) is 
exact. To argue otherwise is to indulge in semantic legerdemain. 

3. The example discussed in the paper of the exponential distribution 
for P(z) is given to illustrate the concept of convolutions and the calcula- 
tion of F(x, t) in a case where P(~.) has a simple analytic form. No refer- 
ence to its applicability is made. 

4. That  there is a difference between the Gram-Charlier Type A series 
and the Edgeworth series may be seen by reference to [10, pp. 221-31]. 
The order of magnitude of the errors in an approximation by the Type A 
series does not steadily decrease by taking more and more terms; the 
Edgeworth series, however, has this characteristic. For approximations 
involving the same number of moments, the Edgeworth series has smaller 
error. Mr. Feay's remarks may apply to the Gram-Charlier Type A series, 
but this series is nowhere mentioned or used in this paper. The essential 
difference between the normal approximation and the Esscher approxima- 
tion may be seen from considering equation (3.6): 

f(x, t) = C(x)f(x, i, P[z]), 

where C(x) is an exponential function of the form e-hx-to-~0. 
Mr. Jackson remarks: "When our statistical work is concentrated on 

values near the mean, we can fit frequency functions to the actual data 
and deal with them with some confidence." This principle is applied by ap- 
proximatingf(x, t,/5[z]) by an Edgeworth series (composed of the normal 
density function and its derivatives). The factor h in C(x) is chosen so 
that the mean of f(x, t, P[x]) is the retention limit ut in our application. 
I t  must be pointed out that (3.6) represents an equality, regardless of 
the value of h. Instead of approximating f(x, t, P[z]) directly, we 
approximate f(x,  Z,/5[x]) in the region of its mean, and the exponential 
factor C(x) serves to dampen the error of the approximation. I t  is as 
though we applied a magnifying glass to the tail of the distributionf(x, t, 
P[z]) and then reduced it to scale by C(x). To state that the parameter h 
can be chosen so that the stop-loss premium may be as large as one wants 
somewhat obscures the role of h in the Esscher approximation. The 
Esscher approximation has, in general, an error term of smaller order of 
magnitude than the normal approximation (see, e.g., [11, pp. 31-40] and 
the numerical example of Mr. Tookey). 

5. Mr. Feay assumed in his paper that under certain conditions the 
claims in different amount groupings are normally distributed. The total 
claim amount is the sum of the claim amounts in the groupings. That  the 
sum of normally distributed, independent random variables is itself nor- 
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really distributed is a fact which we may well keep in mind. Mr. Feay's re- 
marks on the Pearson Type I I I  distribution are of interest and point out 
alternate approaches. The skewness of the distribution of total claims 
is a phenomenon observed in actual dam and has been widely reported in 
the literature. 

6. I t  is obvious that variation in claim amounts results from several 
causes. The classification into commercial risks, external insurauce risks, 
and the risks of random fluctuations is reasonable, though arbitrary. No 
attempt is made to analyze the effects of the commercial and external in- 
surance risks; these are outside the scope of the paper. I t  is doubtful, 
however, whether any reinsurance company, at least on this side of the 
Atlantic, would undertake to write a stop-loss treaty covering either "an 
all-out atomic war" or "the entire death of the earth." 


