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T 
HE insurance reserve for an individual contract can be pictured 
as a quantity which changes continuously from moment to mo- 
ment in response to the forces of interest and mortality. In re- 

sponse to the force of interest the rate of increase is proportional to the 
amount of reserve. In response to the force of mortality the rate of de- 
crease is proportional to the amount at risk (i.e., excess of death benefit 
over reserve). 

A different mathematical model arises for each method of defining the 
death benefit, and in this paper a number of such mathematical models 
are analyzed. The procedure for each model will be (1) to specify the first 
derivative or the rate of change of the reserve at some moment in time, 
(2) by integration to obtain an expression for the reserve at the end of 
some interval in terms of the reserve at the beginning of such interval, and 
(3) to show how a series of such equations may be used to determine the 
premium for the contract. 

In all the models to be analyzed we shall assume a contract issued at 
age x with a premium P payable annually in advance. The reserve at the 
end of the interval between age x Jr r and x Jr r Jr 1 will be obtained in 
terms of the reserve at the beginning of such interval. Durations from the 
beginning of such interval will be indicated by a right-hand subscript, 
whereas durations from the issue date of the contract will be indicated by 
a left-hand subscript, The symbol p~ will be used to represent the prob- 
ability of living t years from the beginning Of the interval. 

Model 1: The Pure Inveslrtwnt Fund 

A contract is in the pure investment class if the death benefit equals the 
reserve. As there is no amount at risk, the rate of growth of the reserve 
(i.e., the share per survivor) is not affected either beneficially or adversely 
by the force of mortality. At moment t the rate of growth of the reserve is 
given by 

dV,  
dt = ~ ' V t - - u , [ V t - - V t ] .  ( 1 . 1 )  

Integrating, we have 
V~ = V~(1 + 0 .  (1.2) 
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494 THE MATHEMATICAL FORCES OPERATING ON RESERVES 

Rewriting in left-hand notation, 

,+iV = (,V + e)O + i ) .  

Multiplying through by D~-,+I, we have 
0 . D:+T+I ~+,V = D ° r ( W  + P) (1.3) 

where 
D~ = v*. (1.4) 

If the reserve at duration n is specified, say K, equation (1.3) can be 
used to generate a family of equations from which P can be determined. 
They are as follows: 

D°+l" 1V = D~ (0 + P) 

DL2.2V ---- D~+x(1V + P) 

0 D~+,,.K = D.+.-x(.-aV + P). 

Adding and canceling, 

D L n . K  = P(N  ° -- N L . )  
where 

o_ ~ D  o N= - =+ ~, 
t ~ 0  

(1.s) 

(1.6) 

0 K" D,+, K 
""P--- o NO = - - .  (1.7) N=-- ~+,, ~ 

Model 2: The Pure Endowment Fund 

A contract is in the pure endowment class if there is no death benefit. 
The share of those dying is sacrificed for the benefit of the survivors. At 
moment t the rate of growth of the reserve is given by 

dVt  
a--~ = 6 - V , - m [ 0 -  V,]. (2.1) 

Integrating, we have 
l + i  

V1-- V o ~  
P~ 

Rewriting in left-hand notation, 

( 1 + ¢  5 r+IV = (,V + P ) \  pl / '  

(2.2) 
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Multiplying through by D~+I, we have 

D,.+,~a',+aV = D~,( ,V  + P) (2.3) 
where 

D, ---- ~ . l . .  (2.4) 

If the reserve at duration n is specified, say K, equation (2.3) can be 
used to generate a family of equations from which P can be determined. 
They are as follows: 

D,+t.IV = D,(O + P) 

D ~ ' 2 V  = D,+t(tV + P) 

D,+. 'K = D~-,-I(,-1V + P) . 

Adding and canceling, 

where 
D~.~.K = P(N,  -- N ~ , )  (2.5) 

N , =  ~ D,+t, (2.6)  

K • D , + .  
" " P - - N : -  N,+," (2.7)  

Model 3: The Level Insurance Fund 

A contract is in the level insurance class if a level death benefit, say L, 
is provided. At moment t the rate of growth is given by 

dVt  
dt = ~" V~-- # , [ L -  Vt] .  (3.1)  

Integrating (see Appendix, 1) we have 

Vi = 1 + i [  1 m ' d t ] .  3.2) ---~-l t V o - L /  v~.p~" ( 

Multiplying through by D,+,+t and rewriting in left-hand notation, we 
have 

D:+,+x',+IV = D:+~[,V + P] -- g • O:+, (3.3) 
where 

D,--- v".l,  and 0 , ~  D,+t~,+,dt. (3.4)  
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If the reserve at duration n is specified, say K, equation (3.3) can be 
used to generate a family of equations from which P can be determined. 
They are as follows: 

D~+I-W = D~(0 + P) - L.d~ 

D,,+~'W = D~I(IV + P) - L'O~-I 

Adding and canceling 

D~-,,.K = P(N.  - N~-.) -- L(M.  -- .~.+.) (3.5) 
where 

N , = ~ D , + ,  and i~,--- ~ C , + , ,  (3 .6)  
t ~ 0  ~ ~ 0  

.. p = L ( ~ r , - - ~ . + , )  + K .  D.+~ 
(3.7)  

N , - -  N.+, 

If K = 0, the contract will be recognized as a term insurance policy. 
If K -- L, the contract will be recognized as an endowment policy. If 
L - 0, the pure endowment of model 2 appears. If n = o~, the contract 
will be recognized as a whole life policy. 

Model 4: The Reserve Plus Face Amount Fund 
Contracts belonging to model 4 are designed to satisfy the objection 

that in a level insurance fund contract the reserve at death is forfeited 
to the insurer. At moment t, the rate of growth of the reserve can be 
written as 

d V, 
d---T= 8. V , -  # t [ L +  V,--  Vt] .  (4.1)  

Integrating (see Appendix, 2), we have 

Vl = ( l + i )  [ V o -  L fo lv ' .  u,dt] . (4.2)  

Multiplying through by D ~ - x  = ~+~+1 and rewriting in left-hand nota- 
tion, we have 

D°~.~.VI = D~,~[,V + 1)] -- L.C~.,  (4,3) 
where 

- 

D °. = v" and Co. = D°,+t • t~,+flt. ( 4.4 ) 
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If the reserve at duration n is specified, say K, equation (4.3) can be 
used to generate a family of equations from which P can be determined. 
They are as follows: 

D~+z.,V = D°~ [0 + P] -- L . C  ° 

DZ.~.~V = D~+~[~V + t"] - L.  & ~  

D~+~. K = D~_._at._I V + P] -- L .  O°~+._I . 

Adding and canceling, we have 

D~-.. K = P[N~ - N ~ I  - L [ ~  - ~g+-I 
where 

t ~ 0  t ~ 0  

- - 0  - - 0  0 ... p .--_ L ( M ~  - -M,+~)  + K .  D~+, 
N O -  o 

(4.5) 

If L = 0, the model degenerates into a pure investment fund. I t  may 
be of interest to observe that the function C-p .  and hence 0~ will in 
general be an increasing function of x. I t  follows that the return of reserve 
feature must be limited to a practical age range. 

Model 5: The Death Benefit Equals a Constant L Plus a Constant g Times 
the l~eserve 

The rate of growth at moment t can be written as: 

d V t  
dt  = ~" V t - -  u ,[  (L  + g V , )  -- V t ] .  ( 5 . 1 )  

Integrating (see Appendix, 3), we have 

t+![vpl -o L o f l  ~,,dt] .2) VI --_ _ L j  ° ~ t .  ~ - u .  . ( 5 

Multiplying through by DC~+~I as defined in (5.4) and rewriting in left- 
hand notation, we have 

D,+,+xo-,) . ,+l V = DO-o)(,+, ,V q -P )  -- L.(~_%~*) (5 .3 )  

where 

£ Di t - , )  = v ' . l  t-". and d(l-a) = D~,~+-~t)p,+,dt. ( 5 . 4 )  

(Note: g-~ is l, raised to the power [1 - gl.) 
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If the reserve at duration n is specified, say K, equation (5.3) can be 
used to generate a family of equations from which P can be determined. 
They are as follows: 

D(~-~) • ~ V = D(3-O [ 0 + P I  - L- O()-~) = - b l  

D O - g ) .  2 V  = D O - o )  [ 1 V  + p ]  -- r .~ ( l -o )  
x + 2  z T x  ~ ~ z + l  

DO-a). K = r~(~-g) [ . V + P I  -- L.~(~-a) x + n  ~ z + n - - 1  n--~. z + n - - l "  

Adding and canceling, 

~¢(1-~) L [.~(1-~) _~(k-:~) 1 ( 5.5 ) D O - g ) .  K = P [ N(~ l -g )  - . ,  ~+~ ] - -  

where :? o 
N~I-,) = --~+,/)(1-') and 3¢J- ' )  = ~ C~_3o), ( 5.6 ) 

t ~O t ~ 0  

• P L(jg-~l-o) ~ h - o )  ~(1-o) 
• .  = ( 5 . 7 )  

N ( = X - o )  - -  ~0-~)  

If the premium-paying period is r years, it follows that 

L(/~(1-°) ~(1-o) ~ ,~q-~) p =  --~w.-~ j + K ' ~ . + ~  (5 .7a )  
N ( 1 - a )  _ ~ ( 1 - g )  " ' z + r  

I t  will be apparent that  each of the first four models represents a 
special case under model $ obtained by appropriate selection of L and g. 
The point is illustrated by the following table: 

Model 

1. Pure inves tment  . . . .  
2. Pure e ndow m e n t . . .  
3. Level insurance . . . .  
4. Level  insurance plus 

re turn of reserve . . . .  

L 

- V o  w 
L 

L 

APPROXmATmN fOR C(- 1-~) 

To employ the formulas developed above, a practical approximation 
for O(l-a) will usually be required. For the level insurance fund the 
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Usual approximation arises from assuming that  l~ is linear between ages, 
and the convenient formula C, = ( i / 8 ) C ,  then emerges. However, the 
same assumption is not convenient for g # 0, and I would like to suggest 
the assumption that the force of mortality remains constant during each 
year of age instead. 

Because 

/ I t t~+td t  = colog~ p~, 

it follows that for each year tt = colog, p.. I t  can then be shown that  
,p. = (p.)* for 0 < t < 1. The approximate value for ~1-o) in model 5 
(see Appendix, 4) can be shown to be 

0(=1_o ) _ /z [D  -- D + , ] .  ( 5 .8 )  
• ~ +  ( 1 -  g)~,  

C O N C L U S I O N  

By suitably defining D~ (I-~) = v~.l~ -g, the familiar formulas for net 
annual premiums and reserves which we use for level death benefits can 
be used for contracts where the death benefit includes all or a specified 
fraction or multiple of a reserve. 

E X A M P L E S  

The following examples will illustrate how the results of this paper 
might be employed• 

E x a m p l e  1 

Find the net annual premium for a policy where the death benefit is 
$1,000 plus one-half of the reserve and the contract is to mature at the 
end of twenty years for $1,000. 

Solution: Using equation (5.7) with L = 1,000, n = 20, K = 1,000, 
g = ½ ,  

~x(U~) ~(r/i) , D(UI) 
- -  .tl'l z + i O  "1- x + 2 0  

P = 1 , 0 0 0  N(<.tI2) _ N(t/2) 
x + 2 0  

where 
D<,n) = ~(~=)1/~ = v= .  v ' z :  

colog~ p: [ D(lf2) _ D(1/~) ] 
(~(iI2) - ~ + ½ colog~ p:, - -~+t  

co 

N(ll2)  = ~-~ DOn) ~ ,  x+t 
t ~ 0  

o~ 

x +  t " 

t ~ O  
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Example 2 

Find the net single premium for a policy where the death benefit is 
twice the reserve and the policy is to mature in 30 years for $1,000. 

Solution: Using equation (5.7a) with L = 0, n = 30, K- -1 ,000 ,  
g =  2, r =  1, 

D(-D z+~O 
P - -  1,000 D~_I) 

where 
~z 

D(-1) : ,17z. (~)--1...~.~- 

APPENDIX 

I. Model 3: Equation (3.2) 

d V ,  
d'---f = ~" V ,  -- ~, [ L - -  Vj] 

= ( , u t + , ~ ) V , - - L ' t ~ t  

d i r t . p , .  V t ] =  vtpt[ ( # ~ +  8) V ~ - L ' I ~ t ]  -- V t ( v t p D ( # t +  8) 

= --L" ~t.p~.#j , 

x d 1 

vp~v~- Vo-- - L  fo~v t" P," mdL 

• v~--  1 + i F  L f  • u,dt]. 
• Pl LV°-- -'o 11,t'pt (3.2) 

2. Mod~l 4.. F~uation (42) 

d V t  
dt  -" 8. V , -  ut.L 

d [t, ' .  V,I = t , ' [ (~V , -  ~ , .L]  -- V , (v ' ) . (~  
dt  

= --L. ~t.l~j 

V ~ -  V o =  - -  v t. m d t  

Va = ( 1 + i )  V o -  t~'.~#dt . (4 .2)  
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3. Model  5: Equation (5.2) 
d V t  

d---F = ~" V , - m [  ( L +  g V , )  - V,]  

= [ ~ + ( 1 - g ) u ,  l V , - L . m  

.~[d r'.p~-o.V,] = r'.P,'-~t(~+i-gu,)V,-L.u,l 
- V, .  v , . p~-a[~+  (1  - g)u,] 

= - -  L .  v ' .  p ~ - , .  I~, , 

• 

rpl -g"  V l -- V o = -- L C .  p~-". ~ ,d t ,  

• 1 + i  . r  I 
Vx = p~-o [V o - l . J o  v " p ~ - o . u , d t ] .  (5 .2 )  

4. Approximation for ~(l-q) (5.8) 

i t v ~+~ I 1-o. t~+t dt 

/ = v ~. t~-" v ' .  , p l - o .  , . + , d t .  

But 

/~+* -- t~ = colog, p, and 

• 1 - - f f  

1 - a  ¢ 1 

= u D ~ - , > [ _  ( p; ) i s  ~__ g)~,]. 
1 - -  ~ p ) - °  

= u(D~ l -g>-  ~',+tnq-a) ~j 

~ + ( t - g ) u  

,p ._(p.) '  0 < t < l ,  

(5.8) 



DISCUSSION OF PRECEDING PAPER 

MOHAMED F. AMER: 

Equations (x.1) t take care of the effect of interest and mortality but 
do not reflect the effect of the premiums on the rate of change of the 
reserves. Then after integration over one-year duration, P was introduced 
before summation over the entire period because we know it should be 
included. 

The purpose of this discussion is: (1) to provide directly for the effect 
of the premium on the rate of change of the reserves (the method I used 
permitted the integration for the entire range, instead of integrating from 
0 to 1 and then adding up n equations); (2) to give expressions for the 
rate of change of reserves when the death benefit is payable at the end 
of the policy year of death; and (3) to give similar expressions when the 
premium or the benefit varies from year to year. 

1. Effect of the Premium on the Rate of Change of Reserves 

Jordan gave the following equation :2 

d 
-d~t( l~+, Vt  ) = ~l,+t Vt  - Ux+tl~+tL + l~+t/5. ( 1 ) 

So, 
d 

lx+, dt  V t -  #~+tl~+tVt = ~l~+tVt - #~+,l~+tL +l~+t/5, 

or (2) 

g- ~,= --~,z+,(L- fz~) + ~ ,+ /5  
dt 

This is the same as equations (x.1) except that it has an additional/5. 
However, it is not possible to do exactly the same when the premiums 
are not continuous. 

Let us introduce the Kronecker Delta defined as follows? 

6t ~=  l f o r t =  k 
(3) 

~t ~ = 0 for t r ~ k.  

The term t being a continuous variable, k takes only integral values during 
the premium payment period. This symbol is easily distinguishable from 

t Equations (x.1) refer to equations (1.1), (2.1), etc., in the paper. 

s C. W. Jordan, Jr., Life Contingencies, p. 106. Death benefit is L instead of $1.00. 

J Barry Spain, Tensor Calculus, p. 4. 
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the force of interest, as the latter does not have any subscripts or super- 
scripts. 

Consider Model 5, which is the most complicated, and all remaining 
models can easily follow similarly. The premiums are payable annually 
for n-years and thus k = 0, 1, 2, 3 , . . . ,  n - 1. Pk is the constant P, for 
all permissible values of k, 

dV,  = ~V,dt - ux+t[(L + gV,)  - V,]dt + 8~PE , 
that is 

dV~ --  (8 + ~ u ~ + , ) V , d t  = - - u ~ , L d t  + ~ P ~ .  (4) 

Multiply by the integrating factor, 

The left-hand side of equation (4) becomes the complete differential 

d (O(~+-:) V,). 
Thus: 

d ( D~+-t o) V t = --  t 4 z+  DO-g)dt+,+~ ~kp,, ~ DO-o),+t " ( 4a ) 

Summing up for all values of the continuous variable t between 0 and n 
is in effect integrating terms of equation (4a), except the last one, which 
will not convert to integration: 

f'_.: ( D  o ) V , )  = - - L  , o ) d t +  D(1-o)P. 8 k (5)  

o r  

)V(l-g) . n ( ~ g ) K  = - L ( M ( 1 - g ) - - U ( ~ + - a ) )  + P ( N ( ~ - g )  - ..~+, ) (6)  

This is the same as Mereu's equation (5.5). 
If the premium payment period is r, k in the last term of equation (5) 

does not exceed r - 1, and thus 
( i - ~ ( 1 - o )  , .~- , - . ( 1 - o )  p = L ( M ,  l-g) --~1~+~ ) -t- ~zJ,+~ (7)  

N(l-g) - -  7v(i-o) 
~ v z q -  r 

2. Death Benefi t  Payable  at the E n d  of  the Year  o f  Death 

In this case there is an added complexity which can be solved by using 
another Kronecker Delta. 

An expression corresponding to equation (1) above is 

d ( l ~ t V , )  - -  8l,.+tVtdt = - -  ~ id~u- lL i  -'l- ~ l ~ - , P k ,  (8) 

where i - 1, 2, 3 , . . . ,  n; k = O, 1, 2 , . . . ,  r - 1; and L~ and Pk are the 
constants L and P. 
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'. The first term on the right-hand side of equation (8) needs some clarifi- 
cation. At t = 0, no death benefit is payable, and ~ is zero for all possible 
values of i. At t -- 1, death benefit d , . L  is payable, and ~i is the only non- 
zero function. At t = 2, death benefit d~a. L is payable, and 6| is the only 
nonzero function. At t = n, death benefit d,.~-a. L is payable, and ~ is 
the only nonzero function. 

Multiplying equation (8) by the integrating factor v ~+t and summing 
up for all values of t from 0 to n, we get 

that is 

f,:o c Z X , '  D~+,V , )  = -  LIS~C=+,-I+ P~ ,D=+t, 
t~O ¢--0 

(Sa)  

D,,+,,. K = - - L ( M ,  - M , , ~ )  + P (  N ,  - N , + , )  
or 

p = L ( M .  - M.+,.) + KD~+,, 

N , -  N ,+ ,  

3. Variable Premiums and Benefits 

In the case where the amount of insurance stays level throughout any 
policy year, but increases from year to year and the net annual premium 
is also of the increasing type, equation (Sa) above can be used with Li --iL 
and P~ = kP.  Thus 

Dz+~, K = - - L ( R , - R , + .  --  n M , - ~ )  + P (  S . -  S , + r -  r N .+r)  

p = L ( R .  --R~-~ -- nM~.¢-.~ + KD,,+,. 

S~ - S~+, --  r N , + ,  

or  

Thus the introduction of the Kronecker Delta in the actuarial calcula- 
tions helps sometimes when both continuous and discrete variables are 
involved. 

I would like to thank Mr. J. H. Cook for his reading of the manuscripts 
of this discussion and for his valuable suggestions. 

CECIL J. N~SBITT: 

The general notion of evaluating premiums and reserves for insurances 
with sum insured equal to a linear function of the reserve (including the 
case where the coefficients vary with duration l) is not new. I t  is referred 
to in H. L. Seal's discussion ( T S A ,  IV, 652) and in the reply by Mrs. 
Butcher and myself (iMd., p. 656); also it appears in Examples 1, 3, and 
4 of the paper, "Premiums and Reserves in Multiple Decrement Theory ,"  

by W. S. Bicknell and myself ( T S A ,  Vol. VIII). However, the present 
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paper  appears  to be the first to give a systematic account of the case with 
constant  coefficients. 

In  the following we consider some special cases where the death benefit 
is L, + gV~, tha t  is, the term not involving the reserve may  vary  with 
duration. In  particular,  if Lt = S/m,  then, corresponding to the author ' s  
formula (5.1), we have  

dV~ 
= [ ~ + I ~ , ( 1 - - g ) ] V , - - S  "dr 

for say the year (r + 1). Then multiplication by  the integrating factor 
D ~ t ,  and integration over the range t = 0 to t = 1 yields 

A [ D(~+5~.~+I V ] = pDo.-o) -- S D([-o).dt 
x - t - r  z t r + ~  " 

Summat ion  over r -- 0 to r = n --  1 leads to 

P [ N~ ~-~) - N(?+-d) l = s [f /~-~) - ~(,-o~] + K D o . - , )  

where K is the reserve a t  duration n. I t  follows tha t  

.(l--e) 
a=:~ + K 

P = S ~  L(1-o)" 
/J'z:n--'l '~z:n--I 

In  particular, if g = 0, 

and, if g = 1, 

a~:~ K 
P = S ~ : . + ~ : . _ 7 ,  

d K 

I t  m a y  be of interest to look a t  the same type of insurance on a com- 
pletely discrete basis. I f  the death benefit for year  (r + 1) is 

S 
-I- g" ,+1 V ,  q~+, 

then 

( S~..r.jr. ",+IV)+vp,+r.,+IV rV P =  vq~+. ~ g 

becomes 
P v S +  ' = ~P,~.~-IV - ,V, 

where q~.. = (1 --  g)q~+,, Multiplication by  D~+, (where/~ is based on 
the rates q~) yields 

V ~ ( e -  ~s) = z~ iD~, . ,V l ,  
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and then summation over r = 0 to r = n -- 1 gives 

- - = KD ., 

or 

P =  v S + ?  K . 
x:n-'] 

It  may be noted that the introduction of the benefit S/q,+, to dispose 
of one term involving the mortality rate is similar to the device used by 
D. C. Baillie in his "Actuarial Note: Cash Value as Death Benefit" (p. 
411 of this volume) to eliminate the mortality element from his formula 
(2) to get his formula (10). Also, it should be noted that, if g > 1, then 

! 
the special mortality rates q~,  are negative, and the corresponding sur- 

! 
viral rates p~ ,  are greater than I. The author's Example 2 illustrates 
this situation for the continuous case with g = 2. 

ROBERX Z. BEAm):  

I have found this paper by Mr. Mereu very interesting, and I would 
first like to carry you back, say, twenty-five years to the primitive days 
before we had computers. 

At that time, I was doing a certain amount of actuarial mortality 
research and needed some method of cutting down the arithmetic; the 
Massachusetts Institute of Technology differential analyzer had recently 
been constructed, and it struck me that this might be a machine on which 
complicated actuarial calculations could be done much more easily than 
by the standard methods in use. 

The only way to get such a machine was to make one myself, and I 
therefore set to work to build a six-integrater analyzer. This was described 
in a paper read to the Institute of Actuaries in 1941 and was demonstrated 
in London at the meeting shortly after it had been subject to a certain 
amount of damage from enemy action. Nonetheless, it worked long enough 
to demonstrate that actuarial functions could very easily be calculated 
on an analyzer. 

However, in order to use the machine, it was necessary to develop a 
fresh approach to actuarial calculations by expressing them as the solution 
of differential equations. For this reason I have found Mr. Mereu's paper 
particularly fascinating because he had, in effect, picked up my work at 
the point where I had left off and had now extended the analytical side 
of it. 

I would like to commend this type of study to students generally, 
because the normal approach to calculations by means of commutation 
functions becomes so ingrained that it takes a long time to realize that 
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there are other ways of approach. The physicist works in differential 
equations, and the work in this field being done with computers should 
be available to us. I think this alternative approach may be found very 
valuable in seeking for new angles in dealing with our particular calcula- 
tions. 

COURTLAND C. SMITH: 

Mr. Mereu's interesting paper discusses single life policies paying a 
benefit of L + g" ,V at death. His Model 5 demonstrates that the net level 
premiums and reserves for this benefit are equivalent to those computed 
for a level death benefit L if special commutation functions are employed. 
In somewhat modified symbolism the special functions may he written 

D~ bl= v~(l~) b, b= 1 - g  

and 

= foiDf. ,. +,et. 

These functions are reminiscent of the commutation functions used 
for a multiple life insurance on b lives all at the same age and mortality 
assumption, where the death benefit is payable on the first death of a 
specified member of the group. 

The development for the completely continuous case is substantially 
as follows: The equation 

d , ~ _ _ p +  8 . , F - - -  ~ z + , [ a ' L -  b . , l ? ]  (A) 
dt 

may be written 

d , ?  = p +  8. ,17 t~l Ib) 
- -  - v . , + , . L +  u , + , "  , ?  ( A ' )  dt 

where 
Is] [b] 

#=+ ,  --- a . a . + ,  a n d  ~ . + ,  = b • ~ x + ,  ; 
and, since 

d nibl him r [b} 
d--t L , . + t  = - -  ~ + ,  t U . + ,  + 8 1 ,  ( B )  

we see that 

n[b] r f i  [al L1 d D I b ] ' t g = u = + , t .  ~:+t" J (C) 
d-t =+* - " 

Integrating from 0 to 1, we find that 

Dlb] Dlb] ~ f l r , [b]  - .  = r l ~ [ b ]  [a] . 1 ,  

,+, ' ,V---:  .ofg=rjo v:+,a~-Ljo v:+,u=+,a, (D)  

d, lb:a) • = P .  ~t-2) - L . , , ,  
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Summing from 0 to n, using the conventional definitions of/V and M, and 
rearranging, we conclude that 

Of course, in (E) the term containing 0~ z is ordinarily dropped, in which 
case we have the usual formula for the net premium for an endowment 
insurance providing a level death benefit. 

Equation (A ~) is quite general. If a equals 1, we have Mereu's varying 
death benefit, or else the aforementioned contingent multiple life insur- 
ance paying L on the first death of a particular life. If a equals b, we have 
a joint life insurance on b lives at the same age and mortality assumption, 
paying L on the first death of any of the lives in the group. Use of multi- 
pies of the force of mortality in this way suggests an application in another 
area. 

Suppose we define multiple table substandard mortality as a function 
of ~, rather than q~. That is, a rating of b times standard shall mean that 

+, P~+#. 

If we let a equal b, equation (A') describes the time rate of growth in the 
reserve for a conventional endowment insurance on a life rated b times 
standard. 

The full import of Mr. Mereu's idea may now become apparent. Sup- 
pose we have to value an n-year endowment insurance paying 1. L -b ~- ~ff 
at the first death of two lives, each age x and each rated 300 per cent 
of the standard force of mortality. In this case, a -- 1 . 2 . 3  = 6 and b -- 
~.2.3 = 1, and this unusual insurance boils down to an endowment 
insurance paying 6 .L at death, with premiums and reserves computed 
on a standard single life table! 

Of course, it is possible to conceive of more complicated examples, for 
which we might have to compute half-life or minus-one-life commutation 
functions, as in the two examples at the end of Mr. Mereu's paper. While 
half-lives and minus-one-lives are not observable in the world of everyday 
experience, they can be quite useful fictions in the world defined by equa- 
tion (A) and the conventions of the calculus. 

Another area to which this model may be applied is that of multiple 
decrement theory. Jordan has remarked on the similarity between multi- 
ple life and multiple decrement theory; ~ in each the additivity of the 
respective forces of decrement leads to the multiplicativity of the corre- 
sponding independent probabilities of survivorship. Under very special 

1C. W. Jordan, Jr., Life Contisgendes (Chicsgo: Society of Actuaries, 1952), pp. 
262--63. 
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conditions, a particular force of decrement may be a constant proportion 
of the total forces operative; as, for example, in the case of the force of 
mortality on policies at  the higher durations, after lapse rates have 
dropped to a minimum and begun turning upward. In these ckumstances, 
equation (A') becomes a special case of the model for the time rate of 
growth of one component of a set of "independent" reserves, which is 
discussed by Bicknell and Nesbltt (equation [3], p. 355). 2 

Several years ago, Weck pointed out the great utility of the additivity 
and proportionality properties of the force of mortality in discussing the 
relative complexity of the mortality rate q~ and of the exposure concept 
underlying q~.~ Nesbitt and Van Eenam further elaborated the "rate 
function" approach. 4 Subsequently, Gershenson suggested a straightfor- 
ward method of constructing multiple decrement tables by assuming that 
the additivity and proportionality properties apply to central rates in 
general. 5 

I believe that Mr. Mereu deserves our thanks for again demonstrating 
the importance of these properties of ~ and the value of the continuous 
approach. 

(Au'r~tOR'S ~ V ~ W  OF DISCUSSION) 

JOHN A. MEREU: 

I would like to thank Mr. Amer, Dr. Nesbitt, Mr. Beard, and Mr. 
Smith for their discussions of my paper. 

Mr. Amer shows how the process of obtaining an expression for the 
premium can be condensed into one step. He does this by using a sophisti- 
cated method of mathematical integration which takes discontinuities in 
the function to be integrated in its stride. 

Mr. Amer then analyzes the level insurance fund where death benefits 
are payable at  the end of the year. However, it is questionable whether 
any advantage is gained by analyzing such a model with calculus methods. 

Dr. Nesbitt referred to Dr. H. L. Seal's discussion in TSA,  Volume 
IV, where the following law was quoted: "I f  the sum insured under a 

2 W. S. Bicknell and C. J. Nesbitt, "Premiums and Reserves in Multiple Decrement 
Theory," TSA, VIII (1956), 344. Section II of this paper discusses so-called "inde- 
pendent" premiums and reserves (pp. 355 ft.). 

F. A. Weck, "The Mortality Rate and Its Derivation from Actual Experience," 
RA1A, XXXVI (1947), 43--46. 

4 C. J. Nesbitt and Maxjorie L. Van Eenam, "Rate Functions and Their Role in 
Actuarial Mathematics," RAIA, XXXVII (1948), 222. 

i Book review by H. Gershenaon of LiJe and Other Co,~ingend~s by P. F. Hooker 
and L. A. Longley-Cooke in TSA, IX (1957), 460. 
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given plan of insurance may be written in the form Qt + K~(Qt - V~+I), 
where V, is the (reserve, surrender, asset-share) value of the policy at 
duration t (t is integral), then that plan is actuarially equivalent to one 
under which the sum insured between durations t and t + 1 is Q, but the 
mortality rate between those durations has been changed from q.+t to 
(1 + k,)q...,." 

A similar law exists for the continuous models discussed in my paper. 
Equation (5.1) can be rewritten as: 

d V t  
d----~= ~. V , -  u, [ (L  + g V ,  ) - V,] 

= [ 6 + ( l - - g ) u t l V , - L u ,  

= [ ~ + ( 1 - - g ) u t ]  V , - -  - 

= [ ~ +  u~] V , - - L ' .  ~,~ 

= a V , - u i [ L ' -  V , ] .  

L 
1 - - g  

(1 - g ) p t  

I t  follows therefore that, "if the sum insured under a given plan of 
insurance may be written in the form L + g. V,  then that plan is actu- 
arian), equivalent to one under which the sum insured is L/1  -- g, but 
the force of mortality is changed from #t to (I -- g)m.,, 

This is not a useful statement when g = 1, since the actuarially equiva- 
lent level benefit plan is indeterminate with an infinite death benefit but 
no mortality. 

When g is greater than unity, the actuarially equivalent level benefit 
plan has a negative force of mortality and negative death benefits which 
might be referred to as positive antimortality benefits. The actuarial 
experience in another planet, exposed to the increment of antimortality 
at each age instead of to the decrement of mortality, of a company 
insuring a population for level amounts against the increment of anti- 
mortality might be similar to that of an insurer on our planet insuring 
against the decrement of death with a plan paying a face amount plus 
some multiple of the reserve exceeding unity. Antimortality might be 
visualized as a spontaneous division of a living unit into two units each 
actuariaUy equivalent to the one which divided. 

Mr. Smith notes that the functions defined in Model 5 are reminiscent 
of multiple life commutation functions, and this is so if the parameter g 
is a negative integer. Using the law derived above with g -- -- 1, we would 
say that a plan of insurance under which the sum insured is given by 
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L - Vt is actuarially equivalent to one under which the sum insured is 
L/2, and the force of mortality is changed from ~t to 2~t. 

Let us suppose that we have sold at age x two peculiar identical policies 
under which the death benefit is the face amount less the reserve. At the 
time of the first death the total amount payable ff the survivor cashes 
his policy at that time is (L - V) + V = L. The result is actuarially 
equivalent to the sale of two joint life policies on the two lives each with 
a face amount of L/2. The force of mortality for such joint policies is twice 
that for a single life. The same law can be used to verify Mr. Smith's 
conclusions regarding the joint life example which he illustrated. 

Mr. Beard referred to the differential analyzer which he constructed 
and the paper on the subject which he presented to the Institute of 
Actuaries in 1941. The differential analyzer is an ingenious mechanical 
device which can be employed in the integration of functions. The con- 
struction of the machine was carried out in London, England, during the 
days of the blitz. 


